
AspectC++ Quick Reference

Concepts

aspect
Aspects in AspectC++ implement in a modular way crosscut-
ting concerns and are an extension to the class concept of C++.
Additionally to attributes and methods, aspects may also contain
advice declarations.

advice
An advice declaration is used either to specify code that should
run when the join points specified by a pointcut expression are
reached or to introduce a new method, attribute, or type to all
join points specified by a pointcut expression.

slice
A slice is a fragment of a C++ element like a class. It may be
used by introduction advice to implemented static extensions of
the program.

join point
In AspectC++ join points are defined as points in the component
code where aspects can interfere. A join point refers to a method,
an attribute, a type (class, struct, or union), an object, or a point
from which a join point is accessed.

pointcut
A pointcut is a set of join points described by a pointcut expres-
sion.

pointcut expression
Pointcut expressions are composed from match expressions used
to find a set of join points, from pointcut functions used to filter
or map specific join points from a pointcut, and from algebraic
operators used to combine pointcuts.

match expression
Match expressions are strings containing a search pattern.

order declaration
If more than one aspect affects the same join point an order dec-
laration can be used to define the order of advice code execution.

Aspects

Writing aspects works very similar to writing C++ class definitions.
Aspects may define ordinary class members as well as advice.

aspect A { ... };
defines the aspect A

aspect A : public B { ... };
A inherits from class or aspect B

Advice Declarations
advice pointcut : before(...) {...}

the advice code is executed before the join points in the pointcut
advice pointcut : after(...) {...}

the advice code is executed after the join points in the pointcut
advice pointcut : around(...) {...}

the advice code is executed in place of the join points in the
pointcut

advice pointcut : order(high, ...low);
high and low are pointcuts, which describe sets of aspects. As-
pects on the left side of the argument list always have a higher
precedence than aspects on the right hand side at the join points,
where the order declaration is applied.

advice pointcut : slice class : public Base {...}
introduces a new base class Base and members into the target
classes matched by pointcut.

advice pointcut : slice ASlice ;
introduces the slice ASlice into the target classes matched by
pointcut.

Pointcut Expressions
Type Matching

"int"
matches the C++ built-in scalar type int

"% *"
matches any pointer type

Namespace and Class Matching

"Chain"
matches the class, struct or union Chain

"Memory%"
matches any class, struct or union whose name starts with “Mem-
ory”

Function Matching

"void reset()"
matches the function reset having no parameters and returning
void

"% printf(...)"
matches the function printf having any number of parameters
and returning any type

"% ...::%(...)"
matches any function, operator function, or type conversion
function (in any class or namespace)

"% ...::Service::%(...) const"
matches any const member-function of the class Service de-
fined in any scope

"% ...::operator %(...)"
matches any type conversion function

"virtual % C::%(...)"
matches any virtual member function of C

"static ...::%(...)"
matches any static member or non-member function

Template Matching†

"std::set<...>"
matches all template instances of the class std::set

"std::set<int>"
matches only the template instance std::set<int>

"% ...::%<...>::%(...)"
matches any member function from any template class instance
in any scope

Predefined Pointcut Functions
Functions

call(pointcut) N→CC
‡‡

provides all join points where a named entity in the pointcut is
called.

execution(pointcut) N→CE

provides all join points referring to the implementation of a
named entity in the pointcut.

construction(pointcut) N→CCons

all join points where an instance of the given class(es) is con-
structed.

destruction(pointcut) N→CDes

all join points where an instance of the given class(es) is destruc-
ted.

pointcut may contain function names or class names. A class name
is equivalent to the names of all functions defined within its scope
combined with the || operator (see below).

Control Flow

cflow(pointcut) C→C
captures join points occuring in the dynamic execution context of
join points in the pointcut. The argument pointcut is forbidden to
contain context variables or join points with runtime conditions
(currently cflow, that, or target).

Types

base(pointcut) N→NC,F

returns all base classes resp. redefined functions of classes in the
pointcut

derived(pointcut) N→NC,F

returns all classes in the pointcut and all classes derived from
them resp. all redefined functions of derived classes

Scope

within(pointcut) N→C
filters all join points that are within the functions or classes in the
pointcut

Context

that(type pattern) N→C
returns all join points where the current C++ this pointer refers
to an object which is an instance of a type that is compatible to
the type described by the type pattern

target(type pattern) N→C
returns all join points where the target object of a call is an in-
stance of a type that is compatible to the type described by the
type pattern

result(type pattern) N→C
returns all join points where the result object of a call/execution
is an instance of a type described by the type pattern

args(type pattern, ...) (N,...)→C
a list of type patterns is used to provide all joinpoints with match-
ing argument signatures

Instead of the type pattern it is possible here to pass the name of a
context variable to which the context information is bound. In this
case the type of the variable is used for the type matching.

Algebraic Operators

pointcut && pointcut (N,N)→N, (C,C)→C
intersection of the join points in the pointcuts

pointcut || pointcut (N,N)→N, (C,C)→C
union of the join points in the pointcuts

! pointcut N→N, C→C
exclusion of the join points in the pointcut

JoinPoint-API for Advice Code
The JoinPoint-API is provided within every advice code body by the
built-in object tjp of class JoinPoint.

Compile-time Types and Constants

That [type]
object type (object initiating a call)

Target [type]
target object type (target object of a call)

Result [type]
type of the object, which is used to store
the result of the affected function

Res::Type, Res::ReferredType [type]
result type of the affected function

Arg<i>::Type, Arg<i>::ReferredType [type]

type of the i th argument of the affected
function (with 0≤ i < ARGS)

ARGS [const]
number of arguments

JPID [const]
unique numeric identifier for this join point

JPTYPE [const]
numeric identifier describing the type of this join point
(AC::CALL, AC::EXECUTION , AC::CONSTRUCTION, or
AC::DESTRUCTION)

Runtime Functions and State

static const char *signature()
gives a textual description of the join point (function name, class
name, ...)

static const char *filename()
returns the name of the file in which the joinpoint shadow is lo-
cated

static int line()
the source code line number that is associated with the joinpoint
shadow

That *that()
returns a pointer to the object initiating a call or 0 if it is a static
method or a global function

Target *target()
returns a pointer to the object that is the target of a call or 0 if it
is a static method or a global function

Result *result()
returns a typed pointer to the result value or 0 if the function has
no result value

Arg<i>::ReferredType *arg<i>()
returns a typed pointer to the i th argument value (with 0 ≤ i <
ARGS)

void *arg(int i)
returns a pointer to the memory position holding the argument
value with index i

void proceed()
executes the original code in an around advice (should be called
at most once in around advice)

AC::Action &action()
returns the runtime action object containing the execution envi-
ronment to execute (trigger()) the original code encapsulated
by an around advice

Runtime Type Information

static AC::Type resulttype()
static AC::Type argtype(int i)

return a C++ ABI V3 conforming string representation of the
result type / argument type of the affected function

JoinPoint-API for Slices
The JoinPoint-API is provided within introduced slices by the built-
in class JoinPoint (state of target class before introduction).

static const char *signature()
returns the target class name as a string

That [type]
The (incomplete) target type of the introduction

BASECLASSES [const]
number of baseclasses of the target class

BaseClass<I>::Type [type]

type of the I th baseclass

BaseClass<I>::prot, BaseClass<I>::spec [const]
Protection level (AC::PROT_NONE /PRIVATE /PROTECTED
/PUBLIC) and additional specifiers (AC::SPEC_NONE /VIR-
TUAL) of the I th baseclass

MEMBERS [const]
number of attributes of the target class

Member<I>::Type, Member<I>::ReferredType [type]

type of the I th attribute of the target class
Member<I>::prot, Member<I>::spec [const]

Protection level (see BaseClass<I>::prot) and additional attribute
specifiers (AC::SPEC_NONE /STATIC /MUTABLE)

static ReferredType *Member<I>::pointer(T *obj=0)
returns a typed pointer to the I th attribute (obj is needed for non-
static attributes)

static const char *Member<I>::name()
returns the name of the I th attribute

Example
A reusable tracing aspect.

aspect Trace {
pointcut virtual functions() = 0;
advice execution(functions()) : around() {

cout << "before " << JoinPoint::signature() << "(";
for (unsigned i = 0; i < JoinPoint::ARGS; i++)

cout << (i ? ", " : "") << JoinPoint::argtype(i);
cout << ")" << endl;
tjp->proceed();
cout << "after" << endl;

} };

In a derived aspect the pointcut functions may be redefined to apply
the aspect to the desired set of functions.

aspect TraceMain : public Trace {
pointcut functions() = "% main(...)";

};

This is a reference sheet corresponding to AspectC++ 1.1.
Version 1.14, October 14, 2012.

(c) Copyright 2012 pure-systems GmbH, Olaf Spinczyk and Daniel
Lohmann. All rights reserved.

†support for template instance matching is an experimental feature
††http://www.codesourcery.com/cxx-abi/abi.html#mangling
‡‡C, CC, CE, CCons, CDes: Code (any, only Call, only Execution, only object
Construction, only object Destruction); N, NN , NC , NF , NT : Names (any, only
Namespace, only Class, only Function, only Type)

