
Csound for Portable Native Client

Victor Lazzarini

December 4, 2013

1 Introduction

Native Client (NaCl) is a sandboxing technology developed by Google that
allows C/C++ modules to extend the support provided by HTML5. Portable
Native Client (pNaCl) is one of the toolchains in the NaCl SDK (the others
are newlib and glibc). The advantage of pNaCl over the other options is that
it only requires a single module to be built for all supported architectures.

The other major advantage is that pNaCl is, as of Google Chrome 31,
enabled by default in the browser. This means that users just need to load
a page containing the pNaCl application and it will work. pNaCl modules
are compiled to llvm bytecode that is translated to a native binary by the
browser. To check whether your version of Chrome supports pNaCl, use the
following address:

chrome://nacl

Porting Csound to pNaCl involved three steps, following the SDK in-
stallation:

1. Building libsndfile as a pNaCl library

2. Build Csound as a pNaCl library

3. Developing the pNaCl module to provide an interface to the Csound
library

1

2 Building Csound for pNaCl

2.1 Building the libraries

With the NaCl SDK installed, and the NACL SDK ROOT set as per instal-
lation instructions and the libsndfile-nacl sources (https://www.dropbox.
com/s/ezfo9rmo5wtzptz/libsndfile-nacl.tar.gz), you can use the make
command to build libsndfile. To build the Csound library, run the build.sh
script in the ./nacl subdirectory of the Csound 6 sources. When libraries are
built, they are added to the SDK, and made readily available for applications
to be built with them.

2.2 Building the pNaCl Csound module

Once the libraries are built, you can run make in the ./nacl/csound subdi-
rectory of the Csound sources. This will build the nacl module in pnacl/Re-
lease. There is a package.sh that can be used to copy and package all the
relevant files for HTML5 development. This package is self-contained, i.e. it
does not have any dependencies, and it can be expanded elsewhere in your
project application folders.

2.3 Running the example application

NaCl pages need to be served over http, which means they will not work
when opened as local files. You need to start a local server, and this can be
done with the python script httpd.py found in the $NACL SDK ROOT/tools
directory. If you start this script in the top level directory of the pNaCl
Csound package, then the example will be found at the http://localhost:5103
address.

3 Csound pNaCl module reference

The interface to Csound is found in the csound.js javascript file. Csound is
ready on module load, and can accept control messages from then on.

3.1 Control functions

The following control functions can be used to interact with Csound:

• csound.Play() - starts performance

2

https://www.dropbox.com/s/ezfo9rmo5wtzptz/libsndfile-nacl.tar.gz
https://www.dropbox.com/s/ezfo9rmo5wtzptz/libsndfile-nacl.tar.gz

• csound.PlayCsd(s) - starts performance from a CSD file s, which can
be in ./http/ (ORIGIN server) or ./local/ (local sandbox).

• csound.RenderCsd(s) - renders a CSD file s, which can be in ./http/
(ORIGIN server) or ./local/ (local sandbox), with no RT audio output.
The “finished render” message is issued on completion.

• csound.Pause() - pauses performance

• csound.CompileOrc(s) - compiles the Csound code in the string s

• csound.ReadScore(s) - reads the score in the string s (with prepro-
cessing support)

• csound.Event(s) - sends in the line events contained in the string s
(no preprocessing)

• csound.SetChannel(name, value) - sends the control channel name
the value value, both arguments being strings.

3.2 Filesystem functions

In order to facilitate access to files, the following filesystem functions can be
used:

• csound.CopyToLocal(src, dest) - copies the file src in the ORIGIN
directory to the local file dest, which can be accessed at ./local/dest.
The “Complete” message is issued on completion.

• csound.CopyUrlToLocal(url,dest) - copies the url url to the lo-
cal file dest, which can be accessed at ./local/dest. Currently only
ORIGIN and CORS urls are allowed remotely, but local files can also
be passed if encoded as urls with the webkitURL.createObjectURL()
javascript method. The “Complete” message is issued on completion.

• csound.RequestFileFromLocal(src) - requests the data from the
local file src. The “Complete” message is issued on completion.

• csound.GetFileData() - returns the most recently requested file data
as an ArrayObject.

3

3.3 Callbacks

The csound.js module will call the following window functions when it starts:

• function moduleDidLoad(): this is called as soon as the module is
loaded

• function handleMessage(message): called when there are messages
from Csound (pnacl module). The string message.data contains the
message.

• function attachListeners(): this is called when listeners for dif-
ferent events are to be attached.

You should implement these functions in your HTML page script, in
order to use the Csound javascript interface. In addition to the above,
Csound javascript module messages are always sent to the HTML element
with id=‘console’, which is normally of type <div> or <textarea>.

3.4 Example

Here is a minimal HTML example showing the use of Csound

,
<!DOCTYPE html>

<html>

<!--

Csound pnacl minimal example

Copyright (C) 2013 V Lazzarini

-->

<head>

<title >Minimal Csound Example </title >

<script type="text/javascript" src="csound.js"></script >

<script type="text/javascript">

// called by csound.js

function moduleDidLoad () {

csound.Play ();

csound.CompileOrc(

"instr 1 \n" +

"icps = 440+ rnd (440) \n" +

"chnset icps , \"freq\" \n" +

"a1 oscili 0.1, icps\n" +

"outs a1 ,a1 \n" +

"endin");

document.getElementById("tit"). innerHTML = "Click on the page below to play";

}

function attachListeners () {

4

document.getElementById("mess").

addEventListener("click",Play);

}

function handleMessage(message) {

var mess = message.data;

if(mess.slice (0 ,11) == ":: control ::") {

var messField = document.getElementById("console")

messField.innerText = mess.slice (11);

}

else {

var messField = document.getElementById("mess")

messField.innerText += mess;

csound.RequestChannel("freq");

}

}

// click handler

function Play() {

csound.Event("i 1 0 5");

}

</script >

</head>

<body>

<div id="console"></div>

<h3 id="tit"> </h3>

<div id="mess">

</div>

<!--pNaCl csound module -->

<div id="engine"></div>

</body>

</html>

4 Limitations

The following limitations apply:

• no realtime audio input (not supported yet in Pepper/NaCl)

• no MIDI in the NaCl module. However, it might be possible to imple-
ment MIDI in javascript, and using the csound.js functions, send data
to Csound, and respond to MIDI NOTE messages.

• no plugins, as pNaCl does not support dlopen() and friends. This
means some opcodes are not available as they reside in plugin libraries.

5

It might be possible to add some of these opcodes statically to the
Csound pNaCl library in the future.

6

	Introduction
	Building Csound for PNaCl
	Building the libraries
	Building the PNaCl Csound module
	Running the example applications

	Csound PNaCl module reference
	Control functions
	Filesystem functions
	Callbacks
	Example

	Limitations

