
Dicelab Manual

This document is part of Dicelab, and as such, this document is released under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
Dicelab is distributed in the hope that it will be useful, but without and waranty;
without even the implied warranty of merchantability or fitness for a particular
purpose. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
Dicelab; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA

Contents

1 Introduction to Dicelab 4

2 Installation and Usage 5
2.1 Building from Source . 5
2.2 Packages . 5
2.3 Windows . 5
2.4 Running . 5

3 The Dicelab Language 7
3.1 Introduction . 7
3.2 Reference . 9

3.2.1 Scalars, Lists and Probabilities . 9
3.2.2 Grammar . 10
3.2.3 Dice Operator . 10
3.2.4 Arithmetic Operators . 11
3.2.5 Scalar Concatenation Operator . 11
3.2.6 Summation and Product Operators 12
3.2.7 List Size Operator . 12
3.2.8 List Repetition Operator . 12
3.2.9 Range Operator . 13
3.2.10 List Concatenation Operator . 13
3.2.11 List Ordering Operators . 13
3.2.12 Low and High Operators . 14
3.2.13 First and Last Operators . 14
3.2.14 Filtering Operators . 15
3.2.15 Let Operator . 15
3.2.16 Foreach Operator . 16
3.2.17 While Operator . 16
3.2.18 If Operator . 16

3.3 Examples . 17

4 Feedback 18

3

1 Introduction to Dicelab

Dicelab is a computer program to calculate the probability distributions of arbitrary dice
rolls. This can be used to analyze games and design games, and perhaps it even comes in
in some more serious scenarios (as if there was anything more serious than gaming!). To
allow dicelab to analyze any dice rolling scheme, and not just a few predefined ones, it
uses a specific language called ”bones”. The bones language was put together by Joel
Uckelman, and both his and my work are inspired by and based on the program ”roll” by
Torben Mogensen. So assuming you are in the middle of an intense table-top roleplaying
session, and the future of the whole federation of stars depends on you making the right
decision, you might want to know what the odds are. If we assume that you have to roll 3
dice with 6 sides each, remove one of them (the lowest), sum up the remaining ones and
compare with a threshold that depends on the situation and your skill, then you could
check your odds to beat a threshold of 10 with the following input to dicelab:

count

>10

sum

keep high 2

3#d6;

which would yield the following output:

0 0.800926

1 0.199074

Almost 20%, the federation has seen worse times! Or imagine you got tangled up in a long
standoff in risk, armies have built up on both sides and the decisive final battle is getting
closer. An opportunity to disrupt your enemies actions has arisen, but what exactly are the
odds for each round in the battle? In risk the attacker rolls 3 dice, and the defender rolls
2 (assuming has has two or more armies left). The highest attacker die is then matched
with the highest defender die, the second highest attacker die is matched with the lowest
defender die. For both matches the highest wins, ties go to the defender. So each round
of battle, a total of two armies are destroyed. The outcome probabilities for the number of
wins of the attacker could be calculated using dicelab with the following input:

let a = 3#d6 in

let b = 2#d6 in

count((<(high 1 a) high 1 b),

(<(high 1 low 2 a) low 1 b))

Which would result in the following output:

0 0.292567

1 0.335777

2 0.371656

4

You can clearly see where the name of the game comes from! As you can hopefully see,
dicelab is quite powerfull and capable to precisely calculate the probability distributions
in complicated dice rolls. You will also notice that the input language is quite complicated
and that the results are sometimes hard to interpret correctly. This manual hopefully helps
to understand dicelab and the bones language.

2 Installation and Usage

Depending on your operating system, there are a couple of different ways to get dicelab up
and running. Unless stated otherwise, the files are available from the follwing URL, where
you can also check the availability of new versions: http://www.semistable.com/dicelab/.

2.1 Building from Source

Should you have the necessary tools and a liking for this, want to modify dicelab or if you
cannot find an easier way to get dicelab onto your machines, you can always compile it
from source. You would need to get the dicelab package from the URL mentioned above
and unpack it on a reasonable modern UNIX (e.g. Linux) system with the necessary build
dependencies insatlled. Dicelab uses autotools, so you can simply run ./configure and
make to build dicelab. You will need GNU make, gcc, flex, bison and treecc in reasonably
current versions to build dicelab. Should you have problems building this manual, then
that is probably because it uses some non-standard tools to create teh graphics. Just use
the one from the web page for the time being.

2.2 Packages

The easiest way to install dicelab on a Linux system or something similar is to use pre-built
packages provided by your OS community. In debian you could for example install dicelab
directly with synaptic or your package manager of choice. Should packages for your OS
not be available, pester the relevant people or the author of dicelab! In the time they try
to fix it, you will have no choice but to build it from source.

2.3 Windows

Dicelab is originally a UNIX program, and the whole mode of operation will feel a bit
awkward under Windows. Due to the surprising large popularity of this legacy OS, pre-
built windows binaries are available in the same location as the regular sources. Please
note that dicelab is not a windows GUI program that has a graphical user interface, to use
it you will have to let go of your mouse and work in a command prompt!

2.4 Running

Dicelab is a commandline program that is started, reads input and produces output. While
this might look awkward to some, especially those that come from a culture of graphical

5

user interfaces, it is in fact very powerfull and also way cooler! So you would have to
start dicelab under a command prompt in windows or a shell under UNIX. It does accept a
few commandline options and switches, the full syntax (which you can also get by entering
dicelab -?) is as follows:

Usage: dicelab [options] [-f <file>]

Options:

--help -h -? print this text

--version -v print the program version

--print-tree -p print the parse tree (for debugging)

--eval -e evaluate the statistical distribution by

re-rolling

--calc -c calculate the distribution

--count -n specify the number of rolls used with --eval

default is 10000

--roll -r roll the dice as specified, will also be used

if no other action is requested

--threshold -t cutoff threshold, results with a probability less

than this value will be discarded by some operations

when using --calc

File:

--file -f read the dice rolling specs from the file

specified, use stdin if not supplied

The typical use case is to start dicelab with the “-c” switch, but without a file. It will then
read form the standard input allowing you to use it in some kind of interactive mode. As
a quick check you should try this: run dicelab -c, then enter “d6;” and press the enter
key. You should see a list of results from 1 to 6 all having the same probability (0.166667).
You could then enter another request (e.g. “d5;”) and finally stop the program by pressing
Ctrl-C. In some cases it is very time-consuming to do the maths for a dice rolling scheme,
you can then resort to just re-rolling many times and summing up the results by using
the “-e” instead of the “-c” switch. If you do that with the examples above, you will see
roughly the same results, but with less accuracy. This can be affected by specifying a
larger number to roll with “-n”. The calculation mode is normally perfectly accurate, but in
some cases even this mode has to make comprimises, most notably with “infinite” throws,
e.g. when you reroll and add every time you roll a 6. In this case dicelab will stop once
the probability has reached a given value (10−7 by default), you can modify this with the
“-t” parameter, but you should hardly ever need to use this. Instead of calculating the
distribution of a dice roll, you cann also just do a single roll, which is done bu using “-r”
or no mode at all.
Instead of entering the input by hand, you can also write to a file and instruct dicelab to
read that file with the “-f” parameter. This is especially handy on UNIX, where you can
use a she-bang line to turn a dicelab input into an executable. you could for example take
the following file, make it executable with chmod +x testfile and execute it directly.

#!dicelab --calc --file

sum 3#d6;

6

3 The Dicelab Language

The most difficult part of using dicelab is to understanding the language and being able to
express your problems in it. Unfortunately this is very hard to avoid, so you will have to
deal with it. This part of the manual should help you get started and act as a reference.
At the end of the day however, expressing something complicated in the bones language
will always remain a bit of a puzzle and should be seen in a similar way: an opportunity
to grind your brains against something instead of a hassle!
To save space and make reading easier, all examples will from now on be typeset next to
the relevant output they produce when using them with dicelab -c. Where necessary
some part of the output is ommited and the relevant lines are replaced with a single line
containing
You are encouraged to try out the examples as we go along, to get a “feel” for the operation
of the program. It is also certainly a a good idea to modify them slightly to find out what
happens!

3.1 Introduction

Let us look at the most simple example, the distribution of a single die:
d6; 1 0.166667

2 0.166667

3 0.166667

4 0.166667

5 0.166667

6 0.166667

There is already a bit more to it than meets the eye:

• The input is broken into statements, each statement will be processed independently.
Statements are separated by semicolons and are only processed when the respective
semicolon is seen (of course! otherwise it would be impossible to process a statement
like d6 + 2;).

• The input is read linewise. This is only for efficiency reasons, a statement may
be scattered over as many lines as you wish, and a single line may contain many
statements (at some point the output will become a bit hard to understand though).

• You can use spaces and tabs to make your input easier to read, but it will not change
the meaning of a statement: d6; and d 6 ; will return the same results.

A statement can be made up out of different syntactical elements, two of which are used in
the example above: the “dice” operator d and a fixed number. You can of course use dice
with different numbers of sides, or make up a statement that does not contain the dice
operator at all (e.g. 42;, quite boring!).
Other simple operators are + - * and / which are simple arithmetic operations. To
make things easier to understand you can also use braces to structure your input. Try
the following examples and see whether you can understand the reasons for the output:

7

d6 + 2; and d(6+2);. In the first case a dice is rolled once, and then the number two is
added to the result. In the second case 6 and 2 are added up, and the result is used as
the number of sides for the dice.
If you are the adventurous type, you also have tried d d6;, a roll that is quite hard to roll
with real dice, and d6+d6;. Adding up dice quickly gets tedious if there are many dice to
roll, so there is the repetition operator #, using 3#d6; does however not yield the desired
result, but an error (“result is not scalar”) instead, you will have to use sum 3#d6;, which
is just ashorthand for d6+d6+d6;.
The reason for this is very fundamental to the understanding of dicelab, and you should
take some time to make sure you understand it. A dice roll does not necessarily return a
single number, but might return a set of numbers, e.g. when rolling multiple dice. Dicelab
does not know what you want to do with this set, so it can’t just add the dice up. You
might e.g. multiply them instead or pick the highest. The result dicelab displays has to be
a single value, a set with only one entry. So rolling 2#d6 returns a set with two values,
d6+d6 only a single one. The sum operator used above takes all values in a set and sums
them up, resulting in a scalar value. In a similar way prod multiplies all values in a set and
count counts the number of values. All are reducing a set to a scalar, the latter one does
not make too much sense yet as all our sets had the predetermined lengths. But imagine
the input count (d6 # d6);, this will roll one die, then use the result to determine how
many dice to roll and count them. This of course leads to the same probability distribution
as d6; alone, summing it up instead of counting might be more interesting.
There are some operators that are similar to the ones already covered, but have not been
covered yet: % which is the modulo operator, the to-the-power-off ^, scalar concatenation .

whch turns 3 . 4 into “34” and the unary minus operator. Numbers can be negative, but
many operators refuse to work with negative numbers, it is e.g. very hard to roll a dice
with a negative number of sides!
Of course these operators are very basic, so we need a couple of slightly more complicated
ones:
The already mentioned repetition operator # will take the set passed to it, repeat it and
build a new set from it. The range operator .. will build a set of consecutive numbers, e.g.
in sum 1..6;. In a similar way the list concatenation operator , can be used to combine
sets, e.g. in sum(d6,d4);.
Sets are in fact lists, which means they do have an order. The perm and sort operators ran-
domize the set order or sort sets. The rev operator reverses the ordering in a set. This will
only be usefull in combination with the first and last operators: first 1 perm 1..6;

for example returns exaclty the same as d6;. This is only logical, as it builds a set of
numbers from 1 to 6, shuffles them and then uses the first one as a result, effectively
emulating a dice with playing cards! This operator can also be used to remove elements.
e.g. in sum drop first 2 perm 1..6;. Instead of “drop” you can use “keep”, which
behaves just as if you would not have specified any of them, but is more readable. To
avoid unnecessary rev keep first 1 rev fragments, there is also a last operator that
behaves similar.
And before you ask: there are also low and high operators. These are used quite often in
games, sum high 3 5#d6 could e.g. be a character stat generator in a roleplaying game.

8

There is a set of filter operators that are used in a similar fashion: count >= 5 3#d6

counts the dice that show a 5 or six in a set of three dice. Other filter operators are ==

(equals), != (not equals), < and > and of course <=.
To structure your expression in a better way and to solve some specific problems, you can
use the let operator: it allows you to tie the result from a dice roll to a “variable” and
use it in different parts of your expression. let a = d6 in a+a for example is the same
as d6*2 as opposed to d6+d6.
Similarily you can use foreach to apply an expression to each element of a set using
a variable: foreach v in A do B will evaluate A, and then iterate over the set and set
the variable v to the current element. For each element the expression B is evaluated.
Example: sum(foreach x in 2#d6 do x+1) is the same as sum(2#(d6+1)).
The if operator allows you to branch depending on the result of some expression. The
result of if A then B else C is the evaluation of B if the result of A is nonempty, and C

otherwise. For example if > 4 d6 then 1 else 0 is the same as count > 4 d6.
Finally the while operator allows you to use an unbounded repetition: if x is a variable
and E and F are expressions, the while x = e do f is the list v0, v1, . . . , vn where v0 is the
result of evaluating E and vm+1 is the result of assigning vm to x and evaluating F, stopping
at the first vn which is empty. A good example is sum(while x = d6 do keep == 6 d6)

which calculates a d6 that is re-rolled and added on sixes;
If you have longer files, you might find it usefull to put comments in your input that explain
what a block of lines is doing. This can be done using \\ which instructs dicelab to ignore
the rest of the line. It is also worth noting that braces can be used to make the operator
precedence more explicit and the input easier to read.
This section is only meant as an introduction to the operators in question, please refer to
section 3.2 for all the nitty-gritty details of an operator.

3.2 Reference

3.2.1 Scalars, Lists and Probabilities

To successfully use dicelab (and understand this reference section) it is important to
understand the concepts of scalars, lists and probabilities. If we look at the very simple
input d6, we will see that this dice rolling scheme will always yield exactly one result value.
This is called a scalar. This scalar has multiple possible values (1-6) with a probability
each. The output from dicelab is the list of values for the resulting scalar, ordered by their
value, together with their respective probabilities. This means that the final result of a
dicelab expression always has to be a scalar!
A list in contrast is a number of scalars, e.g. created by 2#d6, the result of rolling two
dice. This will not return a single number, but two, and cannot be used as a final result in
dicelab. In most cases when we say ”roll two d6” we actually mean ”roll two d6 and sum
them up”, d6+d6 or sum(2#d6) in dicelab syntax. Of course a list may contain only one
value, in which case it can be used as a scalar, dicelab even uses only lists internally and
does not have a seperate type for scalars.

9

The distinction between lists and scalars is still very important, not only because the final
result must a scalar, but also because many operators only allow scalars for some of their
arguments. For example d6+2 makes sense, but 2#d6+2 does not: you can’t really ad a
number to a set of numbers!

3.2.2 Grammar

Dicelab accepts input consisting a number of statements seperated by semicolons, each
of them will be executed on their own. In fact having multiple statements in one input is
more or less the same as running dicelab multiple times with different input. Using this
may be convenient in some cases, but may be confusing as well as it does clutter up the
output a bit.
The last statement in the input does not need to be followed by a semicolon, but it is good
practice to generally end all statements with one anyway. The reason for this is that when
dicelab is running interactively by just reading from the standard input (e.g. by running
dicelab -c and typing your statements directly into dicelab), dicelab will not know when
you are finished with your current statement.
As noted above, each statement needs to result in a scalar in all cases, dicelab will
complain if that is not the case.

3.2.3 Dice Operator

In the most simple form, when the argument is a simple number (e.g. d5), the dice operator
will create a scalar with that many values and equal probabilities. If the argument is a
scalar with multiple values (e.g. d(d4)) the argument is evaluated and the dice operator
executed for each value. The results from all dice operator evaluations are then combined
into one scalar by multiplying the probabilities of the value used and the dice operator
result. Try the example above to see!
Typical examples are d6 for a standard dice, d20 for the 20-sided dice often used in fantasy
roleplaying, d2 or even better d2-1 could be used to simulate a binary coin-toss. d1 is
technically possible, but a very boring dice in most cases.

10

The dice operator only accepts scalars as arguments and always returns a scalar. All input
values must be larger than zero.

3.2.4 Arithmetic Operators

This family of operators takes two scalars as arguments and returns a scalar, performing
the given mathmatical operation on them. The division operator always rounds down, so
5/2 yields 2. The modulo operator % returns the remainder of the division, so 5%2 yields 1.
The power operator ^ return the first argument to the power of the second, so 2^8 is 256
and 10^3 is 1000.

3.2.5 Scalar Concatenation Operator

This operator takes two scalar arguments and returns a scalar that is the text concatenation
of the two arguments. This is sometimes usefull (a d100 could e.g. be constructed as a
d10.d10), but in many cases it is safer to express things like that as multiplications (e.g.
d10*10+d10). The reason for this is that the results are not padded in any way, so 12.3

is equivalent to 1.23, both returning 123.

11

3.2.6 Summation and Product Operators

These two operators take a list as an argument, and turnthem into a scalar by either
summing up or multiplying together all the scalars in it. So sum(3#d6) is the same as
d6+d6+d6 and prod(3#d6) is the same as d6*d6*d6. Please note that sum(2#d6) or
d6+d6 is not the same as 2*d6, as the first case adds two different dice together, whereas
the second case adds a dice to itself.

3.2.7 List Size Operator

This operator takes a list as an argument and returns a scalar containing the number
of scalars in that list as a value. For example count(2#d6) will always return two, and
count(d5#d3) is equivalent to d5. This operator is normally only usefull in combination
with filter opertors, e.g. when trying to determine how many dice beat a given threshold
(for example count(== 6 5#d6)).

3.2.8 List Repetition Operator

This evaluates an expression multiple times and puts all results in a list. A good example
is 3#d6, which is a list of the results of three dice rolls. Please note that this is the list
of the results, not the sum. In essence this is similar to the list concatenation d6,d6,d6.
Should the expression itself return a list, then these are concatenated together, so 2#3#d6

is the same as 6#d6.

12

3.2.9 Range Operator

The range operator creates a list of values representing the given range, each value having a
probability of 1. So e.g. sum 1..3 returns 6. This operator is normally only usefull in com-
bination with a loop operator like foreach or while, e.g. sum foreach i in 1..6 do d(i),
which is the same as sum d1,d2,d3,d4,d5,d6.

3.2.10 List Concatenation Operator

List concatenation is simply the combination of two lists, which of course could each be
scalar. For example sum 2#d6,d20 sums up a list of two 6-sided and one 20-sided dice,
which is of course the same as sum(2#d6)+d20. Please note the usage of parenses in the
last example, sum 2#d6+20 is something slightly different, namely adding a d6 and a d20
to form a single result, and then summing up two of these...

3.2.11 List Ordering Operators

These operators change the ordering of a list. sort obviously sorts the list by value, rev
reverses the list and perm randomizes it. Please note that for many operators the ordering
of a list has no consequences, e.g. sum sort 2#d6 is the same as sum 2#d6, in fact

13

dicelab should optimize out the sort operator in this case. Also note that perm can be
outstandingly expensive on all but the smallest lists.

3.2.12 Low and High Operators

These filter operators remove some elements from a list. For example sum drop low 1 3#d6

rolls 3 6-sided dice, removes the lowest roll and sums the other two up. You can change
the behaviour by using of high instead of low, and by using keep instead of drop. This
means that the statement sum keep high 2 3#d6 is equivalent to the example above. You
can also omit the drop or keep—, in which case the behaviour is just as if you would have
specified keep. Please note that the first expression does not need to be constant, you
could e.g. do a sum high d6 6#d6.
This operator does not change the ordering of the list, and might return less than you
asked for, e.g. a high 4 3#d6 of course does not differ from a 3#d6.

3.2.13 First and Last Operators

In a similar fashion, the first and last filters remove entries from a list, but not based on
their value, but on their position in the list. So in essence a sum low 1 3#d6 is the same
as a sum first 1 sort 3#d6.

14

3.2.14 Filtering Operators

These also work in a similar way, but do not take the other values in the list into account.
Instead they just filter on individual values, you could e.g. filter out all results less that a
given value with sum drop <= 2 3#d6.

3.2.15 Let Operator

This assigns a list result to a symbolic variable which you can then use in subexpressions.
For example let A = d6 in A+A is essentially the same as d6*2. Please note that this is
very different from d6+d6, because in the example using let above, the two A refer to the
same dice roll, whereas in d6+d6 they refer to two different rolls, which can have different
values. The result is that let A = d6 in A+A will never return 3, but d6+d6 does (1+2).
d6+d6 is in effect let A = d6 in let B = d6 in A+B.

15

3.2.16 Foreach Operator

This is a bounded iteration, if x is a variable and e and f are expressions, then
foreach x in e do f evaluates e and then assigns x to each element of the result
in turn to evaluate f. This will result in a list which essentially is the result of e with
f applied to all elements. For example sum foreach X in 1..3 do d(X) is the same
as d1+d2+d3. Of course f can return a list for some of the evaluations, in which case
the resulting list does not need to have the same length as the result of e. For example
sum foreach X in 1..5 do X#d3 is the same as sum 15#d3, and the result of the fore-
ach expression has 15 elements, while the result of e in this case has only 5 (as can easily
be checked with count).

3.2.17 While Operator

This is an unbounded iteration, if x is a variable and e and f are expressions, then
while x = e do f if the list v0, v1, . . . , vn where v0 is the result or evaluating e and vi+1

is the result of assigning vi to x and evaluating f, stopping at the first vi which is empty.
For example sum while x = d6 do ((count == 6 x)#d6) is rolling a d6, rerolling on
a 6 and summing up the result.

3.2.18 If Operator

This is the branching operator. If e, f, and g are expressions, then if e then f else g

gives f if e is nonempty, and g otherwise.
For example let A = d6 in if (keep == 6 A) then d20 else A rolls a d6 and uses
the result except on a 6, in which case a d20 is rolled and used instead.

16

3.3 Examples

Count the number of dice greater than 7:

count >7 5#d10

Count the number of dice greater than 7 minus the number of dice equal to 1:

let c=5#d10 in (count >7 c)-(count ==1 c)

Count the number of rolls until a 6 is rolled:

count (while x=d6 do ((count <6 x)#d6))

Count the number of rolls until a 6 is rolled, more efficiently:

count (while x=(d6/6) do ((count <1 x)#(d6/6)))

Roll attributes for a new D&D character:

6#sum(drop low 1 4#d6)

Roll on the 11..66 morale check table in The Gamers’ Civil War Brigade Series:

d6.d6

Find the median of 3 d20s:

high 1 low 2 3#d20

3d6 with rerolls on 6s:

sum(while x=3#d6 do ((count ==6 x)#d6))

Roll 7 d10 and find the largest sum of identical dice:

let x = 7#d10 in high 1 (foreach y in 1..10 do sum (==y x))

The Fibonacci sequence is defined by Fn = Fn-1 + Fn-2, with F1 = F2 = 1.

Calculate the first twenty Fibonacci numbers:

let n = 20 in

let f = (1,1) in

foreach i in 1..n do

let f = (f,sum(high 2 f)) in

if ==n i then f else ()

17

Risk has battles where the attacker rolls 3d6 and the defender rolls 2d6. The highest
attacker die is matched with the highest defender die and the second highest attacker die
to the second highest defender die. For both matches, the highest wins, with ties going to
the defender. The number of attacker wins:

let a = 3#d6 in

let b = 2#d6 in

count((<(high 1 a) high 1 b),

(<(high 1 low 2 a) low 1 b))

Storyteller die roll with target number 8 and botches indicated at -1:

let c=5#d10 in

let succs = count >7 c in

let ones = count ==1 c in

if >0 succs then high 1 (0,succs-ones)

else if >0 ones then -1 else 0

Combat in Silent Death is rather complex. Three dice are rolled. If their sum is above a
target, the roll is a hit. To calculate damage, the same dice are sorted. If all three are
equal, all are summed to yield the damage. If the least two are equal, but the third is
higher, the high die is the damage. If the two highest are equal, but the third is lower, the
two high dice are summed to yield the damage. If all three dice are different, the middle
die is the damage. This example assumes that the dice are two d8s and a d10, with a
target number of 15:

let x = 2#d8,d10 in

(count >15 sum x)#

let a = low 1 x in // low die

let b = high 1 low 2 x in // middle die

let c = high 1 x in // high die

if ==a ==b c then a+b+c // all equal

else if ==a <c b then c // two low equal

else if >a ==c b then b+c // two high equal

else b

4 Feedback

Dicelab has gotten a bit more complicated than I originally hoped, both the implementation
and the usage. Making it simpler to use, extend and maintain is therefore quite high on
the list of things to do. To do this I need your help: please give feedback on what you are
using it for, what you find hard to do, what you found hard to understand when using it
first, what is particularily vague in the manual, what expression is especially slow and
generally what you do and don’t like.
Robert Lemmen <robertle@semistable.com>

18

	Introduction to Dicelab
	Installation and Usage
	Building from Source
	Packages
	Windows
	Running

	The Dicelab Language
	Introduction
	Reference
	Scalars, Lists and Probabilities
	Grammar
	Dice Operator
	Arithmetic Operators
	Scalar Concatenation Operator
	Summation and Product Operators
	List Size Operator
	List Repetition Operator
	Range Operator
	List Concatenation Operator
	List Ordering Operators
	Low and High Operators
	First and Last Operators
	Filtering Operators
	Let Operator
	Foreach Operator
	While Operator
	If Operator

	Examples

	Feedback

