
gbget tutorial

Giulio Bottazzi

December 27, 2014

Contents

1 Introduction to gbget 1

2 Examples 2

1 Introduction to gbget

The special utility gbget is used to perform basic manipulation of ASCII

data �les. It takes a �le or a list of �les containing tabular data and extract

command line speci�ed parts of these data. The result of the extraction can

be further manipulated with a list of possible transformations.

Essentially, the user provides a list of data speci�cations at the command

line. The program analyze each speci�cation in turns and, according to it,

extract and print data to standard output.

Each data speci�cation has the following structure

filename[block](col-range,rows-range)<options>

where:

�lename is the name of a regular (ASCII) �le

block identify a given data-block inside the �le; data-blocks are separated

by 2 or more empty lines (format chosen for consistency with gnu-

plot speci�cations). Notice that comment lines (beginning with a "#"

symbol) DO NOT count as empty lines for this purpose.

col-range the range of required columns, speci�ed as begin:end:skip.

Negative values are counted from the end. Default is 1:-1:1 i.e. all

columns. If begin>end the columns are read in reversed order.

1

rows-range the range of required rows, speci�ed as begin:end:skip. Neg-

ative values are counted from the end. Default is 1:-1:1 i.e. all rows.

If begin>end the rows are read in reversed order.

<options> is a list of single letter options that identify successive trans-

formations to be applied to data.

The list of options includes

t transpose the matrix

f �atten the data column-wise, reducing them to a single column

l take the log of all �elds

d take the column-wise di�erence: substract column 1 from 2, column 2

from 3, etc.

D remove all lines containing at least one NAN entry

z remove the mean to each column

Z reduce each column to zscores, that is remove the mean and divide by the

standard deviation

2 Examples

A few examples can help to understand the gbget syntax. Consider the �le

test.dat with the following content

10 20 30

11 21 31

12 22 32

13 23 33

14 24 34

15 25 35

16 26 36

17 27 37

18 28 38

19 29 39

2

i.e. two data blocks, separated by two blank lines, each made of three

columns and 5 rows. This �le should already exists in the gbutils source

directory. If the support for zlib has been found on your system, in the

examples below you can equivalently use the compressed �le test.dat.gz.

Now if you type:

gbget 'test.dat[1](1:2)'

(the ~'~ are normally required to protect the content of the string from

shell expansion) you obtain

1.000000e+01 2.000000e+01

1.100000e+01 2.100000e+01

1.200000e+01 2.200000e+01

1.300000e+01 2.300000e+01

1.400000e+01 2.400000e+01

i.e. the �rst two column (1:2) of the �rst datablock [1]. By default,

the output is in scienti�c notation, but more on this below.

If instead you type

gbget 'test.dat[2](-2:,2:3)'

you obtain

2.600000e+01 3.600000e+01

2.700000e+01 3.700000e+01

i.e. the rows from 2 to 3 (included) of the last two columns of the second

data block [2]. Notice that a negative entry in column or row speci�cation

means "count from the end".

You can also print each second column of the second block with

gbget 'test.dat[2](::2)'

that gives you

1.500000e+01 3.500000e+01

1.600000e+01 3.600000e+01

1.700000e+01 3.700000e+01

1.800000e+01 3.800000e+01

1.900000e+01 3.900000e+01

3

http://www.gzip.org/zlib/

or each third row of the whole �le

gbget 'test.dat(,::3)'

to have

1.000000e+01 2.000000e+01 3.000000e+01

1.300000e+01 2.300000e+01 3.300000e+01

1.600000e+01 2.600000e+01 3.600000e+01

1.900000e+01 2.900000e+01 3.900000e+01

If the initial and �nal positions in a slice speci�cation are reversed, the

columns or the rows are printed in reverse order. For instance

gbget 'test.dat(,3:1)'

gives

1.200000e+01 2.200000e+01 3.200000e+01

1.100000e+01 2.100000e+01 3.100000e+01

1.000000e+01 2.000000e+01 3.000000e+01

Several di�erent transformations can be applied to the chosen matrix

of data. For instance, the matrix can be �attened column-wise, i.e. each

column can be put after the previous one in a single, long, column using the

�ag f, or you can transpose it using the option t. Let see some examples.

Consider

gbget 'test.dat[1](,2:3)'

which gives

1.100000e+01 2.100000e+01 3.100000e+01

1.200000e+01 2.200000e+01 3.200000e+01

now you can �atten the output

gbget 'test.dat[1](,2:3)f'

1.100000e+01

1.200000e+01

2.100000e+01

2.200000e+01

3.100000e+01

3.200000e+01

4

or transpose it

gbget 'test.dat[1](,2:3)t'

1.100000e+01 1.200000e+01

2.100000e+01 2.200000e+01

3.100000e+01 3.200000e+01

Finally, the output format can be customized using options -o and -e.

To fully exploit these options you need to know the syntax of the printf

command implemented in the standard C libraries. However, the type of

output can be easily chosen with a single �ag. If instead of the scienti�c

notation you prefer a �xed point notation for your output, you have to use

the option -o with the value %f

gbget 'test.dat[1](,2:3)t' -o ' %f'

11.000000 12.000000

21.000000 22.000000

31.000000 32.000000

while in order to have an integer output you need -o with the value %d

gbget 'test.dat[1](,2:3)t' -o ' %d'

11 12

21 22

31 32

in this case, however, be aware of the truncations: gbget rounds a non-

integer value down to the nearest integer!

5

	Introduction to gbget
	Examples

