
mrc(1) User Commands mrc(1)

NAME
mrc − A resource compiler

SYNOPSIS
mrc [-o|--output outputfile]

[--root arg]
[--resource-prefix arg]
[--elf-machine arg]
[--elf-class arg]
[--elf-data arg]
[--elf-abi arg]
[--elf-flags arg]
file1 [file2...]

mrc [-h|--help]

mrc [-v|--version]

mrc [--header] > mrsrc.h

#include "mrsrc.h"
void foo()
{
mrsrc::rsrc data("/alerts/text.txt");
if (data) {
mrsrc::istream is(data);
...

}
}

DESCRIPTION
Many applications come with supplementary data. This data is usually stored on disk as regular files. The
disadvantage of this procedure is that an application cannot simply be copied to another location or
computer and expected to function properly.

Resources are a way to overcome this problem by including all data inside the executable file. The mrc
resource compiler can create object files containing both the data and an index. This data can then be
accessed from within an application using C++ classes.

OPTIONS
[-o|--output] file

Specify the output file, the resulting file will be an object file you can link together with the rest of
your object files into an executable file.

--root The resources are accessed using a path. You can specify the root part of the path using this
parameter.

--resource-prefix name
Use this option to specify another name for the global variables in the data section.

--elf-machine arg
By default mrc assumes you want to create a resource file for the machine it runs on. But using
this option you can create files for other architectures, useful when cross compiling.

The machine flag is used to specify the value of the e_machine field in the ELF header.

--elf-class number
The ELF class to use, should be either 1 for 32-bit objects or 2 for 64-bit objects.

version 1.2.2 2020-09-11 1



mrc(1) User Commands mrc(1)

--elf-data number
The ELF data endianness to use, should be either 1 for little-endian (=LSB) objects or 2 for big-
endian (=MSB) objects.

--elf-abi number
The ELF OS ABI flag to use, the exact value for this flag should be looked up in elf.h. Default is to
use the value for the current architecture. (Value of 3 is for Linux, 9 is for FreeBSD).

--elf-flags number
A value to store in the e_flags field of the ELF header. This can contain the EABI version for
ARM e.g.

--coff type
When this option is specified, a COFF file is created for use on Windows. The argument type

should be one of x64, x86 or arm64.

--header

This option will print a mrsrc.h file to stdout which you can write to disk and use to access
resources.

[-v|--verbose]
Print debug output, useful to track where all data ends up in the resource.

--version

Print version number and exit.

[-h|--help]
Print simple help summary and exit.

file [file...]
One or more files to include in the resource file. Directory names can be used as well. All regular
files end up in the root of the resource tree, files found in directories end up in directies in the
resource tree. The following rules apply:

Regular files are added in the root of the resource tree using their proper file name.

If the file name refers to a directory, the directory is traversed recursively and all files are added. If
the file name ends with a forward slash (/) files are added to the root. If the file does not end with a
slash, the name of the directory will be placed in the root and all contained files will be placed
beneath this.

EXAMPLES
Here’s a list of usage cases.

mrc -o x.o my-resource.txt my-image.png
Will create a resource file containing two resources accessible using the path "/my-resource.txt"
and "/my-image.png" respectively.

mrc -o x.o img/my-image.png
Will create a resource file containing a single resource accessible using the path "/my-image.png".

mrc -o x.o img/
Assuming there are two images in the directory img called my-image-1.png and my-image-2.png,
the resource file will contain them both accessible under the name "/my-image-1.png" and "/my-
image-1.png".

mrc -o x.o img Same as the previous, but note there’s no trailing slash, the resource file will
contain both images but they are now accessible under the name "/img/my-image-1.png" and
"/img/my-image-1.png".

Use the verbose flag (--verbose) to track what ends up where.

version 1.2.2 2020-09-11 2



mrc(1) User Commands mrc(1)

DETAILS
The way this works is that mrc first collects all data from the files specified, including the files found in
specified directories. An simple index is created to allow hierarchical access to the data. The data is then
flattened into three data structures and these are written to the .data section of the object file. The three data
blobs are then made available as globals in your application with the names gResourceIndex,
gResourceName and gResourceData. You can specify the prefix part of this variable with the
-fB--resource-prefix option.

The index entries have the following format:
struct rsrc_imp
{

unsigned int m_next; // index of the next sibling entry
unsigned int m_child; // index of the first child entry
unsigned int m_name; // offset of the name for this entry
unsigned int m_size; // data size for this entry
unsigned int m_data; // offset of the data for this entry

};

The classes in the mrsrc.h file are contained in the namespace mrsrc. The available classes are

mrsrc::rsrc

This is the basic class to access data. It has a constructor that takes a path to a resource. Data can
be accessed using the data method and the size of the data is available via the size method. If the
resource was not found, data will return nullptr and size will return zero. You can also use
operator bool to check for valid data.

mrsrc::streambuf

This class is derived from std::streambuf. It can take both a mrsrc::rsrc or a path as constructor
parameter.

mrsrc::istream

This class is derived from std::istream. It can take both a mrsrc::rsrc or a path as constructor
parameter.

BUGS
This application can only generate ELF formatted object files.

Only a single resource entry can be generated and there’s no way to merge or manipulate resource files yet.

version 1.2.2 2020-09-11 3


