

PyMuPDF-1.21.1/.github/ISSUE_TEMPLATE/bug_report.md

name: Bug report
about: Create a report to help us improve
title: ''
labels:
assignees:

**Please provide all mandatory information!**

Describe the bug (mandatory)
A clear and concise description of what the bug is.

To Reproduce (mandatory)
Explain the steps to reproduce the behavior, For example, include a minimal code snippet, example files, etc.

For problems when building or installing PyMuPDF, give the full output of the build/install command so that, for example, all pip/compiler/linker errors/warnings can be seen.

Expected behavior (optional)
Describe what you expected to happen (if not obvious).

Screenshots (optional)
If applicable, add screenshots to help explain your problem.

Your configuration (mandatory)
 - Operating system, potentially version and bitness
 - Python version, bitness
 - PyMuPDF version, installation method (**wheel** or **generated** from source).

For example, the output of `print(sys.version, "\n", sys.platform, "\n", fitz.__doc__)` would be sufficient (for the first two bullets).

Additional context (optional)
Add any other context about the problem here.

PyMuPDF-1.21.1/.github/ISSUE_TEMPLATE/feature_request.md

name: Feature request
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees:

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Potentially add an issue reference.

Describe the solution you'd like
A clear and concise description of what you want to happen.

Describe alternatives you've considered
Are there several options for how your request could be met?

Additional context
Add any other context or screenshots about the feature request here.

PyMuPDF-1.21.1/.github/workflows/build_wheels.yml

name: Build wheels

on:
 workflow_dispatch:
 inputs:
 sdist:
 type: boolean
 wheels:
 type: boolean
 wheels_linux_aarch64:
 type: boolean
 wheels_macos_arm64:
 type: boolean

jobs:

 build_sdist:
 if: ${{ inputs.sdist }}
 name: Build sdist
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 #with:
 # fetch-depth: 0 # Optional, use if you use setuptools_scm
 # submodules: true # Optional, use if you have submodules

 - name: Build sdist
 run: pipx run build --sdist

 - uses: actions/upload-artifact@v2
 with:
 path: dist/*.tar.gz

 build_wheels:
 if: ${{ inputs.wheels }}
 name: Build wheels on ${{ matrix.os }}
 runs-on: ${{ matrix.os }}
 strategy:
 matrix:
 os: [ubuntu-20.04, windows-2019, macos-10.15]
 #os: [ubuntu-20.04]
 #os: [windows-2019]
 #os: [macos-10.15]

 steps:

 - uses: actions/checkout@v2

 # Get Python for running cibuildwheel. This also ensures that 'python'
 # works on MacOS, where it seems only 'python3' is available by default.
 #
 - uses: actions/setup-python@v2

 # On Linux, get qemu so we can build for aarch64.
 #
 - name: Set up QEMU
 if: runner.os == 'Linux'
 uses: docker/setup-qemu-action@v1
 with:
 platforms: all

 # Get cibuildwheel.
 #
 - name: Build wheels
 uses: pypa/cibuildwheel@v2.11.2

 # Set extra cibuildwheel options using environmental variables.
 #
 env:
 # These exclusions are copied from PyMuPDF-1.19.
 #
 CIBW_SKIP: "pp* *i686 *-musllinux_* cp36*"

 # On Linux and MacOS, tell cibuildwheel to build archs depending on
 # inputs.wheels_linux_aarch64 and inputs.wheels_macos_arm64.
 #
 # https://github.community/t/possible-to-use-conditional-in-the-env-section-of-a-job/135170
 # Note that it seems that there must not be a space after the ':' in the following, i.e.
 # ok: {"false":"auto", "true":"auto aarch64"}
 # bad: {"false": "auto", "true": "auto aarch64"}
 #
 # This is useful: https://yamlchecker.com/
 #
 CIBW_ARCHS_LINUX: ${{ fromJSON('{"false":"auto", "true":"auto aarch64"}')[inputs.wheels_linux_aarch64] }}
 CIBW_ARCHS_MACOS: ${{ fromJSON('{"false":"auto", "true":"auto arm64"}')[inputs.wheels_macos_arm64] }}

 # For testing, build for single python version.
 #
 #CIBW_BUILD: "cp311*"

 # Get cibuildwheel to run pytest with each wheel.
 #
 # Setting verbosity here sometimes seems to result in SEGV's when
 # running pytest.
 #
 CIBW_TEST_REQUIRES: "fontTools pytest"
 CIBW_TEST_COMMAND: "pytest -s {project}/tests"
 CIBW_BUILD_VERBOSITY: 3

 # Upload generated wheels, to be accessible from github Actions page.
 #
 - uses: actions/upload-artifact@v2
 with:
 path: ./wheelhouse/*.whl

PyMuPDF-1.21.1/.github/workflows/cla.yml

name: "CLA Assistant"
on:
 issue_comment:
 types: [created]
 pull_request_target:
 types: [opened,closed,synchronize]

jobs:
 CLAAssistant:
 runs-on: ubuntu-latest
 steps:
 - name: "CLA Assistant"
 if: (github.event.comment.body == 'recheck' || github.event.comment.body == 'I have read the CLA Document and I hereby sign the CLA') || github.event_name == 'pull_request_target'
 # Beta Release
 uses: contributor-assistant/github-action@v2.2.0
 env:
 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
 # the below token should have repo scope and must be manually added by you in the repository's secret
 PERSONAL_ACCESS_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN }}
 with:
 path-to-signatures: 'signatures/version1/cla.json'
 path-to-document: 'https://artifex.com/documents/Artifex%20Contributor%20License%20Agreement.pdf'
 # branch should not be protected
 branch: 'master'
 allowlist:

 # the followings are the optional inputs - If the optional inputs are not given, then default values will be taken
 #remote-organization-name: enter the remote organization name where the signatures should be stored (Default is storing the signatures in the same repository)
 #remote-repository-name: enter the remote repository name where the signatures should be stored (Default is storing the signatures in the same repository)
 #create-file-commit-message: 'For example: Creating file for storing CLA Signatures'
 #signed-commit-message: 'For example: $contributorName has signed the CLA in #$pullRequestNo'
 #custom-notsigned-prcomment: 'pull request comment with Introductory message to ask new contributors to sign'
 #custom-pr-sign-comment: 'The signature to be committed in order to sign the CLA'
 #custom-allsigned-prcomment: 'pull request comment when all contributors has signed, defaults to **CLA Assistant Lite bot** All Contributors have signed the CLA.'
 #lock-pullrequest-aftermerge: false - if you don't want this bot to automatically lock the pull request after merging (default - true)
 #use-dco-flag: true - If you are using DCO instead of CLA

PyMuPDF-1.21.1/.github/workflows/test_latest_mupdf.yml

name: Test latest MuPDF

on:
 schedule:
 - cron: '13 6 * * *'
 workflow_dispatch:

jobs:

 test_latest_mupdf:
 # Simple build+test on single platform using latest MuPDF from git. This is
 # a cut-down version of `build_wheels` except that we use latest MuPDF from
 # git and use a single platform and python version.
 #
 name: Test latest mupdf
 runs-on: ${{ matrix.os }}
 strategy:
 matrix:
 os: [ubuntu-latest]

 steps:

 - uses: actions/checkout@v2
 - uses: actions/setup-python@v2

 # Set up cibuildwheel.
 #
 - name: cibuildwheel
 uses: pypa/cibuildwheel@v2.11.2

 env:
 # We are on a branch so we want to test building with the default
 # hard-coded mupdf URL.

 # Build on single cpu.
 CIBW_ARCHS_LINUX: x86_64

 # Build for single python version.
 CIBW_BUILD: "cp311*"

 # Don't build for unsupported platforms.
 CIBW_SKIP: "pp* *i686 *-musllinux_* cp36*"

 # Get cibuildwheel to run pytest with each wheel.
 CIBW_TEST_REQUIRES: "fontTools pytest"
 CIBW_TEST_COMMAND: "pytest -s {project}/tests"
 CIBW_BUILD_VERBOSITY: 3

PyMuPDF-1.21.1/.gitignore

*.pyc
*.so
*.o
*.swp
build/
demo/README.rst
docs/build

PyMuPDF-1.21.1/.readthedocs.yaml

.readthedocs.yaml
Read the Docs configuration file
See https://docs.readthedocs.io/en/stable/config-file/v2.html for details

Required
version: 2

Set the version of Python and other tools you might need
build:
 os: ubuntu-20.04
 tools:
 python: "3.9"
 # You can also specify other tool versions:
 # nodejs: "16"
 # rust: "1.55"
 # golang: "1.17"

Build documentation in the docs/ directory with Sphinx
sphinx:
 configuration: docs/conf.py

If using Sphinx, optionally build your docs in additional formats such as PDF
formats:
 - pdf

Optionally declare the Python requirements required to build your docs
python:
 install:
 - requirements: docs/requirements.txt

PyMuPDF-1.21.1/.vs/ProjectSettings.json

{
 "CurrentProjectSetting": ""
}

PyMuPDF-1.21.1/.vs/PyMuPDF/v15/.suo

PyMuPDF-1.21.1/.vs/PyMuPDF/v15/Browse.VC.db

PyMuPDF-1.21.1/.vs/VSWorkspaceState.json

{
 "ExpandedNodes": [
 ""
],
 "SelectedNode": "",
 "PreviewInSolutionExplorer": false
}

PyMuPDF-1.21.1/.vs/slnx.sqlite

PyMuPDF-1.21.1/COPYING

 GNU AFFERO GENERAL PUBLIC LICENSE
 Version 3, 19 November 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.

 A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.

 The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.

 An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU Affero General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Remote Network Interaction; Use with the GNU General Public License.

 Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<http://www.gnu.org/licenses/>.

PyMuPDF-1.21.1/MANIFEST.in

include fitz/*.i
include fitz/_config.h
include mupdf.tgz
recursive-include tests *
global-exclude __pycache__/*

PyMuPDF-1.21.1/README.md

PyMuPDF 1.21.1

![logo](https://artifex.com/images/logos/py-mupdf-github-icon.png)

Release date: December 13, 2022

On **[PyPI](https://pypi.org/project/PyMuPDF)** since August 2016: [![Downloads](https://static.pepy.tech/personalized-badge/pymupdf?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads)](https://pepy.tech/project/pymupdf)

Author
[Artifex](mailto:support@artifex.com), based on code by [Jorj X. McKie](mailto:jorj.x.mckie@outlook.de) and [Ruikai Liu](mailto:lrk700@gmail.com).

Introduction

PyMuPDF adds Python bindings and abstractions to [MuPDF](https://mupdf.com/), a lightweight PDF, XPS, and eBook viewer, renderer, and toolkit. Both PyMuPDF and MuPDF are maintained and developed by Artifex Software, Inc.

MuPDF can access files in PDF, XPS, OpenXPS, CBZ, EPUB and FB2 (eBooks) formats, and it is known for its top performance and exceptional rendering quality.

With PyMuPDF you can access files with extensions like `.pdf`, `.xps`, `.oxps`, `.cbz`, `.fb2` or `.epub`. In addition, about 10 popular image formats can also be handled like documents: `.png`, `.jpg`, `.bmp`, `.tiff`, etc.

Usage
For all supported document types (i.e. **_including images_**) you can
* Decrypt the document.
* Access meta information, links and bookmarks.
* Render pages in raster formats (PNG and some others), or the vector format SVG.
* Search for text.
* Extract text and images.
* Convert to other formats: PDF, (X)HTML, XML, JSON, text.
* Do OCR (Optical Character Recognition) if Tesseract is installed.

> To some degree, PyMuPDF can also be used as an [image converter](https://github.com/pymupdf/PyMuPDF/wiki/How-to-Convert-Images): it can read a range of input formats and can produce **Portable Network Graphics (PNG)**, **Portable Anymaps** (**PNM**, etc.), **Portable Arbitrary Maps (PAM)**, **Adobe PostScript** and **Adobe Photoshop** documents, making the use of other graphics packages obselete in these cases. But interfacing with e.g. PIL/Pillow for image input and output is easy as well.

For **PDF documents,** there exists a plethora of additional features: they can be created, joined or split up. Pages can be inserted, deleted, re-arranged or modified in many ways (including annotations and form fields).

* Images and fonts can be extracted or inserted.
 > You may want to have a look at [this](https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/edit-images/edit.py) cool GUI example script, which lets you **_insert, delete, replace_** or **_re-position_** images under your visual control.

 > If [fontTools](https://pypi.org/project/fonttools/) is installed, subsets can be built for eligible fonts based on their usage in the document. Especially for new PDFs, this can lead to significant file size reductions.
* Embedded files are fully supported.
* PDFs can be reformatted to support double-sided printing, posterizing, applying logos or watermarks
* Password protection is fully supported: decryption, encryption, encryption method selection, permission level and user / owner password setting.
* Support of the **PDF Optional Content** concept for images, text and drawings.
* Low-level PDF structures can be accessed and modified.
* **Command line module** ``"python -m fitz ..."``. A versatile utility with the following features

 - **encryption / decryption / optimization**
 - creation of **sub-documents**
 - document **joining**
 - **image / font extraction**
 - full support of **embedded files**
 - **_layout-preserving text extraction_** (all documents)

Have a look at the basic [demos](https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo), the [examples](https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples) (which contain complete, working programs), and [notebooks](https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/jupyter-notebooks).

Documentation

Documentation is written using Sphinx and is available online. It is currently a combination of a reference guide and user manual.

* You can view it online at [Read the Docs](https://pymupdf.readthedocs.io). This site also provides download options for PDF.
* For a **quick start** look at the [tutorial](https://pymupdf.readthedocs.io/en/latest/tutorial.html) and the [recipes](https://pymupdf.readthedocs.io/en/latest/faq.html) chapters.

The latest changelog can be viewed [here](https://pymupdf.readthedocs.io/en/latest/changes.html).

Installation

PyMuPDF **requires Python 3.7 or later**.

For versions 3.7 and up, Python wheels exist for **Windows** (32bit and 64bit), **Linux** (64bit, Intel and ARM) and **Mac OSX** (64bit, Intel only), so it can be installed from [PyPI](https://pypi.org/search/?q=pymupdf) in the usual way. To ensure pip support for the latest wheel platform tags, we strongly recommend to always upgrade pip first.

 python -m pip install --upgrade pip
 python -m pip install --upgrade pymupdf

There are **no mandatory** external dependencies. However, some **optional features** become available only if additional packages are installed:

* [Pillow](https://pypi.org/project/Pillow/) for using pillow image output directly from PyMuPDF
* [fontTools](https://pypi.org/project/fonttools/) for creating font subsets.
* [pymupdf-fonts](https://pypi.org/project/pymupdf-fonts/) contains some nice fonts for your text output.
* [Tesseract-OCR](https://github.com/tesseract-ocr/tesseract) for optical character recognition in images and document pages. Tesseract is separate software, not a Python package. To enable OCR functions in PyMuPDF, the system environment variable `"TESSDATA_PREFIX"` must be defined and contain the `tessdata` folder name of the Tesseract installation location.

Older wheels - also with support for older Python versions - can be found [here](https://github.com/pymupdf/PyMuPDF-Optional-Material/tree/master/wheels-upto-Py3.5) and on PyPI.

> **Note:** If `pip` cannot find a wheel that is compatible with your platform, it will automatically build and install from source using the PyMuPDF sdist; this requires only that SWIG is installed on your system.

License and Copyright

PyMuPDF and MuPDF are available under both, open-source AGPL and commercial license agreements.

Please read the full text of the [AGPL license agreement](https://www.gnu.org/licenses/agpl-3.0.html) (which is also included here in file COPYING) to ensure that your use case complies with the guidelines of this license. If you determine you cannot meet the requirements of the AGPL, please contact [Artifex](https://artifex.com/contact/) for more information regarding a commercial license.

Artifex is the exclusive commercial licensing agent for MuPDF.

Artifex, the Artifex logo, MuPDF, and the MuPDF logo are registered trademarks of Artifex Software Inc. PyMuPDF and the PyMuPDF logo are trademarks of Artifex Software, Inc. © 2022 Artifex Software, Inc. All rights reserved.

Contact
Please use the [Discussions](https://github.com/pymupdf/PyMuPDF/discussions) menu for questions, comments, or asking for help, and submit issues [here](https://github.com/pymupdf/PyMuPDF/issues).

PyMuPDF-1.21.1/changes.txt

.. include:: header.rst

Change Log
==========

Changes in Version 1.21.1 (2022-12-13)

* This release uses ``MuPDF-1.21.1``.

* Bug fixes:

 * **Fixed** `#2110 <https://github.com/pymupdf/PyMuPDF/issues/2110>`_: Fully embedded font is extracted only partially if it occupies more than one object
 * **Fixed** `#2094 <https://github.com/pymupdf/PyMuPDF/issues/2094>`_: Rectangle Detection Logic
 * **Fixed** `#2088 <https://github.com/pymupdf/PyMuPDF/issues/2088>`_: Destination point not set for named links in toc
 * **Fixed** `#2087 <https://github.com/pymupdf/PyMuPDF/issues/2087>`_: Image with Filter "[/FlateDecode/JPXDecode]" not extracted
 * **Fixed** `#2086 <https://github.com/pymupdf/PyMuPDF/issues/2086>`_: Document.save() owner_pw & user_pw has buffer overflow bug
 * **Fixed** `#2076 <https://github.com/pymupdf/PyMuPDF/issues/2076>`_: Segfault in fitz.py
 * **Fixed** `#2051 <https://github.com/pymupdf/PyMuPDF/issues/2051>`_: Missing DPI Parameter
 * **Fixed** `#2048 <https://github.com/pymupdf/PyMuPDF/issues/2048>`_: Invalid size of TextPage and bbox with newest version 1.21.0
 * **Fixed** `#2045 <https://github.com/pymupdf/PyMuPDF/issues/2045>`_: SystemError: <built-in function Page_get_texttrace> returned a result with an error set
 * **Fixed** `#2039 <https://github.com/pymupdf/PyMuPDF/issues/2039>`_: 1.21.0 fails to build against system libmupdf
 * **Fixed** `#2036 <https://github.com/pymupdf/PyMuPDF/issues/2036>`_: Archive::Archive defined twice

* Other

 * Swallow "&zoom=nan" in link uri strings.
 * Add new Page utility methods ``Page.replace_image()`` and ``Page.delete_image()``.

* Documentation:

 * `#2040 <https://github.com/pymupdf/PyMuPDF/issues/2040>`_: Added note about test failure with non-default build of MuPDF, to ``tests/README.md``.
 * `#2037 <https://github.com/pymupdf/PyMuPDF/issues/2037>`_: In ``docs/installation.rst``, mention incompatibility with chocolatey.org on Windows.
 * `#2061 <https://github.com/pymupdf/PyMuPDF/issues/2061>`_: Fixed description of ``Annot.file_info``.
 * `#2065 <https://github.com/pymupdf/PyMuPDF/issues/2065>`_: Show how to insert internal PDF link.
 * Improved description of building from source without an sdist.
 * Added information about running tests.
 * `#2084 <https://github.com/pymupdf/PyMuPDF/issues/2084>`_: Fixed broken link to PyMuPDF-Utilities.

Changes in Version 1.21.0 (2022-11-8)

* This release uses ``MuPDF-1.21.0``.

* New feature: Stories.

* Added wheels for Python-3.11.

* Bug fixes:

 * **Fixed** `#1701 <https://github.com/pymupdf/PyMuPDF/issues/1701>`_: Broken custom image insertion.
 * **Fixed** `#1854 <https://github.com/pymupdf/PyMuPDF/issues/1854>`_: `Document.delete_pages()` declines keyword arguments.
 * **Fixed** `#1868 <https://github.com/pymupdf/PyMuPDF/issues/1868>`_: Access Violation Error at `page.apply_redactions()`.
 * **Fixed** `#1909 <https://github.com/pymupdf/PyMuPDF/issues/1909>`_: Adding text with `fontname="Helvetica"` can silently fail.
 * **Fixed** `#1913 <https://github.com/pymupdf/PyMuPDF/issues/1913>`_: `draw_rect()`: does not respect width if color is not specified.
 * **Fixed** `#1917 <https://github.com/pymupdf/PyMuPDF/issues/1917>`_: `subset_fonts()`: make it possible to silence the stdout.
 * **Fixed** `#1936 <https://github.com/pymupdf/PyMuPDF/issues/1936>`_: Rectangle detection can be incorrect producing wrong output.
 * **Fixed** `#1945 <https://github.com/pymupdf/PyMuPDF/issues/1945>`_: Segmentation fault when saving with `clean=True`.
 * **Fixed** `#1965 <https://github.com/pymupdf/PyMuPDF/issues/1965>`_: `pdfocr_save()` Hard Crash.
 * **Fixed** `#1971 <https://github.com/pymupdf/PyMuPDF/issues/1971>`_: Segmentation fault when using `get_drawings()`.
 * **Fixed** `#1946 <https://github.com/pymupdf/PyMuPDF/issues/1946>`_: `block_no` and `block_type` switched in `get_text()` docs.
 * **Fixed** `#2013 <https://github.com/pymupdf/PyMuPDF/issues/2013>`_: AttributeError: 'Widget' object has no attribute '_annot' in delete widget.

* Misc changes to core code:

 * Fixed various compiler warnings and a sequence-point bug.
 * Added support for Memento builds.
 * Fixed leaks detected by Memento in test suite.
 * Fixed handling of exceptions in set_name() and set_rect().
 * Allow build with latest MuPDF, for regular testing of PyMuPDF master.
 * Cope with new MuPDF exceptions when setting rect for some Annot types.
 * Reduced cosmetic differences between MuPDF's config.h and PyMuPDF's _config.h.
 * Cope with various changes to MuPDF API.

* Other:

 * Fixed various broken links and typos in docs.
 * Mention install of `swig-python` on MacOS for #875.
 * Added (untested) wheels for macos-arm64.

Changes in Version 1.20.2

* This release uses ``MuPDF-1.20.3``.

* **Fixed** `#1787 <https://github.com/pymupdf/PyMuPDF/issues/1787>`_.
 Fix linking issues on Unix systems.

* **Fixed** `#1824 <https://github.com/pymupdf/PyMuPDF/issues/1824>`_.
 SegFault when applying redactions overlapping a transparent image. (Fixed
 in ``MuPDF-1.20.3``.)

* Improvements to documentation:

 * Improved information about building from source in ``docs/installation.rst``.
 * Clarified memory allocation setting ``JM_MEMORY` in ``docs/tools.rst``.
 * Fixed link to PDF Reference manual in ``docs/app3.rst``.
 * Fixed building of html documentation on OpenBSD.
 * Moved old ``docs/faq.rst`` into separate ``docs/recipes-*`` files.

* Removed some unused files and directories:

 * ``installation/``
 * ``docs/wheelnames.txt``

Changes in Version 1.20.1

* **Fixed** `#1724 <https://github.com/pymupdf/PyMuPDF/issues/1724>`_.
 Fix for building on FreeBSD.

* **Fixed** `#1771 <https://github.com/pymupdf/PyMuPDF/issues/1771>`_.
 `linkDest()` had a broken call to `re.match()`, introduced in 1.20.0.

* **Fixed** `#1751 <https://github.com/pymupdf/PyMuPDF/issues/1751>`_.
 `get_drawings()` and `get_cdrawings()` previously always returned with `closePath=False`.

* **Fixed** `#1645 <https://github.com/pymupdf/PyMuPDF/issues/1645>`_.
 Default FreeText annotation text color is now black.

* Improvements to sphinx-generated documentation:

 * Use readthedocs theme with enhancements.
 * Renamed the `.txt` files to have `.rst` suffixes.

Changes in Version 1.20.0

This release uses ``MuPDF-1.20.0``, released 2022-06-15.

* Cope with new MuPDF link uri format, changed from ``#<int>,<int>,<int>`` to ``#page=<int>&zoom=<float>,<float>,<float>``.

 * In ``tests/test_insertpdf.py``, use new reference output ``joined-1.20.pdf``. We also check that new output values are approximately the same as the old ones.

* **Fixed** `#1738 <https://github.com/pymupdf/PyMuPDF/issues/1738>`_. Leak of `pdf_graft_map`.
 Also fixed a SEGV issue that this seemed to expose, caused by incorrect freeing of underlying fz_document.

* **Fixed** `#1733 <https://github.com/pymupdf/PyMuPDF/issues/1733>`_. Fixed ownership of `Annotation.get_pixmap()`.

Changes to build/release process:

* If pip builds from source because an appropriate wheel is not available, we no longer require MuPDF to be pre-installed. Instead the required MuPDF source is embedded in the sdist and automatically built into PyMuPDF.

* Various changes to ``setup.py`` to download the required MuPDF release as required. See comments at start of setup.py for details.

* Added ``.github/workflows/build_wheels.yml`` to control building of wheels on Github.

Changes in Version 1.19.6

* **Fixed** `#1620 <https://github.com/pymupdf/PyMuPDF/issues/1620>`_. The :ref:`TextPage` created by :meth:`Page.get_textpage` will now be freed correctly (removed memory leak).
* **Fixed** `#1601 <https://github.com/pymupdf/PyMuPDF/issues/1601>`_. Document open errors should now be more concise and easier to interpret. In the course of this, two PyMuPDF-specific Python exceptions have been **added:**

 - ``EmptyFileError`` -- raised when trying to create a :ref:`Document` (``fitz.open()``) from an empty file or zero-length memory.
 - ``FileDataError`` -- raised when MuPDF encounters irrecoverable document structure issues.

* **Added** :meth:`Page.load_widget` given a PDF field's xref.

* **Added** Dictionary :attr:`pdfcolor` which provide the about 500 colors defined as PDF color values with the lower case color name as key.

* **Added** algebra functionality to the :ref:`Quad` class. These objects can now also be added and subtracted among themselves, and be multiplied by numbers and matrices.

* **Added** new constants defining the default text extraction flags for more comfortable handling. Their naming convention is like :data:`TEXTFLAGS_WORDS` for ``page.get_text("words")``. See :ref:`text_extraction_flags`.

* **Changed** :meth:`Page.annots` and :meth:`Page.widgets` to detect and prevent reloading the page (illegally) inside the iterator loops via :meth:`Document.reload_page`. Doing this brings down the interpretor. Documented clean ways to do annotation and widget mass updates within properly designed loops.

* **Changed** several internal utility functions to become standalone ("SWIG inline") as opposed to be part of the :ref:`Tools` class. This, among other things, increases the performance of geometry object creation.

* **Changed** :meth:`Document.update_stream` to always accept stream updates - whether or not the dictionary object behind the xref already is a stream. Thus the former ``new`` parameter is now ignored and will be removed in v1.20.0.

Changes in Version 1.19.5

* **Fixed** `#1518 <https://github.com/pymupdf/PyMuPDF/issues/1518>`_. A limited "fix": in some cases, rectangles and quadrupels were not correctly encoded to support re-drawing by :ref:`Shape`.

* **Fixed** `#1521 <https://github.com/pymupdf/PyMuPDF/issues/1521>`_. This had the same ultimate reason behind issue #1510.

* **Fixed** `#1513 <https://github.com/pymupdf/PyMuPDF/issues/1513>`_. Some Optional Content functions did not support non-ASCII characters.

* **Fixed** `#1510 <https://github.com/pymupdf/PyMuPDF/issues/1510>`_. Support more soft-mask image subtypes.

* **Fixed** `#1507 <https://github.com/pymupdf/PyMuPDF/issues/1507>`_. Immunize against items in the outlines chain, that are ``"null"`` objects.

* **Fixed** re-opened `#1417 <https://github.com/pymupdf/PyMuPDF/issues/1417>`_. ("too many open files"). This was due to insufficient calls to MuPDF's ``fz_drop_document()``. This also fixes `#1550 <https://github.com/pymupdf/PyMuPDF/issues/1550>`_.

* **Fixed** several undocumented issues in relation to incorrectly setting the text span origin :data:`point_like`.

* **Fixed** undocumented error computing the character bbox in method :meth:`Page.get_texttrace` when text is **flipped** (as opposed to just rotated).

* **Added** items to the dictionary returned by :meth:`image_properties`: ``orientation`` and ``transform`` report the natural image orientation (EXIF data).

* **Added** method :meth:`Document.xref_copy`. It will make a given target PDF object an exact copy of a source object.

Changes in Version 1.19.4

* **Fixed** `#1505 <https://github.com/pymupdf/PyMuPDF/issues/1505>`_. Immunize against circular outline items.

* **Fixed** `#1484 <https://github.com/pymupdf/PyMuPDF/issues/1484>`_. Correct CropBox coordinates are now returned in all situations.

* **Fixed** `#1479 <https://github.com/pymupdf/PyMuPDF/issues/1479>`_.

* **Fixed** `#1474 <https://github.com/pymupdf/PyMuPDF/issues/1474>`_. TextPage objects are now properly deleted again.

* **Added** :ref:`Page` methods and attributes for PDF ``/ArtBox``, ``/BleedBox``, ``/TrimBox``.

* **Added** global attribute :attr:`TESSDATA_PREFIX` for easy checking of OCR support.

* **Changed** :meth:`Document.xref_set_key` such that dictionary keys will physically be removed if set to value ``"null"``.

* **Changed** :meth:`Document.extract_font` to optionally return a dictionary (instead of a tuple).

Changes in Version 1.19.3

This patch version implements minor improvements for :ref:`Pixmap` and also some important fixes.

* **Fixed** `#1351 <https://github.com/pymupdf/PyMuPDF/discussions/1351>`_. Reverted code that introduced the memory growth in v1.18.15.

* **Fixed** `#1417 <https://github.com/pymupdf/PyMuPDF/discussions/1417>`_. Developped circumvention for growth of open file handles using :meth:`Document.insert_pdf`.

* **Fixed** `#1418 <https://github.com/pymupdf/PyMuPDF/discussions/1418>`_. Developped circumvention for memory growth using :meth:`Document.insert_pdf`.

* **Fixed** `#1430 <https://github.com/pymupdf/PyMuPDF/discussions/1430>`_. Developped circumvention for mass pixmap generations of document pages.

* **Fixed** `#1433 <https://github.com/pymupdf/PyMuPDF/discussions/1433>`_. Solves a bbox error for some Type 3 font in PyMuPDF text processing.

* **Added** :meth:`Pixmap.color_topusage` to determine the share of the most frequently used color. Solves `#1397 <https://github.com/pymupdf/PyMuPDF/discussions/1397>`_.

* **Added** :meth:`Pixmap.warp` which makes a new pixmap from a given arbitrary convex quad inside the pixmap.

* **Added** :attr:`Annot.irt_xref` and :meth:`Annot.set_irt_xref` to inquire or set the `/IRT` ("In Responde To") property of an annotation. Implements `#1450 <https://github.com/pymupdf/PyMuPDF/discussions/1450>`_.

* **Added** :meth:`Rect.torect` and :meth:`IRect.torect` which compute a matrix that transforms to a given other rectangle.

* **Changed** :meth:`Pixmap.color_count` to also return the count of each color.
* **Changed** :meth:`Page.get_texttrace` to also return correct span and character bboxes if ``span["dir"] != (1, 0)``.

Changes in Version 1.19.2

This patch version implements minor improvements for :meth:`Page.get_drawings` and also some important fixes.

* **Fixed** `#1388 <https://github.com/pymupdf/PyMuPDF/discussions/1388>`_. Fixed intermittent memory corruption when insert or updating annotations.

* **Fixed** `#1375 <https://github.com/pymupdf/PyMuPDF/discussions/1375>`_. Inconsistencies between line numbers as returned by the "words" and the "dict" options of :meth:`Page.get_text` have been corrected.

* **Fixed** `#1364 <https://github.com/pymupdf/PyMuPDF/issues/1342>`_. The check for being a ``"rawdict"`` span in :meth:`recover_span_quad` now works correctly.

* **Fixed** `#1342 <https://github.com/pymupdf/PyMuPDF/issues/1364>`_. Corrected the check for rectangle infiniteness in :meth:`Page.show_pdf_page`.

* **Changed** :meth:`Page.get_drawings`, :meth:`Page.get_cdrawings` to return an indicator on the area orientation covered by a rectangle. This implements `#1355 <https://github.com/pymupdf/PyMuPDF/issues/1355>`_. Also, the recognition rate for rectangles and quads has been significantly improved.

* **Changed** all text search and extraction methods to set the new ``flags`` option ``TEXT_MEDIABOX_CLIP`` to ON by default. That bit causes the automatic suppression of all characters that are completely outside a page's mediabox (in as far as that notion is supported for a document type). This eliminates the need for using ``clip=page.rect`` or similar for omitting text outside the visible area.

* **Added** parameter ``"dpi"`` to :meth:`Page.get_pixmap` and :meth:`Annot.get_pixmap`. When given, parameter ``"matrix"`` is ignored, and a :ref:`Pixmap` with the desired dots per inch is created.

* **Added** attributes :attr:`Pixmap.is_monochrome` and :attr:`Pixmap.is_unicolor` allowing fast checks of pixmap properties. Addresses `#1397 <https://github.com/pymupdf/PyMuPDF/discussions/1397>`_.

* **Added** method :meth:`Pixmap.color_count` to determine the unique colors in the pixmap.

* **Added** boolean parameter ``"compress"`` to PDF document method :meth:`Document.update_stream`. Addresses / enables solution for `#1408 <https://github.com/pymupdf/PyMuPDF/discussions/1408>`_.

Changes in Version 1.19.1

This is the first patch version to support MuPDF v1.19.0. Apart from one bug fix, it includes important improvements for OCR support and the option to **sort extracted text** to the standard reading order "from top-left to bottom-right".

* **Fixed** `#1328 <https://github.com/pymupdf/PyMuPDF/issues/1328>`_. "words" text extraction again returns correct ``(x0, y0)`` coordinates.

* **Changed** :meth:`Page.get_textpage_ocr`: it now supports parameter ``dpi`` to control OCR quality. It is also possible to choose whether the **full page** should be OCRed or **only the images displayed** by the page.

* **Changed** :meth:`Page.get_drawings` and :meth:`Page.get_cdrawings` to automatically convert colors to RGB color tuples. Implements `#1332 <https://github.com/pymupdf/PyMuPDF/discussions/1332>`_. Similar change was applied to :meth:`Page.get_texttrace`.

* **Changed** :meth:`Page.get_text` to support a parameter ``sort``. If set to ``True`` the output is conveniently sorted.

Changes in Version 1.19.0

This is the first version supporting MuPDF 1.19.*, published 2021-10-05. It introduces many new features compared to the previous version 1.18.*.

PyMuPDF has now picked up integrated Tesseract OCR support, which was already present in MuPDF v1.18.0.

* Supported images can be OCRed via their :ref:`Pixmap` which results in a 1-page PDF with a text layer.
* All supported document pages (i.e. not only PDFs), can be OCRed using specialized text extraction methods. The result is a mixture of standard and OCR text (depending on which part of the page was deemed to require OCRing) that can be searched and extracted without restrictions.
* All this requires an independent installation of Tesseract. MuPDF actually (only) needs the location of Tesseract's ``"tessdata"`` folder, where its language support data are stored. This location must be available as environment variable ``TESSDATA_PREFIX``.

A new MuPDF feature is **journalling PDF updates**, which is also supported by this PyMuPDF version. Changes may be logged, rolled back or replayed, allowing to implement a whole new level of control over PDF document integrity -- similar to functions present in modern database systems.

A third feature (unrelated to the new MuPDF version) includes the ability to detect when page **objects cover or hide each other**. It is now e.g. possible to see that text is covered by a drawing or an image.

* **Changed** terminology and meaning of important geometry concepts: Rectangles are now characterized as *finite*, *valid* or *empty*, while the definitions of these terms have also changed. Rectangles specifically are now thought of being "open": not all corners and sides are considered part of the retangle. Please do read the :ref:`Rect` section for details.

* **Added** new parameter `"no_new_id"` to :meth:`Document.save` / :meth:`Document.tobytes` methods. Use it to suppress updating the second item of the document ``/ID`` which in PDF indicates that the original file has been updated. If the PDF has no ``/ID`` at all yet, then no new one will be created either.

* **Added** a **journalling facility** for PDF updates. This allows logging changes, undoing or redoing them, or saving the journal for later use. Refer to :meth:`Document.journal_enable` and friends.

* **Added** new :ref:`Pixmap` methods :meth:`Pixmap.pdfocr_save` and :meth:`Pixmap.pdfocr_tobytes`, which generate a 1-page PDF containing the pixmap as PNG image with OCR text layer.

* **Added** :meth:`Page.get_textpage_ocr` which executes optical character recognition for the page, then extracts the results and stores them together with "normal" page content in a :ref:`TextPage`. Use or reuse this object in subsequent text extractions and text searches to avoid multiple efforts. The existing text search and text extraction methods have been extended to support a separately created textpage -- see next item.

* **Added** a new parameter ``textpage`` to text extraction and text search methods. This allows reuse of a previously created :ref:`TextPage` and thus achieves significant runtime benefits -- which is especially important for the new OCR features. But "normal" text extractions can definitely also benefit.

* **Added** :meth:`Page.get_texttrace`, a technical method delivering low-level text character properties. It was present before as a private method, but the author felt it now is mature enough to be officially available. It specifically includes a "sequence number" which indicates the page appearance build operation that painted the text.

* **Added** :meth:`Page.get_bboxlog` which delivers the list of rectangles of page objects like text, images or drawings. Its significance lies in its sequence: rectangles intersecting areas with a lower index are covering or hiding them.

* **Changed** methods :meth:`Page.get_drawings` and :meth:`Page.get_cdrawings` to include a "sequence number" indicating the page appearance build operation that created the drawing.

* **Fixed** `#1311 <https://github.com/pymupdf/PyMuPDF/issues/1311>`_. Field values in comboboxes should now be handled correctly.
* **Fixed** `#1290 <https://github.com/pymupdf/PyMuPDF/issues/1290>`_. Error was caused by incorrect rectangle emptiness check, which is fixed due to new geometry logic of this version.
* **Fixed** `#1286 <https://github.com/pymupdf/PyMuPDF/issues/1286>`_. Text alignment for redact annotations is working again.
* **Fixed** `#1287 <https://github.com/pymupdf/PyMuPDF/issues/1287>`_. Infinite loop issue for non-Windows systems when applying some redactions has been resolved.
* **Fixed** `#1284 <https://github.com/pymupdf/PyMuPDF/issues/1284>`_. Text layout destruction after applying redactions in some cases has been resolved.

Changes in Version 1.18.18 / 1.18.19

* **Fixed** issue `#1266 <https://github.com/pymupdf/PyMuPDF/issues/1266>`_. Failure to set :attr:`Pixmap.samples` in important cases, was hotfixed in a new version 1.18.19.

* **Fixed** issue `#1257 <https://github.com/pymupdf/PyMuPDF/issues/1257>`_. Removing the read-only flag from PDF fields is now possible.

* **Fixed** issue `#1252 <https://github.com/pymupdf/PyMuPDF/issues/1252>`_. Now correctly specifying the ``zoom`` value for PDF link annotations.

* **Fixed** issue `#1244 <https://github.com/pymupdf/PyMuPDF/issues/1244>`_. Now correctly computing the transform matrix in :meth:`Page.get_image__bbox`.

* **Fixed** issue `#1241 <https://github.com/pymupdf/PyMuPDF/issues/1241>`_. Prevent returning artifact characters in :meth:`Page.get_textbox`, which happened in certain constellations.

* **Fixed** issue `#1234 <https://github.com/pymupdf/PyMuPDF/issues/1234>`_. Avoid creating infinite rectangles in corner cases -- :meth:`Page.get_drawings`, :meth:`Page.get_cdrawings`.

* **Added** test data and test scripts to the source PyPI source distribution.

Changes in Version 1.18.17

Focus of this version are major performance improvements of selected functions.

* **Fixed** issue `#1199 <https://github.com/pymupdf/PyMuPDF/issues/1199>`_. Using a non-existing page number in :meth:`Document.get_page_images` and friends will no longer lead to segfaults.

* **Changed** :meth:`Page.get_drawings` to now differentiate between "stroke", "fill" and combined paths. Paths containing more than one rectangle (i.e. "re" items) are now supported. Extracting "clipped" paths is now available as an option.

* **Added** :meth:`Page.get_cdrawings`, performance-optimized version of :meth:`Page.get_drawings`.

* **Added** :attr:`Pixmap.samples_mv`, *memoryview* of a pixmap's pixel area. Does not copy and thus always accesses the current state of that area.

* **Added** :attr:`Pixmap.samples_ptr`, Python "pointer" to a pixmap's pixel area. Allows much faster creation (factor 800+) of Qt images.

Changes in Version 1.18.16

* **Fixed** issue `#1184 <https://github.com/pymupdf/PyMuPDF/issues/1184>`_. Existing PDF widget fonts in a PDF are now accepted (i.e. not forcedly changed to a Base-14 font).

* **Fixed** issue `#1154 <https://github.com/pymupdf/PyMuPDF/issues/1154>`_. Text search hits should now be correct when ``clip`` is specified.

* **Fixed** issue `#1152 <https://github.com/pymupdf/PyMuPDF/issues/1152>`_.

* **Fixed** issue `#1146 <https://github.com/pymupdf/PyMuPDF/issues/1146>`_.

* **Added** :attr:`Link.flags` and :meth:`Link.set_flags` to the :ref:`Link` class. Implements enhancement requests `#1187 <https://github.com/pymupdf/PyMuPDF/issues/1187>`_.

* **Added** option to *simulate* :meth:`TextWriter.fill_textbox` output for predicting the number of lines, that a given text would occupy in the textbox.

* **Added** text output support as subcommand `gettext` to the ``fitz`` CLI module. Most importantly, original **physical text layout** reproduction is now supported.

Changes in Version 1.18.15

* **Fixed** issue `#1088 <https://github.com/pymupdf/PyMuPDF/issues/1088>`_. Removing an annotation's fill color should now work again both ways, using the ``fill_color=[]`` argument in :meth:`Annot.update` as well as ``fill=[]`` in :meth:`Annot.set_colors`.

* **Fixed** issue `#1081 <https://github.com/pymupdf/PyMuPDF/issues/1081>`_. :meth:`Document.subset_fonts`: fixed an error which created wrong character widths for some fonts.

* **Fixed** issue `#1078 <https://github.com/pymupdf/PyMuPDF/issues/1078>`_. :meth:`Page.get_text` and other methods related to text extraction: changed the default value of the :ref:`TextPage` ``flags`` parameter. All whitespace and :data:`ligatures` are now preserved.

* **Fixed** issue `#1085 <https://github.com/pymupdf/PyMuPDF/issues/1085>`_. The old *snake_cased* alias of ``fitz.detTextlength`` is now defined correctly.

* **Changed** :meth:`Document.subset_fonts` will now correctly prefix font subsets with an appropriate six letter uppercase tag, complying with the PDF specification.

* **Added** new method :meth:`Widget.button_states` which returns the possible values that a button-type field can have when being set to "on" or "off".

* **Added** support of text with **Small Capital** letters to the :ref:`Font` and :ref:`TextWriter` classes. This is reflected by an additional bool parameter ``small_caps`` in various of their methods.

Changes in Version 1.18.14

* **Finished** implementing new, "snake_cased" names for methods and properties, that were "camelCased" and awkward in many aspects. At the end of this documentation, there is section :ref:`Deprecated` with more background and a mapping of old to new names.

* **Fixed** issue `#1053 <https://github.com/pymupdf/PyMuPDF/issues/1053>`_. :meth:`Page.insert_image`: when given, include image mask in the hash computation.

* **Fixed** issue `#1043 <https://github.com/pymupdf/PyMuPDF/issues/1043>`_. Added ``Pixmap.getPNGdata`` to the aliases of :meth:`Pixmap.tobytes`.

* **Fixed** an internal error when computing the envelopping rectangle of drawn paths as returned by :meth:`Page.get_drawings`.

* **Fixed** an internal error occasionally causing loops when outputting text via :meth:`TextWriter.fill_textbox`.

* **Added** :meth:`Font.char_lengths`, which returns a tuple of character widths of a string.

* **Added** more ways to specify pages in :meth:`Document.delete_pages`. Now a sequence (list, tuple or range) can be specified, and the Python ``del`` statement can be used. In the latter case, Python ``slices`` are also accepted.

* **Changed** :meth:`Document.del_toc_item`, which disables a single item of the TOC: previously, the title text was removed. Instead, now the complete item will be shown grayed-out by supporting viewers.

Changes in Version 1.18.13

* **Fixed** issue `#1014 <https://github.com/pymupdf/PyMuPDF/issues/1014>`_.
* **Fixed** an internal memory leak when computing image bboxes -- :meth:`Page.get_image_bbox`.
* **Added** support for low-level access and modification of the PDF trailer. Applies to :meth:`Document.xref_get_keys`, :meth:`Document.xref_get_key`, and :meth:`Document.xref_set_key`.
* **Added** documentation for maintaining private entries in PDF metadata.
* **Added** documentation for handling transparent image insertions, :meth:`Page.insert_image`.
* **Added** :meth:`Page.get_image_rects`, an improved version of :meth:`Page.get_image_bbox`.
* **Changed** :meth:`Document.delete_pages` to support various ways of specifying pages to delete. Implements `#1042 <https://github.com/pymupdf/PyMuPDF/issues/1042>`_.
* **Changed** :meth:`Page.insert_image` to also accept the xref of an existing image in the file. This allows "copying" images between pages, and extremely fast mutiple insertions.
* **Changed** :meth:`Page.insert_image` to also accept the integer parameter ``alpha``. To be used for performance improvements.
* **Changed** :meth:`Pixmap.set_alpha` to support new parameters for pre-multiplying colors with their alpha values and setting a specific color to fully transparent (e.g. white).
* **Changed** :meth:`Document.embfile_add` to automatically set creation and modification date-time. Correspondingly, :meth:`Document.embfile_upd` automatically maintains modification date-time (``/ModDate`` PDF key), and :meth:`Document.embfile_info` correspondingly reports these data. In addition, the embedded file's associated "collection item" is included via its :data:`xref`. This supports the development of PDF portfolio applications.

Changes in Version 1.18.11 / 1.18.12

* **Fixed** issue `#972 <https://github.com/pymupdf/PyMuPDF/issues/972>`_. Improved layout of source distribution material.
* **Fixed** issue `#962 <https://github.com/pymupdf/PyMuPDF/issues/962>`_. Stabilized Linux distribution detection for generating PyMuPDF from sources.
* **Added:** :meth:`Page.get_xobjects` delivers the result of :meth:`Document.get_page_xobjects`.
* **Added:** :meth:`Page.get_image_info` delivers meta information for all images shown on the page.
* **Added:** :meth:`Tools.mupdf_display_warnings` allows setting on / off the display of MuPDF-generated warnings. The default is off.
* **Added:** :meth:`Document.ez_save` convenience alias of :meth:`Document.save` with some different defaults.
* **Changed:** Image extractions of document pages now also contain the image's **transformation matrix**. This concerns :meth:`Page.get_image_bbox` and the DICT, JSON, RAWDICT, and RAWJSON variants of :meth:`Page.get_text`.

Changes in Version 1.18.10

* **Fixed** issue `#941 <https://github.com/pymupdf/PyMuPDF/issues/941>`_. Added old aliases for :meth:`DisplayList.get_pixmap` and :meth:`DisplayList.get_textpage`.
* **Fixed** issue `#929 <https://github.com/pymupdf/PyMuPDF/issues/929>`_. Stabilized removal of JavaScript objects with :meth:`Document.scrub`.
* **Fixed** issue `#927 <https://github.com/pymupdf/PyMuPDF/issues/927>`_. Removed a loop in the reworked :meth:`TextWriter.fill_textbox`.
* **Changed** :meth:`Document.xref_get_keys` and :meth:`Document.xref_get_key` to also allow accessing the PDF trailer dictionary. This can be done by using `-1` as the xref number argument.
* **Added** a number of functions for reconstructing the quads for text lines, spans and characters extracted by :meth:`Page.get_text` options "dict" and "rawdict". See :meth:`recover_quad` and friends.
* **Added** :meth:`Tools.unset_quad_corrections` to suppress character quad corrections (occasionally required for erroneous fonts).

Changes in Version 1.18.9

* **Fixed** issue `#888 <https://github.com/pymupdf/PyMuPDF/issues/888>`_. Removed ambiguous statements concerning PyMuPDF's license, which is now clearly stated to be GNU AGPL V3.
* **Fixed** issue `#895 <https://github.com/pymupdf/PyMuPDF/issues/895>`_.
* **Fixed** issue `#896 <https://github.com/pymupdf/PyMuPDF/issues/896>`_. Since v1.17.6 PyMuPDF suppresses the font subset tags and only reports the base fontname in text extraction outputs "dict" / "json" / "rawdict" / "rawjson". Now a new global parameter can request the old behaviour, :meth:`Tools.set_subset_fontnames`.
* **Fixed** issue `#885 <https://github.com/pymupdf/PyMuPDF/issues/885>`_. Pixmap creation now also works with filenames given as ``pathlib.Paths``.
* **Changed** :meth:`Document.subset_fonts`: Text is **not rewritten** any more and should therefore **retain all its origial properties** -- like being hidden or being controlled by Optional Content mechanisms.
* **Changed** :ref:`TextWriter` output to also accept text in right to left mode (Arabian, Hebrew): :meth:`TextWriter.fill_textbox`, :meth:`TextWriter.append`. These methods now accept a new boolean parameter `right_to_left`, which is *False* by default. Implements `#897 <https://github.com/pymupdf/PyMuPDF/issues/897>`_.
* **Changed** :meth:`TextWriter.fill_textbox` to return all lines of text, that did not fit in the given rectangle. Also changed the default of the ``warn`` parameter to no longer print a warning message in overflow situations.
* **Added** a utility function :meth:`recover_quad`, which computes the quadrilateral of a span. This function can be used for correctly marking text extracted with the "dict" or "rawdict" options of :meth:`Page.get_text`.

Changes in Version 1.18.8

This is a bug fix version only. We are publishing early because of the potentially widely used functions.

* **Fixed** issue `#881 <https://github.com/pymupdf/PyMuPDF/issues/881>`_. Fixed a memory leak in :meth:`Page.insert_image` when inserting images from files or memory.
* **Fixed** issue `#878 <https://github.com/pymupdf/PyMuPDF/issues/878>`_. ``pathlib.Path`` objects should now correctly handle file path hierarchies.

Changes in Version 1.18.7

* **Added** an experimental :meth:`Document.subset_fonts` which reduces the size of eligible fonts based on their use by text in the PDF. Implements `#855 <https://github.com/pymupdf/PyMuPDF/discussions/855>`_.
* **Implemented** request `#870 <https://github.com/pymupdf/PyMuPDF/pull/870>`_: :meth:`Document.convert_to_pdf` now also supports PDF documents.
* **Renamed** ``Document.write`` to :meth:`Document.tobytes` for greater clarity. But the deprecated name remains available for some time.
* **Implemented** request `#843 <https://github.com/pymupdf/PyMuPDF/Discussions/843>`_: :meth:`Document.tobytes` now supports linearized PDF output. :meth:`Document.save` now also supports writing to Python **file objects**. In addition, the open function now also supports Python file objects.
* **Fixed** issue `#844 <https://github.com/pymupdf/PyMuPDF/issues/844>`_.
* **Fixed** issue `#838 <https://github.com/pymupdf/PyMuPDF/issues/838>`_.
* **Fixed** issue `#823 <https://github.com/pymupdf/PyMuPDF/issues/823>`_. More logic for better support of OCRed text output (Tesseract, ABBYY).
* **Fixed** issue `#818 <https://github.com/pymupdf/PyMuPDF/issues/818>`_.
* **Fixed** issue `#814 <https://github.com/pymupdf/PyMuPDF/issues/814>`_.
* **Added** :meth:`Document.get_page_labels` which returns a list of page label definitions of a PDF.
* **Added** :meth:`Document.has_annots` and :meth:`Document.has_links` to check whether these object types are present anywhere in a PDF.
* **Added** expert low-level functions to simplify inquiry and modification of PDF object sources: :meth:`Document.xref_get_keys` lists the keys of object :data:`xref`, :meth:`Document.xref_get_key` returns type and content of a key, and :meth:`Document.xref_set_key` modifies the key's value.
* **Added** parameter ``thumbnails`` to :meth:`Document.scrub` to also allow removing page thumbnail images.
* **Improved** documentation for how to add valid text marker annotations for non-horizontal text.

We continued the process of renaming methods and properties from *"mixedCase"* to *"snake_case"*. Documentation usually mentions the new names only, but old, deprecated names remain available for some time.

Changes in Version 1.18.6

* **Fixed** issue `#812 <https://github.com/pymupdf/PyMuPDF/issues/812>`_.
* **Fixed** issue `#793 <https://github.com/pymupdf/PyMuPDF/issues/793>`_. Invalid document metadata previously prevented opening some documents at all. This error has been removed.
* **Fixed** issue `#792 <https://github.com/pymupdf/PyMuPDF/issues/792>`_. Text search and text extraction will make no rectangle containment checks at all if the default ``clip=None`` is used.
* **Fixed** issue `#785 <https://github.com/pymupdf/PyMuPDF/issues/785>`_.
* **Fixed** issue `#780 <https://github.com/pymupdf/PyMuPDF/issues/780>`_. Corrected a parameter check error.
* **Fixed** issue `#779 <https://github.com/pymupdf/PyMuPDF/issues/779>`_. Fixed typo
* **Added** an option to set the desired line height for text boxes. Implements `#804 <https://github.com/pymupdf/PyMuPDF/issues/804>`_.
* **Changed** text position retrieval to better cope with Tesseract's glyphless font. Implements `#803 <https://github.com/pymupdf/PyMuPDF/issues/803>`_.
* **Added** an option to choose the prefix of new annotations, fields and links for providing unique annotation ids. Implements request `#807 <https://github.com/pymupdf/PyMuPDF/issues/807>`_.
* **Added** getting and setting color and text properties for Table of Contents items for PDFs. Implements `#779 <https://github.com/pymupdf/PyMuPDF/issues/779>`_.
* **Added** PDF page label handling: :meth:`Page.get_label()` returns the page label, :meth:`Document.get_page_numbers` return all page numbers having a specified label, and :meth:`Document.set_page_labels` adds or updates a PDF's page label definition.

.. note::
 This version introduces **Python type hinting**. The goal is to provide each parameter and the return value of all functions and methods with type information. This still is work in progress although the majority of functions has already been handled.

Changes in Version 1.18.5

Apart from several fixes, this version also focusses on several minor, but important feature improvements. Among the latter is a more precise computation of proper line heights and insertion points for writing / inserting text. As opposed to using font-agnostic constants, these values are now taken from the font's properties.

Also note that this is the first version which does no longer provide pregenerated wheels for Python versions older than 3.6. PIP also discontinues support for these by end of this year 2020.

* **Fixed** issue `#771 <https://github.com/pymupdf/PyMuPDF/issues/771>`_. By using "small glyph heights" option, the full page text can be extracted.
* **Fixed** issue `#768 <https://github.com/pymupdf/PyMuPDF/issues/768>`_.
* **Fixed** issue `#750 <https://github.com/pymupdf/PyMuPDF/issues/750>`_.
* **Fixed** issue `#739 <https://github.com/pymupdf/PyMuPDF/issues/739>`_. The "dict", "rawdict" and corresponding JSON output variants now have two new *span* keys: ``"ascender"`` and ``"descender"``. These floats represent special font properties which can be used to compute bboxes of spans or characters of **exactly fontsize height** (as opposed to the default line height). An example algorithm is shown in section "Span Dictionary" `here <https://pymupdf.readthedocs.io/en/latest/textpage.html#dictionary-structure-of-extractdict-and-extractrawdict>`_. Also improved the detection and correction of ill-specified ascender / descender values encountered in some fonts.
* **Added** a new, experimental :meth:`Tools.set_small_glyph_heights` -- also in response to issue `#739 <https://github.com/pymupdf/PyMuPDF/issues/739>`_. This method sets or unsets a global parameter to **always compute bboxes with fontsize height**. If "on", text searching and all text extractions will returned rectangles, bboxes and quads with a smaller height.
* **Fixed** issue `#728 <https://github.com/pymupdf/PyMuPDF/issues/728>`_.
* **Changed** fill color logic of 'Polyline' annotations: this parameter now only pertains to line end symbols -- the annotation itself can no longer have a fill color. Also addresses issue `#727 <https://github.com/pymupdf/PyMuPDF/issues/727>`_.
* **Changed** :meth:`Page.getImageBbox` to also compute the bbox if the image is contained in an XObject.
* **Changed** :meth:`Shape.insertTextbox`, resp. :meth:`Page.insertTextbox`, resp. :meth:`TextWriter.fillTextbox` to respect font's properties "ascender" / "descender" when computing line height and insertion point. This should no longer lead to line overlaps for multi-line output. These methods used to ignore font specifics and used constant values instead.

Changes in Version 1.18.4

This version adds several features to support PDF Optional Content. Among other things, this includes OCMDs (Optional Content Membership Dictionaries) with the full scope of *"visibility expressions"* (PDF key ``/VE``), text insertions (including the :ref:`TextWriter` class) and drawings.

* **Fixed** issue `#727 <https://github.com/pymupdf/PyMuPDF/issues/727>`_. Freetext annotations now support an uncolored rectangle when ``fill_color=None``.
* **Fixed** issue `#726 <https://github.com/pymupdf/PyMuPDF/issues/726>`_. UTF-8 encoding errors are now handled for HTML / XML :meth:`Page.getText` output.
* **Fixed** issue `#724 <https://github.com/pymupdf/PyMuPDF/issues/724>`_. Empty values are no longer stored in the PDF /Info metadata dictionary.
* **Added** new methods :meth:`Document.set_oc` and :meth:`Document.get_oc` to set or get optional content references for **existing** image and form XObjects. These methods are similar to the same-named methods of :ref:`Annot`.
* **Added** :meth:`Document.set_ocmd`, :meth:`Document.get_ocmd` for handling OCMDs.
* **Added** **Optional Content** support for text insertion and drawing.
* **Added** new method :meth:`Page.deleteWidget`, which deletes a form field from a page. This is analogous to deleting annotations.
* **Added** support for Popup annotations. This includes defining the Popup rectangle and setting the Popup to open or closed. Methods / attributes :meth:`Annot.set_popup`, :meth:`Annot.set_open`, :attr:`Annot.has_popup`, :attr:`Annot.is_open`, :attr:`Annot.popup_rect`, :attr:`Annot.popup_xref`.

Other changes:

* The **naming of methods and attributes** in PyMuPDF is far from being satisfactory: we have *CamelCases*, *mixedCases* and *lower_case_with_underscores* all over the place. With the :ref:`Annot` as the first candidate, we have started an activity to clean this up step by step, converting to lower case with underscores for methods and attributes while keeping UPPERCASE for the constants.

 - Old names will remain available to prevent code breaks, but they will no longer be mentioned in the documentation.
 - New methods and attributes of all classes will be named according to the new standard.

Changes in Version 1.18.3

As a major new feature, this version introduces support for PDF's **Optional Content** concept.

* **Fixed** issue `#714 <https://github.com/pymupdf/PyMuPDF/issues/714>`_.
* **Fixed** issue `#711 <https://github.com/pymupdf/PyMuPDF/issues/711>`_.
* **Fixed** issue `#707 <https://github.com/pymupdf/PyMuPDF/issues/707>`_: if a PDF user password, but no owner password is supplied nor present, then the user password is also used as the owner password.
* **Fixed** ``expand`` and ``deflate`` parameters of methods :meth:`Document.save` and :meth:`Document.write`. Individual image and font compression should now finally work. Addresses issue `#713 <https://github.com/pymupdf/PyMuPDF/issues/713>`_.
* **Added** a support of PDF optional content. This includes several new :ref:`Document` methods for inquiring and setting optional content status and adding optional content configurations and groups. In addition, images, form XObjects and annotations now can be bound to optional content specifications. **Resolved** issue `#709 <https://github.com/pymupdf/PyMuPDF/issues/709>`_.

Changes in Version 1.18.2

This version contains some interesting improvements for text searching: any number of search hits is now returned and the **hit_max** parameter was removed. The new **clip** parameter in addition allows to restrict the search area. Searching now detects hyphenations at line breaks and accordingly finds hyphenated words.

* **Fixed** issue `#575 <https://github.com/pymupdf/PyMuPDF/issues/575>`_: if using ``quads=False`` in text searching, then overlapping rectangles on the same line are joined. Previously, parts of the search string, which belonged to different "marked content" items, each generated their own rectangle -- just as if occurring on separate lines.
* **Added** :attr:`Document.isRepaired`, which is true if the PDF was repaired on open.
* **Added** :meth:`Document.setXmlMetadata` which either updates or creates PDF XML metadata. Implements issue `#691 <https://github.com/pymupdf/PyMuPDF/issues/691>`_.
* **Added** :meth:`Document.getXmlMetadata` returns PDF XML metadata.
* **Changed** creation of PDF documents: they will now always carry a PDF identification (``/ID`` field) in the document trailer. Implements issue `#691 <https://github.com/pymupdf/PyMuPDF/issues/691>`_.
* **Changed** :meth:`Page.searchFor`: a new parameter ``clip`` is accepted to restrict the search to this rectangle. Correspondingly, the attribute :attr:`TextPage.rect` is now respected by :meth:`TextPage.search`.
* **Changed** parameter ``hit_max`` in :meth:`Page.searchFor` and :meth:`TextPage.search` is now obsolete: methods will return all hits.
* **Changed** character **selection criteria** in :meth:`Page.getText`: a character is now considered to be part of a ``clip`` if its bbox is fully contained. Before this, a non-empty intersection was sufficient.
* **Changed** :meth:`Document.scrub` to support a new option `redact_images`. This addresses issue `#697 <https://github.com/pymupdf/PyMuPDF/issues/697>`_.

Changes in Version 1.18.1

* **Fixed** issue `#692 <https://github.com/pymupdf/PyMuPDF/issues/692>`_. PyMuPDF now detects and recovers from more cyclic resource dependencies in PDF pages and for the first time reports them in the MuPDF warnings store.
* **Fixed** issue `#686 <https://github.com/pymupdf/PyMuPDF/issues/686>`_.
* **Added** opacity options for the :ref:`Shape` class: Stroke and fill colors can now be set to some transparency value. This means that all :ref:`Page` draw methods, methods :meth:`Page.insertText`, :meth:`Page.insertTextbox`, :meth:`Shape.finish`, :meth:`Shape.insertText`, and :meth:`Shape.insertTextbox` support two new parameters: *stroke_opacity* and *fill_opacity*.
* **Added** new parameter ``mask`` to :meth:`Page.insertImage` for optionally providing an external image mask. Resolves issue `#685 <https://github.com/pymupdf/PyMuPDF/issues/685>`_.
* **Added** :meth:`Annot.soundGet` for extracting the sound of an audio annotation.

Changes in Version 1.18.0

This is the first PyMuPDF version supporting MuPDF v1.18. The focus here is on extending PyMuPDF's own functionality -- apart from bug fixing. Subsequent PyMuPDF patches may address features new in MuPDF.

* **Fixed** issue `#519 <https://github.com/pymupdf/PyMuPDF/issues/519>`_. This upstream bug occurred occasionally for some pages only and seems to be fixed now: page layout should no longer be ruined in these cases.

* **Fixed** issue `#675 <https://github.com/pymupdf/PyMuPDF/issues/675>`_.

 - Unsuccessful storage allocations should now always lead to exceptions (circumvention of an upstream bug intermittently crashing the interpreter).
 - :ref:`Pixmap` size is now based on ``size_t`` instead of ``int`` in C and should be correct even for extremely large pixmaps.

* **Fixed** issue `#668 <https://github.com/pymupdf/PyMuPDF/issues/668>`_. Specification of dashes for PDF drawing insertion should now correctly reflect the PDF spec.
* **Fixed** issue `#669 <https://github.com/pymupdf/PyMuPDF/issues/669>`_. A major source of memory leakage in :meth:`Page.insert_pdf` has been removed.
* **Added** keyword *"images"* to :meth:`Page.apply_redactions` for fine-controlling the handling of images.
* **Added** :meth:`Annot.getText` and :meth:`Annot.getTextbox`, which offer the same functionality as the :ref:`Page` versions.
* **Added** key *"number"* to the block dictionaries of :meth:`Page.getText` / :meth:`Annot.getText` for options "dict" and "rawdict".
* **Added** :meth:`glyph_name_to_unicode` and :meth:`unicode_to_glyph_name`. Both functions do not really connect to a specific font and are now independently available, too. The data are now based on the `Adobe Glyph List <https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt>`_.
* **Added** convenience functions :meth:`adobe_glyph_names` and :meth:`adobe_glyph_unicodes` which return the respective available data.
* **Added** :meth:`Page.getDrawings` which returns details of drawing operations on a document page. Works for all document types.
* Improved performance of :meth:`Document.insert_pdf`. Multiple object copies are now also suppressed across multiple separate insertions from the same source. This saves time, memory and target file size. Previously this mechanism was only active within each single method execution. The feature can also be suppressed with the new method bool parameter *final=1*, which is the default.
* For PNG images created from pixmaps, the resolution (dpi) is now automatically set from the respective :attr:`Pixmap.xres` and :attr:`Pixmap.yres` values.

Changes in Version 1.17.7

* **Fixed** issue `#651 <https://github.com/pymupdf/PyMuPDF/issues/651>`_. An upstream bug causing interpreter crashes in corner case redaction processings was fixed by backporting MuPDF changes from their development repo.
* **Fixed** issue `#645 <https://github.com/pymupdf/PyMuPDF/issues/645>`_. Pixmap top-left coordinates can be set (again) by their own method, :meth:`Pixmap.set_origin`.
* **Fixed** issue `#622 <https://github.com/pymupdf/PyMuPDF/issues/622>`_. :meth:`Page.insertImage` again accepts a :data:`rect_like` parameter.
* **Added** severeal new methods to improve and speed-up table of contents (TOC) handling. Among other things, TOC items can now changed or deleted individually -- without always replacing the complete TOC. Furthermore, access to some PDF page attributes is now possible without first **loading** the page. This has a very significant impact on the performance of TOC manipulation.
* **Added** an option to :meth:`Document.insert_pdf` which allows displaying progress messages. Adresses `#640 <https://github.com/pymupdf/PyMuPDF/issues/640>`_.
* **Added** :meth:`Page.getTextbox` which extracts text contained in a rectangle. In many cases, this should obsolete writing your own script for this type of thing.
* **Added** new ``clip`` parameter to :meth:`Page.getText` to simplify and speed up text extraction of page sub areas.
* **Added** :meth:`TextWriter.appendv` to add text in **vertical write mode**. Addresses issue `#653 <https://github.com/pymupdf/PyMuPDF/issues/653>`_

Changes in Version 1.17.6

* **Fixed** issue `#605 <https://github.com/pymupdf/PyMuPDF/issues/605>`_
* **Fixed** issue `#600 <https://github.com/pymupdf/PyMuPDF/issues/600>`_ -- text should now be correctly positioned also for pages with a CropBox smaller than MediaBox.
* **Added** text span dictionary key ``origin`` which contains the lower left coordinate of the first character in that span.
* **Added** attribute :attr:`Font.buffer`, a *bytes* copy of the font file.
* **Added** parameter *sanitize* to :meth:`Page.cleanContents`. Allows switching of sanitization, so only syntax cleaning will be done.

Changes in Version 1.17.5

* **Fixed** issue `#561 <https://github.com/pymupdf/PyMuPDF/issues/561>`_ -- second go: certain :ref:`TextWriter` usages with many alternating fonts did not work correctly.
* **Fixed** issue `#566 <https://github.com/pymupdf/PyMuPDF/issues/566>`_.
* **Fixed** issue `#568 <https://github.com/pymupdf/PyMuPDF/issues/568>`_.
* **Fixed** -- opacity is now correctly taken from the :ref:`TextWriter` object, if not given in :meth:`TextWriter.writeText`.
* **Added** a new global attribute :attr:`fitz_fontdescriptors`. Contains information about usable fonts from repository `pymupdf-fonts <https://github.com/pymupdf/pymupdf-fonts>`_.
* **Added** :meth:`Font.valid_codepoints` which returns an array of unicode codepoints for which the font has a glyph.
* **Added** option ``text_as_path`` to :meth:`Page.getSVGimage`. this implements `#580 <https://github.com/pymupdf/PyMuPDF/issues/580>`_. Generates much smaller SVG files with parseable text if set to *False*.

Changes in Version 1.17.4

* **Fixed** issue `#561 <https://github.com/pymupdf/PyMuPDF/issues/561>`_. Handling of more than 10 :ref:`Font` objects on one page should now work correctly.
* **Fixed** issue `#562 <https://github.com/pymupdf/PyMuPDF/issues/562>`_. Annotation pixmaps are no longer derived from the page pixmap, thus avoiding unintended inclusion of page content.
* **Fixed** issue `#559 <https://github.com/pymupdf/PyMuPDF/issues/559>`_. This **MuPDF** bug is being temporarily fixed with a pre-version of MuPDF's next release.
* **Added** utility function :meth:`repair_mono_font` for correcting displayed character spacing for some mono-spaced fonts.
* **Added** utility method :meth:`Document.need_appearances` for fine-controlling Form PDF behavior. Addresses issue `#563 <https://github.com/pymupdf/PyMuPDF/issues/563>`_.
* **Added** utility function :meth:`sRGB_to_pdf` to recover the PDF color triple for a given color integer in sRGB format.
* **Added** utility function :meth:`sRGB_to_rgb` to recover the (R, G, B) color triple for a given color integer in sRGB format.
* **Added** utility function :meth:`make_table` which delivers table cells for a given rectangle and desired numbers of columns and rows.
* **Added** support for optional fonts in repository `pymupdf-fonts <https://github.com/pymupdf/pymupdf-fonts>`_.

Changes in Version 1.17.3

* **Fixed** an undocumented issue, which prevented fully cleaning a PDF page when using :meth:`Page.cleanContents`.
* **Fixed** issue `#540 <https://github.com/pymupdf/PyMuPDF/issues/540>`_. Text extraction for EPUB should again work correctly.
* **Fixed** issue `#548 <https://github.com/pymupdf/PyMuPDF/issues/548>`_. Documentation now includes ``LINK_NAMED``.
* **Added** new parameter to control start of text in :meth:`TextWriter.fillTextbox`. Implements `#549 <https://github.com/pymupdf/PyMuPDF/issues/549>`_.
* **Changed** documentation of :meth:`Page.add_redact_annot` to explain the usage of non-builtin fonts.

Changes in Version 1.17.2

* **Fixed** issue `#533 <https://github.com/pymupdf/PyMuPDF/issues/533>`_.
* **Added** options to modify 'Redact' annotation appearance. Implements `#535 <https://github.com/pymupdf/PyMuPDF/issues/535>`_.

Changes in Version 1.17.1

* **Fixed** issue `#520 <https://github.com/pymupdf/PyMuPDF/issues/520>`_.
* **Fixed** issue `#525 <https://github.com/pymupdf/PyMuPDF/issues/525>`_. Vertices for 'Ink' annots should now be correct.
* **Fixed** issue `#524 <https://github.com/pymupdf/PyMuPDF/issues/524>`_. It is now possible to query and set rotation for applicable annotation types.

Also significantly improved inline documentation for better support of interactive help.

Changes in Version 1.17.0

This version is based on MuPDF v1.17. Following are highlights of new and changed features:

* **Added** extended language support for annotations and widgets: a mixture of Latin, Greece, Russian, Chinese, Japanese and Korean characters can now be used in 'FreeText' annotations and text widgets. No special arrangement is required to use it.

* Faster page access is implemented for documents supporting a "chapter" structure. This applies to EPUB documents currently. This comes with several new :ref:`Document` methods and changes for :meth:`Document.loadPage` and the "indexed" page access *doc[n]*: In addition to specifying a page number as before, a tuple *(chaper, pno)* can be specified to identify the desired page.

* **Changed:** Improved support of redaction annotations: images overlapped by redactions are **permanantly modified** by erasing the overlap areas. Also links are removed if overlapped by redactions. This is now fully in sync with PDF specifications.

Other changes:

* **Changed** :meth:`TextWriter.writeText` to support the *"morph"* parameter.
* **Added** methods :meth:`Rect.morph`, :meth:`IRect.morph`, and :meth:`Quad.morph`, which return a new :ref:`Quad`.
* **Changed** :meth:`Page.add_freetext_annot` to support text alignment via a new *"align"* parameter.
* **Fixed** issue `#508 <https://github.com/pymupdf/PyMuPDF/issues/508>`_. Improved image rectangle calculation to hopefully deliver correct values in most if not all cases.
* **Fixed** issue `#502 <https://github.com/pymupdf/PyMuPDF/issues/502>`_.
* **Fixed** issue `#500 <https://github.com/pymupdf/PyMuPDF/issues/500>`_. :meth:`Document.convertToPDF` should no longer cause memory leaks.
* **Fixed** issue `#496 <https://github.com/pymupdf/PyMuPDF/issues/496>`_. Annotations and widgets / fields are now added or modified using the coordinates of the **unrotated page**. This behavior is now in sync with other methods modifying PDF pages.
* **Added** :attr:`Page.rotationMatrix` and :attr:`Page.derotationMatrix` to support coordinate transformations between the rotated and the original versions of a PDF page.

Potential code breaking changes:

* The private method ``Page._getTransformation()`` has been removed. Use the public :attr:`Page.transformationMattrix` instead.

Changes in Version 1.16.18

This version introduces several new features around PDF text output. The motivation is to simplify this task, while at the same time offering extending features.

One major achievement is using MuPDF's capabilities to dynamically choosing fallback fonts whenever a character cannot be found in the current one. This seemlessly works for Base-14 fonts in combination with CJK fonts (China, Japan, Korea). So a text may contain **any combination of characters** from the Latin, Greek, Russian, Chinese, Japanese and Korean languages.

* **Fixed** issue `#493 <https://github.com/pymupdf/PyMuPDF/issues/493>`_. ``Pixmap(doc, xref)`` should now again correctly resemble the loaded image object.
* **Fixed** issue `#488 <https://github.com/pymupdf/PyMuPDF/issues/488>`_. Widget names are now modifyable.
* **Added** new class :ref:`Font` which represents a font.
* **Added** new class :ref:`TextWriter` which serves as a container for text to be written on a page.
* **Added** :meth:`Page.writeText` to write one or more :ref:`TextWriter` objects to the page.

Changes in Version 1.16.17

* **Fixed** issue `#479 <https://github.com/pymupdf/PyMuPDF/issues/479>`_. PyMuPDF should now more correctly report image resolutions. This applies to both, images (either from images files or extracted from PDF documents) and pixmaps created from images.
* **Added** :meth:`Pixmap.set_dpi` which sets the image resolution in x and y directions.

Changes in Version 1.16.16

* **Fixed** issue `#477 <https://github.com/pymupdf/PyMuPDF/issues/477>`_.
* **Fixed** issue `#476 <https://github.com/pymupdf/PyMuPDF/issues/476>`_.
* **Changed** annotation line end symbol coloring and fixed an error coloring the interior of 'Polyline' /'Polygon' annotations.

Changes in Version 1.16.14

* **Changed** text marker annotations to accept parameters beyond just quadrilaterals such that now **text lines between two given points can be marked**.

* **Added** :meth:`Document.scrub` which **removes potentially sensitive data** from a PDF. Implements `#453 <https://github.com/pymupdf/PyMuPDF/issues/453>`_.

* **Added** :meth:`Annot.blendMode` which returns the **blend mode** of annotations.

* **Added** :meth:`Annot.setBlendMode` to set the annotation's blend mode. This resolves issue `#416 <https://github.com/pymupdf/PyMuPDF/issues/416>`_.
* **Changed** :meth:`Annot.update` to accept additional parameters for setting blend mode and opacity.
* **Added** advanced graphics features to **control the anti-aliasing values**, :meth:`Tools.set_aa_level`. Resolves `#467 <https://github.com/pymupdf/PyMuPDF/issues/467>`_

* **Fixed** issue `#474 <https://github.com/pymupdf/PyMuPDF/issues/474>`_.
* **Fixed** issue `#466 <https://github.com/pymupdf/PyMuPDF/issues/466>`_.

Changes in Version 1.16.13

* **Added** :meth:`Document.getPageXObjectList` which returns a list of **Form XObjects** of the page.
* **Added** :meth:`Page.setMediaBox` for changing the physical PDF page size.
* **Added** :ref:`Page` methods which have been internal before: :meth:`Page.cleanContents` (= :meth:`Page._cleanContents`), :meth:`Page.getContents` (= :meth:`Page._getContents`), :meth:`Page.getTransformation` (= :meth:`Page._getTransformation`).

Changes in Version 1.16.12

* **Fixed** issue `#447 <https://github.com/pymupdf/PyMuPDF/issues/447>`_
* **Fixed** issue `#461 <https://github.com/pymupdf/PyMuPDF/issues/461>`_.
* **Fixed** issue `#397 <https://github.com/pymupdf/PyMuPDF/issues/397>`_.
* **Fixed** issue `#463 <https://github.com/pymupdf/PyMuPDF/issues/463>`_.
* **Added** JavaScript support to PDF form fields, thereby fixing `#454 <https://github.com/pymupdf/PyMuPDF/issues/454>`_.
* **Added** a new annotation method :meth:`Annot.delete_responses`, which removes 'Popup' and response annotations referring to the current one. Mainly serves data protection purposes.
* **Added** a new form field method :meth:`Widget.reset`, which resets the field value to its default.
* **Changed** and extended handling of redactions: images and XObjects are removed if *contained* in a redaction rectangle. Any partial only overlaps will just be covered by the redaction background color. Now an *overlay* text can be specified to be inserted in the rectangle area to **take the place the deleted original** text. This resolves `#434 <https://github.com/pymupdf/PyMuPDF/issues/434>`_.

Changes in Version 1.16.11

* **Added** Support for redaction annotations via method :meth:`Page.add_redact_annot` and :meth:`Page.apply_redactions`.
* **Fixed** issue #426 ("PolygonAnnotation in 1.16.10 version").
* **Fixed** documentation only issues `#443 <https://github.com/pymupdf/PyMuPDF/issues/443>`_ and `#444 <https://github.com/pymupdf/PyMuPDF/issues/444>`_.

Changes in Version 1.16.10

* **Fixed** issue #421 ("annot.set_rect(rect) has no effect on text Annotation")
* **Fixed** issue #417 ("Strange behavior for page.deleteAnnot on 1.16.9 compare to 1.13.20")
* **Fixed** issue #415 ("Annot.setOpacity throws mupdf warnings")
* **Changed** all "add annotation / widget" methods to store a unique name in the */NM* PDF key.
* **Changed** :meth:`Annot.setInfo` to also accept direct parameters in addition to a dictionary.
* **Changed** :attr:`Annot.info` to now also show the annotation's unique id (*/NM* PDF key) if present.
* **Added** :meth:`Page.annot_names` which returns a list of all annotation names (*/NM* keys).
* **Added** :meth:`Page.load_annot` which loads an annotation given its unique id (*/NM* key).
* **Added** :meth:`Document.reload_page` which provides a new copy of a page after finishing any pending updates to it.

Changes in Version 1.16.9

* **Fixed** #412 ("Feature Request: Allow controlling whether TOC entries should be collapsed")
* **Fixed** #411 ("Seg Fault with page.firstWidget")
* **Fixed** #407 ("Annot.setOpacity trouble")
* **Changed** methods :meth:`Annot.setBorder`, :meth:`Annot.setColors`, :meth:`Link.setBorder`, and :meth:`Link.setColors` to also accept direct parameters, and not just cumbersome dictionaries.

Changes in Version 1.16.8

* **Added** several new methods to the :ref:`Document` class, which make dealing with PDF low-level structures easier. I also decided to provide them as "normal" methods (as opposed to private ones starting with an underscore "_"). These are :meth:`Document.xrefObject`, :meth:`Document.xrefStream`, :meth:`Document.xrefStreamRaw`, :meth:`Document.PDFTrailer`, :meth:`Document.PDFCatalog`, :meth:`Document.metadataXML`, :meth:`Document.updateObject`, :meth:`Document.updateStream`.
* **Added** :meth:`Tools.mupdf_disply_errors` which sets the display of mupdf errors on *sys.stderr*.
* **Added** a commandline facility. This a major new feature: you can now invoke several utility functions via *"python -m fitz ..."*. It should obsolete the need for many of the most trivial scripts. Please refer to :ref:`Module`.

Changes in Version 1.16.7

Minor changes to better synchronize the binary image streams of :ref:`TextPage` image blocks and :meth:`Document.extractImage` images.

* **Fixed** issue #394 ("PyMuPDF Segfaults when using TOOLS.mupdf_warnings()").
* **Changed** redirection of MuPDF error messages: apart from writing them to Python *sys.stderr*, they are now also stored with the MuPDF warnings.
* **Changed** :meth:`Tools.mupdf_warnings` to automatically empty the store (if not deactivated via a parameter).
* **Changed** :meth:`Page.getImageBbox` to return an **infinite rectangle** if the image could not be located on the page -- instead of raising an exception.

Changes in Version 1.16.6

* **Fixed** issue #390 ("Incomplete deletion of annotations").
* **Changed** :meth:`Page.searchFor` / :meth:`Document.searchPageFor` to also support the *flags* parameter, which controls the data included in a :ref:`TextPage`.
* **Changed** :meth:`Document.getPageImageList`, :meth:`Document.getPageFontList` and their :ref:`Page` counterparts to support a new parameter *full*. If true, the returned items will contain the :data:`xref` of the *Form XObject* where the font or image is referenced.

Changes in Version 1.16.5

More performance improvements for text extraction.

* **Fixed** second part of issue #381 (see item in v1.16.4).
* **Added** :meth:`Page.getTextPage`, so it is no longer required to create an intermediate display list for text extractions. Page level wrappers for text extraction and text searching are now based on this, which should improve performance by ca. 5%.

Changes in Version 1.16.4

* **Fixed** issue #381 ("TextPage.extractDICT ... failed ... after upgrading ... to 1.16.3")
* **Added** method :meth:`Document.pages` which delivers a generator iterator over a page range.
* **Added** method :meth:`Page.links` which delivers a generator iterator over the links of a page.
* **Added** method :meth:`Page.annots` which delivers a generator iterator over the annotations of a page.
* **Added** method :meth:`Page.widgets` which delivers a generator iterator over the form fields of a page.
* **Changed** :attr:`Document.is_form_pdf` to now contain the number of widgets, and *False* if not a PDF or this number is zero.

Changes in Version 1.16.3

Minor changes compared to version 1.16.2. The code of the "dict" and "rawdict" variants of :meth:`Page.getText` has been ported to C which has greatly improved their performance. This improvement is mostly noticeable with text-oriented documents, where they now should execute almost two times faster.

* **Fixed** issue #369 ("mupdf: cmsCreateTransform failed") by removing ICC colorspace support.
* **Changed** :meth:`Page.getText` to accept additional keywords "blocks" and "words". These will deliver the results of :meth:`Page.getTextBlocks` and :meth:`Page.getTextWords`, respectively. So all text extraction methods are now available via a uniform API. Correspondingly, there are now new methods :meth:`TextPage.extractBLOCKS` and :meth:`TextPage.extractWords`.
* **Changed** :meth:`Page.getText` to default bit indicator *TEXT_INHIBIT_SPACES* to **off**. Insertion of additional spaces is **not suppressed** by default.

Changes in Version 1.16.2

* **Changed** text extraction methods of :ref:`Page` to allow detail control of the amount of extracted data.
* **Added** :meth:`planish_line` which maps a given line (defined as a pair of points) to the x-axis.
* **Fixed** an issue (w/o Github number) which brought down the interpreter when encountering certain non-UTF-8 encodable characters while using :meth:`Page.getText` with te "dict" option.
* **Fixed** issue #362 ("Memory Leak with getText('rawDICT')").

Changes in Version 1.16.1

* **Added** property :attr:`Quad.is_convex` which checks whether a line is contained in the quad if it connects two points of it.
* **Changed** :meth:`Document.insert_pdf` to now allow dropping or including links and annotations independently during the copy. Fixes issue #352 ("Corrupt PDF data and ..."), which seemed to intermittently occur when using the method for some problematic PDF files.
* **Fixed** a bug which, in matrix division using the syntax *"m1/m2"*, caused matrix *"m1"* to be **replaced** by the result instead of delivering a new matrix.
* **Fixed** issue #354 ("SyntaxWarning with Python 3.8"). We now always use *"=="* for literals (instead of the *"is"* Python keyword).
* **Fixed** issue #353 ("mupdf version check"), to no longer refuse the import when there are only patch level deviations from MuPDF.

Changes in Version 1.16.0

This major new version of MuPDF comes with several nice new or changed features. Some of them imply programming API changes, however. This is a synopsis of what has changed:

* PDF document encryption and decryption is now **fully supported**. This includes setting **permissions**, **passwords** (user and owner passwords) and the desired encryption method.
* In response to the new encryption features, PyMuPDF returns an integer (ie. a combination of bits) for document permissions, and no longer a dictionary.
* Redirection of MuPDF errors and warnings is now natively supported. PyMuPDF redirects error messages from MuPDF to *sys.stderr* and no longer buffers them. Warnings continue to be buffered and will not be displayed. Functions exist to access and reset the warnings buffer.
* Annotations are now **only supported for PDF**.
* Annotations and widgets (form fields) are now **separate object chains** on a page (although widgets technically still **are** PDF annotations). This means, that you will **never encounter widgets** when using :attr:`Page.firstAnnot` or :meth:`Annot.next`. You must use :attr:`Page.firstWidget` and :meth:`Widget.next` to access form fields.
* As part of MuPDF's changes regarding widgets, only the following four fonts are supported, when **adding** or **changing** form fields: **Courier, Helvetica, Times-Roman** and **ZapfDingBats**.

List of change details:

* **Added** :meth:`Document.can_save_incrementally` which checks conditions that are preventing use of option *incremental=True* of :meth:`Document.save`.
* **Added** :attr:`Page.firstWidget` which points to the first field on a page.
* **Added** :meth:`Page.getImageBbox` which returns the rectangle occupied by an image shown on the page.
* **Added** :meth:`Annot.setName` which lets you change the (icon) name field.
* **Added** outputting the text color in :meth:`Page.getText`: the *"dict"*, *"rawdict"* and *"xml"* options now also show the color in sRGB format.
* **Changed** :attr:`Document.permissions` to now contain an integer of bool indicators -- was a dictionary before.
* **Changed** :meth:`Document.save`, :meth:`Document.write`, which now fully support password-based decryption and encryption of PDF files.
* **Changed the names of all Python constants** related to annotations and widgets. Please make sure to consult the **Constants and Enumerations** chapter if your script is dealing with these two classes. This decision goes back to the dropped support for non-PDF annotations. The **old names** (starting with "ANNOT_*" or "WIDGET_*") will be available as deprecated synonyms.
* **Changed** font support for widgets: only *Cour* (Courier), *Helv* (Helvetica, default), *TiRo* (Times-Roman) and *ZaDb* (ZapfDingBats) are accepted when **adding or changing** form fields. Only the plain versions are possible -- not their italic or bold variations. **Reading** widgets, however will show its original font.
* **Changed** the name of the warnings buffer to :meth:`Tools.mupdf_warnings` and the function to empty this buffer is now called :meth:`Tools.reset_mupdf_warnings`.
* **Changed** :meth:`Page.getPixmap`, :meth:`Document.get_page_pixmap`: a new bool argument *annots* can now be used to **suppress the rendering of annotations** on the page.
* **Changed** :meth:`Page.add_file_annot` and :meth:`Page.add_text_annot` to enable setting an icon.
* **Removed** widget-related methods and attributes from the :ref:`Annot` object.
* **Removed** :ref:`Document` attributes *openErrCode*, *openErrMsg*, and :ref:`Tools` attributes / methods *stderr*, *reset_stderr*, *stdout*, and *reset_stdout*.
* **Removed** **thirdparty zlib** dependency in PyMuPDF: there are now compression functions available in MuPDF. Source installers of PyMuPDF may now omit this extra installation step.

No version published for MuPDF v1.15.0

Changes in Version 1.14.20 / 1.14.21

* **Changed** text marker annotations to support multiple rectangles / quadrilaterals. This fixes issue #341 ("Question : How to addhighlight so that a string spread across more than a line is covered by one highlight?") and similar (#285).
* **Fixed** issue #331 ("Importing PyMuPDF changes warning filtering behaviour globally").

Changes in Version 1.14.19

* **Fixed** issue #319 ("InsertText function error when use custom font").
* **Added** new method :meth:`Document.get_sigflags` which returns information on whether a PDF is signed. Resolves issue #326 ("How to detect signature in a form pdf?").

Changes in Version 1.14.17

* **Added** :meth:`Document.fullcopyPage` to make full page copies within a PDF (not just copied references as :meth:`Document.copyPage` does).
* **Changed** :meth:`Page.getPixmap`, :meth:`Document.get_page_pixmap` now use *alpha=False* as default.
* **Changed** text extraction: the span dictionary now (again) contains its rectangle under the *bbox* key.
* **Changed** :meth:`Document.movePage` and :meth:`Document.copyPage` to use direct functions instead of wrapping :meth:`Document.select` -- similar to :meth:`Document.delete_page` in v1.14.16.

Changes in Version 1.14.16

* **Changed** :ref:`Document` methods around PDF */EmbeddedFiles* to no longer use MuPDF's "portfolio" functions. That support will be dropped in MuPDF v1.15 -- therefore another solution was required.
* **Changed** :meth:`Document.embfile_Count` to be a function (was an attribute).
* **Added** new method :meth:`Document.embfile_Names` which returns a list of names of embedded files.
* **Changed** :meth:`Document.delete_page` and :meth:`Document.delete_pages` to internally no longer use :meth:`Document.select`, but instead use functions to perform the deletion directly. As it has turned out, the :meth:`Document.select` method yields invalid outline trees (tables of content) for very complex PDFs and sophisticated use of annotations.

Changes in Version 1.14.15

* **Fixed** issues #301 ("Line cap and Line join"), #300 ("How to draw a shape without outlines") and #298 ("utils.updateRect exception"). These bugs pertain to drawing shapes with PyMuPDF. Drawing shapes without any border is fully supported. Line cap styles and line line join style are now differentiated and support all possible PDF values (0, 1, 2) instead of just being a bool. The previous parameter *roundCap* is deprecated in favor of *lineCap* and *lineJoin* and will be deleted in the next release.
* **Fixed** issue #290 ("Memory Leak with getText('rawDICT')"). This bug caused memory not being (completely) freed after invoking the "dict", "rawdict" and "json" versions of :meth:`Page.getText`.

Changes in Version 1.14.14

* **Added** new low-level function :meth:`ImageProperties` to determine a number of characteristics for an image.
* **Added** new low-level function :meth:`Document.is_stream`, which checks whether an object is of stream type.
* **Changed** low-level functions :meth:`Document._getXrefString` and :meth:`Document._getTrailerString` now by default return object definitions in a formatted form which makes parsing easy.

Changes in Version 1.14.13

* **Changed** methods working with binary input: while ever supporting bytes and bytearray objects, they now also accept *io.BytesIO* input, using their *getvalue()* method. This pertains to document creation, embedded files, FileAttachment annotations, pixmap creation and others. Fixes issue #274 ("Segfault when using BytesIO as a stream for insertImage").
* **Fixed** issue #278 ("Is insertImage(keep_proportion=True) broken?"). Images are now correctly presented when keeping aspect ratio.

Changes in Version 1.14.12

* **Changed** the draw methods of :ref:`Page` and :ref:`Shape` to support not only RGB, but also GRAY and CMYK colorspaces. This solves issue #270 ("Is there a way to use CMYK color to draw shapes?"). This change also applies to text insertion methods of :ref:`Shape`, resp. :ref:`Page`.
* **Fixed** issue #269 ("AttributeError in Document.insert_page()"), which occurred when using :meth:`Document.insert_page` with text insertion.

Changes in Version 1.14.11

* **Changed** :meth:`Page.show_pdf_page` to always position the source rectangle centered in the target. This method now also supports **rotation by arbitrary angles**. The argument *reuse_xref* has been deprecated: prevention of duplicates is now **handled internally**.
* **Changed** :meth:`Page.insertImage` to support rotated display of the image and keeping the aspect ratio. Only rotations by multiples of 90 degrees are supported here.
* **Fixed** issue #265 ("TypeError: insertText() got an unexpected keyword argument 'idx'"). This issue only occurred when using :meth:`Document.insert_page` with also inserting text.

Changes in Version 1.14.10

* **Changed** :meth:`Page.show_pdf_page` to support rotation of the source rectangle. Fixes #261 ("Cannot rotate insterted pages").
* **Fixed** a bug in :meth:`Page.insertImage` which prevented insertion of multiple images provided as streams.

Changes in Version 1.14.9

* **Added** new low-level method :meth:`Document._getTrailerString`, which returns the trailer object of a PDF. This is much like :meth:`Document._getXrefString` except that the PDF trailer has no / needs no :data:`xref` to identify it.
* **Added** new parameters for text insertion methods. You can now set stroke and fill colors of glyphs (text characters) independently, as well as the thickness of the glyph border. A new parameter *render_mode* controls the use of these colors, and whether the text should be visible at all.
* **Fixed** issue #258 ("Copying image streams to new PDF without size increase"): For JPX images embedded in a PDF, :meth:`Document.extractImage` will now return them in their original format. Previously, the MuPDF base library was used, which returns them in PNG format (entailing a massive size increase).
* **Fixed** issue #259 ("Morphing text to fit inside rect"). Clarified use of :meth:`get_text_length` and removed extra line breaks for long words.

Changes in Version 1.14.8

* **Added** :meth:`Pixmap.set_rect` to change the pixel values in a rectangle. This is also an alternative to setting the color of a complete pixmap (:meth:`Pixmap.clear_with`).
* **Fixed** an image extraction issue with JBIG2 (monochrome) encoded PDF images. The issue occurred in :meth:`Page.getText` (parameters "dict" and "rawdict") and in :meth:`Document.extractImage` methods.
* **Fixed** an issue with not correctly clearing a non-alpha :ref:`Pixmap` (:meth:`Pixmap.clear_with`).
* **Fixed** an issue with not correctly inverting colors of a non-alpha :ref:`Pixmap` (:meth:`Pixmap.invert_irect`).

Changes in Version 1.14.7

* **Added** :meth:`Pixmap.set_pixel` to change one pixel value.
* **Added** documentation for image conversion in the :ref:`FAQ`.
* **Added** new function :meth:`get_text_length` to determine the string length for a given font.
* **Added** Postscript image output (changed :meth:`Pixmap.save` and :meth:`Pixmap.tobytes`).
* **Changed** :meth:`Pixmap.save` and :meth:`Pixmap.tobytes` to ensure valid combinations of colorspace, alpha and output format.
* **Changed** :meth:`Pixmap.save`: the desired format is now inferred from the filename.
* **Changed** FreeText annotations can now have a transparent background - see :meth:`Annot.update`.

Changes in Version 1.14.5

* **Changed:** :ref:`Shape` methods now strictly use the transformation matrix of the :ref:`Page` -- instead of "manually" calculating locations.
* **Added** method :meth:`Pixmap.pixel` which returns the pixel value (a list) for given pixel coordinates.
* **Added** method :meth:`Pixmap.tobytes` which returns a bytes object representing the pixmap in a variety of formats. Previously, this could be done for PNG outputs only (:meth:`Pixmap.tobytes`).
* **Changed:** output of methods :meth:`Pixmap.save` and (the new) :meth:`Pixmap.tobytes` may now also be PSD (Adobe Photoshop Document).
* **Added** method :meth:`Shape.drawQuad` which draws a :ref:`Quad`. This actually is a shorthand for a :meth:`Shape.drawPolyline` with the edges of the quad.
* **Changed** method :meth:`Shape.drawOval`: the argument can now be **either** a rectangle (:data:`rect_like`) **or** a quadrilateral (:data:`quad_like`).

Changes in Version 1.14.4

* **Fixes** issue #239 "Annotation coordinate consistency".

Changes in Version 1.14.3

This patch version contains minor bug fixes and CJK font output support.

* **Added** support for the four CJK fonts as PyMuPDF generated text output. This pertains to methods :meth:`Page.insertFont`, :meth:`Shape.insertText`, :meth:`Shape.insertTextbox`, and corresponding :ref:`Page` methods. The new fonts are available under "reserved" fontnames "china-t" (traditional Chinese), "china-s" (simplified Chinese), "japan" (Japanese), and "korea" (Korean).
* **Added** full support for the built-in fonts 'Symbol' and 'Zapfdingbats'.
* **Changed:** The 14 standard fonts can now each be referenced by a 4-letter abbreviation.

Changes in Version 1.14.1

This patch version contains minor performance improvements.

* **Added** support for :ref:`Document` filenames given as *pathlib* object by using the Python *str()* function.

Changes in Version 1.14.0

To support MuPDF v1.14.0, massive changes were required in PyMuPDF -- most of them purely technical, with little visibility to developers. But there are also quite a lot of interesting new and improved features. Following are the details:

* **Added** "ink" annotation.
* **Added** "rubber stamp" annotation.
* **Added** "squiggly" text marker annotation.
* **Added** new class :ref:`Quad` (quadrilateral or tetragon) -- which represents a general four-sided shape in the plane. The special subtype of rectangular, non-empty tetragons is used in text marker annotations and as returned objects in text search methods.
* **Added** a new option "decrypt" to :meth:`Document.save` and :meth:`Document.write`. Now you can **keep encryption** when saving a password protected PDF.
* **Added** suppression and redirection of unsolicited messages issued by the underlying C-library MuPDF. Consult :ref:`RedirectMessages` for details.
* **Changed:** Changes to annotations now **always require** :meth:`Annot.update` to become effective.
* **Changed** free text annotations to support the full Latin character set and range of appearance options.
* **Changed** text searching, :meth:`Page.searchFor`, to optionally return :ref:`Quad` instead :ref:`Rect` objects surrounding each search hit.
* **Changed** plain text output: we now add a *\n* to each line if it does not itself end with this character.
* **Fixed** issue 211 ("Something wrong in the doc").
* **Fixed** issue 213 ("Rewritten outline is displayed only by mupdf-based applications").
* **Fixed** issue 214 ("PDF decryption GONE!").
* **Fixed** issue 215 ("Formatting of links added with pyMuPDF").
* **Fixed** issue 217 ("extraction through json is failing for my pdf").

Behind the curtain, we have changed the implementation of geometry objects: they now purely exist in Python and no longer have "shadow" twins on the C-level (in MuPDF). This has improved processing speed in that area by more than a factor of two.

Because of the same reason, most methods involving geometry parameters now also accept the corresponding Python sequence. For example, in method *"page.show_pdf_page(rect, ...)"* parameter *rect* may now be any :data:`rect_like` sequence.

We also invested considerable effort to further extend and improve the :ref:`FAQ` chapter.

Changes in Version 1.13.19

This version contains some technical / performance improvements and bug fixes.

* **Changed** memory management: for Python 3 builds, Python memory management is exclusively used across all C-level code (i.e. no more native *malloc()* in MuPDF code or PyMuPDF interface code). This leads to improved memory usage profiles and also some runtime improvements: we have seen > 2% shorter runtimes for text extractions and pixmap creations (on Windows machines only to date).
* **Fixed** an error occurring in Python 2.7, which crashed the interpreter when using :meth:`TextPage.extractRAWDICT` (= *Page.getText("rawdict")*).
* **Fixed** an error occurring in Python 2.7, when creating link destinations.
* **Extended** the :ref:`FAQ` chapter with more examples.

Changes in Version 1.13.18

* **Added** method :meth:`TextPage.extractRAWDICT`, and a corresponding new string parameter "rawdict" to method :meth:`Page.getText`. It extracts text and images from a page in Python *dict* form like :meth:`TextPage.extractDICT`, but with the detail level of :meth:`TextPage.extractXML`, which is position information down to each single character.

Changes in Version 1.13.17

* **Fixed** an error that intermittently caused an exception in :meth:`Page.show_pdf_page`, when pages from many different source PDFs were shown.
* **Changed** method :meth:`Document.extractImage` to now return more meta information about the extracted imgage. Also, its performance has been greatly improved. Several demo scripts have been changed to make use of this method.
* **Changed** method :meth:`Document._getXrefStream` to now return *None* if the object is no stream and no longer raise an exception if otherwise.
* **Added** method :meth:`Document._deleteObject` which deletes a PDF object identified by its :data:`xref`. Only to be used by the experienced PDF expert.
* **Added** a method :meth:`paper_rect` which returns a :ref:`Rect` for a supplied paper format string. Example: *fitz.paper_rect("letter") = fitz.Rect(0.0, 0.0, 612.0, 792.0)*.
* **Added** a :ref:`FAQ` chapter to this document.

Changes in Version 1.13.16

* **Added** support for correctly setting transparency (opacity) for certain annotation types.
* **Added** a tool property (:attr:`Tools.fitz_config`) showing the configuration of this PyMuPDF version.
* **Fixed** issue #193 ('insertText(overlay=False) gives "cannot resize a buffer with shared storage" error') by avoiding read-only buffers.

Changes in Version 1.13.15

* **Fixed** issue #189 ("cannot find builtin CJK font"), so we are supporting builtin CJK fonts now (CJK = China, Japan, Korea). This should lead to correctly generated pixmaps for documents using these languages. This change has consequences for our binary file size: it will now range between 8 and 10 MB, depending on the OS.
* **Fixed** issue #191 ("Jupyter notebook kernel dies after ca. 40 pages"), which occurred when modifying the contents of an annotation.

Changes in Version 1.13.14

This patch version contains several improvements, mainly for annotations.

* **Changed** :attr:`Annot.lineEnds` is now a list of two integers representing the line end symbols. Previously was a *dict* of strings.
* **Added** support of line end symbols for applicable annotations. PyMuPDF now can generate these annotations including the line end symbols.
* **Added** :meth:`Annot.setLineEnds` adds line end symbols to applicable annotation types ('Line', 'PolyLine', 'Polygon').
* **Changed** technical implementation of :meth:`Page.insertImage` and :meth:`Page.show_pdf_page`: they now create there own contents objects, thereby avoiding changes of potentially large streams with consequential compression / decompression efforts and high change volumes with incremental updates.

Changes in Version 1.13.13

This patch version contains several improvements for embedded files and file attachment annotations.

* **Added** :meth:`Document.embfile_Upd` which allows changing **file content and metadata** of an embedded file. It supersedes the old method :meth:`Document.embfile_SetInfo` (which will be deleted in a future version). Content is automatically compressed and metadata may be unicode.
* **Changed** :meth:`Document.embfile_Add` to now automatically compress file content. Accompanying metadata can now be unicode (had to be ASCII in the past).
* **Changed** :meth:`Document.embfile_Del` to now automatically delete **all entries** having the supplied identifying name. The return code is now an integer count of the removed entries (was *None* previously).
* **Changed** embedded file methods to now also accept or show the PDF unicode filename as additional parameter *ufilename*.
* **Added** :meth:`Page.add_file_annot` which adds a new file attachment annotation.
* **Changed** :meth:`Annot.fileUpd` (file attachment annot) to now also accept the PDF unicode *ufilename* parameter. The description parameter *desc* correctly works with unicode. Furthermore, **all** parameters are optional, so metadata may be changed without also replacing the file content.
* **Changed** :meth:`Annot.fileInfo` (file attachment annot) to now also show the PDF unicode filename as parameter *ufilename*.
* **Fixed** issue #180 ("page.getText(output='dict') return invalid bbox") to now also work for vertical text.
* **Fixed** issue #185 ("Can't render the annotations created by PyMuPDF"). The issue's cause was the minimalistic MuPDF approach when creating annotations. Several annotation types have no */AP* ("appearance") object when created by MuPDF functions. MuPDF, SumatraPDF and hence also PyMuPDF cannot render annotations without such an object. This fix now ensures, that an appearance object is always created together with the annotation itself. We still do not support line end styles.

Changes in Version 1.13.12

* **Fixed** issue #180 ("page.getText(output='dict') return invalid bbox"). Note that this is a circumvention of an MuPDF error, which generates zero-height character rectangles in some cases. When this happens, this fix ensures a bbox height of at least fontsize.
* **Changed** for ListBox and ComboBox widgets, the attribute list of selectable values has been renamed to :attr:`Widget.choice_values`.
* **Changed** when adding widgets, any missing of the :ref:`Base-14-Fonts` is automatically added to the PDF. Widget text fonts can now also be chosen from existing widget fonts. Any specified field values are now honored and lead to a field with a preset value.
* **Added** :meth:`Annot.updateWidget` which allows changing existing form fields -- including the field value.

Changes in Version 1.13.11

While the preceeding patch subversions only contained various fixes, this version again introduces major new features:

* **Added** basic support for PDF widget annotations. You can now add PDF form fields of types Text, CheckBox, ListBox and ComboBox. Where necessary, the PDF is tranformed to a Form PDF with the first added widget.
* **Fixed** issues #176 ("wrong file embedding"), #177 ("segment fault when invoking page.getText()")and #179 ("Segmentation fault using page.getLinks() on encrypted PDF").

Changes in Version 1.13.7

* **Added** support of variable page sizes for reflowable documents (e-books, HTML, etc.): new parameters *rect* and *fontsize* in :ref:`Document` creation (open), and as a separate method :meth:`Document.layout`.
* **Added** :ref:`Annot` creation of many annotations types: sticky notes, free text, circle, rectangle, line, polygon, polyline and text markers.
* **Added** support of annotation transparency (:attr:`Annot.opacity`, :meth:`Annot.setOpacity`).
* **Changed** :attr:`Annot.vertices`: point coordinates are now grouped as pairs of floats (no longer as separate floats).
* **Changed** annotation colors dictionary: the two keys are now named *"stroke"* (formerly *"common"*) and *"fill"*.
* **Added** :attr:`Document.isDirty` which is *True* if a PDF has been changed in this session. Reset to *False* on each :meth:`Document.save` or :meth:`Document.write`.

Changes in Version 1.13.6

* Fix #173: for memory-resident documents, ensure the stream object will not be garbage-collected by Python before document is closed.

Changes in Version 1.13.5

* New low-level method :meth:`Page._setContents` defines an object given by its :data:`xref` to serve as the :data:`contents` object.
* Changed and extended PDF form field support: the attribute *widget_text* has been renamed to :attr:`Annot.widget_value`. Values of all form field types (except signatures) are now supported. A new attribute :attr:`Annot.widget_choices` contains the selectable values of listboxes and comboboxes. All these attributes now contain *None* if no value is present.

Changes in Version 1.13.4

* :meth:`Document.convertToPDF` now supports page ranges, reverted page sequences and page rotation. If the document already is a PDF, an exception is raised.
* Fixed a bug (introduced with v1.13.0) that prevented :meth:`Page.insertImage` for transparent images.

Changes in Version 1.13.3

Introduces a way to convert **any MuPDF supported document** to a PDF. If you ever wanted PDF versions of your XPS, EPUB, CBZ or FB2 files -- here is a way to do this.

* :meth:`Document.convertToPDF` returns a Python *bytes* object in PDF format. Can be opened like normal in PyMuPDF, or be written to disk with the *".pdf"* extension.

Changes in Version 1.13.2

The major enhancement is PDF form field support. Form fields are annotations of type *(19, 'Widget')*. There is a new document method to check whether a PDF is a form. The :ref:`Annot` class has new properties describing field details.

* :attr:`Document.is_form_pdf` is true if object type */AcroForm* and at least one form field exists.
* :attr:`Annot.widget_type`, :attr:`Annot.widget_text` and :attr:`Annot.widget_name` contain the details of a form field (i.e. a "Widget" annotation).

Changes in Version 1.13.1

* :meth:`TextPage.extractDICT` is a new method to extract the contents of a document page (text and images). All document types are supported as with the other :ref:`TextPage` *extract*()* methods. The returned object is a dictionary of nested lists and other dictionaries, and **exactly equal** to the JSON-deserialization of the old :meth:`TextPage.extractJSON`. The difference is that the result is created directly -- no JSON module is used. Because the user needs no JSON module to interpet the information, it should be easier to use, and also have a better performance, because it contains images in their original **binary format** -- they need not be base64-decoded.
* :meth:`Page.getText` correspondingly supports the new parameter value *"dict"* to invoke the above method.
* :meth:`TextPage.extractJSON` (resp. *Page.getText("json")*) is still supported for convenience, but its use is expected to decline.

Changes in Version 1.13.0

This version is based on MuPDF v1.13.0. This release is "primarily a bug fix release".

In PyMuPDF, we are also doing some bug fixes while introducing minor enhancements. There only very minimal changes to the user's API.

* :ref:`Document` construction is more flexible: the new *filetype* parameter allows setting the document type. If specified, any extension in the filename will be ignored. More completely addresses `issue #156 <https://github.com/pymupdf/PyMuPDF/issues/156>`_. As part of this, the documentation has been reworked.

* Changes to :ref:`Pixmap` constructors:
 - Colorspace conversion no longer allows dropping the alpha channel: source and target **alpha will now always be the same**. We have seen exceptions and even interpreter crashes when using *alpha = 0*.
 - As a replacement, the simple pixmap copy lets you choose the target alpha.

* :meth:`Document.save` again offers the full garbage collection range 0 thru 4. Because of a bug in :data:`xref` maintenance, we had to temporarily enforce *garbage > 1*. Finally resolves `issue #148 <https://github.com/pymupdf/PyMuPDF/issues/148>`_.

* :meth:`Document.save` now offers to "prettify" PDF source via an additional argument.
* :meth:`Page.insertImage` has the additional *stream* \-parameter, specifying a memory area holding an image.

* Issue with garbled PNGs on Linux systems has been resolved (`"Problem writing PNG" #133) <https://github.com/pymupdf/PyMuPDF/issues/133>`_.

Changes in Version 1.12.4

This is an extension of 1.12.3.

* Fix of `issue #147 <https://github.com/pymupdf/PyMuPDF/issues/147>`_: methods :meth:`Document.getPageFontlist` and :meth:`Document.getPageImagelist` now also show fonts and images contained in :data:`resources` nested via "Form XObjects".
* Temporary fix of `issue #148 <https://github.com/pymupdf/PyMuPDF/issues/148>`_: Saving to new PDF files will now automatically use *garbage = 2* if a lower value is given. Final fix is to be expected with MuPDF's next version. At that point we will remove this circumvention.
* Preventive fix of illegally using stencil / image mask pixmaps in some methods.
* Method :meth:`Document.getPageFontlist` now includes the encoding name for each font in the list.
* Method :meth:`Document.getPageImagelist` now includes the decode method name for each image in the list.

Changes in Version 1.12.3

This is an extension of 1.12.2.

* Many functions now return *None* instead of *0*, if the result has no other meaning than just indicating successful execution (:meth:`Document.close`, :meth:`Document.save`, :meth:`Document.select`, :meth:`Pixmap.save` and many others).

Changes in Version 1.12.2

This is an extension of 1.12.1.

* Method :meth:`Page.show_pdf_page` now accepts the new *clip* argument. This specifies an area of the source page to which the display should be restricted.

* New :attr:`Page.CropBox` and :attr:`Page.MediaBox` have been included for convenience.

Changes in Version 1.12.1

This is an extension of version 1.12.0.

* New method :meth:`Page.show_pdf_page` displays another's PDF page. This is a **vector** image and therefore remains precise across zooming. Both involved documents must be PDF.

* New method :meth:`Page.getSVGimage` creates an SVG image from the page. In contrast to the raster image of a pixmap, this is a vector image format. The return is a unicode text string, which can be saved in a *.svg* file.

* Method :meth:`Page.getTextBlocks` now accepts an additional bool parameter "images". If set to true (default is false), image blocks (metadata only) are included in the produced list and thus allow detecting areas with rendered images.

* Minor bug fixes.

* "text" result of :meth:`Page.getText` concatenates all lines within a block using a single space character. MuPDF's original uses "\\n" instead, producing a rather ragged output.

* New properties of :ref:`Page` objects :attr:`Page.MediaBoxSize` and :attr:`Page.CropBoxPosition` provide more information about a page's dimensions. For non-PDF files (and for most PDF files, too) these will be equal to :attr:`Page.rect.bottom_right`, resp. :attr:`Page.rect.top_left`. For example, class :ref:`Shape` makes use of them to correctly position its items.

Changes in Version 1.12.0

This version is based on and requires MuPDF v1.12.0. The new MuPDF version contains quite a number of changes -- most of them around text extraction. Some of the changes impact the programmer's API.

* :meth:`Outline.saveText` and :meth:`Outline.saveXML` have been deleted without replacement. You probably haven't used them much anyway. But if you are looking for a replacement: the output of :meth:`Document.get_toc` can easily be used to produce something equivalent.

* Class *TextSheet* does no longer exist.

* Text "spans" (one of the hierarchy levels of :ref:`TextPage`) no longer contain positioning information (i.e. no "bbox" key). Instead, spans now provide the font information for its text. This impacts our JSON output variant.

* HTML output has improved very much: it now creates valid documents which can be displayed by browsers to produce a similar view as the original document.

* There is a new output format XHTML, which provides text and images in a browser-readable format. The difference to HTML output is, that no effort is made to reproduce the original layout.

* All output formats of :meth:`Page.getText` now support creating complete, valid documents, by wrapping them with appropriate header and trailer information. If you are interested in using the HTML output, please make sure to read :ref:`HTMLQuality`.

* To support finding text positions, we have added special methods that don't need detours like :meth:`TextPage.extractJSON` or :meth:`TextPage.extractXML`: use :meth:`Page.getTextBlocks` or resp. :meth:`Page.getTextWords` to create lists of text blocks or resp. words, which are accompanied by their rectangles. This should be much faster than the standard text extraction methods and also avoids using additional packages for interpreting their output.

Changes in Version 1.11.2

This is an extension of v1.11.1.

* New :meth:`Page.insertFont` creates a PDF */Font* object and returns its object number.

* New :meth:`Document.extractFont` extracts the content of an embedded font given its object number.

* Methods **FontList(...)** items no longer contain the PDF generation number. This value never had any significance. Instead, the font file extension is included (e.g. "pfa" for a "PostScript Font for ASCII"), which is more valuable information.

* Fonts other than "simple fonts" (Type1) are now also supported.

* New options to change :ref:`Pixmap` size:

 * Method :meth:`Pixmap.shrink` reduces the pixmap proportionally in place.

 * A new :ref:`Pixmap` copy constructor allows scaling via setting target width and height.

Changes in Version 1.11.1

This is an extension of v1.11.0.

* New class *Shape*. It facilitates and extends the creation of image shapes on PDF pages. It contains multiple methods for creating elementary shapes like lines, rectangles or circles, which can be combined into more complex ones and be given common properties like line width or colors. Combined shapes are handled as a unit and e.g. be "morphed" together. The class can accumulate multiple complex shapes and put them all in the page's foreground or background -- thus also reducing the number of updates to the page's :data:`contents` object.

* All *Page* draw methods now use the new *Shape* class.

* Text insertion methods *insertText()* and *insertTextBox()* now support morphing in addition to text rotation. They have become part of the *Shape* class and thus allow text to be freely combined with graphics.

* A new *Pixmap* constructor allows creating pixmap copies with an added alpha channel. A new method also allows directly manipulating alpha values.

* Binary algebraic operations with geometry objects (matrices, rectangles and points) now generally also support lists or tuples as the second operand. You can add a tuple *(x, y)* of numbers to a :ref:`Point`. In this context, such sequences are called ":data:`point_like`" (resp. :data:`matrix_like`, :data:`rect_like`).

* Geometry objects now fully support in-place operators. For example, *p /= m* replaces point p with *p * 1/m* for a number, or *p * ~m* for a :data:`matrix_like` object *m*. Similarly, if *r* is a rectangle, then *r |= (3, 4)* is the new rectangle that also includes *fitz.Point(3, 4)*, and *r &= (1, 2, 3, 4)* is its intersection with *fitz.Rect(1, 2, 3, 4)*.

Changes in Version 1.11.0

This version is based on and requires MuPDF v1.11.

Though MuPDF has declared it as being mostly a bug fix version, one major new feature is indeed contained: support of embedded files -- also called portfolios or collections. We have extended PyMuPDF functionality to embrace this up to an extent just a little beyond the *mutool* utility as follows.

* The *Document* class now support embedded files with several new methods and one new property:

 - *embfile_Info()* returns metadata information about an entry in the list of embedded files. This is more than *mutool* currently provides: it shows all the information that was used to embed the file (not just the entry's name).
 - *embfile_Get()* retrieves the (decompressed) content of an entry into a *bytes* buffer.
 - *embfile_Add(...)* inserts new content into the PDF portfolio. We (in contrast to *mutool*) **restrict** this to entries with a **new name** (no duplicate names allowed).
 - *embfile_Del(...)* deletes an entry from the portfolio (function not offered in MuPDF).
 - *embfile_SetInfo()* -- changes filename or description of an embedded file.
 - *embfile_Count* -- contains the number of embedded files.

* Several enhancements deal with streamlining geometry objects. These are not connected to the new MuPDF version and most of them are also reflected in PyMuPDF v1.10.0. Among them are new properties to identify the corners of rectangles by name (e.g. *Rect.bottom_right*) and new methods to deal with set-theoretic questions like *Rect.contains(x)* or *IRect.intersects(x)*. Special effort focussed on supporting more "Pythonic" language constructs: *if x in rect ...* is equivalent to *rect.contains(x)*.

* The :ref:`Rect` chapter now has more background on empty amd infinite rectangles and how we handle them. The handling itself was also updated for more consistency in this area.

* We have started basic support for **generation** of PDF content:

 - *Document.insert_page()* adds a new page into a PDF, optionally containing some text.
 - *Page.insertImage()* places a new image on a PDF page.
 - *Page.insertText()* puts new text on an existing page

* For **FileAttachment** annotations, content and name of the attached file can extracted and changed.

Changes in Version 1.10.0

MuPDF v1.10 Impact

MuPDF version 1.10 has a significant impact on our bindings. Some of the changes also affect the API -- in other words, **you** as a PyMuPDF user.

* Link destination information has been reduced. Several properties of the *linkDest* class no longer contain valuable information. In fact, this class as a whole has been deleted from MuPDF's library and we in PyMuPDF only maintain it to provide compatibilty to existing code.

* In an effort to minimize memory requirements, several improvements have been built into MuPDF v1.10:

 - A new *config.h* file can be used to de-select unwanted features in the C base code. Using this feature we have been able to reduce the size of our binary *_fitz.o* / *_fitz.pyd* by about 50% (from 9 MB to 4.5 MB). When UPX-ing this, the size goes even further down to a very handy 2.3 MB.

 - The alpha (transparency) channel for pixmaps is now optional. Letting alpha default to *False* significantly reduces pixmap sizes (by 20% -- CMYK, 25% -- RGB, 50% -- GRAY). Many *Pixmap* constructors therefore now accept an *alpha* boolean to control inclusion of this channel. Other pixmap constructors (e.g. those for file and image input) create pixmaps with no alpha alltogether. On the downside, save methods for pixmaps no longer accept a *savealpha* option: this channel will always be saved when present. To minimize code breaks, we have left this parameter in the call patterns -- it will just be ignored.

* *DisplayList* and *TextPage* class constructors now **require the mediabox** of the page they are referring to (i.e. the *page.bound()* rectangle). There is no way to construct this information from other sources, therefore a source code change cannot be avoided in these cases. We assume however, that not many users are actually employing these rather low level classes explixitely. So the impact of that change should be minor.

Other Changes compared to Version 1.9.3

* The new :ref:`Document` method *write()* writes an opened PDF to memory (as opposed to a file, like *save()* does).
* An annotation can now be scaled and moved around on its page. This is done by modifying its rectangle.
* Annotations can now be deleted. :ref:`Page` contains the new method *deleteAnnot()*.
* Various annotation attributes can now be modified, e.g. content, dates, title (= author), border, colors.
* Method *Document.insert_pdf()* now also copies annotations of source pages.
* The *Pages* class has been deleted. As documents can now be accessed with page numbers as indices (like *doc[n] = doc.loadPage(n)*), and document object can be used as iterators, the benefit of this class was too low to maintain it. See the following comments.
* *loadPage(n)* / *doc[n]* now accept arbitrary integers to specify a page number, as long as *n < pageCount*. So, e.g. *doc[-500]* is always valid and will load page *(-500) % pageCount*.
* A document can now also be used as an iterator like this: *for page in doc: ...<do something with "page"> ...*. This will yield all pages of *doc* as *page*.
* The :ref:`Pixmap` method *getSize()* has been replaced with property *size*. As before *Pixmap.size == len(Pixmap)* is true.
* In response to transparency (alpha) being optional, several new parameters and properties have been added to :ref:`Pixmap` and :ref:`Colorspace` classes to support determining their characteristics.
* The :ref:`Page` class now contains new properties *firstAnnot* and *firstLink* to provide starting points to the respective class chains, where *firstLink* is just a mnemonic synonym to method *loadLinks()* which continues to exist. Similarly, the new property *rect* is a synonym for method *bound()*, which also continues to exist.
* :ref:`Pixmap` methods *samplesRGB()* and *samplesAlpha()* have been deleted because pixmaps can now be created without transparency.
* :ref:`Rect` now has a property *irect* which is a synonym of method *round()*. Likewise, :ref:`IRect` now has property *rect* to deliver a :ref:`Rect` which has the same coordinates as floats values.
* Document has the new method *searchPageFor()* to search for a text string. It works exactly like the corresponding *Page.searchFor()* with page number as additional parameter.

Changes in Version 1.9.3

This version is also based on MuPDF v1.9a. Changes compared to version 1.9.2:

* As a major enhancement, annotations are now supported in a similar way as links. Annotations can be displayed (as pixmaps) and their properties can be accessed.
* In addition to the document *select()* method, some simpler methods can now be used to manipulate a PDF:

 - *copyPage()* copies a page within a document.
 - *movePage()* is similar, but deletes the original.
 - *delete_page()* deletes a page
 - *delete_pages()* deletes a page range

* *rotation* or *setRotation()* access or change a PDF page's rotation, respectively.
* Available but undocumented before, :ref:`IRect`, :ref:`Rect`, :ref:`Point` and :ref:`Matrix` support the *len()* method and their coordinate properties can be accessed via indices, e.g. *IRect.x1 == IRect[2]*.
* For convenience, documents now support simple indexing: *doc.loadPage(n) == doc[n]*. The index may however be in range *-pageCount < n < pageCount*, such that *doc[-1]* is the last page of the document.

Changes in Version 1.9.2

This version is also based on MuPDF v1.9a. Changes compared to version 1.9.1:

* *fitz.open()* (no parameters) creates a new empty **PDF** document, i.e. if saved afterwards, it must be given a *.pdf* extension.
* :ref:`Document` now accepts all of the following formats (*Document* and *open* are synonyms):

 - *open()*,
 - *open(filename)* (equivalent to *open(filename, None)*),
 - *open(filetype, area)* (equivalent to *open(filetype, stream = area)*).

 Type of memory area *stream* may be *bytes* or *bytearray*. Thus, e.g. *area = open("file.pdf", "rb").read()* may be used directly (without first converting it to bytearray).
* New method *Document.insert_pdf()* (PDFs only) inserts a range of pages from another PDF.
* *Document* objects doc now support the *len()* function: ``len(doc) == doc.pageCount``.
* New method *Document.getPageImageList()* creates a list of images used on a page.
* New method *Document.getPageFontList()* creates a list of fonts referenced by a page.
* New pixmap constructor *fitz.Pixmap(doc, xref)* creates a pixmap based on an opened PDF document and an :data:`xref` number of the image.
* New pixmap constructor *fitz.Pixmap(cspace, spix)* creates a pixmap as a copy of another one *spix* with the colorspace converted to *cspace*. This works for all colorspace combinations.
* Pixmap constructor *fitz.Pixmap(colorspace, width, height, samples)* now allows *samples* to also be *bytes*, not only *bytearray*.

Changes in Version 1.9.1

This version of PyMuPDF is based on MuPDF library source code version 1.9a published on April 21, 2016.

Please have a look at MuPDF's website to see which changes and enhancements are contained herein.

Changes in version 1.9.1 compared to version 1.8.0 are the following:

* New methods *get_area()* for both *fitz.Rect* and *fitz.IRect*
* Pixmaps can now be created directly from files using the new constructor *fitz.Pixmap(filename)*.
* The Pixmap constructor *fitz.Pixmap(image)* has been extended accordingly.
* *fitz.Rect* can now be created with all possible combinations of points and coordinates.
* PyMuPDF classes and methods now all contain __doc__ strings, most of them created by SWIG automatically. While the PyMuPDF documentation certainly is more detailed, this feature should help a lot when programming in Python-aware IDEs.
* A new document method of *getPermits()* returns the permissions associated with the current access to the document (print, edit, annotate, copy), as a Python dictionary.
* The identity matrix *fitz.Identity* is now **immutable**.
* The new document method *select(list)* removes all pages from a document that are not contained in the list. Pages can also be duplicated and re-arranged.
* Various improvements and new members in our demo and examples collections. Perhaps most prominently: *PDF_display* now supports scrolling with the mouse wheel, and there is a new example program *wxTableExtract* which allows to graphically identify and extract table data in documents.
* *fitz.open()* is now an alias of *fitz.Document()*.
* New pixmap method *tobytes()* which will return a bytearray formatted as a PNG image of the pixmap.
* New pixmap method *samplesRGB()* providing a *samples* version with alpha bytes stripped off (RGB colorspaces only).
* New pixmap method *samplesAlpha()* providing the alpha bytes only of the *samples* area.
* New iterator *fitz.Pages(doc)* over a document's set of pages.
* New matrix methods *invert()* (calculate inverted matrix), *concat()* (calculate matrix product), *pretranslate()* (perform a shift operation).
* New *IRect* methods *intersect()* (intersection with another rectangle), *translate()* (perform a shift operation).
* New *Rect* methods *intersect()* (intersection with another rectangle), *transform()* (transformation with a matrix), *include_point()* (enlarge rectangle to also contain a point), *include_rect()* (enlarge rectangle to also contain another one).
* Documented *Point.transform()* (transform a point with a matrix).
* *Matrix*, *IRect*, *Rect* and *Point* classes now support compact, algebraic formulations for manipulating such objects.
* Incremental saves for changes are possible now using the call pattern *doc.save(doc.name, incremental=True)*.
* A PDF's metadata can now be deleted, set or changed by document method *set_metadata()*. Supports incremental saves.
* A PDF's bookmarks (or table of contents) can now be deleted, set or changed with the entries of a list using document method *set_toc(list)*. Supports incremental saves.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/README.md

PyMuPDF documentation

Welcome to the PyMuPDF documentation. This documentation relies on [Sphinx](https://www.sphinx-doc.org/en/master/) to publish HTML docs from markdown files written with [restructured text](https://en.wikipedia.org/wiki/ReStructuredText) (RST).

Sphinx version

This README assumes you have [Sphinx v5.0.2 installed](https://www.sphinx-doc.org/en/master/usage/installation.html) on your system.

Updating the documentation

Within `docs` update the associated restructured text (`.rst`) files. These files represent the corresponding document pages.

Building HTML documentation

- Ensure you have the `sphinx-rtd-theme` installed:

`python -m pip install sphinx-rtd-theme`

- From the "docs" location run:

`sphinx-build -b html . build/html`

This then creates the HTML documentation within `build/html`.

Building PDF documentation

- First ensure you have [rst2pdf](https://pypi.org/project/rst2pdf/) installed:
	

`python -m pip install rst2pdf`

- Then run:

`sphinx-build -b pdf source build/pdf`

This will then generate a single PDF for all of the documentation within `build/pdf`.

For full details see: [Using Sphinx](https://www.sphinx-doc.org/en/master/usage/index.html)

PyMuPDF-1.21.1/docs/algebra.rst

.. include:: header.rst

.. _Algebra:

Operator Algebra for Geometry Objects
======================================

.. highlight:: python

Instances of classes :ref:`Point`, :ref:`IRect`, :ref:`Rect`, :ref:`Quad` and :ref:`Matrix` are collectively also called "geometry" objects.

They all are special cases of Python sequences, see :ref:`SequenceTypes` for more background.

We have defined operators for these classes that allow dealing with them (almost) like ordinary numbers in terms of addition, subtraction, multiplication, division, and some others.

This chapter is a synopsis of what is possible.

General Remarks

1. Operators can be either **binary** (i.e. involving two objects) or **unary**.

2. The resulting type of **binary** operations is either a **new object of the left operand's class** or a bool.

3. The result of **unary** operations is either a **new object** of the same class, a bool or a float.

4. The binary operators *+, -, *, /* are defined for all classes. They *roughly* do what you would expect -- **except, that the second operand ...**

 - may always be a number which then performs the operation on every component of the first one,
 - may always be a numeric sequence of the same length (2, 4 or 6) -- we call such sequences :data:`point_like`, :data:`rect_like`, :data:`quad_like` or :data:`matrix_like`, respectively.

5. Rectangles support additional binary operations: **intersection** (operator *"&"*), **union** (operator *"|"*) and **containment** checking.

6. Binary operators fully support in-place operations, so expressions like ``a /= b`` are valid if b is numeric or "a_like".

Unary Operations

=========== ===
Oper. Result
=========== ===
 bool(OBJ) is false exactly if all components of OBJ are zero
 abs(OBJ) the rectangle area -- equal to norm(OBJ) for the other tyes
 norm(OBJ) square root of the component squares (Euclidean norm)
 +OBJ new copy of OBJ
 -OBJ new copy of OBJ with negated components
 ~m inverse of matrix "m", or the null matrix if not invertible
=========== ===

Binary Operations

For every geometry object "a" and every number "b", the operations "a ° b" and "a °= b" are always defined for the operators *+, -, *, /*. The respective operation is simply executed for each component of "a". If the **second operand is not a number**, then the following is defined:

========= ===
Oper. Result
========= ===
a+b, a-b component-wise execution, "b" must be "a-like".
a*m, a/m "a" can be a point, rectangle or matrix, but "m" must be
 :data:`matrix_like`. *"a/m"* is treated as *"a*~m"* (see note below
 for non-invertible matrices). If "a" is a **point** or a **rectangle**,
 then *"a.transform(m)"* is executed. If "a" is a matrix, then
 matrix concatenation takes place.
a&b **intersection rectangle:** "a" must be a rectangle and
 "b" :data:`rect_like`. Delivers the **largest rectangle**
 contained in both operands.
a|b **union rectangle:** "a" must be a rectangle, and "b" may be
 :data:`point_like` or :data:`rect_like`.
 Delivers the **smallest rectangle** containing both operands.
b in a if "b" is a number, then ``b in tuple(a)`` is returned.
 If "b" is :data:`point_like`, :data:`rect_like` or :data:`quad_like`,
 then "a" must be a rectangle, and ``a.contains(b)`` is returned.
a == b *True* if *bool(a-b)* is *False* ("b" may be "a-like").
========= ===

.. note:: Please note an important difference to usual arithmetics:

 Matrix multiplication is **not commutative**, i.e. in general we have ``m*n != n*m`` for two matrices. Also, there are non-zero matrices which have no inverse, for example ``m = Matrix(1, 0, 1, 0, 1, 0)``. If you try to divide by any of these, you will receive a ``ZeroDivisionError`` exception using operator *"/"*, e.g. for the expression ``fitz.Identity / m``. But if you formulate ``fitz.Identity * ~m``, the result will be ``fitz.Matrix()`` (the null matrix).

 Admittedly, this represents an inconsistency, and we are considering to remove it. For the time being, you can choose to avoid an exception and check whether ~m is the null matrix, or accept a potential *ZeroDivisionError* by using ``fitz.Identity / m``.

.. note::

 * With these conventions, all the usual algebra rules apply. For example, arbitrarily using brackets **(among objects of the same class!)** is possible: if r1, r2 are rectangles and m1, m2 are matrices, you can do this ``(r1 + r2) * m1 * m2``.
 * For all objects of the same class, ``a + b + c == (a + b) + c == a + (b + c)`` is true.
 * For matrices in addition the following is true: ``(m1 + m2) * m3 == m1 * m3 + m2 * m3`` (distributivity property).
 * **But the sequence of applying matrices is important:** If r is a rectangle and m1, m2 are matrices, then -- **caution!:**
 - ``r * m1 * m2 == (r * m1) * m2 != r * (m1 * m2)``

Some Examples

Manipulation with numbers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For the usual arithmetic operations, numbers are always allowed as second operand. In addition, you can formulate ``"x in OBJ"``, where x is a number. It is implemented as ``"x in tuple(OBJ)"``::

  >>> fitz.Rect(1, 2, 3, 4) + 5
  fitz.Rect(6.0, 7.0, 8.0, 9.0)
  >>> 3 in fitz.Rect(1, 2, 3, 4)
  True
  >>> 

The following will create the upper left quarter of a document page rectangle::

  >>> page.rect
  Rect(0.0, 0.0, 595.0, 842.0)
  >>> page.rect / 2
  Rect(0.0, 0.0, 297.5, 421.0)
  >>> 

The following will deliver the **middle point of a line** that connects two points **p1** and **p2**::

  >>> p1 = fitz.Point(1, 2)
  >>> p2 = fitz.Point(4711, 3141)
  >>> mp = (p1 + p2) / 2
  >>> mp
  Point(2356.0, 1571.5)
  >>> 

Manipulation with "like" Objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The second operand of a binary operation can always be "like" the left operand. "Like" in this context means "a sequence of numbers of the same length". With the above examples::

 >>> p1 + p2
 Point(4712.0, 3143.0)
 >>> p1 + (4711, 3141)
 Point(4712.0, 3143.0)
 >>> p1 += (4711, 3141)
 >>> p1
 Point(4712.0, 3143.0)
 >>>

To shift a rectangle for 5 pixels to the right, do this::

 >>> fitz.Rect(100, 100, 200, 200) + (5, 0, 5, 0) # add 5 to the x coordinates
 Rect(105.0, 100.0, 205.0, 200.0)
 >>>

Points, rectangles and matrices can be *transformed* with matrices. In PyMuPDF, we treat this like a **"multiplication"** (or resp. **"division"**), where the second operand may be "like" a matrix. Division in this context means "multiplication with the inverted matrix"::

 >>> m = fitz.Matrix(1, 2, 3, 4, 5, 6)
 >>> n = fitz.Matrix(6, 5, 4, 3, 2, 1)
 >>> p = fitz.Point(1, 2)
 >>> p * m
 Point(12.0, 16.0)
 >>> p * (1, 2, 3, 4, 5, 6)
 Point(12.0, 16.0)
 >>> p / m
 Point(2.0, -2.0)
 >>> p / (1, 2, 3, 4, 5, 6)
 Point(2.0, -2.0)
 >>>
 >>> m * n # matrix multiplication
 Matrix(14.0, 11.0, 34.0, 27.0, 56.0, 44.0)
 >>> m / n # matrix division
 Matrix(2.5, -3.5, 3.5, -4.5, 5.5, -7.5)
 >>>
 >>> m / m # result is equal to the Identity matrix
 Matrix(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
 >>>
 >>> # look at this non-invertible matrix:
 >>> m = fitz.Matrix(1, 0, 1, 0, 1, 0)
 >>> ~m
 Matrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 >>> # we try dividing by it in two ways:
 >>> p = fitz.Point(1, 2)
 >>> p * ~m # this delivers point (0, 0):
 Point(0.0, 0.0)
 >>> p / m # but this is an exception:
 Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>
 p / m
 File "... /site-packages/fitz/fitz.py", line 869, in __truediv__
 raise ZeroDivisionError("matrix not invertible")
 ZeroDivisionError: matrix not invertible
 >>>

As a specialty, rectangles support additional binary operations:

* **intersection** -- the common area of rectangle-likes, operator *"&"*
* **inclusion** -- enlarge to include a point-like or rect-like, operator *"|"*
* **containment** check -- whether a point-like or rect-like is inside

Here is an example for creating the smallest rectangle enclosing given points::

 >>> # first define some point-likes
 >>> points = []
 >>> for i in range(10):
 for j in range(10):
 points.append((i, j))
 >>>
 >>> # now create a rectangle containing all these 100 points
 >>> # start with an empty rectangle
 >>> r = fitz.Rect(points[0], points[0])
 >>> for p in points[1:]: # and include remaining points one by one
 r |= p
 >>> r # here is the to be expected result:
 Rect(0.0, 0.0, 9.0, 9.0)
 >>> (4, 5) in r # this point-like lies inside the rectangle
 True
 >>> # and this rect-like is also inside
 >>> (4, 4, 5, 5) in r
 True
 >>>

.. include:: footer.rst

PyMuPDF-1.21.1/docs/annot.rst

.. include:: header.rst

.. _Annot:

================
Annot
================
This class is supported for PDF documents only.

Quote from the :ref:`AdobeManual`: "An annotation associates an object such as a note, sound, or movie with a location on a page of a PDF document, or provides a way to interact with the user by means of the mouse and keyboard."

There is a parent-child relationship between an annotation and its page. If the page object becomes unusable (closed document, any document structure change, etc.), then so does every of its existing annotation objects -- an exception is raised saying that the object is "orphaned", whenever an annotation property or method is accessed.

.. note::

 Unfortunately, there exists no single, unique naming convention in PyMuPDF: examples for all of *CamelCases*, *mixedCases* and *lower_case_with underscores* can be found all over the place. We are now in the process of cleaning this up, step by step.

 This class, Annot, is the first candidate for this execise. In this chapter, you will for example find :meth:`Annot.get_pixmap` -- and no longer the old name ``getPixmap``. The method with the old name however **continues to exists** and you can continue using it: your existing code will not break. But we do hope you will start using the new names -- for new code at least.

================================== ==
Attribute **Short Description**
================================== ==
:meth:`Annot.delete_responses` delete all responding annotions
:meth:`Annot.get_file` get attached file content
:meth:`Annot.get_oc` get :data:`xref` of an :data:`OCG` / :data:`OCMD`
:meth:`Annot.get_pixmap` image of the annotation as a pixmap
:meth:`Annot.get_sound` get the sound of an audio annotation
:meth:`Annot.get_text` extract annotation text
:meth:`Annot.get_textbox` extract annotation text
:meth:`Annot.set_border` set annotation's border properties
:meth:`Annot.set_blendmode` set annotation's blend mode
:meth:`Annot.set_colors` set annotation's colors
:meth:`Annot.set_flags` set annotation's flags field
:meth:`Annot.set_irt_xref` define the annotation to being "In Response To"
:meth:`Annot.set_name` set annotation's name field
:meth:`Annot.set_oc` set :data:`xref` to an :data:`OCG` / :data:`OCMD`
:meth:`Annot.set_opacity` change transparency
:meth:`Annot.set_open` open / close annotation or its Popup
:meth:`Annot.set_popup` create a Popup for the annotation
:meth:`Annot.set_rect` change annotation rectangle
:meth:`Annot.set_rotation` change rotation
:meth:`Annot.update_file` update attached file content
:meth:`Annot.update` apply accumulated annot changes
:attr:`Annot.blendmode` annotation BlendMode
:attr:`Annot.border` border details
:attr:`Annot.colors` border / background and fill colors
:attr:`Annot.file_info` get attached file information
:attr:`Annot.flags` annotation flags
:attr:`Annot.has_popup` whether annotation has a Popup
:attr:`Annot.irt_xref` annotation to which this one responds
:attr:`Annot.info` various information
:attr:`Annot.is_open` whether annotation or its Popup is open
:attr:`Annot.line_ends` start / end appearance of line-type annotations
:attr:`Annot.next` link to the next annotation
:attr:`Annot.opacity` the annot's transparency
:attr:`Annot.parent` page object of the annotation
:attr:`Annot.popup_rect` rectangle of the annotation's Popup
:attr:`Annot.popup_xref` the PDF :data:`xref` number of the annotation's Popup
:attr:`Annot.rect` rectangle containing the annotation
:attr:`Annot.type` type of the annotation
:attr:`Annot.vertices` point coordinates of Polygons, PolyLines, etc.
:attr:`Annot.xref` the PDF :data:`xref` number
================================== ==

Class API

.. class:: Annot

 .. index::
 pair: matrix; Annot.get_pixmap
 pair: colorspace; Annot.get_pixmap
 pair: alpha; Annot.get_pixmap
 pair: dpi; Annot.get_pixmap

 .. method:: get_pixmap(matrix=fitz.Identity, dpi=None, colorspace=fitz.csRGB, alpha=False)

 * Changed in v1.19.2: added support of dpi parameter.

 Creates a pixmap from the annotation as it appears on the page in untransformed coordinates. The pixmap's :ref:`IRect` equals *Annot.rect.irect* (see below). **All parameters are keyword only.**

 :arg matrix_like matrix: a matrix to be used for image creation. Default is :ref:`Identity`.

 :arg int dpi: (new in v1.19.2) desired resolution in dots per inch. If not ``None``, the matrix parameter is ignored.

 :arg colorspace: a colorspace to be used for image creation. Default is *fitz.csRGB*.
 :type colorspace: :ref:`Colorspace`

 :arg bool alpha: whether to include transparency information. Default is *False*.

 :rtype: :ref:`Pixmap`

 .. note:: If the annotation has just been created or modified, you should reload the page first via *page = doc.reload_page(page)*.

 .. index::
 pair: blocks; Annot.get_text
 pair: dict; Annot.get_text
 pair: clip; Annot.get_text
 pair: flags; Annot.get_text
 pair: html; Annot.get_text
 pair: json; Annot.get_text
 pair: rawdict; Annot.get_text
 pair: text; Annot.get_text
 pair: words; Annot.get_text
 pair: xhtml; Annot.get_text
 pair: xml; Annot.get_text

 .. method:: get_text(opt, clip=None, flags=None)

 * New in 1.18.0

 Retrieves the content of the annotation in a variety of formats -- much like the same method for :ref:`Page`.. This currently only delivers relevant data for annotation types 'FreeText' and 'Stamp'. Other types return an empty string (or equivalent objects).

 :arg str opt: (positional only) the desired format - one of the following values. Please note that this method works exactly like the same-named method of :ref:`Page`.

 * "text" -- :meth:`TextPage.extractTEXT`, default
 * "blocks" -- :meth:`TextPage.extractBLOCKS`
 * "words" -- :meth:`TextPage.extractWORDS`
 * "html" -- :meth:`TextPage.extractHTML`
 * "xhtml" -- :meth:`TextPage.extractXHTML`
 * "xml" -- :meth:`TextPage.extractXML`
 * "dict" -- :meth:`TextPage.extractDICT`
 * "json" -- :meth:`TextPage.extractJSON`
 * "rawdict" -- :meth:`TextPage.extractRAWDICT`

 :arg rect-like clip: (keyword only) restrict the extraction to this area. Should hardly ever be required, defaults to :attr:`Annot.rect`.
 :arg int flags: (keyword only) control the amount of data returned. Defaults to simple text extraction.

 .. method:: get_textbox(rect)

 * New in 1.18.0

 Return the annotation text. Mostly (except line breaks) equal to :meth:`Annot.get_text` with the "text" option.

 :arg rect-like rect: the area to consider, defaults to :attr:`Annot.rect`.

 .. method:: set_info(info=None, content=None, title=None, creationDate=None, modDate=None, subject=None)

 * Changed in version 1.16.10

 Changes annotation properties. These include dates, contents, subject and author (title). Changes for *name* and *id* will be ignored. The update happens selectively: To leave a property unchanged, set it to *None*. To delete existing data, use an empty string.

 :arg dict info: a dictionary compatible with the *info* property (see below). All entries must be strings. If this argument is not a dictionary, the other arguments are used instead -- else they are ignored.
 :arg str content: *(new in v1.16.10)* see description in :attr:`info`.
 :arg str title: *(new in v1.16.10)* see description in :attr:`info`.
 :arg str creationDate: *(new in v1.16.10)* date of annot creation. If given, should be in PDF datetime format.
 :arg str modDate: *(new in v1.16.10)* date of last modification. If given, should be in PDF datetime format.
 :arg str subject: *(new in v1.16.10)* see description in :attr:`info`.

 .. method:: set_line_ends(start, end)

 Sets an annotation's line ending styles. Each of these annotation types is defined by a list of points which are connected by lines. The symbol identified by *start* is attached to the first point, and *end* to the last point of this list. For unsupported annotation types, a no-operation with a warning message results.

 .. note::

 * While 'FreeText', 'Line', 'PolyLine', and 'Polygon' annotations can have these properties, (Py-) MuPDF does not support line ends for 'FreeText', because the call-out variant of it is not supported.
 * *(Changed in v1.16.16)* Some symbols have an interior area (diamonds, circles, squares, etc.). By default, these areas are filled with the fill color of the annotation. If this is *None*, then white is chosen. The *fill_color* argument of :meth:`Annot.update` can now be used to override this and give line end symbols their own fill color.

 :arg int start: The symbol number for the first point.
 :arg int end: The symbol number for the last point.

 .. method:: set_oc(xref)

 Set the annotation's visibility using PDF optional content mechanisms. This visibility is controlled by the user interface of supporting PDF viewers. It is independent from other attributes like :attr:`Annot.flags`.

 :arg int xref: the :data:`xref` of an optional contents group (OCG or OCMD). Any previous xref will be overwritten. If zero, a previous entry will be removed. An exception occurs if the xref is not zero and does not point to a valid PDF object.

 .. note:: This does **not require executing** :meth:`Annot.update` to take effect.

 .. method:: get_oc()

 Return the :data:`xref` of an optional content object, or zero if there is none.

 :returns: zero or the xref of an OCG (or OCMD).

 .. method:: set_irt_xref(xref)

 * New in v1.19.3

 Set annotation to be "In Response To" another one.

 :arg int xref: The :data:`xref` of another annotation.

 .. note:: Must refer to an existing annotation on this page. Setting this property requires no subsequent ``update()``.

 .. method:: set_open(value)

 * New in v1.18.4

 Set the annotation's Popup annotation to open or closed -- **or** the annotation itself, if its type is 'Text' ("sticky note").

 :arg bool value: the desired open state.

 .. method:: set_popup(rect)

 * New in v1.18.4

 Create a Popup annotation for the annotation and specify its rectangle. If the Popup already exists, only its rectangle is updated.

 :arg rect_like rect: the desired rectangle.

 .. method:: set_opacity(value)

 Set the annotation's transparency. Opacity can also be set in :meth:`Annot.update`.

 :arg float value: a float in range *[0, 1]*. Any value outside is assumed to be 1. E.g. a value of 0.5 sets the transparency to 50%.

 Three overlapping 'Circle' annotations with each opacity set to 0.5:

 .. image:: images/img-opacity.*

 .. attribute:: blendmode

 * New in v1.18.4

 The annotation's blend mode. See :ref:`AdobeManual`, page 324 for explanations.

 :rtype: str
 :returns: the blend mode or *None*.

 >>> annot=page.first_annot
 >>> annot.blendmode
 'Multiply'

 .. method:: set_blendmode(blendmode)

 * New in v1.16.14

 Set the annotation's blend mode. See :ref:`AdobeManual`, page 324 for explanations. The blend mode can also be set in :meth:`Annot.update`.

 :arg str blendmode: set the blend mode. Use :meth:`Annot.update` to reflect this in the visual appearance. For predefined values see :ref:`BlendModes`. Use ``PDF_BM_Normal`` to **remove** a blend mode.

 >>> annot.set_blendmode(fitz.PDF_BM_Multiply)
 >>> annot.update()
 >>> # or in one statement:
 >>> annot.update(blend_mode=fitz.PDF_BM_Multiply, ...)

 .. method:: set_name(name)

 * New in version 1.16.0

 Change the name field of any annotation type. For 'FileAttachment' and 'Text' annotations, this is the icon name, for 'Stamp' annotations the text in the stamp. The visual result (if any) depends on your PDF viewer. See also :ref:`mupdficons`.

 :arg str name: the new name.

 .. caution:: If you set the name of a 'Stamp' annotation, then this will **not change** the rectangle, nor will the text be layouted in any way. If you choose a standard text from :ref:`StampIcons` (the **exact** name piece after `"STAMP_"`), you should receive the original layout. An **arbitrary text** will not be changed to upper case, but be written in font "Times-Bold" as is, horizontally centered in **one line** and be shortened to fit. To get your text fully displayed, its length using fontsize 20 must not exceed 190 pixels. So please make sure that the following inequality is true: ``fitz.get_text_length(text, fontname="tibo", fontsize=20) <= 190``.

 .. method:: set_rect(rect)

 Change the rectangle of an annotation. The annotation can be moved around and both sides of the rectangle can be independently scaled. However, the annotation appearance will never get rotated, flipped or sheared.

 :arg rect_like rect: the new rectangle of the annotation (finite and not empty). E.g. using a value of *annot.rect + (5, 5, 5, 5)* will shift the annot position 5 pixels to the right and downwards.

 .. note:: You **need not** invoke :meth:`Annot.update` for activation of the effect.

 .. method:: set_rotation(angle)

 Set the rotation of an annotation. This rotates the annotation rectangle around its center point. Then a **new annotation rectangle** is calculated from the resulting quad.

 :arg int angle: rotation angle in degrees. Arbitrary values are possible, but will be clamped to the interval 0 <= angle < 360.

 .. note::
 * You **must invoke** :meth:`Annot.update` to activate the effect.
 * For PDF_ANNOT_FREE_TEXT, only one of the values 0, 90, 180 and 270 is possible and will **rotate the text** inside the current rectangle (which remains unchanged). Other values are silently ignored and replaced by 0.
 * Otherwise, only the following :ref:`AnnotationTypes` can be rotated: 'Square', 'Circle', 'Caret', 'Text', 'FileAttachment', 'Ink', 'Line', 'Polyline', 'Polygon', and 'Stamp'. For all others the method is a no-op.

 .. method:: set_border(border=None, width=0, style=None, dashes=None)

 * Changed in version 1.16.9: Allow specification without using a dictionary. The direct parameters are used if *border* is not a dictionary.

 PDF only: Change border width and dashing properties.

 :arg dict border: a dictionary as returned by the :attr:`border` property, with keys *"width"* (*float*), *"style"* (*str*) and *"dashes"* (*sequence*). Omitted keys will leave the resp. property unchanged. To e.g. remove dashing use: *"dashes": []*. If dashes is not an empty sequence, "style" will automatically be set to "D" (dashed).

 :arg float width: see above.
 :arg str style: see above.
 :arg sequence dashes: see above.

 .. method:: set_flags(flags)

 Changes the annotation flags. Use the ``|`` operator to combine several.

 :arg int flags: an integer specifying the required flags.

 .. method:: set_colors(colors=None, stroke=None, fill=None)

 * Changed in version 1.16.9: Allow colors to be directly set. These parameters are used if *colors* is not a dictionary.

 Changes the "stroke" and "fill" colors for supported annotation types -- not all annotations accept both.

 :arg dict colors: a dictionary containing color specifications. For accepted dictionary keys and values see below. The most practical way should be to first make a copy of the *colors* property and then modify this dictionary as required.
 :arg sequence stroke: see above.
 :arg sequence fill: see above.

 Changed in v1.18.5: To completely remove a color specification, use an empty sequence like ``[]``. If you specify ``None``, an existing specification will not be changed.

 .. method:: delete_responses()

 * New in version 1.16.12

 Delete annotations referring to this one. This includes any 'Popup' annotations and all annotations responding to it.

 .. index::
 pair: blend_mode; Annot.update
 pair: fontsize; Annot.update
 pair: text_color; Annot.update
 pair: border_color; Annot.update
 pair: fill_color; Annot.update
 pair: cross_out; Annot.update
 pair: rotate; Annot.update

 .. method:: update(opacity=None, blend_mode=None, fontsize=0, text_color=None, border_color=None, fill_color=None, cross_out=True, rotate=-1)

 Synchronize the appearance of an annotation with its properties after relevant changes.

 You can safely **omit** this method **only** for the following changes:

 * :meth:`Annot.set_rect`
 * :meth:`Annot.set_flags`
 * :meth:`Annot.set_oc`
 * :meth:`Annot.update_file`
 * :meth:`Annot.set_info` (except any changes to *"content"*)

 All arguments are optional. *(Changed in v1.16.14)* Blend mode and opacity are applicable to **all annotation types**. The other arguments are mostly special use, as described below.

 Color specifications may be made in the usual format used in PuMuPDF as sequences of floats ranging from 0.0 to 1.0 (including both). The sequence length must be 1, 3 or 4 (supporting GRAY, RGB and CMYK colorspaces respectively). For GRAY, just a float is also acceptable.

 :arg float opacity: *(new in v1.16.14)* **valid for all annotation types:** change or set the annotation's transparency. Valid values are *0 <= opacity < 1*.
 :arg str blend_mode: *(new in v1.16.14)* **valid for all annotation types:** change or set the annotation's blend mode. For valid values see :ref:`BlendModes`.
 :arg float fontsize: change font size of the text. 'FreeText' annotations only.
 :arg sequence,float text_color: change the text color. 'FreeText' annotations only.
 :arg sequence,float border_color: change the border color. 'FreeText' annotations only.
 :arg sequence,float fill_color: the fill color.

 * 'Line', 'Polyline', 'Polygon' annotations: use it to give applicable line end symbols a fill color other than that of the annotation *(changed in v1.16.16)*.

 :arg bool cross_out: *(new in v1.17.2)* add two diagonal lines to the annotation rectangle. 'Redact' annotations only. If not desired, *False* must be specified even if the annotation was created with *False*.
 :arg int rotate: new rotation value. Default (-1) means no change. Supports 'FreeText' and several other annotation types (see :meth:`Annot.set_rotation`), [#f1]_. Only choose 0, 90, 180, or 270 degrees for 'FreeText'. Otherwise any integer is acceptable.

 :rtype: bool

 .. note:: Using this method inside a :meth:`Page.annots` loop is **not recommended!** This is because most annotation updates require the owning page to be reloaded -- which cannot be done inside this loop. Please use the example coding pattern given in the documentation of this generator.

 .. attribute:: file_info

 Basic information of the annot's attached file.

 :rtype: dict
 :returns: a dictionary with keys *filename*, *ufilename*, *desc* (description), *size* (uncompressed file size), *length* (compressed length) for FileAttachment annot types, else *None*.

 .. method:: get_file()

 Returns attached file content.

 :rtype: bytes
 :returns: the content of the attached file.

 .. index::
 pair: buffer; Annot.update_file
 pair: filename; Annot.update_file
 pair: ufilename; Annot.update_file
 pair: desc; Annot.update_file

 .. method:: update_file(buffer=None, filename=None, ufilename=None, desc=None)

 Updates the content of an attached file. All arguments are optional. No arguments lead to a no-op.

 :arg bytes|bytearray|BytesIO buffer: the new file content. Omit to only change meta-information.

 (Changed in version 1.14.13) *io.BytesIO* is now also supported.

 :arg str filename: new filename to associate with the file.

 :arg str ufilename: new unicode filename to associate with the file.

 :arg str desc: new description of the file content.

 .. method:: get_sound()

 Return the embedded sound of an audio annotation.

 :rtype: dict
 :returns: the sound audio file and accompanying properties. These are the possible dictionary keys, of which only "rate" and "stream" are always present.

 =========== ===
 Key Description
 =========== ===
 rate (float, requ.) samples per second
 channels (int, opt.) number of sound channels
 bps (int, opt.) bits per sample value per channel
 encoding (str, opt.) encoding format: Raw, Signed, muLaw, ALaw
 compression (str, opt.) name of compression filter
 stream (bytes, requ.) the sound file content
 =========== ===

 .. attribute:: opacity

 The annotation's transparency. If set, it is a value in range *[0, 1]*. The PDF default is 1. However, in an effort to tell the difference, we return *-1.0* if not set.

 :rtype: float

 .. attribute:: parent

 The owning page object of the annotation.

 :rtype: :ref:`Page`

 .. attribute:: rotation

 The annot rotation.

 :rtype: int
 :returns: a value [-1, 359]. If rotation is not at all, -1 is returned (and implies a rotation angle of 0). Other possible values are normalized to some value value 0 <= angle < 360.

 .. attribute:: rect

 The rectangle containing the annotation.

 :rtype: :ref:`Rect`

 .. attribute:: next

 The next annotation on this page or None.

 :rtype: *Annot*

 .. attribute:: type

 A number and one or two strings describing the annotation type, like **[2, 'FreeText', 'FreeTextCallout']**. The second string entry is optional and may be empty. See the appendix :ref:`AnnotationTypes` for a list of possible values and their meanings.

 :rtype: list

 .. attribute:: info

 A dictionary containing various information. All fields are optional strings. If an information is not provided, an empty string is returned.

 * *name* -- e.g. for 'Stamp' annotations it will contain the stamp text like "Sold" or "Experimental", for other annot types you will see the name of the annot's icon here ("PushPin" for FileAttachment).

 * *content* -- a string containing the text for type *Text* and *FreeText* annotations. Commonly used for filling the text field of annotation pop-up windows.

 * *title* -- a string containing the title of the annotation pop-up window. By convention, this is used for the **annotation author**.

 * *creationDate* -- creation timestamp.
 * *modDate* -- last modified timestamp.
 * *subject* -- subject.
 * *id* -- *(new in version 1.16.10)* a unique identification of the annotation. This is taken from PDF key */NM*. Annotations added by PyMuPDF will have a unique name, which appears here.

 :rtype: dict

 .. attribute:: flags

 An integer whose low order bits contain flags for how the annotation should be presented.

 :rtype: int

 .. attribute:: line_ends

 A pair of integers specifying start and end symbol of annotations types 'FreeText', 'Line', 'PolyLine', and 'Polygon'. *None* if not applicable. For possible values and descriptions in this list, see the :ref:`AdobeManual`, table 1.76 on page 400.

 :rtype: tuple

 .. attribute:: vertices

 A list containing a variable number of point ("vertices") coordinates (each given by a pair of floats) for various types of annotations:

 * 'Line' -- the starting and ending coordinates (2 float pairs).
 * 'FreeText' -- 2 or 3 float pairs designating the starting, the (optional) knee point, and the ending coordinates.
 * 'PolyLine' / 'Polygon' -- the coordinates of the edges connected by line pieces (n float pairs for n points).
 * text markup annotations -- 4 float pairs specifying the *QuadPoints* of the marked text span (see :ref:`AdobeManual`, page 403).
 * 'Ink' -- list of one to many sublists of vertex coordinates. Each such sublist represents a separate line in the drawing.

 :rtype: list

 .. attribute:: colors

 dictionary of two lists of floats in range *0 <= float <= 1* specifying the "stroke" and the interior ("fill") colors. The stroke color is used for borders and everything that is actively painted or written ("stroked"). The fill color is used for the interior of objects like line ends, circles and squares. The lengths of these lists implicitely determine the colorspaces used: 1 = GRAY, 3 = RGB, 4 = CMYK. So "[1.0, 0.0, 0.0]" stands for RGB color red. Both lists can be empty if no color is specified.

 :rtype: dict

 .. attribute:: xref

 The PDF :data:`xref`.

 :rtype: int

 .. attribute:: irt_xref

 The PDF :data:`xref` of an annotation to which this one responds. Return zero if this is no response annotation.

 :rtype: int

 .. attribute:: popup_xref

 The PDF :data:`xref` of the associated Popup annotation. Zero if non-existent.

 :rtype: int

 .. attribute:: has_popup

 Whether the annotation has a Popup annotation.

 :rtype: bool

 .. attribute:: is_open

 Whether the annotation's Popup is open -- **or** the annotation itself ('Text' annotations only).

 :rtype: bool

 .. attribute:: popup_rect

 The rectangle of the associated Popup annotation. Infinite rectangle if non-existent.

 :rtype: :ref:`Rect`

 .. attribute:: border

 A dictionary containing border characteristics. Empty if no border information exists. The following keys may be present:

 * *width* -- a float indicating the border thickness in points. The value is -1.0 if no width is specified.

 * *dashes* -- a sequence of integers specifying a line dash pattern. *[]* means no dashes, *[n]* means equal on-off lengths of *n* points, longer lists will be interpreted as specifying alternating on-off length values. See the :ref:`AdobeManual` page 126 for more details.

 * *style* -- 1-byte border style: **"S"** (Solid) = solid rectangle surrounding the annotation, **"D"** (Dashed) = dashed rectangle surrounding the annotation, the dash pattern is specified by the *dashes* entry, **"B"** (Beveled) = a simulated embossed rectangle that appears to be raised above the surface of the page, **"I"** (Inset) = a simulated engraved rectangle that appears to be recessed below the surface of the page, **"U"** (Underline) = a single line along the bottom of the annotation rectangle.

 :rtype: dict

.. _mupdficons:

Annotation Icons in MuPDF

This is a list of icons referencable by name for annotation types 'Text' and 'FileAttachment'. You can use them via the *icon* parameter when adding an annotation, or use the as argument in :meth:`Annot.set_name`. It is left to your discretion which item to choose when -- no mechanism will keep you from using e.g. the "Speaker" icon for a 'FileAttachment'.

.. image:: images/mupdf-icons.*

Example

Change the graphical image of an annotation. Also update the "author" and the text to be shown in the popup window::

 doc = fitz.open("circle-in.pdf")
 page = doc[0] # page 0
 annot = page.first_annot # get the annotation
 annot.set_border(dashes=[3]) # set dashes to "3 on, 3 off ..."

 # set stroke and fill color to some blue
 annot.set_colors({"stroke":(0, 0, 1), "fill":(0.75, 0.8, 0.95)})
 info = annot.info # get info dict
 info["title"] = "Jorj X. McKie" # set author

 # text in popup window ...
 info["content"] = "I changed border and colors and enlarged the image by 20%."
 info["subject"] = "Demonstration of PyMuPDF" # some PDF viewers also show this
 annot.set_info(info) # update info dict
 r = annot.rect # take annot rect
 r.x1 = r.x0 + r.width * 1.2 # new location has same top-left
 r.y1 = r.y0 + r.height * 1.2 # but 20% longer sides
 annot.set_rect(r) # update rectangle
 annot.update() # update the annot's appearance
 doc.save("circle-out.pdf") # save

This is how the circle annotation looks like before and after the change (pop-up windows displayed using Nitro PDF viewer):

|circle|

.. |circle| image:: images/img-circle.*

.. rubric:: Footnotes

.. [#f1] Rotating an annotation also changes its rectangle. Depending on how the annotation was defined, the original rectangle is **not reconstructible** by setting the rotation value to zero again and will be lost.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/app1.rst

.. include:: header.rst

.. _Appendix1:

======================================
Appendix 1: Details on Text Extraction
======================================
This chapter provides background on the text extraction methods of PyMuPDF.

Information of interest are

* what do they provide?
* what do they imply (processing time / data sizes)?

General structure of a TextPage
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:ref:`TextPage` is one of (Py-) MuPDF's classes. It is normally created (and destroyed again) behind the curtain, when :ref:`Page` text extraction methods are used, but it is also available directly and can be used as a persistent object. Other than its name suggests, images may optionally also be part of a text page::

 <page>
     <text block>
         <line>
             <span>
                 <char>
     <image block>
         <img>

A **text page** consists of blocks (= roughly paragraphs).

A **block** consists of either lines and their characters, or an image.

A **line** consists of spans.

A **span** consists of adjacent characters with identical font properties: name, size, flags and color.

Plain Text
~~~~~~~~~~

Function :meth:`TextPage.extractText` (or *Page.get_text("text")*) extracts a page's plain **text in original order** as specified by the creator of the document.

An example output::

 >>> print(page.get_text("text"))
 Some text on first page.

.. note:: The output may not equal an accustomed "natural" reading order. However, you can request a reordering following the scheme "top-left to bottom-right" by executing `page.get_text("text", sort=True)`.

BLOCKS
~~~~~~~~~~

Function :meth:`TextPage.extractBLOCKS` (or *Page.get_text("blocks")*) extracts a page's text blocks as a list of items like::

    (x0, y0, x1, y1, "lines in block", block_no, block_type)

Where the first 4 items are the float coordinates of the block's bbox. The lines within each block are concatenated by a new-line character.

This is a high-speed method, which by default also extracts image meta information: Each image appears as a block with one text line, which contains meta information. The image itself is not shown.

As with simple text output above, the ``sort`` argument can be used as well to obtain a reading order.

Example output::

    >>> print(page.get_text("blocks", sort=False))
    [(50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375,
    'Some text on first page.', 0, 0)]


WORDS
~~~~~~~~~~

Function :meth:`TextPage.extractWORDS` (or *Page.get_text("words")*) extracts a page's text **words** as a list of items like::

 (x0, y0, x1, y1, "word", block_no, line_no, word_no)

Where the first 4 items are the float coordinates of the words's bbox. The last three integers provide some more information on the word's whereabouts.

This is a high-speed method. As with the previous methods, argument ``sort=True`` will reorder the words.

Example output::

 >>> for word in page.get_text("words", sort=False):
 print(word)
 (50.0, 88.17500305175781, 78.73200225830078, 103.28900146484375,
 'Some', 0, 0, 0)
 (81.79000091552734, 88.17500305175781, 99.5219955444336, 103.28900146484375,
 'text', 0, 0, 1)
 (102.57999420166016, 88.17500305175781, 114.8119888305664, 103.28900146484375,
 'on', 0, 0, 2)
 (117.86998748779297, 88.17500305175781, 135.5909881591797, 103.28900146484375,
 'first', 0, 0, 3)
 (138.64898681640625, 88.17500305175781, 166.1709747314453, 103.28900146484375,
 'page.', 0, 0, 4)

HTML
~~~~

:meth:`TextPage.extractHTML` (or *Page.get_text("html")* output fully reflects the structure of the page's *TextPage* -- much like DICT / JSON below. This includes images, font information and text positions. If wrapped in HTML header and trailer code, it can readily be displayed by an internet browser. Our above example::

    >>> for line in page.get_text("html").splitlines():
            print(line)

    <div id="page0" style="position:relative;width:300pt;height:350pt;
    background-color:white">
    <p style="position:absolute;white-space:pre;margin:0;padding:0;top:88pt;
    left:50pt"><span style="font-family:Helvetica,sans-serif;
    font-size:11pt">Some text on first page.</span></p>
    </div>


.. _HTMLQuality:

Controlling Quality of HTML Output
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
While HTML output has improved a lot in MuPDF v1.12.0, it is not yet bug-free: we have found problems in the areas **font support** and **image positioning**.

* HTML text contains references to the fonts used of the original document. If these are not known to the browser (a fat chance!), it will replace them with others; the results will probably look awkward. This issue varies greatly by browser -- on my Windows machine, MS Edge worked just fine, whereas Firefox looked horrible.

* For PDFs with a complex structure, images may not be positioned and / or sized correctly. This seems to be the case for rotated pages and pages, where the various possible page bbox variants do not coincide (e.g. *MediaBox != CropBox*). We do not know yet, how to address this -- we filed a bug at MuPDF's site.

To address the font issue, you can use a simple utility script to scan through the HTML file and replace font references. Here is a little example that replaces all fonts with one of the :ref:`Base-14-Fonts`: serifed fonts will become "Times", non-serifed "Helvetica" and monospaced will become "Courier". Their respective variations for "bold", "italic", etc. are hopefully done correctly by your browser::

 import sys
 filename = sys.argv[1]
 otext = open(filename).read() # original html text string
 pos1 = 0 # search start poition
 font_serif = "font-family:Times" # enter ...
 font_sans = "font-family:Helvetica" # ... your choices ...
 font_mono = "font-family:Courier" # ... here
 found_one = False # true if search successfull

 while True:
 pos0 = otext.find("font-family:", pos1) # start of a font spec
 if pos0 < 0: # none found - we are done
 break
 pos1 = otext.find(";", pos0) # end of font spec
 test = otext[pos0 : pos1] # complete font spec string
 testn = "" # the new font spec string
 if test.endswith(",serif"): # font with serifs?
 testn = font_serif # use Times instead
 elif test.endswith(",sans-serif"): # sans serifs font?
 testn = font_sans # use Helvetica
 elif test.endswith(",monospace"): # monospaced font?
 testn = font_mono # becomes Courier

 if testn != "": # any of the above found?
 otext = otext.replace(test, testn) # change the source
 found_one = True
 pos1 = 0 # start over

 if found_one:
 ofile = open(filename + ".html", "w")
 ofile.write(otext)
 ofile.close()
 else:
 print("Warning: could not find any font specs!")

DICT (or JSON)
~~~~~~~~~~~~~~~~

:meth:`TextPage.extractDICT` (or *Page.get_text("dict", sort=False)*) output fully reflects the structure of a *TextPage* and provides image content and position detail (*bbox* -- boundary boxes in pixel units) for every block, line and span. Images are stored as *bytes* for DICT output and base64 encoded strings for JSON output.

For a visuallization of the dictionary structure have a look at :ref:`textpagedict`.

Here is how this looks like::

    {
        "width": 300.0,
        "height": 350.0,
        "blocks": [{
            "type": 0,
            "bbox": (50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375),
            "lines": ({
                "wmode": 0,
                "dir": (1.0, 0.0),
                "bbox": (50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375),
                "spans": ({
                    "size": 11.0,
                    "flags": 0,
                    "font": "Helvetica",
                    "color": 0,
                    "origin": (50.0, 100.0),
                    "text": "Some text on first page.",
                    "bbox": (50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375)
                })
            }]
        }]
    }

RAWDICT (or RAWJSON)
~~~~~~~~~~~~~~~~~~~~~
:meth:`TextPage.extractRAWDICT` (or *Page.get_text("rawdict", sort=False)*) is an **information superset of DICT** and takes the detail level one step deeper. It looks exactly like the above, except that the *"text"* items (*string*) in the spans are replaced by the list *"chars"*. Each *"chars"* entry is a character *dict*. For example, here is what you would see in place of item *"text": "Text in black color."* above::

 "chars": [{
 "origin": (50.0, 100.0),
 "bbox": (50.0, 88.17500305175781, 57.336997985839844, 103.28900146484375),
 "c": "S"
 }, {
 "origin": (57.33700180053711, 100.0),
 "bbox": (57.33700180053711, 88.17500305175781, 63.4530029296875, 103.28900146484375),
 "c": "o"
 }, {
 "origin": (63.4530029296875, 100.0),
 "bbox": (63.4530029296875, 88.17500305175781, 72.61600494384766, 103.28900146484375),
 "c": "m"
 }, {
 "origin": (72.61600494384766, 100.0),
 "bbox": (72.61600494384766, 88.17500305175781, 78.73200225830078, 103.28900146484375),
 "c": "e"
 }, {
 "origin": (78.73200225830078, 100.0),
 "bbox": (78.73200225830078, 88.17500305175781, 81.79000091552734, 103.28900146484375),
 "c": " "
 < ... deleted ... >
 }, {
 "origin": (163.11297607421875, 100.0),
 "bbox": (163.11297607421875, 88.17500305175781, 166.1709747314453, 103.28900146484375),
 "c": "."
 }],

XML
~~~

The :meth:`TextPage.extractXML` (or *Page.get_text("xml")*) version extracts text (no images) with the detail level of RAWDICT::

    >>> for line in page.get_text("xml").splitlines():
        print(line)

    <page id="page0" width="300" height="350">
    <block bbox="50 88.175 166.17098 103.289">
    <line bbox="50 88.175 166.17098 103.289" wmode="0" dir="1 0">
    <font name="Helvetica" size="11">
    <char quad="50 88.175 57.336999 88.175 50 103.289 57.336999 103.289" x="50"
    y="100" color="#000000" c="S"/>
    <char quad="57.337 88.175 63.453004 88.175 57.337 103.289 63.453004 103.289" x="57.337"
    y="100" color="#000000" c="o"/>
    <char quad="63.453004 88.175 72.616008 88.175 63.453004 103.289 72.616008 103.289" x="63.453004"
    y="100" color="#000000" c="m"/>
    <char quad="72.616008 88.175 78.732 88.175 72.616008 103.289 78.732 103.289" x="72.616008"
    y="100" color="#000000" c="e"/>
    <char quad="78.732 88.175 81.79 88.175 78.732 103.289 81.79 103.289" x="78.732"
    y="100" color="#000000" c=" "/>

    ... deleted ...

    <char quad="163.11298 88.175 166.17098 88.175 163.11298 103.289 166.17098 103.289" x="163.11298"
    y="100" color="#000000" c="."/>
    </font>
    </line>
    </block>
    </page>

.. note:: We have successfully tested `lxml <https://pypi.org/project/lxml/>`_ to interpret this output.

XHTML
~~~~~
:meth:`TextPage.extractXHTML` (or *Page.get_text("xhtml")*) is a variation of TEXT but in HTML format, containing the bare text and images ("semantic" output)::

 <div id="page0">
 <p>Some text on first page.</p>
 </div>

.. _text_extraction_flags:

Text Extraction Flags Defaults
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* New in version 1.16.2: Method :meth:`Page.get_text` supports a keyword parameter *flags* *(int)* to control the amount and the quality of extracted data. The following table shows the defaults settings (flags parameter omitted or None) for each extraction variant. If you specify flags with a value other than *None*, be aware that you must set **all desired** options. A description of the respective bit settings can be found in :ref:`TextPreserve`.

* New in v1.19.6: The default combinations in the following table are now available as Python constants: :data:`TEXTFLAGS_TEXT`, :data:`TEXTFLAGS_WORDS`, :data:`TEXTFLAGS_BLOCKS`, :data:`TEXTFLAGS_DICT`, :data:`TEXTFLAGS_RAWDICT`, :data:`TEXTFLAGS_HTML`, :data:`TEXTFLAGS_XHTML`, :data:`TEXTFLAGS_XML`, and :data:`TEXTFLAGS_SEARCH`. You can now easily modify a default flag, e.g.

    - **include** images in a "blocks" output:
    
    ``flags = TEXTFLAGS_BLOCKS | TEXT_PRESERVE_IMAGES``
    
    - **exclude** images from a "dict" output:
    
    ``flags = TEXTFLAGS_DICT & ~TEXT_PRESERVE_IMAGES``
    
    - set **dehyphenation off** in text searches:
    
    ``flags = TEXTFLAGS_SEARCH & ~TEXT_DEHYPHENATE``


=================== ==== ==== ===== === ==== ======= ===== ====== ======
Indicator           text html xhtml xml dict rawdict words blocks search
=================== ==== ==== ===== === ==== ======= ===== ====== ======
preserve ligatures  1    1    1     1   1    1       1     1       1
preserve whitespace 1    1    1     1   1    1       1     1       1
preserve images     n/a  1    1     n/a 1    1       n/a   0       0
inhibit spaces      0    0    0     0   0    0       0     0       0
dehyphenate         0    0    0     0   0    0       0     0       1
clip to mediabox    1    1    1     1   1    1       1     1       1
=================== ==== ==== ===== === ==== ======= ===== ====== ======

* **search** refers to the text search function.
* **"json"** is handled exactly like **"dict"** and is hence left out.
* **"rawjson"** is handled exactly like **"rawdict"** and is hence left out.
* An "n/a" specification means a value of 0 and setting this bit never has any effect on the output (but an adverse effect on performance).
* If you are not interested in images when using an output variant which includes them by default, then by all means set the respective bit off: You will experience a better performance and much lower space requirements.

To show the effect of *TEXT_INHIBIT_SPACES* have a look at this example::

    >>> print(page.get_text("text"))
    H a l l o !
    Mo r e  t e x t
    i s  f o l l o w i n g
    i n  E n g l i s h
    . . .  l e t ' s  s e e
    w h a t  h a p p e n s .
    >>> print(page.get_text("text", flags=fitz.TEXT_INHIBIT_SPACES))
    Hallo!
    More text
    is following
    in English
    ... let's see
    what happens.
    >>>


Performance
~~~~~~~~~~~~
The text extraction methods differ significantly both: in terms of information they supply, and in terms of resource requirements and runtimes. Generally, more information of course means, that more processing is required and a higher data volume is generated.

.. note:: Especially images have a **very significant** impact. Make sure to exclude them (via the *flags* parameter) whenever you do not need them. To process the below mentioned 2'700 total pages with default flags settings required 160 seconds across all extraction methods. When all images where excluded, less than 50% of that time (77 seconds) were needed.

To begin with, all methods are **very fast** in relation to other products out there in the market. In terms of processing speed, we are not aware of a faster (free) tool. Even the most detailed method, RAWDICT, processes all 1'310 pages of the :ref:`AdobeManual` in less than 5 seconds (simple text needs less than 2 seconds here).

The following table shows average relative speeds ("RSpeed", baseline 1.00 is TEXT), taken across ca. 1400 text-heavy and 1300 image-heavy pages.

======= ====== === ==========
Method RSpeed Comments no images
======= ====== === ==========
TEXT 1.00 no images, **plain** text, line breaks 1.00
BLOCKS 1.00 image bboxes (only), **block** level text with bboxes, line breaks 1.00
WORDS 1.02 no images, **word** level text with bboxes 1.02
XML 2.72 no images, **char** level text, layout and font details 2.72
XHTML 3.32 **base64** images, **span** level text, no layout info 1.00
HTML 3.54 **base64** images, **span** level text, layout and font details 1.01
DICT 3.93 **binary** images, **span** level text, layout and font details 1.04
RAWDICT 4.50 **binary** images, **char** level text, layout and font details 1.68
======= ====== === ==========

As mentioned: when excluding image extraction (last column), the relative speeds are changing drastically: except RAWDICT and XML, the other methods are almost equally fast, and RAWDICT requires 40% less execution time than the **now slowest XML**.

Look at chapter **Appendix 1** for more performance information.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/app2.rst

.. include:: header.rst

.. _Appendix2:

==
Appendix 2: Considerations on Embedded Files
==
This chapter provides some background on embedded files support in PyMuPDF.

General

Starting with version 1.4, PDF supports embedding arbitrary files as part ("Embedded File Streams") of a PDF document file (see chapter "7.11.4
Embedded File Streams", pp. 103 of the :ref:`AdobeManual`).

In many aspects, this is comparable to concepts also found in ZIP files or the OLE technique in MS Windows. PDF embedded files do, however, *not* support directory structures as does the ZIP format. An embedded file can in turn contain embedded files itself.

Advantages of this concept are that embedded files are under the PDF umbrella, benefitting from its permissions / password protection and integrity aspects: all data, which a PDF may reference or even may be dependent on, can be bundled into it and so form a single, consistent unit of information.

In addition to embedded files, PDF 1.7 adds *collections* to its support range. This is an advanced way of storing and presenting meta information (i.e. arbitrary and extensible properties) of embedded files.

MuPDF Support

After adding initial support for collections (portfolios) and */EmbeddedFiles* in MuPDF version 1.11, this support was dropped again in version 1.15.

As a consequence, the cli utility *mutool* no longer offers access to embedded files.

PyMuPDF -- having implemented an */EmbeddedFiles* API in response in its version 1.11.0 -- was therefore forced to change gears starting with its version 1.16.0 (we never published a MuPDF v1.15.x compatible PyMuPDF).

We are now maintaining our own code basis supporting embedded files. This code makes use of basic MuPDF dictionary and array functions only.

PyMuPDF Support

We continue to support the full old API with respect to embedded files -- with only minor, cosmetic changes.

There even also is a new function, which delivers a list of all names under which embedded data are resgistered in a PDF, :meth:`Document.embfile_names`.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/app3.rst

.. include:: header.rst

.. _Appendix3:

==
Appendix 3: Assorted Technical Information
==
This section deals with various technical topics, that are not necessarily related to each other.

.. _ImageTransformation:

Image Transformation Matrix

Starting with version 1.18.11, the image transformation matrix is returned by some methods for text and image extraction: :meth:`Page.get_text` and :meth:`Page.get_image_bbox`.

The transformation matrix contains information about how an image was transformed to fit into the rectangle (its "boundary box" = "bbox") on some document page. By inspecting the image's bbox on the page and this matrix, one can determine for example, whether and how the image is displayed scaled or rotated on a page.

The relationship between image dimension and its bbox on a page is the following:

1. Using the original image's width and height,
 - define the image rectangle ``imgrect = fitz.Rect(0, 0, width, height)``
 - define the "shrink matrix" ``shrink = fitz.Matrix(1/width, 0, 0, 1/height, 0, 0)``.

2. Transforming the image rectangle with its shrink matrix, will result in the unit rectangle: ``imgrect * shrink = fitz.Rect(0, 0, 1, 1)``.

3. Using the image **transformation matrix** "transform", the following steps will compute the bbox::

 imgrect = fitz.Rect(0, 0, width, height)
 shrink = fitz.Matrix(1/width, 0, 0, 1/height, 0, 0)
 bbox = imgrect * shrink * transform

4. Inspecting the matrix product ``shrink * transform`` will reveal all information about what happened to the image rectangle to make it fit into the bbox on the page: rotation, scaling of its sides and translation of its origin. Let us look at an example:

 >>> imginfo = page.get_images()[0] # get an image item on a page
 >>> imginfo
 (5, 0, 439, 501, 8, 'DeviceRGB', '', 'fzImg0', 'DCTDecode')
 >>> #--
 >>> # define image shrink matrix and rectangle
 >>> #--
 >>> shrink = fitz.Matrix(1 / 439, 0, 0, 1 / 501, 0, 0)
 >>> imgrect = fitz.Rect(0, 0, 439, 501)
 >>> #--
 >>> # determine image bbox and transformation matrix:
 >>> #--
 >>> bbox, transform = page.get_image_bbox("fzImg0", transform=True)
 >>> #--
 >>> # confirm equality - permitting rounding errors
 >>> #--
 >>> bbox
 Rect(100.0, 112.37525939941406, 300.0, 287.624755859375)
 >>> imgrect * shrink * transform
 Rect(100.0, 112.375244140625, 300.0, 287.6247253417969)
 >>> #--
 >>> shrink * transform
 Matrix(0.0, -0.39920157194137573, 0.3992016017436981, 0.0, 100.0, 287.6247253417969)
 >>> #--
 >>> # the above shows:
 >>> # image sides are scaled by same factor ~0.4,
 >>> # and the image is rotated by 90 degrees clockwise
 >>> # compare this with fitz.Matrix(-90) * 0.4
 >>> #--

.. _Base-14-Fonts:

PDF Base 14 Fonts

The following 14 builtin font names **must be supported by every PDF viewer** application. They are available as a dictionary, which maps their full names amd their abbreviations in lower case to the full font basename. Whereever a **fontname** must be provided in PyMuPDF, any **key or value** from the dictionary may be used::

 In [2]: fitz.Base14_fontdict
 Out[2]:
 {'courier': 'Courier',
 'courier-oblique': 'Courier-Oblique',
 'courier-bold': 'Courier-Bold',
 'courier-boldoblique': 'Courier-BoldOblique',
 'helvetica': 'Helvetica',
 'helvetica-oblique': 'Helvetica-Oblique',
 'helvetica-bold': 'Helvetica-Bold',
 'helvetica-boldoblique': 'Helvetica-BoldOblique',
 'times-roman': 'Times-Roman',
 'times-italic': 'Times-Italic',
 'times-bold': 'Times-Bold',
 'times-bolditalic': 'Times-BoldItalic',
 'symbol': 'Symbol',
 'zapfdingbats': 'ZapfDingbats',
 'helv': 'Helvetica',
 'heit': 'Helvetica-Oblique',
 'hebo': 'Helvetica-Bold',
 'hebi': 'Helvetica-BoldOblique',
 'cour': 'Courier',
 'coit': 'Courier-Oblique',
 'cobo': 'Courier-Bold',
 'cobi': 'Courier-BoldOblique',
 'tiro': 'Times-Roman',
 'tibo': 'Times-Bold',
 'tiit': 'Times-Italic',
 'tibi': 'Times-BoldItalic',
 'symb': 'Symbol',
 'zadb': 'ZapfDingbats'}

In contrast to their obligation, not all PDF viewers support these fonts correctly and completely -- this is especially true for Symbol and ZapfDingbats. Also, the glyph (visual) images will be specific to every reader.

To see how these fonts can be used -- including the **CJK built-in** fonts -- look at the table in :meth:`Page.insert_font`.

.. _AdobeManual:

Adobe PDF References

This PDF Reference manual published by Adobe is frequently quoted throughout this documentation. It can be viewed and downloaded from `here <https://opensource.adobe.com/dc-acrobat-sdk-docs/standards/pdfstandards/pdf/PDF32000_2008.pdf>`_.

.. note:: For a long time, an older version was also available under `this <http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf>`_ link. It seems to be taken off of the web site in October 2021. Earlier (pre 1.19.*) versions of the PyMuPDF documentation used to refer to this document. We have undertaken an effort to replace referrals to the current specification above.

.. _SequenceTypes:

Using Python Sequences as Arguments in PyMuPDF
--
When PyMuPDF objects and methods require a Python **list** of numerical values, other Python **sequence types** are also allowed. Python classes are said to implement the **sequence protocol**, if they have a ``__getitem__()`` method.

This basically means, you can interchangeably use Python *list* or *tuple* or even *array.array*, *numpy.array* and *bytearray* types in these cases.

For example, specifying a sequence ``"s"`` in any of the following ways

* ``s = [1, 2]`` -- a list
* ``s = (1, 2)`` -- a tuple
* ``s = array.array("i", (1, 2))`` -- an array.array
* ``s = numpy.array((1, 2))`` -- a numpy array
* ``s = bytearray((1, 2))`` -- a bytearray

will make it usable in the following example expressions:

* ``fitz.Point(s)``
* ``fitz.Point(x, y) + s``
* ``doc.select(s)``

Similarly with all geometry objects :ref:`Rect`, :ref:`IRect`, :ref:`Matrix` and :ref:`Point`.

Because all PyMuPDF geometry classes themselves are special cases of sequences, they (with the exception of :ref:`Quad` -- see below) can be freely used where numerical sequences can be used, e.g. as arguments for functions like *list()*, *tuple()*, *array.array()* or *numpy.array()*. Look at the following snippet to see this work.

>>> import fitz, array, numpy as np
>>> m = fitz.Matrix(1, 2, 3, 4, 5, 6)
>>>
>>> list(m)
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
>>>
>>> tuple(m)
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
>>>
>>> array.array("f", m)
array('f', [1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
>>>
>>> np.array(m)
array([1., 2., 3., 4., 5., 6.])

.. note:: :ref:`Quad` is a Python sequence object as well and has a length of 4. Its items however are :data:`point_like` -- not numbers. Therefore, the above remarks do not apply.

.. _ReferenialIntegrity:

Ensuring Consistency of Important Objects in PyMuPDF
--
PyMuPDF is a Python binding for the C library MuPDF. While a lot of effort has been invested by MuPDF's creators to approximate some sort of an object-oriented behavior, they certainly could not overcome basic shortcomings of the C language in that respect.

Python on the other hand implements the OO-model in a very clean way. The interface code between PyMuPDF and MuPDF consists of two basic files: *fitz.py* and *fitz_wrap.c*. They are created by the excellent SWIG tool for each new version.

When you use one of PyMuPDF's objects or methods, this will result in excution of some code in *fitz.py*, which in turn will call some C code compiled with *fitz_wrap.c*.

Because SWIG goes a long way to keep the Python and the C level in sync, everything works fine, if a certain set of rules is being strictly followed. For example: **never access** a :ref:`Page` object, after you have closed (or deleted or set to *None*) the owning :ref:`Document`. Or, less obvious: **never access** a page or any of its children (links or annotations) after you have executed one of the document methods *select()*, *delete_page()*, *insert_page()* ... and more.

But just no longer accessing invalidated objects is actually not enough: They should rather be actively deleted entirely, to also free C-level resources (meaning allocated memory).

The reason for these rules lies in the fact that there is a hierachical 2-level one-to-many relationship between a document and its pages and also between a page and its links / annotations. To maintain a consistent situation, any of the above actions must lead to a complete reset -- in **Python and, synchronously, in C**.

SWIG cannot know about this and consequently does not do it.

The required logic has therefore been built into PyMuPDF itself in the following way.

1. If a page "loses" its owning document or is being deleted itself, all of its currently existing annotations and links will be made unusable in Python, and their C-level counterparts will be deleted and deallocated.

2. If a document is closed (or deleted or set to *None*) or if its structure has changed, then similarly all currently existing pages and their children will be made unusable, and corresponding C-level deletions will take place. "Structure changes" include methods like *select()*, *delePage()*, *insert_page()*, *insert_pdf()* and so on: all of these will result in a cascade of object deletions.

The programmer will normally not realize any of this. If he, however, tries to access invalidated objects, exceptions will be raised.

Invalidated objects cannot be directly deleted as with Python statements like *del page* or *page = None*, etc. Instead, their *__del__* method must be invoked.

All pages, links and annotations have the property *parent*, which points to the owning object. This is the property that can be checked on the application level: if *obj.parent == None* then the object's parent is gone, and any reference to its properties or methods will raise an exception informing about this "orphaned" state.

A sample session:

>>> page = doc[n]
>>> annot = page.first_annot
>>> annot.type # everything works fine
[5, 'Circle']
>>> page = None # this turns 'annot' into an orphan
>>> annot.type
<... omitted lines ...>
RuntimeError: orphaned object: parent is None
>>>
>>> # same happens, if you do this:
>>> annot = doc[n].first_annot # deletes the page again immediately!
>>> annot.type # so, 'annot' is 'born' orphaned
<... omitted lines ...>
RuntimeError: orphaned object: parent is None

This shows the cascading effect:

>>> doc = fitz.open("some.pdf")
>>> page = doc[n]
>>> annot = page.first_annot
>>> page.rect
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>> annot.type
[5, 'Circle']
>>> del doc # or doc = None or doc.close()
>>> page.rect
<... omitted lines ...>
RuntimeError: orphaned object: parent is None
>>> annot.type
<... omitted lines ...>
RuntimeError: orphaned object: parent is None

.. note:: Objects outside the above relationship are not included in this mechanism. If you e.g. created a table of contents by *toc = doc.get_toc()*, and later close or change the document, then this cannot and does not change variable *toc* in any way. It is your responsibility to refresh such variables as required.

.. _FormXObject:

Design of Method :meth:`Page.show_pdf_page`
--

Purpose and Capabilities
~~~~~~~~~~~~~~~~~~~~~~~~~~~

The method displays an image of a ("source") page of another PDF document within a specified rectangle of the current ("containing", "target") page.

* **In contrast** to :meth:`Page.insert_image`, this display is vector-based and hence remains accurate across zooming levels.
* **Just like** :meth:`Page.insert_image`, the size of the display is adjusted to the given rectangle.

The following variations of the display are currently supported:

* Bool parameter *keep_proportion* controls whether to maintain the aspect ratio (default) or not.
* Rectangle parameter *clip* restricts the visible part of the source page rectangle. Default is the full page.
* float *rotation* rotates the display by an arbitrary angle (degrees). If the angle is not an integer multiple of 90, only 2 of the 4 corners may be positioned on the target border if also *keep_proportion* is true.
* Bool parameter *overlay* controls whether to put the image on top (foreground, default) of current page content or not (background).

Use cases include (but are not limited to) the following:

1. "Stamp" a series of pages of the current document with the same image, like a company logo or a watermark.
2. Combine arbitrary input pages into one output page to support “booklet” or double-sided printing (known as "4-up", "n-up").
3. Split up (large) input pages into several arbitrary pieces. This is also called “posterization”, because you e.g. can split an A4 page horizontally and vertically, print the 4 pieces enlarged to separate A4 pages, and end up with an A2 version of your original page.

Technical Implementation
~~~~~~~~~~~~~~~~~~~~~~~~~

This is done using PDF **"Form XObjects"**, see section 8.10 on page 217 of :ref:`AdobeManual`. On execution of a *Page.show_pdf_page(rect, src, pno, ...)*, the following things happen:

 1. The :data:`resources` and :data:`contents` objects of page *pno* in document *src* are copied over to the current document, jointly creating a new **Form XObject** with the following properties. The PDF :data:`xref` number of this object is returned by the method.

 a. */BBox* equals */Mediabox* of the source page
 b. */Matrix* equals the identity matrix *[1 0 0 1 0 0]*
 c. */Resources* equals that of the source page. This involves a “deep-copy” of hierarchically nested other objects (including fonts, images, etc.). The complexity involved here is covered by MuPDF’s grafting [#f1]_ technique functions.
 d. This is a stream object type, and its stream is an exact copy of the combined data of the source page's */Contents* objects.

 This step is only executed once per shown source page. Subsequent displays of the same page only create pointers (done in next step) to this object.

 2. A second **Form XObject** is then created which the target page uses to invoke the display. This object has the following properties:

 a. */BBox* equals the */CropBox* of the source page (or *clip*).
 b. */Matrix* represents the mapping of */BBox* to the target rectangle.
 c. */XObject* references the previous XObject via the fixed name *fullpage*.
 d. The stream of this object contains exactly one fixed statement: */fullpage Do*.

 3. The :data:`resources` and :data:`contents` objects of the target page are now modified as follows.

 a. Add an entry to the */XObject* dictionary of */Resources* with the name *fzFrm<n>* (with n chosen such that this entry is unique on the page).
 b. Depending on *overlay*, prepend or append a new object to the page's */Contents* array, containing the statement *q /fzFrm<n> Do Q*.

.. _RedirectMessages:

Redirecting Error and Warning Messages
--
Since MuPDF version 1.16 error and warning messages can be redirected via an official plugin.

PyMuPDF will put error messages to *sys.stderr* prefixed with the string "mupdf:". Warnings are internally stored and can be accessed via *fitz.TOOLS.mupdf_warnings()*. There also is a function to empty this store.

.. rubric:: Footnotes

.. [#f1] MuPDF supports "deep-copying" objects between PDF documents. To avoid duplicate data in the target, it uses so-called "graftmaps", like a form of scratchpad: for each object to be copied, its :data:`xref` number is looked up in the graftmap. If found, copying is skipped. Otherwise, the new :data:`xref` is recorded and the copy takes place. PyMuPDF makes use of this technique in two places so far: :meth:`Document.insert_pdf` and :meth:`Page.show_pdf_page`. This process is fast and very efficient, because it prevents multiple copies of typically large and frequently referenced data, like images and fonts. However, you may still want to consider using garbage collection (option 4) in any of the following cases:

 1. The target PDF is not new / empty: grafting does not check for resources that already existed (e.g. images, fonts) in the target document before opening it.
 2. Using :meth:`Page.show_pdf_page` for more than one source document: each grafting occurs **within one source** PDF only, not across multiple. So if e.g. the same image exists in pages from different source PDFs, then this will not be detected until garbage collection.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/archive-class.rst

.. include:: header.rst

.. _Archive:

================
Archive
================

* New in v1.21.0

This class represents a generalization of file folders and container files like ZIP and TAR archives. Archives allow accessing arbitrary collections of file folders, ZIP / TAR files and single binary data elements as if they all were part of one hierarchical tree of folders.

In PyMuPDF, archives are currently only used by :ref:`Story` objects to specify where to look for fonts, images and other resources.

================================ ===
Method / Attribute **Short Description**
================================ ===
:meth:`Archive.add` add new data to the archive
:meth:`Archive.has_entry` check if given name is a member
:meth:`Archive.read_entry` read the data given by the name
:attr:`Archive.entry_list` list[dict] of archive items
================================ ===

Class API

.. class:: Archive

 .. method:: __init__(self [, content [, path]])

 Creates a new archive. Without parameters, an empty archive is created.

 If provided, ``content`` may be one of the following:

 * another Archive: the archive is being made a sub-archive of the new one.

 * a string: this must be the name of a local folder or file. ``pathlib.Path`` objects are also supported.

 - A **folder** will be converted to a sub-archive, so its files (and any sub-folders) can be accessed by their names.
 - A **file** will be read with mode ``"rb"`` and these binary data (a ``bytes`` object) be treated as a single-member sub-archive. In this case, the ``path`` parameter is **mandatory** and should be the member name under which this item can be found / retrieved.

 * a ``zipfile.ZipFile`` or ``tarfile.TarFile`` object: Will be added as a sub-archive.

 * a Python binary object (``bytes``, ``bytearray``, ``io.BytesIO``): this will add a single-member sub-archive. In this case, the ``path`` parameter is **mandatory** and should be the member name under which this item can be found / retrieved.

 * a tuple ``(data, name)``: This will add a single-member sub-archive with the member name ``name``. ``data`` may be a Python binary object or a local file name (in which case its binary file content is used). Use this format if you need to specify ``path``.

 * a Python sequence: This is a convenience format to specify any combination of the above.

 If provided, ``path`` must be a string.

 * If ``content`` is either binary data or a file name, this parameter is mandatory and must be the name under which the data can be found.

 * Otherwise this parameter is optional. It can be used to simulate a folder name or a mount point, under which this sub-archive's elements can be found. For example this specification ``Archive((data, "name"), "path")`` means that ``data`` will be found using the element name ``"path/name"``. Similar is true for other sub-archives: to retrieve members of a ZIP sub-archive, their names must be prefixed with `"path/"`. The main purpose of this parameter probably is to differentiate between duplicate names.

 .. note:: If duplicate entry names exist in the archive, always the last entry with that name will be found / retrieved. During archive creation, or appending more data to an archive (see :meth:`Archive.add`) no check for duplicates will be made. Use the `path` parameter to prevent this from happening.

 .. method:: add(content [,path])

 Append a sub-archive. The meaning of the parameters are exactly the same as explained above. Of course, parametrer ``content`` is not optional here.

 .. method:: has_entry(name)

 Checks whether an entry exists in any of the sub-archives.

 :arg str name: The fully qualified name of the entry. So must include any ``path`` prefix under which the entry's sub-archive has been added.

 :returns: ``True`` or ``False``.

 .. method:: read_entry(name)

 Retrieve the data of an entry.

 :arg str name: The fully qualified name of the entry. So must include any ``path`` prefix under which the entry's sub-archive has been added.

 :returns: The binary data (``bytes``) of the entry. If not found, an exception is raised.

 .. attribute:: entry_list

 A list of the archive's sub-archives. Each list item is a dictionary with the following keys:

 * ``entries`` -- a list of (top-level) entry names in this sub-archive.
 * ``fmt`` -- the format of the sub-archive. This is one of the strings "dir" (file folder), "zip" (ZIP archive), "tar" (TAR archive), or "tree" for single binary entries or file content.
 * ``path`` -- the value of the `path` parameter under which this sub-archive was added.

 Example:

 >>> from pprint import pprint
 >>> import fitz
 >>> dir1 = "fitz-32" # a folder name
 >>> dir2 = "fitz-64" # a folder name
 >>> img = ("nur-ruhig.jpg", "img") # an image file
 >>> members = (dir1, img, dir2) # we want to append these in one go
 >>> arch = fitz.Archive()
 >>> arch.add(members, path="mypath")
 >>> pprint(arch.entry_list)
 [{'entries': ['310', '37', '38', '39'], 'fmt': 'dir', 'path': 'mypath'},
 {'entries': ['img'], 'fmt': 'tree', 'path': 'mypath'},
 {'entries': ['310', '311', '37', '38', '39', 'pypy'],
 'fmt': 'dir',
 'path': 'mypath'}]
 >>>

.. include:: footer.rst

PyMuPDF-1.21.1/docs/changes.rst

.. include:: header.rst

Change Log
==========

Changes in Version 1.21.1 (2022-12-13)

* This release uses ``MuPDF-1.21.1``.

* Bug fixes:

 * **Fixed** `#2110 <https://github.com/pymupdf/PyMuPDF/issues/2110>`_: Fully embedded font is extracted only partially if it occupies more than one object
 * **Fixed** `#2094 <https://github.com/pymupdf/PyMuPDF/issues/2094>`_: Rectangle Detection Logic
 * **Fixed** `#2088 <https://github.com/pymupdf/PyMuPDF/issues/2088>`_: Destination point not set for named links in toc
 * **Fixed** `#2087 <https://github.com/pymupdf/PyMuPDF/issues/2087>`_: Image with Filter "[/FlateDecode/JPXDecode]" not extracted
 * **Fixed** `#2086 <https://github.com/pymupdf/PyMuPDF/issues/2086>`_: Document.save() owner_pw & user_pw has buffer overflow bug
 * **Fixed** `#2076 <https://github.com/pymupdf/PyMuPDF/issues/2076>`_: Segfault in fitz.py
 * **Fixed** `#2051 <https://github.com/pymupdf/PyMuPDF/issues/2051>`_: Missing DPI Parameter
 * **Fixed** `#2048 <https://github.com/pymupdf/PyMuPDF/issues/2048>`_: Invalid size of TextPage and bbox with newest version 1.21.0
 * **Fixed** `#2045 <https://github.com/pymupdf/PyMuPDF/issues/2045>`_: SystemError: <built-in function Page_get_texttrace> returned a result with an error set
 * **Fixed** `#2039 <https://github.com/pymupdf/PyMuPDF/issues/2039>`_: 1.21.0 fails to build against system libmupdf
 * **Fixed** `#2036 <https://github.com/pymupdf/PyMuPDF/issues/2036>`_: Archive::Archive defined twice

* Other

 * Swallow "&zoom=nan" in link uri strings.
 * Add new Page utility methods ``Page.replace_image()`` and ``Page.delete_image()``.

* Documentation:

 * `#2040 <https://github.com/pymupdf/PyMuPDF/issues/2040>`_: Added note about test failure with non-default build of MuPDF, to ``tests/README.md``.
 * `#2037 <https://github.com/pymupdf/PyMuPDF/issues/2037>`_: In ``docs/installation.rst``, mention incompatibility with chocolatey.org on Windows.
 * `#2061 <https://github.com/pymupdf/PyMuPDF/issues/2061>`_: Fixed description of ``Annot.file_info``.
 * `#2065 <https://github.com/pymupdf/PyMuPDF/issues/2065>`_: Show how to insert internal PDF link.
 * Improved description of building from source without an sdist.
 * Added information about running tests.
 * `#2084 <https://github.com/pymupdf/PyMuPDF/issues/2084>`_: Fixed broken link to PyMuPDF-Utilities.

Changes in Version 1.21.0 (2022-11-8)

* This release uses ``MuPDF-1.21.0``.

* New feature: Stories.

* Added wheels for Python-3.11.

* Bug fixes:

 * **Fixed** `#1701 <https://github.com/pymupdf/PyMuPDF/issues/1701>`_: Broken custom image insertion.
 * **Fixed** `#1854 <https://github.com/pymupdf/PyMuPDF/issues/1854>`_: `Document.delete_pages()` declines keyword arguments.
 * **Fixed** `#1868 <https://github.com/pymupdf/PyMuPDF/issues/1868>`_: Access Violation Error at `page.apply_redactions()`.
 * **Fixed** `#1909 <https://github.com/pymupdf/PyMuPDF/issues/1909>`_: Adding text with `fontname="Helvetica"` can silently fail.
 * **Fixed** `#1913 <https://github.com/pymupdf/PyMuPDF/issues/1913>`_: `draw_rect()`: does not respect width if color is not specified.
 * **Fixed** `#1917 <https://github.com/pymupdf/PyMuPDF/issues/1917>`_: `subset_fonts()`: make it possible to silence the stdout.
 * **Fixed** `#1936 <https://github.com/pymupdf/PyMuPDF/issues/1936>`_: Rectangle detection can be incorrect producing wrong output.
 * **Fixed** `#1945 <https://github.com/pymupdf/PyMuPDF/issues/1945>`_: Segmentation fault when saving with `clean=True`.
 * **Fixed** `#1965 <https://github.com/pymupdf/PyMuPDF/issues/1965>`_: `pdfocr_save()` Hard Crash.
 * **Fixed** `#1971 <https://github.com/pymupdf/PyMuPDF/issues/1971>`_: Segmentation fault when using `get_drawings()`.
 * **Fixed** `#1946 <https://github.com/pymupdf/PyMuPDF/issues/1946>`_: `block_no` and `block_type` switched in `get_text()` docs.
 * **Fixed** `#2013 <https://github.com/pymupdf/PyMuPDF/issues/2013>`_: AttributeError: 'Widget' object has no attribute '_annot' in delete widget.

* Misc changes to core code:

 * Fixed various compiler warnings and a sequence-point bug.
 * Added support for Memento builds.
 * Fixed leaks detected by Memento in test suite.
 * Fixed handling of exceptions in set_name() and set_rect().
 * Allow build with latest MuPDF, for regular testing of PyMuPDF master.
 * Cope with new MuPDF exceptions when setting rect for some Annot types.
 * Reduced cosmetic differences between MuPDF's config.h and PyMuPDF's _config.h.
 * Cope with various changes to MuPDF API.

* Other:

 * Fixed various broken links and typos in docs.
 * Mention install of `swig-python` on MacOS for #875.
 * Added (untested) wheels for macos-arm64.

Changes in Version 1.20.2

* This release uses ``MuPDF-1.20.3``.

* **Fixed** `#1787 <https://github.com/pymupdf/PyMuPDF/issues/1787>`_.
 Fix linking issues on Unix systems.

* **Fixed** `#1824 <https://github.com/pymupdf/PyMuPDF/issues/1824>`_.
 SegFault when applying redactions overlapping a transparent image. (Fixed
 in ``MuPDF-1.20.3``.)

* Improvements to documentation:

 * Improved information about building from source in ``docs/installation.rst``.
 * Clarified memory allocation setting ``JM_MEMORY` in ``docs/tools.rst``.
 * Fixed link to PDF Reference manual in ``docs/app3.rst``.
 * Fixed building of html documentation on OpenBSD.
 * Moved old ``docs/faq.rst`` into separate ``docs/recipes-*`` files.

* Removed some unused files and directories:

 * ``installation/``
 * ``docs/wheelnames.txt``

Changes in Version 1.20.1

* **Fixed** `#1724 <https://github.com/pymupdf/PyMuPDF/issues/1724>`_.
 Fix for building on FreeBSD.

* **Fixed** `#1771 <https://github.com/pymupdf/PyMuPDF/issues/1771>`_.
 `linkDest()` had a broken call to `re.match()`, introduced in 1.20.0.

* **Fixed** `#1751 <https://github.com/pymupdf/PyMuPDF/issues/1751>`_.
 `get_drawings()` and `get_cdrawings()` previously always returned with `closePath=False`.

* **Fixed** `#1645 <https://github.com/pymupdf/PyMuPDF/issues/1645>`_.
 Default FreeText annotation text color is now black.

* Improvements to sphinx-generated documentation:

 * Use readthedocs theme with enhancements.
 * Renamed the `.txt` files to have `.rst` suffixes.

Changes in Version 1.20.0

This release uses ``MuPDF-1.20.0``, released 2022-06-15.

* Cope with new MuPDF link uri format, changed from ``#<int>,<int>,<int>`` to ``#page=<int>&zoom=<float>,<float>,<float>``.

 * In ``tests/test_insertpdf.py``, use new reference output ``joined-1.20.pdf``. We also check that new output values are approximately the same as the old ones.

* **Fixed** `#1738 <https://github.com/pymupdf/PyMuPDF/issues/1738>`_. Leak of `pdf_graft_map`.
 Also fixed a SEGV issue that this seemed to expose, caused by incorrect freeing of underlying fz_document.

* **Fixed** `#1733 <https://github.com/pymupdf/PyMuPDF/issues/1733>`_. Fixed ownership of `Annotation.get_pixmap()`.

Changes to build/release process:

* If pip builds from source because an appropriate wheel is not available, we no longer require MuPDF to be pre-installed. Instead the required MuPDF source is embedded in the sdist and automatically built into PyMuPDF.

* Various changes to ``setup.py`` to download the required MuPDF release as required. See comments at start of setup.py for details.

* Added ``.github/workflows/build_wheels.yml`` to control building of wheels on Github.

Changes in Version 1.19.6

* **Fixed** `#1620 <https://github.com/pymupdf/PyMuPDF/issues/1620>`_. The :ref:`TextPage` created by :meth:`Page.get_textpage` will now be freed correctly (removed memory leak).
* **Fixed** `#1601 <https://github.com/pymupdf/PyMuPDF/issues/1601>`_. Document open errors should now be more concise and easier to interpret. In the course of this, two PyMuPDF-specific Python exceptions have been **added:**

 - ``EmptyFileError`` -- raised when trying to create a :ref:`Document` (``fitz.open()``) from an empty file or zero-length memory.
 - ``FileDataError`` -- raised when MuPDF encounters irrecoverable document structure issues.

* **Added** :meth:`Page.load_widget` given a PDF field's xref.

* **Added** Dictionary :attr:`pdfcolor` which provide the about 500 colors defined as PDF color values with the lower case color name as key.

* **Added** algebra functionality to the :ref:`Quad` class. These objects can now also be added and subtracted among themselves, and be multiplied by numbers and matrices.

* **Added** new constants defining the default text extraction flags for more comfortable handling. Their naming convention is like :data:`TEXTFLAGS_WORDS` for ``page.get_text("words")``. See :ref:`text_extraction_flags`.

* **Changed** :meth:`Page.annots` and :meth:`Page.widgets` to detect and prevent reloading the page (illegally) inside the iterator loops via :meth:`Document.reload_page`. Doing this brings down the interpretor. Documented clean ways to do annotation and widget mass updates within properly designed loops.

* **Changed** several internal utility functions to become standalone ("SWIG inline") as opposed to be part of the :ref:`Tools` class. This, among other things, increases the performance of geometry object creation.

* **Changed** :meth:`Document.update_stream` to always accept stream updates - whether or not the dictionary object behind the xref already is a stream. Thus the former ``new`` parameter is now ignored and will be removed in v1.20.0.

Changes in Version 1.19.5

* **Fixed** `#1518 <https://github.com/pymupdf/PyMuPDF/issues/1518>`_. A limited "fix": in some cases, rectangles and quadrupels were not correctly encoded to support re-drawing by :ref:`Shape`.

* **Fixed** `#1521 <https://github.com/pymupdf/PyMuPDF/issues/1521>`_. This had the same ultimate reason behind issue #1510.

* **Fixed** `#1513 <https://github.com/pymupdf/PyMuPDF/issues/1513>`_. Some Optional Content functions did not support non-ASCII characters.

* **Fixed** `#1510 <https://github.com/pymupdf/PyMuPDF/issues/1510>`_. Support more soft-mask image subtypes.

* **Fixed** `#1507 <https://github.com/pymupdf/PyMuPDF/issues/1507>`_. Immunize against items in the outlines chain, that are ``"null"`` objects.

* **Fixed** re-opened `#1417 <https://github.com/pymupdf/PyMuPDF/issues/1417>`_. ("too many open files"). This was due to insufficient calls to MuPDF's ``fz_drop_document()``. This also fixes `#1550 <https://github.com/pymupdf/PyMuPDF/issues/1550>`_.

* **Fixed** several undocumented issues in relation to incorrectly setting the text span origin :data:`point_like`.

* **Fixed** undocumented error computing the character bbox in method :meth:`Page.get_texttrace` when text is **flipped** (as opposed to just rotated).

* **Added** items to the dictionary returned by :meth:`image_properties`: ``orientation`` and ``transform`` report the natural image orientation (EXIF data).

* **Added** method :meth:`Document.xref_copy`. It will make a given target PDF object an exact copy of a source object.

Changes in Version 1.19.4

* **Fixed** `#1505 <https://github.com/pymupdf/PyMuPDF/issues/1505>`_. Immunize against circular outline items.

* **Fixed** `#1484 <https://github.com/pymupdf/PyMuPDF/issues/1484>`_. Correct CropBox coordinates are now returned in all situations.

* **Fixed** `#1479 <https://github.com/pymupdf/PyMuPDF/issues/1479>`_.

* **Fixed** `#1474 <https://github.com/pymupdf/PyMuPDF/issues/1474>`_. TextPage objects are now properly deleted again.

* **Added** :ref:`Page` methods and attributes for PDF ``/ArtBox``, ``/BleedBox``, ``/TrimBox``.

* **Added** global attribute :attr:`TESSDATA_PREFIX` for easy checking of OCR support.

* **Changed** :meth:`Document.xref_set_key` such that dictionary keys will physically be removed if set to value ``"null"``.

* **Changed** :meth:`Document.extract_font` to optionally return a dictionary (instead of a tuple).

Changes in Version 1.19.3

This patch version implements minor improvements for :ref:`Pixmap` and also some important fixes.

* **Fixed** `#1351 <https://github.com/pymupdf/PyMuPDF/discussions/1351>`_. Reverted code that introduced the memory growth in v1.18.15.

* **Fixed** `#1417 <https://github.com/pymupdf/PyMuPDF/discussions/1417>`_. Developped circumvention for growth of open file handles using :meth:`Document.insert_pdf`.

* **Fixed** `#1418 <https://github.com/pymupdf/PyMuPDF/discussions/1418>`_. Developped circumvention for memory growth using :meth:`Document.insert_pdf`.

* **Fixed** `#1430 <https://github.com/pymupdf/PyMuPDF/discussions/1430>`_. Developped circumvention for mass pixmap generations of document pages.

* **Fixed** `#1433 <https://github.com/pymupdf/PyMuPDF/discussions/1433>`_. Solves a bbox error for some Type 3 font in PyMuPDF text processing.

* **Added** :meth:`Pixmap.color_topusage` to determine the share of the most frequently used color. Solves `#1397 <https://github.com/pymupdf/PyMuPDF/discussions/1397>`_.

* **Added** :meth:`Pixmap.warp` which makes a new pixmap from a given arbitrary convex quad inside the pixmap.

* **Added** :attr:`Annot.irt_xref` and :meth:`Annot.set_irt_xref` to inquire or set the `/IRT` ("In Responde To") property of an annotation. Implements `#1450 <https://github.com/pymupdf/PyMuPDF/discussions/1450>`_.

* **Added** :meth:`Rect.torect` and :meth:`IRect.torect` which compute a matrix that transforms to a given other rectangle.

* **Changed** :meth:`Pixmap.color_count` to also return the count of each color.
* **Changed** :meth:`Page.get_texttrace` to also return correct span and character bboxes if ``span["dir"] != (1, 0)``.

Changes in Version 1.19.2

This patch version implements minor improvements for :meth:`Page.get_drawings` and also some important fixes.

* **Fixed** `#1388 <https://github.com/pymupdf/PyMuPDF/discussions/1388>`_. Fixed intermittent memory corruption when insert or updating annotations.

* **Fixed** `#1375 <https://github.com/pymupdf/PyMuPDF/discussions/1375>`_. Inconsistencies between line numbers as returned by the "words" and the "dict" options of :meth:`Page.get_text` have been corrected.

* **Fixed** `#1364 <https://github.com/pymupdf/PyMuPDF/issues/1342>`_. The check for being a ``"rawdict"`` span in :meth:`recover_span_quad` now works correctly.

* **Fixed** `#1342 <https://github.com/pymupdf/PyMuPDF/issues/1364>`_. Corrected the check for rectangle infiniteness in :meth:`Page.show_pdf_page`.

* **Changed** :meth:`Page.get_drawings`, :meth:`Page.get_cdrawings` to return an indicator on the area orientation covered by a rectangle. This implements `#1355 <https://github.com/pymupdf/PyMuPDF/issues/1355>`_. Also, the recognition rate for rectangles and quads has been significantly improved.

* **Changed** all text search and extraction methods to set the new ``flags`` option ``TEXT_MEDIABOX_CLIP`` to ON by default. That bit causes the automatic suppression of all characters that are completely outside a page's mediabox (in as far as that notion is supported for a document type). This eliminates the need for using ``clip=page.rect`` or similar for omitting text outside the visible area.

* **Added** parameter ``"dpi"`` to :meth:`Page.get_pixmap` and :meth:`Annot.get_pixmap`. When given, parameter ``"matrix"`` is ignored, and a :ref:`Pixmap` with the desired dots per inch is created.

* **Added** attributes :attr:`Pixmap.is_monochrome` and :attr:`Pixmap.is_unicolor` allowing fast checks of pixmap properties. Addresses `#1397 <https://github.com/pymupdf/PyMuPDF/discussions/1397>`_.

* **Added** method :meth:`Pixmap.color_count` to determine the unique colors in the pixmap.

* **Added** boolean parameter ``"compress"`` to PDF document method :meth:`Document.update_stream`. Addresses / enables solution for `#1408 <https://github.com/pymupdf/PyMuPDF/discussions/1408>`_.

Changes in Version 1.19.1

This is the first patch version to support MuPDF v1.19.0. Apart from one bug fix, it includes important improvements for OCR support and the option to **sort extracted text** to the standard reading order "from top-left to bottom-right".

* **Fixed** `#1328 <https://github.com/pymupdf/PyMuPDF/issues/1328>`_. "words" text extraction again returns correct ``(x0, y0)`` coordinates.

* **Changed** :meth:`Page.get_textpage_ocr`: it now supports parameter ``dpi`` to control OCR quality. It is also possible to choose whether the **full page** should be OCRed or **only the images displayed** by the page.

* **Changed** :meth:`Page.get_drawings` and :meth:`Page.get_cdrawings` to automatically convert colors to RGB color tuples. Implements `#1332 <https://github.com/pymupdf/PyMuPDF/discussions/1332>`_. Similar change was applied to :meth:`Page.get_texttrace`.

* **Changed** :meth:`Page.get_text` to support a parameter ``sort``. If set to ``True`` the output is conveniently sorted.

Changes in Version 1.19.0

This is the first version supporting MuPDF 1.19.*, published 2021-10-05. It introduces many new features compared to the previous version 1.18.*.

PyMuPDF has now picked up integrated Tesseract OCR support, which was already present in MuPDF v1.18.0.

* Supported images can be OCRed via their :ref:`Pixmap` which results in a 1-page PDF with a text layer.
* All supported document pages (i.e. not only PDFs), can be OCRed using specialized text extraction methods. The result is a mixture of standard and OCR text (depending on which part of the page was deemed to require OCRing) that can be searched and extracted without restrictions.
* All this requires an independent installation of Tesseract. MuPDF actually (only) needs the location of Tesseract's ``"tessdata"`` folder, where its language support data are stored. This location must be available as environment variable ``TESSDATA_PREFIX``.

A new MuPDF feature is **journalling PDF updates**, which is also supported by this PyMuPDF version. Changes may be logged, rolled back or replayed, allowing to implement a whole new level of control over PDF document integrity -- similar to functions present in modern database systems.

A third feature (unrelated to the new MuPDF version) includes the ability to detect when page **objects cover or hide each other**. It is now e.g. possible to see that text is covered by a drawing or an image.

* **Changed** terminology and meaning of important geometry concepts: Rectangles are now characterized as *finite*, *valid* or *empty*, while the definitions of these terms have also changed. Rectangles specifically are now thought of being "open": not all corners and sides are considered part of the retangle. Please do read the :ref:`Rect` section for details.

* **Added** new parameter `"no_new_id"` to :meth:`Document.save` / :meth:`Document.tobytes` methods. Use it to suppress updating the second item of the document ``/ID`` which in PDF indicates that the original file has been updated. If the PDF has no ``/ID`` at all yet, then no new one will be created either.

* **Added** a **journalling facility** for PDF updates. This allows logging changes, undoing or redoing them, or saving the journal for later use. Refer to :meth:`Document.journal_enable` and friends.

* **Added** new :ref:`Pixmap` methods :meth:`Pixmap.pdfocr_save` and :meth:`Pixmap.pdfocr_tobytes`, which generate a 1-page PDF containing the pixmap as PNG image with OCR text layer.

* **Added** :meth:`Page.get_textpage_ocr` which executes optical character recognition for the page, then extracts the results and stores them together with "normal" page content in a :ref:`TextPage`. Use or reuse this object in subsequent text extractions and text searches to avoid multiple efforts. The existing text search and text extraction methods have been extended to support a separately created textpage -- see next item.

* **Added** a new parameter ``textpage`` to text extraction and text search methods. This allows reuse of a previously created :ref:`TextPage` and thus achieves significant runtime benefits -- which is especially important for the new OCR features. But "normal" text extractions can definitely also benefit.

* **Added** :meth:`Page.get_texttrace`, a technical method delivering low-level text character properties. It was present before as a private method, but the author felt it now is mature enough to be officially available. It specifically includes a "sequence number" which indicates the page appearance build operation that painted the text.

* **Added** :meth:`Page.get_bboxlog` which delivers the list of rectangles of page objects like text, images or drawings. Its significance lies in its sequence: rectangles intersecting areas with a lower index are covering or hiding them.

* **Changed** methods :meth:`Page.get_drawings` and :meth:`Page.get_cdrawings` to include a "sequence number" indicating the page appearance build operation that created the drawing.

* **Fixed** `#1311 <https://github.com/pymupdf/PyMuPDF/issues/1311>`_. Field values in comboboxes should now be handled correctly.
* **Fixed** `#1290 <https://github.com/pymupdf/PyMuPDF/issues/1290>`_. Error was caused by incorrect rectangle emptiness check, which is fixed due to new geometry logic of this version.
* **Fixed** `#1286 <https://github.com/pymupdf/PyMuPDF/issues/1286>`_. Text alignment for redact annotations is working again.
* **Fixed** `#1287 <https://github.com/pymupdf/PyMuPDF/issues/1287>`_. Infinite loop issue for non-Windows systems when applying some redactions has been resolved.
* **Fixed** `#1284 <https://github.com/pymupdf/PyMuPDF/issues/1284>`_. Text layout destruction after applying redactions in some cases has been resolved.

Changes in Version 1.18.18 / 1.18.19

* **Fixed** issue `#1266 <https://github.com/pymupdf/PyMuPDF/issues/1266>`_. Failure to set :attr:`Pixmap.samples` in important cases, was hotfixed in a new version 1.18.19.

* **Fixed** issue `#1257 <https://github.com/pymupdf/PyMuPDF/issues/1257>`_. Removing the read-only flag from PDF fields is now possible.

* **Fixed** issue `#1252 <https://github.com/pymupdf/PyMuPDF/issues/1252>`_. Now correctly specifying the ``zoom`` value for PDF link annotations.

* **Fixed** issue `#1244 <https://github.com/pymupdf/PyMuPDF/issues/1244>`_. Now correctly computing the transform matrix in :meth:`Page.get_image__bbox`.

* **Fixed** issue `#1241 <https://github.com/pymupdf/PyMuPDF/issues/1241>`_. Prevent returning artifact characters in :meth:`Page.get_textbox`, which happened in certain constellations.

* **Fixed** issue `#1234 <https://github.com/pymupdf/PyMuPDF/issues/1234>`_. Avoid creating infinite rectangles in corner cases -- :meth:`Page.get_drawings`, :meth:`Page.get_cdrawings`.

* **Added** test data and test scripts to the source PyPI source distribution.

Changes in Version 1.18.17

Focus of this version are major performance improvements of selected functions.

* **Fixed** issue `#1199 <https://github.com/pymupdf/PyMuPDF/issues/1199>`_. Using a non-existing page number in :meth:`Document.get_page_images` and friends will no longer lead to segfaults.

* **Changed** :meth:`Page.get_drawings` to now differentiate between "stroke", "fill" and combined paths. Paths containing more than one rectangle (i.e. "re" items) are now supported. Extracting "clipped" paths is now available as an option.

* **Added** :meth:`Page.get_cdrawings`, performance-optimized version of :meth:`Page.get_drawings`.

* **Added** :attr:`Pixmap.samples_mv`, *memoryview* of a pixmap's pixel area. Does not copy and thus always accesses the current state of that area.

* **Added** :attr:`Pixmap.samples_ptr`, Python "pointer" to a pixmap's pixel area. Allows much faster creation (factor 800+) of Qt images.

Changes in Version 1.18.16

* **Fixed** issue `#1184 <https://github.com/pymupdf/PyMuPDF/issues/1184>`_. Existing PDF widget fonts in a PDF are now accepted (i.e. not forcedly changed to a Base-14 font).

* **Fixed** issue `#1154 <https://github.com/pymupdf/PyMuPDF/issues/1154>`_. Text search hits should now be correct when ``clip`` is specified.

* **Fixed** issue `#1152 <https://github.com/pymupdf/PyMuPDF/issues/1152>`_.

* **Fixed** issue `#1146 <https://github.com/pymupdf/PyMuPDF/issues/1146>`_.

* **Added** :attr:`Link.flags` and :meth:`Link.set_flags` to the :ref:`Link` class. Implements enhancement requests `#1187 <https://github.com/pymupdf/PyMuPDF/issues/1187>`_.

* **Added** option to *simulate* :meth:`TextWriter.fill_textbox` output for predicting the number of lines, that a given text would occupy in the textbox.

* **Added** text output support as subcommand `gettext` to the ``fitz`` CLI module. Most importantly, original **physical text layout** reproduction is now supported.

Changes in Version 1.18.15

* **Fixed** issue `#1088 <https://github.com/pymupdf/PyMuPDF/issues/1088>`_. Removing an annotation's fill color should now work again both ways, using the ``fill_color=[]`` argument in :meth:`Annot.update` as well as ``fill=[]`` in :meth:`Annot.set_colors`.

* **Fixed** issue `#1081 <https://github.com/pymupdf/PyMuPDF/issues/1081>`_. :meth:`Document.subset_fonts`: fixed an error which created wrong character widths for some fonts.

* **Fixed** issue `#1078 <https://github.com/pymupdf/PyMuPDF/issues/1078>`_. :meth:`Page.get_text` and other methods related to text extraction: changed the default value of the :ref:`TextPage` ``flags`` parameter. All whitespace and :data:`ligatures` are now preserved.

* **Fixed** issue `#1085 <https://github.com/pymupdf/PyMuPDF/issues/1085>`_. The old *snake_cased* alias of ``fitz.detTextlength`` is now defined correctly.

* **Changed** :meth:`Document.subset_fonts` will now correctly prefix font subsets with an appropriate six letter uppercase tag, complying with the PDF specification.

* **Added** new method :meth:`Widget.button_states` which returns the possible values that a button-type field can have when being set to "on" or "off".

* **Added** support of text with **Small Capital** letters to the :ref:`Font` and :ref:`TextWriter` classes. This is reflected by an additional bool parameter ``small_caps`` in various of their methods.

Changes in Version 1.18.14

* **Finished** implementing new, "snake_cased" names for methods and properties, that were "camelCased" and awkward in many aspects. At the end of this documentation, there is section :ref:`Deprecated` with more background and a mapping of old to new names.

* **Fixed** issue `#1053 <https://github.com/pymupdf/PyMuPDF/issues/1053>`_. :meth:`Page.insert_image`: when given, include image mask in the hash computation.

* **Fixed** issue `#1043 <https://github.com/pymupdf/PyMuPDF/issues/1043>`_. Added ``Pixmap.getPNGdata`` to the aliases of :meth:`Pixmap.tobytes`.

* **Fixed** an internal error when computing the envelopping rectangle of drawn paths as returned by :meth:`Page.get_drawings`.

* **Fixed** an internal error occasionally causing loops when outputting text via :meth:`TextWriter.fill_textbox`.

* **Added** :meth:`Font.char_lengths`, which returns a tuple of character widths of a string.

* **Added** more ways to specify pages in :meth:`Document.delete_pages`. Now a sequence (list, tuple or range) can be specified, and the Python ``del`` statement can be used. In the latter case, Python ``slices`` are also accepted.

* **Changed** :meth:`Document.del_toc_item`, which disables a single item of the TOC: previously, the title text was removed. Instead, now the complete item will be shown grayed-out by supporting viewers.

Changes in Version 1.18.13

* **Fixed** issue `#1014 <https://github.com/pymupdf/PyMuPDF/issues/1014>`_.
* **Fixed** an internal memory leak when computing image bboxes -- :meth:`Page.get_image_bbox`.
* **Added** support for low-level access and modification of the PDF trailer. Applies to :meth:`Document.xref_get_keys`, :meth:`Document.xref_get_key`, and :meth:`Document.xref_set_key`.
* **Added** documentation for maintaining private entries in PDF metadata.
* **Added** documentation for handling transparent image insertions, :meth:`Page.insert_image`.
* **Added** :meth:`Page.get_image_rects`, an improved version of :meth:`Page.get_image_bbox`.
* **Changed** :meth:`Document.delete_pages` to support various ways of specifying pages to delete. Implements `#1042 <https://github.com/pymupdf/PyMuPDF/issues/1042>`_.
* **Changed** :meth:`Page.insert_image` to also accept the xref of an existing image in the file. This allows "copying" images between pages, and extremely fast mutiple insertions.
* **Changed** :meth:`Page.insert_image` to also accept the integer parameter ``alpha``. To be used for performance improvements.
* **Changed** :meth:`Pixmap.set_alpha` to support new parameters for pre-multiplying colors with their alpha values and setting a specific color to fully transparent (e.g. white).
* **Changed** :meth:`Document.embfile_add` to automatically set creation and modification date-time. Correspondingly, :meth:`Document.embfile_upd` automatically maintains modification date-time (``/ModDate`` PDF key), and :meth:`Document.embfile_info` correspondingly reports these data. In addition, the embedded file's associated "collection item" is included via its :data:`xref`. This supports the development of PDF portfolio applications.

Changes in Version 1.18.11 / 1.18.12

* **Fixed** issue `#972 <https://github.com/pymupdf/PyMuPDF/issues/972>`_. Improved layout of source distribution material.
* **Fixed** issue `#962 <https://github.com/pymupdf/PyMuPDF/issues/962>`_. Stabilized Linux distribution detection for generating PyMuPDF from sources.
* **Added:** :meth:`Page.get_xobjects` delivers the result of :meth:`Document.get_page_xobjects`.
* **Added:** :meth:`Page.get_image_info` delivers meta information for all images shown on the page.
* **Added:** :meth:`Tools.mupdf_display_warnings` allows setting on / off the display of MuPDF-generated warnings. The default is off.
* **Added:** :meth:`Document.ez_save` convenience alias of :meth:`Document.save` with some different defaults.
* **Changed:** Image extractions of document pages now also contain the image's **transformation matrix**. This concerns :meth:`Page.get_image_bbox` and the DICT, JSON, RAWDICT, and RAWJSON variants of :meth:`Page.get_text`.

Changes in Version 1.18.10

* **Fixed** issue `#941 <https://github.com/pymupdf/PyMuPDF/issues/941>`_. Added old aliases for :meth:`DisplayList.get_pixmap` and :meth:`DisplayList.get_textpage`.
* **Fixed** issue `#929 <https://github.com/pymupdf/PyMuPDF/issues/929>`_. Stabilized removal of JavaScript objects with :meth:`Document.scrub`.
* **Fixed** issue `#927 <https://github.com/pymupdf/PyMuPDF/issues/927>`_. Removed a loop in the reworked :meth:`TextWriter.fill_textbox`.
* **Changed** :meth:`Document.xref_get_keys` and :meth:`Document.xref_get_key` to also allow accessing the PDF trailer dictionary. This can be done by using `-1` as the xref number argument.
* **Added** a number of functions for reconstructing the quads for text lines, spans and characters extracted by :meth:`Page.get_text` options "dict" and "rawdict". See :meth:`recover_quad` and friends.
* **Added** :meth:`Tools.unset_quad_corrections` to suppress character quad corrections (occasionally required for erroneous fonts).

Changes in Version 1.18.9

* **Fixed** issue `#888 <https://github.com/pymupdf/PyMuPDF/issues/888>`_. Removed ambiguous statements concerning PyMuPDF's license, which is now clearly stated to be GNU AGPL V3.
* **Fixed** issue `#895 <https://github.com/pymupdf/PyMuPDF/issues/895>`_.
* **Fixed** issue `#896 <https://github.com/pymupdf/PyMuPDF/issues/896>`_. Since v1.17.6 PyMuPDF suppresses the font subset tags and only reports the base fontname in text extraction outputs "dict" / "json" / "rawdict" / "rawjson". Now a new global parameter can request the old behaviour, :meth:`Tools.set_subset_fontnames`.
* **Fixed** issue `#885 <https://github.com/pymupdf/PyMuPDF/issues/885>`_. Pixmap creation now also works with filenames given as ``pathlib.Paths``.
* **Changed** :meth:`Document.subset_fonts`: Text is **not rewritten** any more and should therefore **retain all its origial properties** -- like being hidden or being controlled by Optional Content mechanisms.
* **Changed** :ref:`TextWriter` output to also accept text in right to left mode (Arabian, Hebrew): :meth:`TextWriter.fill_textbox`, :meth:`TextWriter.append`. These methods now accept a new boolean parameter `right_to_left`, which is *False* by default. Implements `#897 <https://github.com/pymupdf/PyMuPDF/issues/897>`_.
* **Changed** :meth:`TextWriter.fill_textbox` to return all lines of text, that did not fit in the given rectangle. Also changed the default of the ``warn`` parameter to no longer print a warning message in overflow situations.
* **Added** a utility function :meth:`recover_quad`, which computes the quadrilateral of a span. This function can be used for correctly marking text extracted with the "dict" or "rawdict" options of :meth:`Page.get_text`.

Changes in Version 1.18.8

This is a bug fix version only. We are publishing early because of the potentially widely used functions.

* **Fixed** issue `#881 <https://github.com/pymupdf/PyMuPDF/issues/881>`_. Fixed a memory leak in :meth:`Page.insert_image` when inserting images from files or memory.
* **Fixed** issue `#878 <https://github.com/pymupdf/PyMuPDF/issues/878>`_. ``pathlib.Path`` objects should now correctly handle file path hierarchies.

Changes in Version 1.18.7

* **Added** an experimental :meth:`Document.subset_fonts` which reduces the size of eligible fonts based on their use by text in the PDF. Implements `#855 <https://github.com/pymupdf/PyMuPDF/discussions/855>`_.
* **Implemented** request `#870 <https://github.com/pymupdf/PyMuPDF/pull/870>`_: :meth:`Document.convert_to_pdf` now also supports PDF documents.
* **Renamed** ``Document.write`` to :meth:`Document.tobytes` for greater clarity. But the deprecated name remains available for some time.
* **Implemented** request `#843 <https://github.com/pymupdf/PyMuPDF/Discussions/843>`_: :meth:`Document.tobytes` now supports linearized PDF output. :meth:`Document.save` now also supports writing to Python **file objects**. In addition, the open function now also supports Python file objects.
* **Fixed** issue `#844 <https://github.com/pymupdf/PyMuPDF/issues/844>`_.
* **Fixed** issue `#838 <https://github.com/pymupdf/PyMuPDF/issues/838>`_.
* **Fixed** issue `#823 <https://github.com/pymupdf/PyMuPDF/issues/823>`_. More logic for better support of OCRed text output (Tesseract, ABBYY).
* **Fixed** issue `#818 <https://github.com/pymupdf/PyMuPDF/issues/818>`_.
* **Fixed** issue `#814 <https://github.com/pymupdf/PyMuPDF/issues/814>`_.
* **Added** :meth:`Document.get_page_labels` which returns a list of page label definitions of a PDF.
* **Added** :meth:`Document.has_annots` and :meth:`Document.has_links` to check whether these object types are present anywhere in a PDF.
* **Added** expert low-level functions to simplify inquiry and modification of PDF object sources: :meth:`Document.xref_get_keys` lists the keys of object :data:`xref`, :meth:`Document.xref_get_key` returns type and content of a key, and :meth:`Document.xref_set_key` modifies the key's value.
* **Added** parameter ``thumbnails`` to :meth:`Document.scrub` to also allow removing page thumbnail images.
* **Improved** documentation for how to add valid text marker annotations for non-horizontal text.

We continued the process of renaming methods and properties from *"mixedCase"* to *"snake_case"*. Documentation usually mentions the new names only, but old, deprecated names remain available for some time.

Changes in Version 1.18.6

* **Fixed** issue `#812 <https://github.com/pymupdf/PyMuPDF/issues/812>`_.
* **Fixed** issue `#793 <https://github.com/pymupdf/PyMuPDF/issues/793>`_. Invalid document metadata previously prevented opening some documents at all. This error has been removed.
* **Fixed** issue `#792 <https://github.com/pymupdf/PyMuPDF/issues/792>`_. Text search and text extraction will make no rectangle containment checks at all if the default ``clip=None`` is used.
* **Fixed** issue `#785 <https://github.com/pymupdf/PyMuPDF/issues/785>`_.
* **Fixed** issue `#780 <https://github.com/pymupdf/PyMuPDF/issues/780>`_. Corrected a parameter check error.
* **Fixed** issue `#779 <https://github.com/pymupdf/PyMuPDF/issues/779>`_. Fixed typo
* **Added** an option to set the desired line height for text boxes. Implements `#804 <https://github.com/pymupdf/PyMuPDF/issues/804>`_.
* **Changed** text position retrieval to better cope with Tesseract's glyphless font. Implements `#803 <https://github.com/pymupdf/PyMuPDF/issues/803>`_.
* **Added** an option to choose the prefix of new annotations, fields and links for providing unique annotation ids. Implements request `#807 <https://github.com/pymupdf/PyMuPDF/issues/807>`_.
* **Added** getting and setting color and text properties for Table of Contents items for PDFs. Implements `#779 <https://github.com/pymupdf/PyMuPDF/issues/779>`_.
* **Added** PDF page label handling: :meth:`Page.get_label()` returns the page label, :meth:`Document.get_page_numbers` return all page numbers having a specified label, and :meth:`Document.set_page_labels` adds or updates a PDF's page label definition.

.. note::
 This version introduces **Python type hinting**. The goal is to provide each parameter and the return value of all functions and methods with type information. This still is work in progress although the majority of functions has already been handled.

Changes in Version 1.18.5

Apart from several fixes, this version also focusses on several minor, but important feature improvements. Among the latter is a more precise computation of proper line heights and insertion points for writing / inserting text. As opposed to using font-agnostic constants, these values are now taken from the font's properties.

Also note that this is the first version which does no longer provide pregenerated wheels for Python versions older than 3.6. PIP also discontinues support for these by end of this year 2020.

* **Fixed** issue `#771 <https://github.com/pymupdf/PyMuPDF/issues/771>`_. By using "small glyph heights" option, the full page text can be extracted.
* **Fixed** issue `#768 <https://github.com/pymupdf/PyMuPDF/issues/768>`_.
* **Fixed** issue `#750 <https://github.com/pymupdf/PyMuPDF/issues/750>`_.
* **Fixed** issue `#739 <https://github.com/pymupdf/PyMuPDF/issues/739>`_. The "dict", "rawdict" and corresponding JSON output variants now have two new *span* keys: ``"ascender"`` and ``"descender"``. These floats represent special font properties which can be used to compute bboxes of spans or characters of **exactly fontsize height** (as opposed to the default line height). An example algorithm is shown in section "Span Dictionary" `here <https://pymupdf.readthedocs.io/en/latest/textpage.html#dictionary-structure-of-extractdict-and-extractrawdict>`_. Also improved the detection and correction of ill-specified ascender / descender values encountered in some fonts.
* **Added** a new, experimental :meth:`Tools.set_small_glyph_heights` -- also in response to issue `#739 <https://github.com/pymupdf/PyMuPDF/issues/739>`_. This method sets or unsets a global parameter to **always compute bboxes with fontsize height**. If "on", text searching and all text extractions will returned rectangles, bboxes and quads with a smaller height.
* **Fixed** issue `#728 <https://github.com/pymupdf/PyMuPDF/issues/728>`_.
* **Changed** fill color logic of 'Polyline' annotations: this parameter now only pertains to line end symbols -- the annotation itself can no longer have a fill color. Also addresses issue `#727 <https://github.com/pymupdf/PyMuPDF/issues/727>`_.
* **Changed** :meth:`Page.getImageBbox` to also compute the bbox if the image is contained in an XObject.
* **Changed** :meth:`Shape.insertTextbox`, resp. :meth:`Page.insertTextbox`, resp. :meth:`TextWriter.fillTextbox` to respect font's properties "ascender" / "descender" when computing line height and insertion point. This should no longer lead to line overlaps for multi-line output. These methods used to ignore font specifics and used constant values instead.

Changes in Version 1.18.4

This version adds several features to support PDF Optional Content. Among other things, this includes OCMDs (Optional Content Membership Dictionaries) with the full scope of *"visibility expressions"* (PDF key ``/VE``), text insertions (including the :ref:`TextWriter` class) and drawings.

* **Fixed** issue `#727 <https://github.com/pymupdf/PyMuPDF/issues/727>`_. Freetext annotations now support an uncolored rectangle when ``fill_color=None``.
* **Fixed** issue `#726 <https://github.com/pymupdf/PyMuPDF/issues/726>`_. UTF-8 encoding errors are now handled for HTML / XML :meth:`Page.getText` output.
* **Fixed** issue `#724 <https://github.com/pymupdf/PyMuPDF/issues/724>`_. Empty values are no longer stored in the PDF /Info metadata dictionary.
* **Added** new methods :meth:`Document.set_oc` and :meth:`Document.get_oc` to set or get optional content references for **existing** image and form XObjects. These methods are similar to the same-named methods of :ref:`Annot`.
* **Added** :meth:`Document.set_ocmd`, :meth:`Document.get_ocmd` for handling OCMDs.
* **Added** **Optional Content** support for text insertion and drawing.
* **Added** new method :meth:`Page.deleteWidget`, which deletes a form field from a page. This is analogous to deleting annotations.
* **Added** support for Popup annotations. This includes defining the Popup rectangle and setting the Popup to open or closed. Methods / attributes :meth:`Annot.set_popup`, :meth:`Annot.set_open`, :attr:`Annot.has_popup`, :attr:`Annot.is_open`, :attr:`Annot.popup_rect`, :attr:`Annot.popup_xref`.

Other changes:

* The **naming of methods and attributes** in PyMuPDF is far from being satisfactory: we have *CamelCases*, *mixedCases* and *lower_case_with_underscores* all over the place. With the :ref:`Annot` as the first candidate, we have started an activity to clean this up step by step, converting to lower case with underscores for methods and attributes while keeping UPPERCASE for the constants.

 - Old names will remain available to prevent code breaks, but they will no longer be mentioned in the documentation.
 - New methods and attributes of all classes will be named according to the new standard.

Changes in Version 1.18.3

As a major new feature, this version introduces support for PDF's **Optional Content** concept.

* **Fixed** issue `#714 <https://github.com/pymupdf/PyMuPDF/issues/714>`_.
* **Fixed** issue `#711 <https://github.com/pymupdf/PyMuPDF/issues/711>`_.
* **Fixed** issue `#707 <https://github.com/pymupdf/PyMuPDF/issues/707>`_: if a PDF user password, but no owner password is supplied nor present, then the user password is also used as the owner password.
* **Fixed** ``expand`` and ``deflate`` parameters of methods :meth:`Document.save` and :meth:`Document.write`. Individual image and font compression should now finally work. Addresses issue `#713 <https://github.com/pymupdf/PyMuPDF/issues/713>`_.
* **Added** a support of PDF optional content. This includes several new :ref:`Document` methods for inquiring and setting optional content status and adding optional content configurations and groups. In addition, images, form XObjects and annotations now can be bound to optional content specifications. **Resolved** issue `#709 <https://github.com/pymupdf/PyMuPDF/issues/709>`_.

Changes in Version 1.18.2

This version contains some interesting improvements for text searching: any number of search hits is now returned and the **hit_max** parameter was removed. The new **clip** parameter in addition allows to restrict the search area. Searching now detects hyphenations at line breaks and accordingly finds hyphenated words.

* **Fixed** issue `#575 <https://github.com/pymupdf/PyMuPDF/issues/575>`_: if using ``quads=False`` in text searching, then overlapping rectangles on the same line are joined. Previously, parts of the search string, which belonged to different "marked content" items, each generated their own rectangle -- just as if occurring on separate lines.
* **Added** :attr:`Document.isRepaired`, which is true if the PDF was repaired on open.
* **Added** :meth:`Document.setXmlMetadata` which either updates or creates PDF XML metadata. Implements issue `#691 <https://github.com/pymupdf/PyMuPDF/issues/691>`_.
* **Added** :meth:`Document.getXmlMetadata` returns PDF XML metadata.
* **Changed** creation of PDF documents: they will now always carry a PDF identification (``/ID`` field) in the document trailer. Implements issue `#691 <https://github.com/pymupdf/PyMuPDF/issues/691>`_.
* **Changed** :meth:`Page.searchFor`: a new parameter ``clip`` is accepted to restrict the search to this rectangle. Correspondingly, the attribute :attr:`TextPage.rect` is now respected by :meth:`TextPage.search`.
* **Changed** parameter ``hit_max`` in :meth:`Page.searchFor` and :meth:`TextPage.search` is now obsolete: methods will return all hits.
* **Changed** character **selection criteria** in :meth:`Page.getText`: a character is now considered to be part of a ``clip`` if its bbox is fully contained. Before this, a non-empty intersection was sufficient.
* **Changed** :meth:`Document.scrub` to support a new option `redact_images`. This addresses issue `#697 <https://github.com/pymupdf/PyMuPDF/issues/697>`_.

Changes in Version 1.18.1

* **Fixed** issue `#692 <https://github.com/pymupdf/PyMuPDF/issues/692>`_. PyMuPDF now detects and recovers from more cyclic resource dependencies in PDF pages and for the first time reports them in the MuPDF warnings store.
* **Fixed** issue `#686 <https://github.com/pymupdf/PyMuPDF/issues/686>`_.
* **Added** opacity options for the :ref:`Shape` class: Stroke and fill colors can now be set to some transparency value. This means that all :ref:`Page` draw methods, methods :meth:`Page.insertText`, :meth:`Page.insertTextbox`, :meth:`Shape.finish`, :meth:`Shape.insertText`, and :meth:`Shape.insertTextbox` support two new parameters: *stroke_opacity* and *fill_opacity*.
* **Added** new parameter ``mask`` to :meth:`Page.insertImage` for optionally providing an external image mask. Resolves issue `#685 <https://github.com/pymupdf/PyMuPDF/issues/685>`_.
* **Added** :meth:`Annot.soundGet` for extracting the sound of an audio annotation.

Changes in Version 1.18.0

This is the first PyMuPDF version supporting MuPDF v1.18. The focus here is on extending PyMuPDF's own functionality -- apart from bug fixing. Subsequent PyMuPDF patches may address features new in MuPDF.

* **Fixed** issue `#519 <https://github.com/pymupdf/PyMuPDF/issues/519>`_. This upstream bug occurred occasionally for some pages only and seems to be fixed now: page layout should no longer be ruined in these cases.

* **Fixed** issue `#675 <https://github.com/pymupdf/PyMuPDF/issues/675>`_.

 - Unsuccessful storage allocations should now always lead to exceptions (circumvention of an upstream bug intermittently crashing the interpreter).
 - :ref:`Pixmap` size is now based on ``size_t`` instead of ``int`` in C and should be correct even for extremely large pixmaps.

* **Fixed** issue `#668 <https://github.com/pymupdf/PyMuPDF/issues/668>`_. Specification of dashes for PDF drawing insertion should now correctly reflect the PDF spec.
* **Fixed** issue `#669 <https://github.com/pymupdf/PyMuPDF/issues/669>`_. A major source of memory leakage in :meth:`Page.insert_pdf` has been removed.
* **Added** keyword *"images"* to :meth:`Page.apply_redactions` for fine-controlling the handling of images.
* **Added** :meth:`Annot.getText` and :meth:`Annot.getTextbox`, which offer the same functionality as the :ref:`Page` versions.
* **Added** key *"number"* to the block dictionaries of :meth:`Page.getText` / :meth:`Annot.getText` for options "dict" and "rawdict".
* **Added** :meth:`glyph_name_to_unicode` and :meth:`unicode_to_glyph_name`. Both functions do not really connect to a specific font and are now independently available, too. The data are now based on the `Adobe Glyph List <https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt>`_.
* **Added** convenience functions :meth:`adobe_glyph_names` and :meth:`adobe_glyph_unicodes` which return the respective available data.
* **Added** :meth:`Page.getDrawings` which returns details of drawing operations on a document page. Works for all document types.
* Improved performance of :meth:`Document.insert_pdf`. Multiple object copies are now also suppressed across multiple separate insertions from the same source. This saves time, memory and target file size. Previously this mechanism was only active within each single method execution. The feature can also be suppressed with the new method bool parameter *final=1*, which is the default.
* For PNG images created from pixmaps, the resolution (dpi) is now automatically set from the respective :attr:`Pixmap.xres` and :attr:`Pixmap.yres` values.

Changes in Version 1.17.7

* **Fixed** issue `#651 <https://github.com/pymupdf/PyMuPDF/issues/651>`_. An upstream bug causing interpreter crashes in corner case redaction processings was fixed by backporting MuPDF changes from their development repo.
* **Fixed** issue `#645 <https://github.com/pymupdf/PyMuPDF/issues/645>`_. Pixmap top-left coordinates can be set (again) by their own method, :meth:`Pixmap.set_origin`.
* **Fixed** issue `#622 <https://github.com/pymupdf/PyMuPDF/issues/622>`_. :meth:`Page.insertImage` again accepts a :data:`rect_like` parameter.
* **Added** severeal new methods to improve and speed-up table of contents (TOC) handling. Among other things, TOC items can now changed or deleted individually -- without always replacing the complete TOC. Furthermore, access to some PDF page attributes is now possible without first **loading** the page. This has a very significant impact on the performance of TOC manipulation.
* **Added** an option to :meth:`Document.insert_pdf` which allows displaying progress messages. Adresses `#640 <https://github.com/pymupdf/PyMuPDF/issues/640>`_.
* **Added** :meth:`Page.getTextbox` which extracts text contained in a rectangle. In many cases, this should obsolete writing your own script for this type of thing.
* **Added** new ``clip`` parameter to :meth:`Page.getText` to simplify and speed up text extraction of page sub areas.
* **Added** :meth:`TextWriter.appendv` to add text in **vertical write mode**. Addresses issue `#653 <https://github.com/pymupdf/PyMuPDF/issues/653>`_

Changes in Version 1.17.6

* **Fixed** issue `#605 <https://github.com/pymupdf/PyMuPDF/issues/605>`_
* **Fixed** issue `#600 <https://github.com/pymupdf/PyMuPDF/issues/600>`_ -- text should now be correctly positioned also for pages with a CropBox smaller than MediaBox.
* **Added** text span dictionary key ``origin`` which contains the lower left coordinate of the first character in that span.
* **Added** attribute :attr:`Font.buffer`, a *bytes* copy of the font file.
* **Added** parameter *sanitize* to :meth:`Page.cleanContents`. Allows switching of sanitization, so only syntax cleaning will be done.

Changes in Version 1.17.5

* **Fixed** issue `#561 <https://github.com/pymupdf/PyMuPDF/issues/561>`_ -- second go: certain :ref:`TextWriter` usages with many alternating fonts did not work correctly.
* **Fixed** issue `#566 <https://github.com/pymupdf/PyMuPDF/issues/566>`_.
* **Fixed** issue `#568 <https://github.com/pymupdf/PyMuPDF/issues/568>`_.
* **Fixed** -- opacity is now correctly taken from the :ref:`TextWriter` object, if not given in :meth:`TextWriter.writeText`.
* **Added** a new global attribute :attr:`fitz_fontdescriptors`. Contains information about usable fonts from repository `pymupdf-fonts <https://github.com/pymupdf/pymupdf-fonts>`_.
* **Added** :meth:`Font.valid_codepoints` which returns an array of unicode codepoints for which the font has a glyph.
* **Added** option ``text_as_path`` to :meth:`Page.getSVGimage`. this implements `#580 <https://github.com/pymupdf/PyMuPDF/issues/580>`_. Generates much smaller SVG files with parseable text if set to *False*.

Changes in Version 1.17.4

* **Fixed** issue `#561 <https://github.com/pymupdf/PyMuPDF/issues/561>`_. Handling of more than 10 :ref:`Font` objects on one page should now work correctly.
* **Fixed** issue `#562 <https://github.com/pymupdf/PyMuPDF/issues/562>`_. Annotation pixmaps are no longer derived from the page pixmap, thus avoiding unintended inclusion of page content.
* **Fixed** issue `#559 <https://github.com/pymupdf/PyMuPDF/issues/559>`_. This **MuPDF** bug is being temporarily fixed with a pre-version of MuPDF's next release.
* **Added** utility function :meth:`repair_mono_font` for correcting displayed character spacing for some mono-spaced fonts.
* **Added** utility method :meth:`Document.need_appearances` for fine-controlling Form PDF behavior. Addresses issue `#563 <https://github.com/pymupdf/PyMuPDF/issues/563>`_.
* **Added** utility function :meth:`sRGB_to_pdf` to recover the PDF color triple for a given color integer in sRGB format.
* **Added** utility function :meth:`sRGB_to_rgb` to recover the (R, G, B) color triple for a given color integer in sRGB format.
* **Added** utility function :meth:`make_table` which delivers table cells for a given rectangle and desired numbers of columns and rows.
* **Added** support for optional fonts in repository `pymupdf-fonts <https://github.com/pymupdf/pymupdf-fonts>`_.

Changes in Version 1.17.3

* **Fixed** an undocumented issue, which prevented fully cleaning a PDF page when using :meth:`Page.cleanContents`.
* **Fixed** issue `#540 <https://github.com/pymupdf/PyMuPDF/issues/540>`_. Text extraction for EPUB should again work correctly.
* **Fixed** issue `#548 <https://github.com/pymupdf/PyMuPDF/issues/548>`_. Documentation now includes ``LINK_NAMED``.
* **Added** new parameter to control start of text in :meth:`TextWriter.fillTextbox`. Implements `#549 <https://github.com/pymupdf/PyMuPDF/issues/549>`_.
* **Changed** documentation of :meth:`Page.add_redact_annot` to explain the usage of non-builtin fonts.

Changes in Version 1.17.2

* **Fixed** issue `#533 <https://github.com/pymupdf/PyMuPDF/issues/533>`_.
* **Added** options to modify 'Redact' annotation appearance. Implements `#535 <https://github.com/pymupdf/PyMuPDF/issues/535>`_.

Changes in Version 1.17.1

* **Fixed** issue `#520 <https://github.com/pymupdf/PyMuPDF/issues/520>`_.
* **Fixed** issue `#525 <https://github.com/pymupdf/PyMuPDF/issues/525>`_. Vertices for 'Ink' annots should now be correct.
* **Fixed** issue `#524 <https://github.com/pymupdf/PyMuPDF/issues/524>`_. It is now possible to query and set rotation for applicable annotation types.

Also significantly improved inline documentation for better support of interactive help.

Changes in Version 1.17.0

This version is based on MuPDF v1.17. Following are highlights of new and changed features:

* **Added** extended language support for annotations and widgets: a mixture of Latin, Greece, Russian, Chinese, Japanese and Korean characters can now be used in 'FreeText' annotations and text widgets. No special arrangement is required to use it.

* Faster page access is implemented for documents supporting a "chapter" structure. This applies to EPUB documents currently. This comes with several new :ref:`Document` methods and changes for :meth:`Document.loadPage` and the "indexed" page access *doc[n]*: In addition to specifying a page number as before, a tuple *(chaper, pno)* can be specified to identify the desired page.

* **Changed:** Improved support of redaction annotations: images overlapped by redactions are **permanantly modified** by erasing the overlap areas. Also links are removed if overlapped by redactions. This is now fully in sync with PDF specifications.

Other changes:

* **Changed** :meth:`TextWriter.writeText` to support the *"morph"* parameter.
* **Added** methods :meth:`Rect.morph`, :meth:`IRect.morph`, and :meth:`Quad.morph`, which return a new :ref:`Quad`.
* **Changed** :meth:`Page.add_freetext_annot` to support text alignment via a new *"align"* parameter.
* **Fixed** issue `#508 <https://github.com/pymupdf/PyMuPDF/issues/508>`_. Improved image rectangle calculation to hopefully deliver correct values in most if not all cases.
* **Fixed** issue `#502 <https://github.com/pymupdf/PyMuPDF/issues/502>`_.
* **Fixed** issue `#500 <https://github.com/pymupdf/PyMuPDF/issues/500>`_. :meth:`Document.convertToPDF` should no longer cause memory leaks.
* **Fixed** issue `#496 <https://github.com/pymupdf/PyMuPDF/issues/496>`_. Annotations and widgets / fields are now added or modified using the coordinates of the **unrotated page**. This behavior is now in sync with other methods modifying PDF pages.
* **Added** :attr:`Page.rotationMatrix` and :attr:`Page.derotationMatrix` to support coordinate transformations between the rotated and the original versions of a PDF page.

Potential code breaking changes:

* The private method ``Page._getTransformation()`` has been removed. Use the public :attr:`Page.transformationMattrix` instead.

Changes in Version 1.16.18

This version introduces several new features around PDF text output. The motivation is to simplify this task, while at the same time offering extending features.

One major achievement is using MuPDF's capabilities to dynamically choosing fallback fonts whenever a character cannot be found in the current one. This seemlessly works for Base-14 fonts in combination with CJK fonts (China, Japan, Korea). So a text may contain **any combination of characters** from the Latin, Greek, Russian, Chinese, Japanese and Korean languages.

* **Fixed** issue `#493 <https://github.com/pymupdf/PyMuPDF/issues/493>`_. ``Pixmap(doc, xref)`` should now again correctly resemble the loaded image object.
* **Fixed** issue `#488 <https://github.com/pymupdf/PyMuPDF/issues/488>`_. Widget names are now modifyable.
* **Added** new class :ref:`Font` which represents a font.
* **Added** new class :ref:`TextWriter` which serves as a container for text to be written on a page.
* **Added** :meth:`Page.writeText` to write one or more :ref:`TextWriter` objects to the page.

Changes in Version 1.16.17

* **Fixed** issue `#479 <https://github.com/pymupdf/PyMuPDF/issues/479>`_. PyMuPDF should now more correctly report image resolutions. This applies to both, images (either from images files or extracted from PDF documents) and pixmaps created from images.
* **Added** :meth:`Pixmap.set_dpi` which sets the image resolution in x and y directions.

Changes in Version 1.16.16

* **Fixed** issue `#477 <https://github.com/pymupdf/PyMuPDF/issues/477>`_.
* **Fixed** issue `#476 <https://github.com/pymupdf/PyMuPDF/issues/476>`_.
* **Changed** annotation line end symbol coloring and fixed an error coloring the interior of 'Polyline' /'Polygon' annotations.

Changes in Version 1.16.14

* **Changed** text marker annotations to accept parameters beyond just quadrilaterals such that now **text lines between two given points can be marked**.

* **Added** :meth:`Document.scrub` which **removes potentially sensitive data** from a PDF. Implements `#453 <https://github.com/pymupdf/PyMuPDF/issues/453>`_.

* **Added** :meth:`Annot.blendMode` which returns the **blend mode** of annotations.

* **Added** :meth:`Annot.setBlendMode` to set the annotation's blend mode. This resolves issue `#416 <https://github.com/pymupdf/PyMuPDF/issues/416>`_.
* **Changed** :meth:`Annot.update` to accept additional parameters for setting blend mode and opacity.
* **Added** advanced graphics features to **control the anti-aliasing values**, :meth:`Tools.set_aa_level`. Resolves `#467 <https://github.com/pymupdf/PyMuPDF/issues/467>`_

* **Fixed** issue `#474 <https://github.com/pymupdf/PyMuPDF/issues/474>`_.
* **Fixed** issue `#466 <https://github.com/pymupdf/PyMuPDF/issues/466>`_.

Changes in Version 1.16.13

* **Added** :meth:`Document.getPageXObjectList` which returns a list of **Form XObjects** of the page.
* **Added** :meth:`Page.setMediaBox` for changing the physical PDF page size.
* **Added** :ref:`Page` methods which have been internal before: :meth:`Page.cleanContents` (= :meth:`Page._cleanContents`), :meth:`Page.getContents` (= :meth:`Page._getContents`), :meth:`Page.getTransformation` (= :meth:`Page._getTransformation`).

Changes in Version 1.16.12

* **Fixed** issue `#447 <https://github.com/pymupdf/PyMuPDF/issues/447>`_
* **Fixed** issue `#461 <https://github.com/pymupdf/PyMuPDF/issues/461>`_.
* **Fixed** issue `#397 <https://github.com/pymupdf/PyMuPDF/issues/397>`_.
* **Fixed** issue `#463 <https://github.com/pymupdf/PyMuPDF/issues/463>`_.
* **Added** JavaScript support to PDF form fields, thereby fixing `#454 <https://github.com/pymupdf/PyMuPDF/issues/454>`_.
* **Added** a new annotation method :meth:`Annot.delete_responses`, which removes 'Popup' and response annotations referring to the current one. Mainly serves data protection purposes.
* **Added** a new form field method :meth:`Widget.reset`, which resets the field value to its default.
* **Changed** and extended handling of redactions: images and XObjects are removed if *contained* in a redaction rectangle. Any partial only overlaps will just be covered by the redaction background color. Now an *overlay* text can be specified to be inserted in the rectangle area to **take the place the deleted original** text. This resolves `#434 <https://github.com/pymupdf/PyMuPDF/issues/434>`_.

Changes in Version 1.16.11

* **Added** Support for redaction annotations via method :meth:`Page.add_redact_annot` and :meth:`Page.apply_redactions`.
* **Fixed** issue #426 ("PolygonAnnotation in 1.16.10 version").
* **Fixed** documentation only issues `#443 <https://github.com/pymupdf/PyMuPDF/issues/443>`_ and `#444 <https://github.com/pymupdf/PyMuPDF/issues/444>`_.

Changes in Version 1.16.10

* **Fixed** issue #421 ("annot.set_rect(rect) has no effect on text Annotation")
* **Fixed** issue #417 ("Strange behavior for page.deleteAnnot on 1.16.9 compare to 1.13.20")
* **Fixed** issue #415 ("Annot.setOpacity throws mupdf warnings")
* **Changed** all "add annotation / widget" methods to store a unique name in the */NM* PDF key.
* **Changed** :meth:`Annot.setInfo` to also accept direct parameters in addition to a dictionary.
* **Changed** :attr:`Annot.info` to now also show the annotation's unique id (*/NM* PDF key) if present.
* **Added** :meth:`Page.annot_names` which returns a list of all annotation names (*/NM* keys).
* **Added** :meth:`Page.load_annot` which loads an annotation given its unique id (*/NM* key).
* **Added** :meth:`Document.reload_page` which provides a new copy of a page after finishing any pending updates to it.

Changes in Version 1.16.9

* **Fixed** #412 ("Feature Request: Allow controlling whether TOC entries should be collapsed")
* **Fixed** #411 ("Seg Fault with page.firstWidget")
* **Fixed** #407 ("Annot.setOpacity trouble")
* **Changed** methods :meth:`Annot.setBorder`, :meth:`Annot.setColors`, :meth:`Link.setBorder`, and :meth:`Link.setColors` to also accept direct parameters, and not just cumbersome dictionaries.

Changes in Version 1.16.8

* **Added** several new methods to the :ref:`Document` class, which make dealing with PDF low-level structures easier. I also decided to provide them as "normal" methods (as opposed to private ones starting with an underscore "_"). These are :meth:`Document.xrefObject`, :meth:`Document.xrefStream`, :meth:`Document.xrefStreamRaw`, :meth:`Document.PDFTrailer`, :meth:`Document.PDFCatalog`, :meth:`Document.metadataXML`, :meth:`Document.updateObject`, :meth:`Document.updateStream`.
* **Added** :meth:`Tools.mupdf_disply_errors` which sets the display of mupdf errors on *sys.stderr*.
* **Added** a commandline facility. This a major new feature: you can now invoke several utility functions via *"python -m fitz ..."*. It should obsolete the need for many of the most trivial scripts. Please refer to :ref:`Module`.

Changes in Version 1.16.7

Minor changes to better synchronize the binary image streams of :ref:`TextPage` image blocks and :meth:`Document.extractImage` images.

* **Fixed** issue #394 ("PyMuPDF Segfaults when using TOOLS.mupdf_warnings()").
* **Changed** redirection of MuPDF error messages: apart from writing them to Python *sys.stderr*, they are now also stored with the MuPDF warnings.
* **Changed** :meth:`Tools.mupdf_warnings` to automatically empty the store (if not deactivated via a parameter).
* **Changed** :meth:`Page.getImageBbox` to return an **infinite rectangle** if the image could not be located on the page -- instead of raising an exception.

Changes in Version 1.16.6

* **Fixed** issue #390 ("Incomplete deletion of annotations").
* **Changed** :meth:`Page.searchFor` / :meth:`Document.searchPageFor` to also support the *flags* parameter, which controls the data included in a :ref:`TextPage`.
* **Changed** :meth:`Document.getPageImageList`, :meth:`Document.getPageFontList` and their :ref:`Page` counterparts to support a new parameter *full*. If true, the returned items will contain the :data:`xref` of the *Form XObject* where the font or image is referenced.

Changes in Version 1.16.5

More performance improvements for text extraction.

* **Fixed** second part of issue #381 (see item in v1.16.4).
* **Added** :meth:`Page.getTextPage`, so it is no longer required to create an intermediate display list for text extractions. Page level wrappers for text extraction and text searching are now based on this, which should improve performance by ca. 5%.

Changes in Version 1.16.4

* **Fixed** issue #381 ("TextPage.extractDICT ... failed ... after upgrading ... to 1.16.3")
* **Added** method :meth:`Document.pages` which delivers a generator iterator over a page range.
* **Added** method :meth:`Page.links` which delivers a generator iterator over the links of a page.
* **Added** method :meth:`Page.annots` which delivers a generator iterator over the annotations of a page.
* **Added** method :meth:`Page.widgets` which delivers a generator iterator over the form fields of a page.
* **Changed** :attr:`Document.is_form_pdf` to now contain the number of widgets, and *False* if not a PDF or this number is zero.

Changes in Version 1.16.3

Minor changes compared to version 1.16.2. The code of the "dict" and "rawdict" variants of :meth:`Page.getText` has been ported to C which has greatly improved their performance. This improvement is mostly noticeable with text-oriented documents, where they now should execute almost two times faster.

* **Fixed** issue #369 ("mupdf: cmsCreateTransform failed") by removing ICC colorspace support.
* **Changed** :meth:`Page.getText` to accept additional keywords "blocks" and "words". These will deliver the results of :meth:`Page.getTextBlocks` and :meth:`Page.getTextWords`, respectively. So all text extraction methods are now available via a uniform API. Correspondingly, there are now new methods :meth:`TextPage.extractBLOCKS` and :meth:`TextPage.extractWords`.
* **Changed** :meth:`Page.getText` to default bit indicator *TEXT_INHIBIT_SPACES* to **off**. Insertion of additional spaces is **not suppressed** by default.

Changes in Version 1.16.2

* **Changed** text extraction methods of :ref:`Page` to allow detail control of the amount of extracted data.
* **Added** :meth:`planish_line` which maps a given line (defined as a pair of points) to the x-axis.
* **Fixed** an issue (w/o Github number) which brought down the interpreter when encountering certain non-UTF-8 encodable characters while using :meth:`Page.getText` with te "dict" option.
* **Fixed** issue #362 ("Memory Leak with getText('rawDICT')").

Changes in Version 1.16.1

* **Added** property :attr:`Quad.is_convex` which checks whether a line is contained in the quad if it connects two points of it.
* **Changed** :meth:`Document.insert_pdf` to now allow dropping or including links and annotations independently during the copy. Fixes issue #352 ("Corrupt PDF data and ..."), which seemed to intermittently occur when using the method for some problematic PDF files.
* **Fixed** a bug which, in matrix division using the syntax *"m1/m2"*, caused matrix *"m1"* to be **replaced** by the result instead of delivering a new matrix.
* **Fixed** issue #354 ("SyntaxWarning with Python 3.8"). We now always use *"=="* for literals (instead of the *"is"* Python keyword).
* **Fixed** issue #353 ("mupdf version check"), to no longer refuse the import when there are only patch level deviations from MuPDF.

Changes in Version 1.16.0

This major new version of MuPDF comes with several nice new or changed features. Some of them imply programming API changes, however. This is a synopsis of what has changed:

* PDF document encryption and decryption is now **fully supported**. This includes setting **permissions**, **passwords** (user and owner passwords) and the desired encryption method.
* In response to the new encryption features, PyMuPDF returns an integer (ie. a combination of bits) for document permissions, and no longer a dictionary.
* Redirection of MuPDF errors and warnings is now natively supported. PyMuPDF redirects error messages from MuPDF to *sys.stderr* and no longer buffers them. Warnings continue to be buffered and will not be displayed. Functions exist to access and reset the warnings buffer.
* Annotations are now **only supported for PDF**.
* Annotations and widgets (form fields) are now **separate object chains** on a page (although widgets technically still **are** PDF annotations). This means, that you will **never encounter widgets** when using :attr:`Page.firstAnnot` or :meth:`Annot.next`. You must use :attr:`Page.firstWidget` and :meth:`Widget.next` to access form fields.
* As part of MuPDF's changes regarding widgets, only the following four fonts are supported, when **adding** or **changing** form fields: **Courier, Helvetica, Times-Roman** and **ZapfDingBats**.

List of change details:

* **Added** :meth:`Document.can_save_incrementally` which checks conditions that are preventing use of option *incremental=True* of :meth:`Document.save`.
* **Added** :attr:`Page.firstWidget` which points to the first field on a page.
* **Added** :meth:`Page.getImageBbox` which returns the rectangle occupied by an image shown on the page.
* **Added** :meth:`Annot.setName` which lets you change the (icon) name field.
* **Added** outputting the text color in :meth:`Page.getText`: the *"dict"*, *"rawdict"* and *"xml"* options now also show the color in sRGB format.
* **Changed** :attr:`Document.permissions` to now contain an integer of bool indicators -- was a dictionary before.
* **Changed** :meth:`Document.save`, :meth:`Document.write`, which now fully support password-based decryption and encryption of PDF files.
* **Changed the names of all Python constants** related to annotations and widgets. Please make sure to consult the **Constants and Enumerations** chapter if your script is dealing with these two classes. This decision goes back to the dropped support for non-PDF annotations. The **old names** (starting with "ANNOT_*" or "WIDGET_*") will be available as deprecated synonyms.
* **Changed** font support for widgets: only *Cour* (Courier), *Helv* (Helvetica, default), *TiRo* (Times-Roman) and *ZaDb* (ZapfDingBats) are accepted when **adding or changing** form fields. Only the plain versions are possible -- not their italic or bold variations. **Reading** widgets, however will show its original font.
* **Changed** the name of the warnings buffer to :meth:`Tools.mupdf_warnings` and the function to empty this buffer is now called :meth:`Tools.reset_mupdf_warnings`.
* **Changed** :meth:`Page.getPixmap`, :meth:`Document.get_page_pixmap`: a new bool argument *annots* can now be used to **suppress the rendering of annotations** on the page.
* **Changed** :meth:`Page.add_file_annot` and :meth:`Page.add_text_annot` to enable setting an icon.
* **Removed** widget-related methods and attributes from the :ref:`Annot` object.
* **Removed** :ref:`Document` attributes *openErrCode*, *openErrMsg*, and :ref:`Tools` attributes / methods *stderr*, *reset_stderr*, *stdout*, and *reset_stdout*.
* **Removed** **thirdparty zlib** dependency in PyMuPDF: there are now compression functions available in MuPDF. Source installers of PyMuPDF may now omit this extra installation step.

No version published for MuPDF v1.15.0

Changes in Version 1.14.20 / 1.14.21

* **Changed** text marker annotations to support multiple rectangles / quadrilaterals. This fixes issue #341 ("Question : How to addhighlight so that a string spread across more than a line is covered by one highlight?") and similar (#285).
* **Fixed** issue #331 ("Importing PyMuPDF changes warning filtering behaviour globally").

Changes in Version 1.14.19

* **Fixed** issue #319 ("InsertText function error when use custom font").
* **Added** new method :meth:`Document.get_sigflags` which returns information on whether a PDF is signed. Resolves issue #326 ("How to detect signature in a form pdf?").

Changes in Version 1.14.17

* **Added** :meth:`Document.fullcopyPage` to make full page copies within a PDF (not just copied references as :meth:`Document.copyPage` does).
* **Changed** :meth:`Page.getPixmap`, :meth:`Document.get_page_pixmap` now use *alpha=False* as default.
* **Changed** text extraction: the span dictionary now (again) contains its rectangle under the *bbox* key.
* **Changed** :meth:`Document.movePage` and :meth:`Document.copyPage` to use direct functions instead of wrapping :meth:`Document.select` -- similar to :meth:`Document.delete_page` in v1.14.16.

Changes in Version 1.14.16

* **Changed** :ref:`Document` methods around PDF */EmbeddedFiles* to no longer use MuPDF's "portfolio" functions. That support will be dropped in MuPDF v1.15 -- therefore another solution was required.
* **Changed** :meth:`Document.embfile_Count` to be a function (was an attribute).
* **Added** new method :meth:`Document.embfile_Names` which returns a list of names of embedded files.
* **Changed** :meth:`Document.delete_page` and :meth:`Document.delete_pages` to internally no longer use :meth:`Document.select`, but instead use functions to perform the deletion directly. As it has turned out, the :meth:`Document.select` method yields invalid outline trees (tables of content) for very complex PDFs and sophisticated use of annotations.

Changes in Version 1.14.15

* **Fixed** issues #301 ("Line cap and Line join"), #300 ("How to draw a shape without outlines") and #298 ("utils.updateRect exception"). These bugs pertain to drawing shapes with PyMuPDF. Drawing shapes without any border is fully supported. Line cap styles and line line join style are now differentiated and support all possible PDF values (0, 1, 2) instead of just being a bool. The previous parameter *roundCap* is deprecated in favor of *lineCap* and *lineJoin* and will be deleted in the next release.
* **Fixed** issue #290 ("Memory Leak with getText('rawDICT')"). This bug caused memory not being (completely) freed after invoking the "dict", "rawdict" and "json" versions of :meth:`Page.getText`.

Changes in Version 1.14.14

* **Added** new low-level function :meth:`ImageProperties` to determine a number of characteristics for an image.
* **Added** new low-level function :meth:`Document.is_stream`, which checks whether an object is of stream type.
* **Changed** low-level functions :meth:`Document._getXrefString` and :meth:`Document._getTrailerString` now by default return object definitions in a formatted form which makes parsing easy.

Changes in Version 1.14.13

* **Changed** methods working with binary input: while ever supporting bytes and bytearray objects, they now also accept *io.BytesIO* input, using their *getvalue()* method. This pertains to document creation, embedded files, FileAttachment annotations, pixmap creation and others. Fixes issue #274 ("Segfault when using BytesIO as a stream for insertImage").
* **Fixed** issue #278 ("Is insertImage(keep_proportion=True) broken?"). Images are now correctly presented when keeping aspect ratio.

Changes in Version 1.14.12

* **Changed** the draw methods of :ref:`Page` and :ref:`Shape` to support not only RGB, but also GRAY and CMYK colorspaces. This solves issue #270 ("Is there a way to use CMYK color to draw shapes?"). This change also applies to text insertion methods of :ref:`Shape`, resp. :ref:`Page`.
* **Fixed** issue #269 ("AttributeError in Document.insert_page()"), which occurred when using :meth:`Document.insert_page` with text insertion.

Changes in Version 1.14.11

* **Changed** :meth:`Page.show_pdf_page` to always position the source rectangle centered in the target. This method now also supports **rotation by arbitrary angles**. The argument *reuse_xref* has been deprecated: prevention of duplicates is now **handled internally**.
* **Changed** :meth:`Page.insertImage` to support rotated display of the image and keeping the aspect ratio. Only rotations by multiples of 90 degrees are supported here.
* **Fixed** issue #265 ("TypeError: insertText() got an unexpected keyword argument 'idx'"). This issue only occurred when using :meth:`Document.insert_page` with also inserting text.

Changes in Version 1.14.10

* **Changed** :meth:`Page.show_pdf_page` to support rotation of the source rectangle. Fixes #261 ("Cannot rotate insterted pages").
* **Fixed** a bug in :meth:`Page.insertImage` which prevented insertion of multiple images provided as streams.

Changes in Version 1.14.9

* **Added** new low-level method :meth:`Document._getTrailerString`, which returns the trailer object of a PDF. This is much like :meth:`Document._getXrefString` except that the PDF trailer has no / needs no :data:`xref` to identify it.
* **Added** new parameters for text insertion methods. You can now set stroke and fill colors of glyphs (text characters) independently, as well as the thickness of the glyph border. A new parameter *render_mode* controls the use of these colors, and whether the text should be visible at all.
* **Fixed** issue #258 ("Copying image streams to new PDF without size increase"): For JPX images embedded in a PDF, :meth:`Document.extractImage` will now return them in their original format. Previously, the MuPDF base library was used, which returns them in PNG format (entailing a massive size increase).
* **Fixed** issue #259 ("Morphing text to fit inside rect"). Clarified use of :meth:`get_text_length` and removed extra line breaks for long words.

Changes in Version 1.14.8

* **Added** :meth:`Pixmap.set_rect` to change the pixel values in a rectangle. This is also an alternative to setting the color of a complete pixmap (:meth:`Pixmap.clear_with`).
* **Fixed** an image extraction issue with JBIG2 (monochrome) encoded PDF images. The issue occurred in :meth:`Page.getText` (parameters "dict" and "rawdict") and in :meth:`Document.extractImage` methods.
* **Fixed** an issue with not correctly clearing a non-alpha :ref:`Pixmap` (:meth:`Pixmap.clear_with`).
* **Fixed** an issue with not correctly inverting colors of a non-alpha :ref:`Pixmap` (:meth:`Pixmap.invert_irect`).

Changes in Version 1.14.7

* **Added** :meth:`Pixmap.set_pixel` to change one pixel value.
* **Added** documentation for image conversion in the :ref:`FAQ`.
* **Added** new function :meth:`get_text_length` to determine the string length for a given font.
* **Added** Postscript image output (changed :meth:`Pixmap.save` and :meth:`Pixmap.tobytes`).
* **Changed** :meth:`Pixmap.save` and :meth:`Pixmap.tobytes` to ensure valid combinations of colorspace, alpha and output format.
* **Changed** :meth:`Pixmap.save`: the desired format is now inferred from the filename.
* **Changed** FreeText annotations can now have a transparent background - see :meth:`Annot.update`.

Changes in Version 1.14.5

* **Changed:** :ref:`Shape` methods now strictly use the transformation matrix of the :ref:`Page` -- instead of "manually" calculating locations.
* **Added** method :meth:`Pixmap.pixel` which returns the pixel value (a list) for given pixel coordinates.
* **Added** method :meth:`Pixmap.tobytes` which returns a bytes object representing the pixmap in a variety of formats. Previously, this could be done for PNG outputs only (:meth:`Pixmap.tobytes`).
* **Changed:** output of methods :meth:`Pixmap.save` and (the new) :meth:`Pixmap.tobytes` may now also be PSD (Adobe Photoshop Document).
* **Added** method :meth:`Shape.drawQuad` which draws a :ref:`Quad`. This actually is a shorthand for a :meth:`Shape.drawPolyline` with the edges of the quad.
* **Changed** method :meth:`Shape.drawOval`: the argument can now be **either** a rectangle (:data:`rect_like`) **or** a quadrilateral (:data:`quad_like`).

Changes in Version 1.14.4

* **Fixes** issue #239 "Annotation coordinate consistency".

Changes in Version 1.14.3

This patch version contains minor bug fixes and CJK font output support.

* **Added** support for the four CJK fonts as PyMuPDF generated text output. This pertains to methods :meth:`Page.insertFont`, :meth:`Shape.insertText`, :meth:`Shape.insertTextbox`, and corresponding :ref:`Page` methods. The new fonts are available under "reserved" fontnames "china-t" (traditional Chinese), "china-s" (simplified Chinese), "japan" (Japanese), and "korea" (Korean).
* **Added** full support for the built-in fonts 'Symbol' and 'Zapfdingbats'.
* **Changed:** The 14 standard fonts can now each be referenced by a 4-letter abbreviation.

Changes in Version 1.14.1

This patch version contains minor performance improvements.

* **Added** support for :ref:`Document` filenames given as *pathlib* object by using the Python *str()* function.

Changes in Version 1.14.0

To support MuPDF v1.14.0, massive changes were required in PyMuPDF -- most of them purely technical, with little visibility to developers. But there are also quite a lot of interesting new and improved features. Following are the details:

* **Added** "ink" annotation.
* **Added** "rubber stamp" annotation.
* **Added** "squiggly" text marker annotation.
* **Added** new class :ref:`Quad` (quadrilateral or tetragon) -- which represents a general four-sided shape in the plane. The special subtype of rectangular, non-empty tetragons is used in text marker annotations and as returned objects in text search methods.
* **Added** a new option "decrypt" to :meth:`Document.save` and :meth:`Document.write`. Now you can **keep encryption** when saving a password protected PDF.
* **Added** suppression and redirection of unsolicited messages issued by the underlying C-library MuPDF. Consult :ref:`RedirectMessages` for details.
* **Changed:** Changes to annotations now **always require** :meth:`Annot.update` to become effective.
* **Changed** free text annotations to support the full Latin character set and range of appearance options.
* **Changed** text searching, :meth:`Page.searchFor`, to optionally return :ref:`Quad` instead :ref:`Rect` objects surrounding each search hit.
* **Changed** plain text output: we now add a *\n* to each line if it does not itself end with this character.
* **Fixed** issue 211 ("Something wrong in the doc").
* **Fixed** issue 213 ("Rewritten outline is displayed only by mupdf-based applications").
* **Fixed** issue 214 ("PDF decryption GONE!").
* **Fixed** issue 215 ("Formatting of links added with pyMuPDF").
* **Fixed** issue 217 ("extraction through json is failing for my pdf").

Behind the curtain, we have changed the implementation of geometry objects: they now purely exist in Python and no longer have "shadow" twins on the C-level (in MuPDF). This has improved processing speed in that area by more than a factor of two.

Because of the same reason, most methods involving geometry parameters now also accept the corresponding Python sequence. For example, in method *"page.show_pdf_page(rect, ...)"* parameter *rect* may now be any :data:`rect_like` sequence.

We also invested considerable effort to further extend and improve the :ref:`FAQ` chapter.

Changes in Version 1.13.19

This version contains some technical / performance improvements and bug fixes.

* **Changed** memory management: for Python 3 builds, Python memory management is exclusively used across all C-level code (i.e. no more native *malloc()* in MuPDF code or PyMuPDF interface code). This leads to improved memory usage profiles and also some runtime improvements: we have seen > 2% shorter runtimes for text extractions and pixmap creations (on Windows machines only to date).
* **Fixed** an error occurring in Python 2.7, which crashed the interpreter when using :meth:`TextPage.extractRAWDICT` (= *Page.getText("rawdict")*).
* **Fixed** an error occurring in Python 2.7, when creating link destinations.
* **Extended** the :ref:`FAQ` chapter with more examples.

Changes in Version 1.13.18

* **Added** method :meth:`TextPage.extractRAWDICT`, and a corresponding new string parameter "rawdict" to method :meth:`Page.getText`. It extracts text and images from a page in Python *dict* form like :meth:`TextPage.extractDICT`, but with the detail level of :meth:`TextPage.extractXML`, which is position information down to each single character.

Changes in Version 1.13.17

* **Fixed** an error that intermittently caused an exception in :meth:`Page.show_pdf_page`, when pages from many different source PDFs were shown.
* **Changed** method :meth:`Document.extractImage` to now return more meta information about the extracted imgage. Also, its performance has been greatly improved. Several demo scripts have been changed to make use of this method.
* **Changed** method :meth:`Document._getXrefStream` to now return *None* if the object is no stream and no longer raise an exception if otherwise.
* **Added** method :meth:`Document._deleteObject` which deletes a PDF object identified by its :data:`xref`. Only to be used by the experienced PDF expert.
* **Added** a method :meth:`paper_rect` which returns a :ref:`Rect` for a supplied paper format string. Example: *fitz.paper_rect("letter") = fitz.Rect(0.0, 0.0, 612.0, 792.0)*.
* **Added** a :ref:`FAQ` chapter to this document.

Changes in Version 1.13.16

* **Added** support for correctly setting transparency (opacity) for certain annotation types.
* **Added** a tool property (:attr:`Tools.fitz_config`) showing the configuration of this PyMuPDF version.
* **Fixed** issue #193 ('insertText(overlay=False) gives "cannot resize a buffer with shared storage" error') by avoiding read-only buffers.

Changes in Version 1.13.15

* **Fixed** issue #189 ("cannot find builtin CJK font"), so we are supporting builtin CJK fonts now (CJK = China, Japan, Korea). This should lead to correctly generated pixmaps for documents using these languages. This change has consequences for our binary file size: it will now range between 8 and 10 MB, depending on the OS.
* **Fixed** issue #191 ("Jupyter notebook kernel dies after ca. 40 pages"), which occurred when modifying the contents of an annotation.

Changes in Version 1.13.14

This patch version contains several improvements, mainly for annotations.

* **Changed** :attr:`Annot.lineEnds` is now a list of two integers representing the line end symbols. Previously was a *dict* of strings.
* **Added** support of line end symbols for applicable annotations. PyMuPDF now can generate these annotations including the line end symbols.
* **Added** :meth:`Annot.setLineEnds` adds line end symbols to applicable annotation types ('Line', 'PolyLine', 'Polygon').
* **Changed** technical implementation of :meth:`Page.insertImage` and :meth:`Page.show_pdf_page`: they now create there own contents objects, thereby avoiding changes of potentially large streams with consequential compression / decompression efforts and high change volumes with incremental updates.

Changes in Version 1.13.13

This patch version contains several improvements for embedded files and file attachment annotations.

* **Added** :meth:`Document.embfile_Upd` which allows changing **file content and metadata** of an embedded file. It supersedes the old method :meth:`Document.embfile_SetInfo` (which will be deleted in a future version). Content is automatically compressed and metadata may be unicode.
* **Changed** :meth:`Document.embfile_Add` to now automatically compress file content. Accompanying metadata can now be unicode (had to be ASCII in the past).
* **Changed** :meth:`Document.embfile_Del` to now automatically delete **all entries** having the supplied identifying name. The return code is now an integer count of the removed entries (was *None* previously).
* **Changed** embedded file methods to now also accept or show the PDF unicode filename as additional parameter *ufilename*.
* **Added** :meth:`Page.add_file_annot` which adds a new file attachment annotation.
* **Changed** :meth:`Annot.fileUpd` (file attachment annot) to now also accept the PDF unicode *ufilename* parameter. The description parameter *desc* correctly works with unicode. Furthermore, **all** parameters are optional, so metadata may be changed without also replacing the file content.
* **Changed** :meth:`Annot.fileInfo` (file attachment annot) to now also show the PDF unicode filename as parameter *ufilename*.
* **Fixed** issue #180 ("page.getText(output='dict') return invalid bbox") to now also work for vertical text.
* **Fixed** issue #185 ("Can't render the annotations created by PyMuPDF"). The issue's cause was the minimalistic MuPDF approach when creating annotations. Several annotation types have no */AP* ("appearance") object when created by MuPDF functions. MuPDF, SumatraPDF and hence also PyMuPDF cannot render annotations without such an object. This fix now ensures, that an appearance object is always created together with the annotation itself. We still do not support line end styles.

Changes in Version 1.13.12

* **Fixed** issue #180 ("page.getText(output='dict') return invalid bbox"). Note that this is a circumvention of an MuPDF error, which generates zero-height character rectangles in some cases. When this happens, this fix ensures a bbox height of at least fontsize.
* **Changed** for ListBox and ComboBox widgets, the attribute list of selectable values has been renamed to :attr:`Widget.choice_values`.
* **Changed** when adding widgets, any missing of the :ref:`Base-14-Fonts` is automatically added to the PDF. Widget text fonts can now also be chosen from existing widget fonts. Any specified field values are now honored and lead to a field with a preset value.
* **Added** :meth:`Annot.updateWidget` which allows changing existing form fields -- including the field value.

Changes in Version 1.13.11

While the preceeding patch subversions only contained various fixes, this version again introduces major new features:

* **Added** basic support for PDF widget annotations. You can now add PDF form fields of types Text, CheckBox, ListBox and ComboBox. Where necessary, the PDF is tranformed to a Form PDF with the first added widget.
* **Fixed** issues #176 ("wrong file embedding"), #177 ("segment fault when invoking page.getText()")and #179 ("Segmentation fault using page.getLinks() on encrypted PDF").

Changes in Version 1.13.7

* **Added** support of variable page sizes for reflowable documents (e-books, HTML, etc.): new parameters *rect* and *fontsize* in :ref:`Document` creation (open), and as a separate method :meth:`Document.layout`.
* **Added** :ref:`Annot` creation of many annotations types: sticky notes, free text, circle, rectangle, line, polygon, polyline and text markers.
* **Added** support of annotation transparency (:attr:`Annot.opacity`, :meth:`Annot.setOpacity`).
* **Changed** :attr:`Annot.vertices`: point coordinates are now grouped as pairs of floats (no longer as separate floats).
* **Changed** annotation colors dictionary: the two keys are now named *"stroke"* (formerly *"common"*) and *"fill"*.
* **Added** :attr:`Document.isDirty` which is *True* if a PDF has been changed in this session. Reset to *False* on each :meth:`Document.save` or :meth:`Document.write`.

Changes in Version 1.13.6

* Fix #173: for memory-resident documents, ensure the stream object will not be garbage-collected by Python before document is closed.

Changes in Version 1.13.5

* New low-level method :meth:`Page._setContents` defines an object given by its :data:`xref` to serve as the :data:`contents` object.
* Changed and extended PDF form field support: the attribute *widget_text* has been renamed to :attr:`Annot.widget_value`. Values of all form field types (except signatures) are now supported. A new attribute :attr:`Annot.widget_choices` contains the selectable values of listboxes and comboboxes. All these attributes now contain *None* if no value is present.

Changes in Version 1.13.4

* :meth:`Document.convertToPDF` now supports page ranges, reverted page sequences and page rotation. If the document already is a PDF, an exception is raised.
* Fixed a bug (introduced with v1.13.0) that prevented :meth:`Page.insertImage` for transparent images.

Changes in Version 1.13.3

Introduces a way to convert **any MuPDF supported document** to a PDF. If you ever wanted PDF versions of your XPS, EPUB, CBZ or FB2 files -- here is a way to do this.

* :meth:`Document.convertToPDF` returns a Python *bytes* object in PDF format. Can be opened like normal in PyMuPDF, or be written to disk with the *".pdf"* extension.

Changes in Version 1.13.2

The major enhancement is PDF form field support. Form fields are annotations of type *(19, 'Widget')*. There is a new document method to check whether a PDF is a form. The :ref:`Annot` class has new properties describing field details.

* :attr:`Document.is_form_pdf` is true if object type */AcroForm* and at least one form field exists.
* :attr:`Annot.widget_type`, :attr:`Annot.widget_text` and :attr:`Annot.widget_name` contain the details of a form field (i.e. a "Widget" annotation).

Changes in Version 1.13.1

* :meth:`TextPage.extractDICT` is a new method to extract the contents of a document page (text and images). All document types are supported as with the other :ref:`TextPage` *extract*()* methods. The returned object is a dictionary of nested lists and other dictionaries, and **exactly equal** to the JSON-deserialization of the old :meth:`TextPage.extractJSON`. The difference is that the result is created directly -- no JSON module is used. Because the user needs no JSON module to interpet the information, it should be easier to use, and also have a better performance, because it contains images in their original **binary format** -- they need not be base64-decoded.
* :meth:`Page.getText` correspondingly supports the new parameter value *"dict"* to invoke the above method.
* :meth:`TextPage.extractJSON` (resp. *Page.getText("json")*) is still supported for convenience, but its use is expected to decline.

Changes in Version 1.13.0

This version is based on MuPDF v1.13.0. This release is "primarily a bug fix release".

In PyMuPDF, we are also doing some bug fixes while introducing minor enhancements. There only very minimal changes to the user's API.

* :ref:`Document` construction is more flexible: the new *filetype* parameter allows setting the document type. If specified, any extension in the filename will be ignored. More completely addresses `issue #156 <https://github.com/pymupdf/PyMuPDF/issues/156>`_. As part of this, the documentation has been reworked.

* Changes to :ref:`Pixmap` constructors:
 - Colorspace conversion no longer allows dropping the alpha channel: source and target **alpha will now always be the same**. We have seen exceptions and even interpreter crashes when using *alpha = 0*.
 - As a replacement, the simple pixmap copy lets you choose the target alpha.

* :meth:`Document.save` again offers the full garbage collection range 0 thru 4. Because of a bug in :data:`xref` maintenance, we had to temporarily enforce *garbage > 1*. Finally resolves `issue #148 <https://github.com/pymupdf/PyMuPDF/issues/148>`_.

* :meth:`Document.save` now offers to "prettify" PDF source via an additional argument.
* :meth:`Page.insertImage` has the additional *stream* \-parameter, specifying a memory area holding an image.

* Issue with garbled PNGs on Linux systems has been resolved (`"Problem writing PNG" #133) <https://github.com/pymupdf/PyMuPDF/issues/133>`_.

Changes in Version 1.12.4

This is an extension of 1.12.3.

* Fix of `issue #147 <https://github.com/pymupdf/PyMuPDF/issues/147>`_: methods :meth:`Document.getPageFontlist` and :meth:`Document.getPageImagelist` now also show fonts and images contained in :data:`resources` nested via "Form XObjects".
* Temporary fix of `issue #148 <https://github.com/pymupdf/PyMuPDF/issues/148>`_: Saving to new PDF files will now automatically use *garbage = 2* if a lower value is given. Final fix is to be expected with MuPDF's next version. At that point we will remove this circumvention.
* Preventive fix of illegally using stencil / image mask pixmaps in some methods.
* Method :meth:`Document.getPageFontlist` now includes the encoding name for each font in the list.
* Method :meth:`Document.getPageImagelist` now includes the decode method name for each image in the list.

Changes in Version 1.12.3

This is an extension of 1.12.2.

* Many functions now return *None* instead of *0*, if the result has no other meaning than just indicating successful execution (:meth:`Document.close`, :meth:`Document.save`, :meth:`Document.select`, :meth:`Pixmap.save` and many others).

Changes in Version 1.12.2

This is an extension of 1.12.1.

* Method :meth:`Page.show_pdf_page` now accepts the new *clip* argument. This specifies an area of the source page to which the display should be restricted.

* New :attr:`Page.CropBox` and :attr:`Page.MediaBox` have been included for convenience.

Changes in Version 1.12.1

This is an extension of version 1.12.0.

* New method :meth:`Page.show_pdf_page` displays another's PDF page. This is a **vector** image and therefore remains precise across zooming. Both involved documents must be PDF.

* New method :meth:`Page.getSVGimage` creates an SVG image from the page. In contrast to the raster image of a pixmap, this is a vector image format. The return is a unicode text string, which can be saved in a *.svg* file.

* Method :meth:`Page.getTextBlocks` now accepts an additional bool parameter "images". If set to true (default is false), image blocks (metadata only) are included in the produced list and thus allow detecting areas with rendered images.

* Minor bug fixes.

* "text" result of :meth:`Page.getText` concatenates all lines within a block using a single space character. MuPDF's original uses "\\n" instead, producing a rather ragged output.

* New properties of :ref:`Page` objects :attr:`Page.MediaBoxSize` and :attr:`Page.CropBoxPosition` provide more information about a page's dimensions. For non-PDF files (and for most PDF files, too) these will be equal to :attr:`Page.rect.bottom_right`, resp. :attr:`Page.rect.top_left`. For example, class :ref:`Shape` makes use of them to correctly position its items.

Changes in Version 1.12.0

This version is based on and requires MuPDF v1.12.0. The new MuPDF version contains quite a number of changes -- most of them around text extraction. Some of the changes impact the programmer's API.

* :meth:`Outline.saveText` and :meth:`Outline.saveXML` have been deleted without replacement. You probably haven't used them much anyway. But if you are looking for a replacement: the output of :meth:`Document.get_toc` can easily be used to produce something equivalent.

* Class *TextSheet* does no longer exist.

* Text "spans" (one of the hierarchy levels of :ref:`TextPage`) no longer contain positioning information (i.e. no "bbox" key). Instead, spans now provide the font information for its text. This impacts our JSON output variant.

* HTML output has improved very much: it now creates valid documents which can be displayed by browsers to produce a similar view as the original document.

* There is a new output format XHTML, which provides text and images in a browser-readable format. The difference to HTML output is, that no effort is made to reproduce the original layout.

* All output formats of :meth:`Page.getText` now support creating complete, valid documents, by wrapping them with appropriate header and trailer information. If you are interested in using the HTML output, please make sure to read :ref:`HTMLQuality`.

* To support finding text positions, we have added special methods that don't need detours like :meth:`TextPage.extractJSON` or :meth:`TextPage.extractXML`: use :meth:`Page.getTextBlocks` or resp. :meth:`Page.getTextWords` to create lists of text blocks or resp. words, which are accompanied by their rectangles. This should be much faster than the standard text extraction methods and also avoids using additional packages for interpreting their output.

Changes in Version 1.11.2

This is an extension of v1.11.1.

* New :meth:`Page.insertFont` creates a PDF */Font* object and returns its object number.

* New :meth:`Document.extractFont` extracts the content of an embedded font given its object number.

* Methods **FontList(...)** items no longer contain the PDF generation number. This value never had any significance. Instead, the font file extension is included (e.g. "pfa" for a "PostScript Font for ASCII"), which is more valuable information.

* Fonts other than "simple fonts" (Type1) are now also supported.

* New options to change :ref:`Pixmap` size:

 * Method :meth:`Pixmap.shrink` reduces the pixmap proportionally in place.

 * A new :ref:`Pixmap` copy constructor allows scaling via setting target width and height.

Changes in Version 1.11.1

This is an extension of v1.11.0.

* New class *Shape*. It facilitates and extends the creation of image shapes on PDF pages. It contains multiple methods for creating elementary shapes like lines, rectangles or circles, which can be combined into more complex ones and be given common properties like line width or colors. Combined shapes are handled as a unit and e.g. be "morphed" together. The class can accumulate multiple complex shapes and put them all in the page's foreground or background -- thus also reducing the number of updates to the page's :data:`contents` object.

* All *Page* draw methods now use the new *Shape* class.

* Text insertion methods *insertText()* and *insertTextBox()* now support morphing in addition to text rotation. They have become part of the *Shape* class and thus allow text to be freely combined with graphics.

* A new *Pixmap* constructor allows creating pixmap copies with an added alpha channel. A new method also allows directly manipulating alpha values.

* Binary algebraic operations with geometry objects (matrices, rectangles and points) now generally also support lists or tuples as the second operand. You can add a tuple *(x, y)* of numbers to a :ref:`Point`. In this context, such sequences are called ":data:`point_like`" (resp. :data:`matrix_like`, :data:`rect_like`).

* Geometry objects now fully support in-place operators. For example, *p /= m* replaces point p with *p * 1/m* for a number, or *p * ~m* for a :data:`matrix_like` object *m*. Similarly, if *r* is a rectangle, then *r |= (3, 4)* is the new rectangle that also includes *fitz.Point(3, 4)*, and *r &= (1, 2, 3, 4)* is its intersection with *fitz.Rect(1, 2, 3, 4)*.

Changes in Version 1.11.0

This version is based on and requires MuPDF v1.11.

Though MuPDF has declared it as being mostly a bug fix version, one major new feature is indeed contained: support of embedded files -- also called portfolios or collections. We have extended PyMuPDF functionality to embrace this up to an extent just a little beyond the *mutool* utility as follows.

* The *Document* class now support embedded files with several new methods and one new property:

 - *embfile_Info()* returns metadata information about an entry in the list of embedded files. This is more than *mutool* currently provides: it shows all the information that was used to embed the file (not just the entry's name).
 - *embfile_Get()* retrieves the (decompressed) content of an entry into a *bytes* buffer.
 - *embfile_Add(...)* inserts new content into the PDF portfolio. We (in contrast to *mutool*) **restrict** this to entries with a **new name** (no duplicate names allowed).
 - *embfile_Del(...)* deletes an entry from the portfolio (function not offered in MuPDF).
 - *embfile_SetInfo()* -- changes filename or description of an embedded file.
 - *embfile_Count* -- contains the number of embedded files.

* Several enhancements deal with streamlining geometry objects. These are not connected to the new MuPDF version and most of them are also reflected in PyMuPDF v1.10.0. Among them are new properties to identify the corners of rectangles by name (e.g. *Rect.bottom_right*) and new methods to deal with set-theoretic questions like *Rect.contains(x)* or *IRect.intersects(x)*. Special effort focussed on supporting more "Pythonic" language constructs: *if x in rect ...* is equivalent to *rect.contains(x)*.

* The :ref:`Rect` chapter now has more background on empty amd infinite rectangles and how we handle them. The handling itself was also updated for more consistency in this area.

* We have started basic support for **generation** of PDF content:

 - *Document.insert_page()* adds a new page into a PDF, optionally containing some text.
 - *Page.insertImage()* places a new image on a PDF page.
 - *Page.insertText()* puts new text on an existing page

* For **FileAttachment** annotations, content and name of the attached file can extracted and changed.

Changes in Version 1.10.0

MuPDF v1.10 Impact

MuPDF version 1.10 has a significant impact on our bindings. Some of the changes also affect the API -- in other words, **you** as a PyMuPDF user.

* Link destination information has been reduced. Several properties of the *linkDest* class no longer contain valuable information. In fact, this class as a whole has been deleted from MuPDF's library and we in PyMuPDF only maintain it to provide compatibilty to existing code.

* In an effort to minimize memory requirements, several improvements have been built into MuPDF v1.10:

 - A new *config.h* file can be used to de-select unwanted features in the C base code. Using this feature we have been able to reduce the size of our binary *_fitz.o* / *_fitz.pyd* by about 50% (from 9 MB to 4.5 MB). When UPX-ing this, the size goes even further down to a very handy 2.3 MB.

 - The alpha (transparency) channel for pixmaps is now optional. Letting alpha default to *False* significantly reduces pixmap sizes (by 20% -- CMYK, 25% -- RGB, 50% -- GRAY). Many *Pixmap* constructors therefore now accept an *alpha* boolean to control inclusion of this channel. Other pixmap constructors (e.g. those for file and image input) create pixmaps with no alpha alltogether. On the downside, save methods for pixmaps no longer accept a *savealpha* option: this channel will always be saved when present. To minimize code breaks, we have left this parameter in the call patterns -- it will just be ignored.

* *DisplayList* and *TextPage* class constructors now **require the mediabox** of the page they are referring to (i.e. the *page.bound()* rectangle). There is no way to construct this information from other sources, therefore a source code change cannot be avoided in these cases. We assume however, that not many users are actually employing these rather low level classes explixitely. So the impact of that change should be minor.

Other Changes compared to Version 1.9.3

* The new :ref:`Document` method *write()* writes an opened PDF to memory (as opposed to a file, like *save()* does).
* An annotation can now be scaled and moved around on its page. This is done by modifying its rectangle.
* Annotations can now be deleted. :ref:`Page` contains the new method *deleteAnnot()*.
* Various annotation attributes can now be modified, e.g. content, dates, title (= author), border, colors.
* Method *Document.insert_pdf()* now also copies annotations of source pages.
* The *Pages* class has been deleted. As documents can now be accessed with page numbers as indices (like *doc[n] = doc.loadPage(n)*), and document object can be used as iterators, the benefit of this class was too low to maintain it. See the following comments.
* *loadPage(n)* / *doc[n]* now accept arbitrary integers to specify a page number, as long as *n < pageCount*. So, e.g. *doc[-500]* is always valid and will load page *(-500) % pageCount*.
* A document can now also be used as an iterator like this: *for page in doc: ...<do something with "page"> ...*. This will yield all pages of *doc* as *page*.
* The :ref:`Pixmap` method *getSize()* has been replaced with property *size*. As before *Pixmap.size == len(Pixmap)* is true.
* In response to transparency (alpha) being optional, several new parameters and properties have been added to :ref:`Pixmap` and :ref:`Colorspace` classes to support determining their characteristics.
* The :ref:`Page` class now contains new properties *firstAnnot* and *firstLink* to provide starting points to the respective class chains, where *firstLink* is just a mnemonic synonym to method *loadLinks()* which continues to exist. Similarly, the new property *rect* is a synonym for method *bound()*, which also continues to exist.
* :ref:`Pixmap` methods *samplesRGB()* and *samplesAlpha()* have been deleted because pixmaps can now be created without transparency.
* :ref:`Rect` now has a property *irect* which is a synonym of method *round()*. Likewise, :ref:`IRect` now has property *rect* to deliver a :ref:`Rect` which has the same coordinates as floats values.
* Document has the new method *searchPageFor()* to search for a text string. It works exactly like the corresponding *Page.searchFor()* with page number as additional parameter.

Changes in Version 1.9.3

This version is also based on MuPDF v1.9a. Changes compared to version 1.9.2:

* As a major enhancement, annotations are now supported in a similar way as links. Annotations can be displayed (as pixmaps) and their properties can be accessed.
* In addition to the document *select()* method, some simpler methods can now be used to manipulate a PDF:

 - *copyPage()* copies a page within a document.
 - *movePage()* is similar, but deletes the original.
 - *delete_page()* deletes a page
 - *delete_pages()* deletes a page range

* *rotation* or *setRotation()* access or change a PDF page's rotation, respectively.
* Available but undocumented before, :ref:`IRect`, :ref:`Rect`, :ref:`Point` and :ref:`Matrix` support the *len()* method and their coordinate properties can be accessed via indices, e.g. *IRect.x1 == IRect[2]*.
* For convenience, documents now support simple indexing: *doc.loadPage(n) == doc[n]*. The index may however be in range *-pageCount < n < pageCount*, such that *doc[-1]* is the last page of the document.

Changes in Version 1.9.2

This version is also based on MuPDF v1.9a. Changes compared to version 1.9.1:

* *fitz.open()* (no parameters) creates a new empty **PDF** document, i.e. if saved afterwards, it must be given a *.pdf* extension.
* :ref:`Document` now accepts all of the following formats (*Document* and *open* are synonyms):

 - *open()*,
 - *open(filename)* (equivalent to *open(filename, None)*),
 - *open(filetype, area)* (equivalent to *open(filetype, stream = area)*).

 Type of memory area *stream* may be *bytes* or *bytearray*. Thus, e.g. *area = open("file.pdf", "rb").read()* may be used directly (without first converting it to bytearray).
* New method *Document.insert_pdf()* (PDFs only) inserts a range of pages from another PDF.
* *Document* objects doc now support the *len()* function: ``len(doc) == doc.pageCount``.
* New method *Document.getPageImageList()* creates a list of images used on a page.
* New method *Document.getPageFontList()* creates a list of fonts referenced by a page.
* New pixmap constructor *fitz.Pixmap(doc, xref)* creates a pixmap based on an opened PDF document and an :data:`xref` number of the image.
* New pixmap constructor *fitz.Pixmap(cspace, spix)* creates a pixmap as a copy of another one *spix* with the colorspace converted to *cspace*. This works for all colorspace combinations.
* Pixmap constructor *fitz.Pixmap(colorspace, width, height, samples)* now allows *samples* to also be *bytes*, not only *bytearray*.

Changes in Version 1.9.1

This version of PyMuPDF is based on MuPDF library source code version 1.9a published on April 21, 2016.

Please have a look at MuPDF's website to see which changes and enhancements are contained herein.

Changes in version 1.9.1 compared to version 1.8.0 are the following:

* New methods *get_area()* for both *fitz.Rect* and *fitz.IRect*
* Pixmaps can now be created directly from files using the new constructor *fitz.Pixmap(filename)*.
* The Pixmap constructor *fitz.Pixmap(image)* has been extended accordingly.
* *fitz.Rect* can now be created with all possible combinations of points and coordinates.
* PyMuPDF classes and methods now all contain __doc__ strings, most of them created by SWIG automatically. While the PyMuPDF documentation certainly is more detailed, this feature should help a lot when programming in Python-aware IDEs.
* A new document method of *getPermits()* returns the permissions associated with the current access to the document (print, edit, annotate, copy), as a Python dictionary.
* The identity matrix *fitz.Identity* is now **immutable**.
* The new document method *select(list)* removes all pages from a document that are not contained in the list. Pages can also be duplicated and re-arranged.
* Various improvements and new members in our demo and examples collections. Perhaps most prominently: *PDF_display* now supports scrolling with the mouse wheel, and there is a new example program *wxTableExtract* which allows to graphically identify and extract table data in documents.
* *fitz.open()* is now an alias of *fitz.Document()*.
* New pixmap method *tobytes()* which will return a bytearray formatted as a PNG image of the pixmap.
* New pixmap method *samplesRGB()* providing a *samples* version with alpha bytes stripped off (RGB colorspaces only).
* New pixmap method *samplesAlpha()* providing the alpha bytes only of the *samples* area.
* New iterator *fitz.Pages(doc)* over a document's set of pages.
* New matrix methods *invert()* (calculate inverted matrix), *concat()* (calculate matrix product), *pretranslate()* (perform a shift operation).
* New *IRect* methods *intersect()* (intersection with another rectangle), *translate()* (perform a shift operation).
* New *Rect* methods *intersect()* (intersection with another rectangle), *transform()* (transformation with a matrix), *include_point()* (enlarge rectangle to also contain a point), *include_rect()* (enlarge rectangle to also contain another one).
* Documented *Point.transform()* (transform a point with a matrix).
* *Matrix*, *IRect*, *Rect* and *Point* classes now support compact, algebraic formulations for manipulating such objects.
* Incremental saves for changes are possible now using the call pattern *doc.save(doc.name, incremental=True)*.
* A PDF's metadata can now be deleted, set or changed by document method *set_metadata()*. Supports incremental saves.
* A PDF's bookmarks (or table of contents) can now be deleted, set or changed with the entries of a list using document method *set_toc(list)*. Supports incremental saves.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/classes.rst

.. include:: header.rst

============
Classes
============

.. toctree::
 :maxdepth: 2

 annot.rst
 archive-class.rst
 colorspace.rst
 displaylist.rst
 document.rst
 document-writer-class.rst
 font.rst
 identity.rst
 irect.rst
 link.rst
 linkdest.rst
 matrix.rst
 outline.rst
 page.rst
 pixmap.rst
 point.rst
 quad.rst
 rect.rst
 shape.rst
 story-class.rst
 textpage.rst
 textwriter.rst
 tools.rst
 widget.rst
 xml-class.rst

.. include:: footer.rst

PyMuPDF-1.21.1/docs/colors.rst

.. include:: header.rst

.. _ColorDatabase:

================
Color Database
================
Since the introduction of methods involving colors (like :meth:`Page.draw_circle`), a requirement may be to have access to predefined colors.

The fabulous GUI package `wxPython <https://wxpython.org/>`_ has a database of over 540 predefined RGB colors, which are given more or less memorizable names. Among them are not only standard names like "green" or "blue", but also "turquoise", "skyblue", and 100 (not only 50 ...) shades of "gray", etc.

We have taken the liberty to copy this database (a list of tuples) modified into PyMuPDF and make its colors available as PDF compatible float triples: for wxPython's *("WHITE", 255, 255, 255)* we return *(1, 1, 1)*, which can be directly used in *color* and *fill* parameters. We also accept any mixed case of "wHiTe" to find a color.

Function *getColor()*

As the color database may not be needed very often, one additional import statement seems acceptable to get access to it::

 >>> # "getColor" is the only method you really need
 >>> from fitz.utils import getColor
 >>> getColor("aliceblue")
 (0.9411764705882353, 0.9725490196078431, 1.0)
 >>> #
 >>> # to get a list of all existing names
 >>> from fitz.utils import getColorList
 >>> cl = getColorList()
 >>> cl
 ['ALICEBLUE', 'ANTIQUEWHITE', 'ANTIQUEWHITE1', 'ANTIQUEWHITE2', 'ANTIQUEWHITE3',
 'ANTIQUEWHITE4', 'AQUAMARINE', 'AQUAMARINE1'] ...
 >>> #
 >>> # to see the full integer color coding
 >>> from fitz.utils import getColorInfoList
 >>> il = getColorInfoList()
 >>> il
 [('ALICEBLUE', 240, 248, 255), ('ANTIQUEWHITE', 250, 235, 215),
 ('ANTIQUEWHITE1', 255, 239, 219), ('ANTIQUEWHITE2', 238, 223, 204),
 ('ANTIQUEWHITE3', 205, 192, 176), ('ANTIQUEWHITE4', 139, 131, 120),
 ('AQUAMARINE', 127, 255, 212), ('AQUAMARINE1', 127, 255, 212)] ...

Printing the Color Database

If you want to actually see how the many available colors look like, use scripts `colordbRGB.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/colordbRGB.py>`_ or `colordbHSV.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/colordbHSV.py>`_ in the examples directory. They create PDFs (already existing in the same directory) with all these colors. Their only difference is sorting order: one takes the RGB values, the other one the Hue-Saturation-Values as sort criteria.
This is a screen print of what these files look like.

.. image:: images/img-colordb.*

.. include:: footer.rst

PyMuPDF-1.21.1/docs/colorspace.rst

.. include:: header.rst

.. _Colorspace:

================
Colorspace
================

Represents the color space of a :ref:`Pixmap`.

Class API

.. class:: Colorspace

 .. method:: __init__(self, n)

 Constructor

 :arg int n: A number identifying the colorspace. Possible values are :data:`CS_RGB`, :data:`CS_GRAY` and :data:`CS_CMYK`.

 .. attribute:: name

 The name identifying the colorspace. Example: *fitz.csCMYK.name = 'DeviceCMYK'*.

 :type: str

 .. attribute:: n

 The number of bytes required to define the color of one pixel. Example: *fitz.csCMYK.n == 4*.

 :type: int

 Predefined Colorspaces

 For saving some typing effort, there exist predefined colorspace objects for the three available cases.

 * :data:`csRGB` = *fitz.Colorspace(fitz.CS_RGB)*
 * :data:`csGRAY` = *fitz.Colorspace(fitz.CS_GRAY)*
 * :data:`csCMYK` = *fitz.Colorspace(fitz.CS_CMYK)*

.. include:: footer.rst

PyMuPDF-1.21.1/docs/conf.py

-*- coding: utf-8 -*-
#
import sys
import os

If extensions (or modules to document with autodoc) are in another directory,
add these directories to sys.path here. If the directory is relative to the
documentation root, use os.path.abspath to make it absolute, like shown here.
sys.path.insert(0, os.path.abspath("."))

-- General configuration --

If your documentation needs a minimal Sphinx version, state it here.
needs_sphinx = "4.2.0"

Add any Sphinx extension module names here, as strings. They can be
extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
ones.
extensions = ["sphinx.ext.autodoc", "sphinx.ext.coverage", "sphinx.ext.ifconfig"]
extensions = []
rst2pdf is not available on OpenBSD.
if hasattr(os, "uname") and os.uname()[0] != "OpenBSD":
 extensions.append("rst2pdf.pdfbuilder")

Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]

The suffix of source filenames.
source_suffix = ".rst"

The encoding of source files.
source_encoding = 'utf-8-sig'

The master toctree document.
master_doc = "toc"

General information about the project.
project = "PyMuPDF"
copyright = "2015-2022, Artifex"

The version info for the project you're documenting, acts as replacement for
|version| and |release|, also used in various other places throughout the
built documents.
#
The full version, including alpha/beta/rc tags.
release = "1.21.1"

The short X.Y version
version = release

The language for content autogenerated by Sphinx. Refer to documentation
for a list of supported languages.
language = None

There are two options for replacing |today|: either, you set today to some
non-false value, then it is used:
today = ''
Else, today_fmt is used as the format for a strftime call.
today_fmt = '%B %d, %Y'

List of patterns, relative to source directory, that match files and
directories to ignore when looking for source files.
exclude_patterns = ["_build", "build"]

The reST default role (used for this markup: `text`) to use for all
documents.
default_role = None

If true, '()' will be appended to :func: etc. cross-reference text.
add_function_parentheses = True

If true, the current module name will be prepended to all description
unit titles (such as .. function::).
add_module_names = True

If true, sectionauthor and moduleauthor directives will be shown in the
output. They are ignored by default.
show_authors = False

The name of the Pygments (syntax highlighting) style to use.
pygments_style = "sphinx"

A list of ignored prefixes for module index sorting.
modindex_common_prefix = []

If true, keep warnings as "system message" paragraphs in the built documents.
keep_warnings = False

-- Options for HTML output --

The theme to use for HTML and HTML Help pages. See the documentation for
a list of builtin themes.
html_theme = "sphinx_rtd_theme"

Theme options are theme-specific and customize the look and feel of a theme
further. For a list of options available for each theme, see the
documentation.
html_theme_options = {}

Add any paths that contain custom themes here, relative to this directory.
html_theme_path = []
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

The name for this set of Sphinx documents. If None, it defaults to
"<project> v<release> documentation".
html_title = None

A shorter title for the navigation bar. Default is the same as html_title.
html_short_title = None

The name of an image file (relative to this directory) to place at the top
of the sidebar.
html_logo = "images/pymupdf-sidebar-logo.png"

The name of an image file (within the static path) to use as favicon of the
docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
pixels large.
html_favicon = "_static/PyMuPDF.ico"

Add any paths that contain custom static files (such as style sheets) here,
relative to this directory. They are copied after the builtin static files,
so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]

A list of CSS files. The entry must be a filename string or a tuple containing
the filename string and the attributes dictionary. The filename must be
relative to the html_static_path, or a full URI
html_css_files = ["custom.css"]

Add any extra paths that contain custom files (such as robots.txt or
.htaccess) here, relative to this directory. These files are copied
directly to the root of the documentation.
html_extra_path = []

If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
using the given strftime format.
html_last_updated_fmt = "%d. %b %Y"

If true, SmartyPants will be used to convert quotes and dashes to
typographically correct entities.
html_use_smartypants = False

Custom sidebar templates, maps document names to template names.
html_sidebars = {}

Additional templates that should be rendered to pages, maps page names to
template names.
html_additional_pages = {}

If false, no module index is generated.
html_domain_indices = True

If false, no index is generated.
html_use_index = True

If true, the index is split into individual pages for each letter.
html_split_index = True

If true, links to the reST sources are added to the pages.
html_show_sourcelink = True
html_sourcelink_suffix = ".rst"
If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
html_show_sphinx = False

If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
html_show_copyright = True

If true, an OpenSearch description file will be output, and all pages will
contain a <link> tag referring to it. The value of this option must be the
base URL from which the finished HTML is served.
html_use_opensearch = ""

This is the file name suffix for HTML files (e.g. ".xhtml").
html_file_suffix = None

Output file base name for HTML help builder.
htmlhelp_basename = "PyMuPDF"

-- Options for LaTeX output ---
latex_elements = {
 # "fontpkg": r"\usepackage[sfdefault]{ClearSans} \usepackage[T1]{fontenc}"
}
Grouping the document tree into LaTeX files. List of tuples
(source start file, target name, title,
author, documentclass [howto, manual, or own class]).
latex_documents = [("toc", "PyMuPDF.tex", "PyMuPDF Documentation", "Artifex", "manual")]
The name of an image file (relative to this directory) to place at the top of
the title page.
latex_logo = "images/pymupdf-logo.png"

For "manual" documents, if this is true, then toplevel headings are parts,
not chapters.
latex_use_parts = False

If true, show page references after internal links.
latex_show_pagerefs = False

If true, show URL addresses after external links.
latex_show_urls = True
latex_use_xindy = True
Documents to append as an appendix to all manuals.
latex_appendices = []

If false, no module index is generated.
latex_domain_indices = True

-- Options for PDF output --
Grouping the document tree into PDF files. List of tuples
(source start file, target name, title, author).

pdf_documents = [("toc", "PyMuPDF", "PyMuPDF Manual", "Artifex")]

A comma-separated list of custom stylesheets. Example:
pdf_stylesheets = ["sphinx", "bahnschrift", "a4"]

Create a compressed PDF
pdf_compressed = True

A colon-separated list of folders to search for fonts. Example:
pdf_font_path=['/usr/share/fonts', '/usr/share/texmf-dist/fonts/']

Language to be used for hyphenation support
pdf_language = "en_US"

If false, no index is generated.
pdf_use_index = True

If false, no modindex is generated.
pdf_use_modindex = True

If false, no coverpage is generated.
pdf_use_coverpage = True

pdf_break_level = 2

pdf_verbosity = 0
pdf_invariant = True

PyMuPDF-1.21.1/docs/coop_low.rst

.. include:: header.rst

.. _cooperation:

===
Working together: DisplayList and TextPage
===
Here are some instructions on how to use these classes together.

In some situations, performance improvements may be achievable, when you fall back to the detail level explained here.

Create a DisplayList

A :ref:`DisplayList` represents an interpreted document page. Methods for pixmap creation, text extraction and text search are -- behind the curtain -- all using the page's display list to perform their tasks. If a page must be rendered several times (e.g. because of changed zoom levels), or if text search and text extraction should both be performed, overhead can be saved, if the display list is created only once and then used for all other tasks.

>>> dl = page.get_displaylist() # create the display list

You can also create display lists for many pages "on stack" (in a list), may be during document open, during idling times, or you store it when a page is visited for the first time (e.g. in GUI scripts).

Note, that for everything what follows, only the display list is needed -- the corresponding :ref:`Page` object could have been deleted.

Generate Pixmap

The following creates a Pixmap from a :ref:`DisplayList`. Parameters are the same as for :meth:`Page.get_pixmap`.

>>> pix = dl.get_pixmap() # create the page's pixmap

The execution time of this statement may be up to 50% shorter than that of :meth:`Page.get_pixmap`.

Perform Text Search

With the display list from above, we can also search for text.

For this we need to create a :ref:`TextPage`.

>>> tp = dl.get_textpage() # display list from above
>>> rlist = tp.search("needle") # look up "needle" locations
>>> for r in rlist: # work with the found locations, e.g.
 pix.invert_irect(r.irect) # invert colors in the rectangles

Extract Text

With the same :ref:`TextPage` object from above, we can now immediately use any or all of the 5 text extraction methods.

.. note:: Above, we have created our text page without argument. This leads to a default argument of 3 (:data:`ligatures` and white-space are preserved), IAW images will **not** be extracted -- see below.

>>> txt = tp.extractText() # plain text format
>>> json = tp.extractJSON() # json format
>>> html = tp.extractHTML() # HTML format
>>> xml = tp.extractXML() # XML format
>>> xml = tp.extractXHTML() # XHTML format

Further Performance improvements

Pixmap
~~~~~~~
As explained in the :ref:`Page` chapter:

If you do not need transparency set *alpha = 0* when creating pixmaps. This will save 25% memory (if RGB, the most common case) and possibly 5% execution time (depending on the GUI software).

TextPage
~~~~~~~~~
If you do not need images extracted alongside the text of a page, you can set the following option:

>>> flags = fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE
>>> tp = dl.get_textpage(flags)

This will save ca. 25% overall execution time for the HTML, XHTML and JSON text extractions and **hugely** reduce the amount of storage (both, memory and disk space) if the document is graphics oriented.

If you however do need images, use a value of 7 for flags:

>>> flags = fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE | fitz.TEXT_PRESERVE_IMAGES

.. include:: footer.rst

PyMuPDF-1.21.1/docs/deprecated.rst

.. Deprecated Names:

* :index:`_isWrapped` -- :attr:`Page.is_wrapped`
* :index:`addCaretAnnot` -- :meth:`Page.add_caret_annot`
* :index:`addCircleAnnot` -- :meth:`Page.add_circle_annot`
* :index:`addFileAnnot` -- :meth:`Page.add_file_annot`
* :index:`addFreetextAnnot` -- :meth:`Page.add_freetext_annot`
* :index:`addHighlightAnnot` -- :meth:`Page.add_highlight_annot`
* :index:`addInkAnnot` -- :meth:`Page.add_ink_annot`
* :index:`addLineAnnot` -- :meth:`Page.add_line_annot`
* :index:`addPolygonAnnot` -- :meth:`Page.add_polygon_annot`
* :index:`addPolylineAnnot` -- :meth:`Page.add_polyline_annot`
* :index:`addRectAnnot` -- :meth:`Page.add_rect_annot`
* :index:`addRedactAnnot` -- :meth:`Page.add_redact_annot`
* :index:`addSquigglyAnnot` -- :meth:`Page.add_squiggly_annot`
* :index:`addStampAnnot` -- :meth:`Page.add_stamp_annot`
* :index:`addStrikeoutAnnot` -- :meth:`Page.add_strikeout_annot`
* :index:`addTextAnnot` -- :meth:`Page.add_text_annot`
* :index:`addUnderlineAnnot` -- :meth:`Page.add_underline_annot`
* :index:`addWidget` -- :meth:`Page.add_widget`
* :index:`chapterCount` -- :attr:`Document.chapter_count`
* :index:`chapterPageCount` -- :meth:`Document.chapter_page_count`
* :index:`cleanContents` -- :meth:`Page.clean_contents`
* :index:`clearWith` -- :meth:`Pixmap.clear_with`
* :index:`convertToPDF` -- :meth:`Document.convert_to_pdf`
* :index:`copyPage` -- :meth:`Document.copy_page`
* :index:`copyPixmap` -- :meth:`Pixmap.copy`
* :index:`CropBox` -- :attr:`Page.cropbox`
* :index:`CropBoxPosition` -- :attr:`Page.cropbox_position`
* :index:`deleteAnnot` -- :meth:`Page.delete_annot`
* :index:`deleteLink` -- :meth:`Page.delete_link`
* :index:`deletePage` -- :meth:`Document.delete_page`
* :index:`deletePageRange` -- :meth:`Document.delete_pages`
* :index:`deleteWidget` -- :meth:`Page.delete_widget`
* :index:`derotationMatrix` -- :attr:`Page.derotation_matrix`
* :index:`drawBezier` -- :meth:`Page.draw_bezier`
* :index:`drawBezier` -- :meth:`Shape.draw_bezier`
* :index:`drawCircle` -- :meth:`Page.draw_circle`
* :index:`drawCircle` -- :meth:`Shape.draw_circle`
* :index:`drawCurve` -- :meth:`Page.draw_curve`
* :index:`drawCurve` -- :meth:`Shape.draw_curve`
* :index:`drawLine` -- :meth:`Page.draw_line`
* :index:`drawLine` -- :meth:`Shape.draw_line`
* :index:`drawOval` -- :meth:`Page.draw_oval`
* :index:`drawOval` -- :meth:`Shape.draw_oval`
* :index:`drawPolyline` -- :meth:`Page.draw_polyline`
* :index:`drawPolyline` -- :meth:`Shape.draw_polyline`
* :index:`drawQuad` -- :meth:`Page.draw_quad`
* :index:`drawQuad` -- :meth:`Shape.draw_quad`
* :index:`drawRect` -- :meth:`Page.draw_rect`
* :index:`drawRect` -- :meth:`Shape.draw_rect`
* :index:`drawSector` -- :meth:`Page.draw_sector`
* :index:`drawSector` -- :meth:`Shape.draw_sector`
* :index:`drawSquiggle` -- :meth:`Page.draw_squiggle`
* :index:`drawSquiggle` -- :meth:`Shape.draw_squiggle`
* :index:`drawZigzag` -- :meth:`Page.draw_zigzag`
* :index:`drawZigzag` -- :meth:`Shape.draw_zigzag`
* :index:`embeddedFileAdd` -- :meth:`Document.embfile_add`
* :index:`embeddedFileCount` -- :meth:`Document.embfile_count`
* :index:`embeddedFileDel` -- :meth:`Document.embfile_del`
* :index:`embeddedFileGet` -- :meth:`Document.embfile_get`
* :index:`embeddedFileInfo` -- :meth:`Document.embfile_info`
* :index:`embeddedFileNames` -- :meth:`Document.embfile_names`
* :index:`embeddedFileUpd` -- :meth:`Document.embfile_upd`
* :index:`extractFont` -- :meth:`Document.extract_font`
* :index:`extractImage` -- :meth:`Document.extract_image`
* :index:`fileGet` -- :meth:`Annot.get_file`
* :index:`fileUpd` -- :meth:`Annot.update_file`
* :index:`fillTextbox` -- :meth:`TextWriter.fill_textbox`
* :index:`findBookmark` -- :meth:`Document.find_bookmark`
* :index:`firstAnnot` -- :attr:`Page.first_annot`
* :index:`firstLink` -- :attr:`Page.first_link`
* :index:`firstWidget` -- :attr:`Page.first_widget`
* :index:`fullcopyPage` -- :meth:`Document.fullcopy_page`
* :index:`gammaWith` -- :meth:`Pixmap.gamma_with`
* :index:`getArea` -- :meth:`Rect.get_area`
* :index:`getArea` -- :meth:`IRect.get_area`
* :index:`getCharWidths` -- :meth:`Document.get_char_widths`
* :index:`getContents` -- :meth:`Page.get_contents`
* :index:`getDisplayList` -- :meth:`Page.get_displaylist`
* :index:`getDrawings` -- :meth:`Page.get_drawings`
* :index:`getFontList` -- :meth:`Page.get_fonts`
* :index:`getImageBbox` -- :meth:`Page.get_image_bbox`
* :index:`getImageData` -- :meth:`Pixmap.tobytes`
* :index:`getImageList` -- :meth:`Page.get_images`
* :index:`getLinks` -- :meth:`Page.get_links`
* :index:`getOCGs` -- :meth:`Document.get_ocgs`
* :index:`getPageFontList` -- :meth:`Document.get_page_fonts`
* :index:`getPageImageList` -- :meth:`Document.get_page_images`
* :index:`getPagePixmap` -- :meth:`Document.get_page_pixmap`
* :index:`getPageText` -- :meth:`Document.get_page_text`
* :index:`getPageXObjectList` -- :meth:`Document.get_page_xobjects`
* :index:`getPDFnow` -- :meth:`get_pdf_now`
* :index:`getPDFstr` -- :meth:`get_pdf_str`
* :index:`getPixmap` -- :meth:`Page.get_pixmap`
* :index:`getPixmap` -- :meth:`Annot.get_pixmap`
* :index:`getPixmap` -- :meth:`DisplayList.get_pixmap`
* :index:`getPNGData` -- :meth:`Pixmap.tobytes`
* :index:`getPNGdata` -- :meth:`Pixmap.tobytes`
* :index:`getRectArea` -- :meth:`Rect.get_area`
* :index:`getRectArea` -- :meth:`IRect.get_area`
* :index:`getSigFlags` -- :meth:`Document.get_sigflags`
* :index:`getSVGimage` -- :meth:`Page.get_svg_image`
* :index:`getText` -- :meth:`Page.get_text`
* :index:`getText` -- :meth:`Annot.get_text`
* :index:`getTextBlocks` -- :meth:`Page.get_text_blocks`
* :index:`getTextbox` -- :meth:`Page.get_textbox`
* :index:`getTextbox` -- :meth:`Annot.get_textbox`
* :index:`getTextLength` -- :meth:`get_text_length`
* :index:`getTextPage` -- :meth:`Page.get_textpage`
* :index:`getTextPage` -- :meth:`Annot.get_textpage`
* :index:`getTextPage` -- :meth:`DisplayList.get_textpage`
* :index:`getTextWords` -- :meth:`Page.get_text_words`
* :index:`getToC` -- :meth:`Document.get_toc`
* :index:`getXmlMetadata` -- :meth:`Document.get_xml_metadata`
* :index:`ImageProperties` -- :meth:`image_properties`
* :index:`includePoint` -- :meth:`Rect.include_point`
* :index:`includePoint` -- :meth:`IRect.include_point`
* :index:`includeRect` -- :meth:`Rect.include_rect`
* :index:`includeRect` -- :meth:`IRect.include_rect`
* :index:`insertFont` -- :meth:`Page.insert_font`
* :index:`insertImage` -- :meth:`Page.insert_image`
* :index:`insertLink` -- :meth:`Page.insert_link`
* :index:`insertPage` -- :meth:`Document.insert_page`
* :index:`insertPDF` -- :meth:`Document.insert_pdf`
* :index:`insertText` -- :meth:`Page.insert_text`
* :index:`insertText` -- :meth:`Shape.insert_text`
* :index:`insertTextbox` -- :meth:`Page.insert_textbox`
* :index:`insertTextbox` -- :meth:`Shape.insert_textbox`
* :index:`invertIRect` -- :meth:`Pixmap.invert_irect`
* :index:`isConvex` -- :attr:`Quad.is_convex`
* :index:`isDirty` -- :attr:`Document.is_dirty`
* :index:`isEmpty` -- :attr:`Rect.is_empty`
* :index:`isEmpty` -- :attr:`IRect.is_empty`
* :index:`isEmpty` -- :attr:`Quad.is_empty`
* :index:`isFormPDF` -- :attr:`Document.is_form_pdf`
* :index:`isInfinite` -- :attr:`Rect.is_infinite`
* :index:`isInfinite` -- :attr:`IRect.is_infinite`
* :index:`isPDF` -- :attr:`Document.is_pdf`
* :index:`isRectangular` -- :attr:`Quad.is_rectangular`
* :index:`isRectilinear` -- :attr:`Matrix.is_rectilinear`
* :index:`isReflowable` -- :attr:`Document.is_reflowable`
* :index:`isRepaired` -- :attr:`Document.is_repaired`
* :index:`isStream` -- :meth:`Document.is_stream`
* :index:`lastLocation` -- :attr:`Document.last_location`
* :index:`lineEnds` -- :attr:`Annot.line_ends`
* :index:`loadAnnot` -- :meth:`Page.load_annot`
* :index:`loadLinks` -- :meth:`Page.load_links`
* :index:`loadPage` -- :meth:`Document.load_page`
* :index:`makeBookmark` -- :meth:`Document.make_bookmark`
* :index:`MediaBox` -- :attr:`Page.mediabox`
* :index:`MediaBoxSize` -- :attr:`Page.mediabox_size`
* :index:`metadataXML` -- :meth:`Document.xref_xml_metadata`
* :index:`movePage` -- :meth:`Document.move_page`
* :index:`needsPass` -- :attr:`Document.needs_pass`
* :index:`newPage` -- :meth:`Document.new_page`
* :index:`newShape` -- :meth:`Page.new_shape`
* :index:`nextLocation` -- :meth:`Document.next_location`
* :index:`pageCount` -- :attr:`Document.page_count`
* :index:`pageCropBox` -- :meth:`Document.page_cropbox`
* :index:`pageXref` -- :meth:`Document.page_xref`
* :index:`PaperRect` -- :meth:`paper_rect`
* :index:`PaperSize` -- :meth:`paper_size`
* :index:`paperSizes` -- :attr:`paper_sizes`
* :index:`PDFCatalog` -- :meth:`Document.pdf_catalog`
* :index:`PDFTrailer` -- :meth:`Document.pdf_trailer`
* :index:`pillowData` -- :meth:`Pixmap.pil_tobytes`
* :index:`pillowWrite` -- :meth:`Pixmap.pil_save`
* :index:`planishLine` -- :meth:`planish_line`
* :index:`preRotate` -- :meth:`Matrix.prerotate`
* :index:`preScale` -- :meth:`Matrix.prescale`
* :index:`preShear` -- :meth:`Matrix.preshear`
* :index:`preTranslate` -- :meth:`Matrix.pretranslate`
* :index:`previousLocation` -- :meth:`Document.prev_location`
* :index:`readContents` -- :meth:`Page.read_contents`
* :index:`resolveLink` -- :meth:`Document.resolve_link`
* :index:`rotationMatrix` -- :attr:`Page.rotation_matrix`
* :index:`searchFor` -- :meth:`Page.search_for`
* :index:`searchPageFor` -- :meth:`Document.search_page_for`
* :index:`setAlpha` -- :meth:`Pixmap.set_alpha`
* :index:`setBlendMode` -- :meth:`Annot.set_blendmode`
* :index:`setBorder` -- :meth:`Annot.set_border`
* :index:`setColors` -- :meth:`Annot.set_colors`
* :index:`setCropBox` -- :meth:`Page.set_cropbox`
* :index:`setFlags` -- :meth:`Annot.set_flags`
* :index:`setInfo` -- :meth:`Annot.set_info`
* :index:`setLanguage` -- :meth:`Document.set_language`
* :index:`setLineEnds` -- :meth:`Annot.set_line_ends`
* :index:`setMediaBox` -- :meth:`Page.set_mediabox`
* :index:`setMetadata` -- :meth:`Document.set_metadata`
* :index:`setName` -- :meth:`Annot.set_name`
* :index:`setOC` -- :meth:`Annot.set_oc`
* :index:`setOpacity` -- :meth:`Annot.set_opacity`
* :index:`setOrigin` -- :meth:`Pixmap.set_origin`
* :index:`setPixel` -- :meth:`Pixmap.set_pixel`
* :index:`setRect` -- :meth:`Annot.set_rect`
* :index:`setRect` -- :meth:`Pixmap.set_rect`
* :index:`setResolution` -- :meth:`Pixmap.set_dpi`
* :index:`setRotation` -- :meth:`Page.set_rotation`
* :index:`setToC` -- :meth:`Document.set_toc`
* :index:`setXmlMetadata` -- :meth:`Document.set_xml_metadata`
* :index:`showPDFpage` -- :meth:`Page.show_pdf_page`
* :index:`soundGet` -- :meth:`Annot.get_sound`
* :index:`tintWith` -- :meth:`Pixmap.tint_with`
* :index:`transformationMatrix` -- :attr:`Page.transformation_matrix`
* :index:`updateLink` -- :meth:`Page.update_link`
* :index:`updateObject` -- :meth:`Document.update_object`
* :index:`updateStream` -- :meth:`Document.update_stream`
* :index:`wrapContents` -- :meth:`Page.wrap_contents`
* :index:`writeImage` -- :meth:`Pixmap.save`
* :index:`writePNG` -- :meth:`Pixmap.save`
* :index:`writeText` -- :meth:`Page.write_text`
* :index:`writeText` -- :meth:`TextWriter.write_text`
* :index:`xrefLength` -- :meth:`Document.xref_length`
* :index:`xrefObject` -- :meth:`Document.xref_object`
* :index:`xrefStream` -- :meth:`Document.xref_stream`
* :index:`xrefStreamRaw` -- :meth:`Document.xref_stream_raw`

PyMuPDF-1.21.1/docs/device.rst

.. include:: header.rst

.. _Device:

================
Device
================

The different format handlers (pdf, xps, etc.) interpret pages to a "device". Devices are the basis for everything that can be done with a page: rendering, text extraction and searching. The device type is determined by the selected construction method.

Class API

.. class:: Device

 .. method:: __init__(self, object, clip)

 Constructor for either a pixel map or a display list device.

 :arg object: either a *Pixmap* or a *DisplayList*.
 :type object: :ref:`Pixmap` or :ref:`DisplayList`

 :arg clip: An optional `IRect` for *Pixmap* devices to restrict rendering to a certain area of the page. If the complete page is required, specify *None*. For display list devices, this parameter must be omitted.
 :type clip: :ref:`IRect`

 .. method:: __init__(self, textpage, flags=0)

 Constructor for a text page device.

 :arg textpage: *TextPage* object
 :type textpage: :ref:`TextPage`

 :arg int flags: control the way how text is parsed into the text page. Currently 3 options can be coded into this parameter, see :ref:`TextPreserve`. To set these options use something like *flags=0 | TEXT_PRESERVE_LIGATURES | ...*.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/displaylist.rst

.. include:: header.rst

.. _DisplayList:

================
DisplayList
================

DisplayList is a list containing drawing commands (text, images, etc.). The intent is two-fold:

1. as a caching-mechanism to reduce parsing of a page
2. as a data structure in multi-threading setups, where one thread parses the page and another one renders pages. This aspect is currently not supported by PyMuPDF.

A display list is populated with objects from a page, usually by executing :meth:`Page.get_displaylist`. There also exists an independent constructor.

"Replay" the list (once or many times) by invoking one of its methods :meth:`~DisplayList.run`, :meth:`~DisplayList.get_pixmap` or :meth:`~DisplayList.get_textpage`.

================================= ==
Method **Short Description**
================================= ==
:meth:`~DisplayList.run` Run a display list through a device.
:meth:`~DisplayList.get_pixmap` generate a pixmap
:meth:`~DisplayList.get_textpage` generate a text page
:attr:`~DisplayList.rect` mediabox of the display list
================================= ==

Class API

.. class:: DisplayList

 .. method:: __init__(self, mediabox)

 Create a new display list.

 :arg mediabox: The page's rectangle.
 :type mediabox: :ref:`Rect`

 :rtype: *DisplayList*

 .. method:: run(device, matrix, area)

 Run the display list through a device. The device will populate the display list with its "commands" (i.e. text extraction or image creation). The display list can later be used to "read" a page many times without having to re-interpret it from the document file.

 You will most probably instead use one of the specialized run methods below -- :meth:`get_pixmap` or :meth:`get_textpage`.

 :arg device: Device
 :type device: :ref:`Device`

 :arg matrix: Transformation matrix to apply to the display list contents.
 :type matrix: :ref:`Matrix`

 :arg area: Only the part visible within this area will be considered when the list is run through the device.
 :type area: :ref:`Rect`

 .. index::
 pair: matrix; DisplayList.get_pixmap
 pair: colorspace; DisplayList.get_pixmap
 pair: clip; DisplayList.get_pixmap
 pair: alpha; DisplayList.get_pixmap

 .. method:: get_pixmap(matrix=fitz.Identity, colorspace=fitz.csRGB, alpha=0, clip=None)

 Run the display list through a draw device and return a pixmap.

 :arg matrix: matrix to use. Default is the identity matrix.
 :type matrix: :ref:`Matrix`

 :arg colorspace: the desired colorspace. Default is RGB.
 :type colorspace: :ref:`Colorspace`

 :arg int alpha: determine whether or not (0, default) to include a transparency channel.

 :arg irect_like clip: restrict rendering to the intersection of this area with :attr:`DisplayList.rect`.

 :rtype: :ref:`Pixmap`
 :returns: pixmap of the display list.

 .. method:: get_textpage(flags)

 Run the display list through a text device and return a text page.

 :arg int flags: control which information is parsed into a text page. Default value in PyMuPDF is ``3 = TEXT_PRESERVE_LIGATURES | TEXT_PRESERVE_WHITESPACE``, i.e. :data:`ligatures` are **passed through**, white spaces are **passed through** (not translated to spaces), and images are **not included**. See :ref:`TextPreserve`.

 :rtype: :ref:`TextPage`
 :returns: text page of the display list.

 .. attribute:: rect

 Contains the display list's mediabox. This will equal the page's rectangle if it was created via :meth:`Page.get_displaylist`.

 :type: :ref:`Rect`

.. include:: footer.rst

PyMuPDF-1.21.1/docs/document-writer-class.rst

.. include:: header.rst

.. _DocumentWriter:

================
DocumentWriter
================

* New in v1.21.0

This class represents a utility which can output various document types supported by MuPDF.

In PyMuPDF only used for outputting PDF documents whose pages are populated by :ref:`Story` DOMs.

Using DocumentWriter_ also for other document types might happen in the future.

================================= ===
Method / Attribute **Short Description**
================================= ===
:meth:`DocumentWriter.begin_page` start a new output page
:meth:`DocumentWriter.end_page` finish the current output page
:meth:`DocumentWriter.close` flush pending output and close the file
================================= ===

Class API

.. class:: DocumentWriter

 .. method:: __init__(self, path, options=None)

 Create a document writer object, passing a Python file pointer or a file path. Options to use when saving the file may also be passed.

 :arg path: the output file. This may be a string file name, or any Python file pointer.

 .. note:: By using a ``io.BytesIO()`` object as file pointer, a document writer can create a PDF in memory. Subsequently, this PDF can be re-opened for input and be further manipulated. This technique is used by several example scripts in :ref:`Stories recipes<RecipesStories>`.

 :arg str options: specify saving options for the output PDF. Typical are "compress" or "clean". More possible values may be taken from help output of the `mutool convert` CLI utility.

 .. method:: begin_page(mediabox)

 Start a new output page of a given dimension.

 :arg rect_like mediabox: a rectangle specifying the page size. After this method, output operations may write content to the page.

 .. method:: end_page()

 Finish a page. This flushes any pending data and appends the page to the output document.

 .. method:: close()

 Close the output file. This method is required for writing any pending data.

 For usage examples consult the section of :ref:`Story`.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/document.rst

.. include:: header.rst

.. _Document:

================
Document
================

.. highlight:: python

This class represents a document. It can be constructed from a file or from memory.

There exists the alias *open* for this class, i.e. ``fitz.Document(...)`` and ``fitz.open(...)`` do exactly the same thing.

For details on **embedded files** refer to Appendix 3.

.. note::

 Starting with v1.17.0, a new page addressing mechanism for **EPUB files only** is supported. This document type is internally organized in chapters such that pages can most efficiently be found by their so-called "location". The location is a tuple *(chapter, pno)* consisting of the chapter number and the page number **in that chapter**. Both numbers are zero-based.

 While it is still possible to locate a page via its (absoute) number, doing so may mean that the complete EPUB document must be layouted before the page can be addressed. This may have a significant performance impact if the document is very large. Using the page's *(chapter, pno)* prevents this from happening.

 To maintain a consistent API, PyMuPDF supports the page *location* syntax for **all file types** -- documents without this feature simply have just one chapter. :meth:`Document.load_page` and the equivalent index access now also support a *location* argument.

 There are a number of methods for converting between page numbers and locations, for determining the chapter count, the page count per chapter, for computing the next and the previous locations, and the last page location of a document.

======================================= ==
Method / Attribute **Short Description**
======================================= ==
:meth:`Document.add_layer` PDF only: make new optional content configuration
:meth:`Document.add_ocg` PDF only: add new optional content group
:meth:`Document.authenticate` gain access to an encrypted document
:meth:`Document.can_save_incrementally` check if incremental save is possible
:meth:`Document.chapter_page_count` number of pages in chapter
:meth:`Document.close` close the document
:meth:`Document.convert_to_pdf` write a PDF version to memory
:meth:`Document.copy_page` PDF only: copy a page reference
:meth:`Document.del_toc_item` PDF only: remove a single TOC item
:meth:`Document.delete_page` PDF only: delete a page
:meth:`Document.delete_pages` PDF only: delete multiple pages
:meth:`Document.embfile_add` PDF only: add a new embedded file from buffer
:meth:`Document.embfile_count` PDF only: number of embedded files
:meth:`Document.embfile_del` PDF only: delete an embedded file entry
:meth:`Document.embfile_get` PDF only: extract an embedded file buffer
:meth:`Document.embfile_info` PDF only: metadata of an embedded file
:meth:`Document.embfile_names` PDF only: list of embedded files
:meth:`Document.embfile_upd` PDF only: change an embedded file
:meth:`Document.extract_font` PDF only: extract a font by :data:`xref`
:meth:`Document.extract_image` PDF only: extract an embedded image by :data:`xref`
:meth:`Document.ez_save` PDF only: :meth:`Document.save` with different defaults
:meth:`Document.find_bookmark` retrieve page location after layouting document
:meth:`Document.fullcopy_page` PDF only: duplicate a page
:meth:`Document.get_layer` PDF only: lists of OCGs in ON, OFF, RBGroups
:meth:`Document.get_layers` PDF only: list of optional content configurations
:meth:`Document.get_oc` PDF only: get OCG /OCMD xref of image / form xobject
:meth:`Document.get_ocgs` PDF only: info on all optional content groups
:meth:`Document.get_ocmd` PDF only: retrieve definition of an :data:`OCMD`
:meth:`Document.get_page_fonts` PDF only: list of fonts referenced by a page
:meth:`Document.get_page_images` PDF only: list of images referenced by a page
:meth:`Document.get_page_labels` PDF only: list of page label definitions
:meth:`Document.get_page_numbers` PDF only: get page numbers having a given label
:meth:`Document.get_page_pixmap` create a pixmap of a page by page number
:meth:`Document.get_page_text` extract the text of a page by page number
:meth:`Document.get_page_xobjects` PDF only: list of XObjects referenced by a page
:meth:`Document.get_sigflags` PDF only: determine signature state
:meth:`Document.get_toc` extract the table of contents
:meth:`Document.get_xml_metadata` PDF only: read the XML metadata
:meth:`Document.has_annots` PDF only: check if PDF contains any annots
:meth:`Document.has_links` PDF only: check if PDF contains any links
:meth:`Document.insert_page` PDF only: insert a new page
:meth:`Document.insert_pdf` PDF only: insert pages from another PDF
:meth:`Document.journal_can_do` PDF only: which journal actions are possible
:meth:`Document.journal_enable` PDF only: enables journalling for the document
:meth:`Document.journal_load` PDF only: load joural from a file
:meth:`Document.journal_op_name` PDF only: return name of a journalling step
:meth:`Document.journal_position` PDF only: return journalling status
:meth:`Document.journal_redo` PDF only: redo current operation
:meth:`Document.journal_save` PDF only: save joural to a file
:meth:`Document.journal_start_op` PDF only: start an "operation" giving it a name
:meth:`Document.journal_stop_op` PDF only: end current operation
:meth:`Document.journal_undo` PDF only: undo current operation
:meth:`Document.layer_ui_configs` PDF only: list of optional content intents
:meth:`Document.layout` re-paginate the document (if supported)
:meth:`Document.load_page` read a page
:meth:`Document.make_bookmark` create a page pointer in reflowable documents
:meth:`Document.move_page` PDF only: move a page to different location in doc
:meth:`Document.need_appearances` PDF only: get/set ``/NeedAppearances`` property
:meth:`Document.new_page` PDF only: insert a new empty page
:meth:`Document.next_location` return (chapter, pno) of following page
:meth:`Document.outline_xref` PDF only: :data:`xref` a TOC item
:meth:`Document.page_cropbox` PDF only: the unrotated page rectangle
:meth:`Document.page_xref` PDF only: :data:`xref` of a page number
:meth:`Document.pages` iterator over a page range
:meth:`Document.pdf_catalog` PDF only: :data:`xref` of catalog (root)
:meth:`Document.pdf_trailer` PDF only: trailer source
:meth:`Document.prev_location` return (chapter, pno) of preceeding page
:meth:`Document.reload_page` PDF only: provide a new copy of a page
:meth:`Document.save` PDF only: save the document
:meth:`Document.saveIncr` PDF only: save the document incrementally
:meth:`Document.scrub` PDF only: remove sensitive data
:meth:`Document.search_page_for` search for a string on a page
:meth:`Document.select` PDF only: select a subset of pages
:meth:`Document.set_layer_ui_config` PDF only: set OCG visibility temporarily
:meth:`Document.set_layer` PDF only: mass changing OCG states
:meth:`Document.set_metadata` PDF only: set the metadata
:meth:`Document.set_oc` PDF only: attach OCG/OCMD to image / form xobject
:meth:`Document.set_ocmd` PDF only: create or update an :data:`OCMD`
:meth:`Document.set_page_labels` PDF only: add/update page label definitions
:meth:`Document.set_toc_item` PDF only: change a single TOC item
:meth:`Document.set_toc` PDF only: set the table of contents (TOC)
:meth:`Document.set_xml_metadata` PDF only: create or update document XML metadata
:meth:`Document.subset_fonts` PDF only: create font subsets
:meth:`Document.switch_layer` PDF only: activate OC configuration
:meth:`Document.tobytes` PDF only: writes document to memory
:meth:`Document.xref_copy` PDF only: copy a PDF dictionary to another :data:`xref`
:meth:`Document.xref_get_key` PDF only: get the value of a dictionary key
:meth:`Document.xref_get_keys` PDF only: list the keys of object at :data:`xref`
:meth:`Document.xref_object` PDF only: get the definition source of :data:`xref`
:meth:`Document.xref_set_key` PDF only: set the value of a dictionary key
:meth:`Document.xref_stream_raw` PDF only: raw stream source at :data:`xref`
:meth:`Document.xref_xml_metadata` PDF only: :data:`xref` of XML metadata
:attr:`Document.chapter_count` number of chapters
:attr:`Document.FormFonts` PDF only: list of global widget fonts
:attr:`Document.is_closed` has document been closed?
:attr:`Document.is_dirty` PDF only: has document been changed yet?
:attr:`Document.is_encrypted` document (still) encrypted?
:attr:`Document.is_form_pdf` is this a Form PDF?
:attr:`Document.is_pdf` is this a PDF?
:attr:`Document.is_reflowable` is this a reflowable document?
:attr:`Document.is_repaired` PDF only: has this PDF been repaired during open?
:attr:`Document.last_location` (chapter, pno) of last page
:attr:`Document.metadata` metadata
:attr:`Document.name` filename of document
:attr:`Document.needs_pass` require password to access data?
:attr:`Document.outline` first `Outline` item
:attr:`Document.page_count` number of pages
:attr:`Document.permissions` permissions to access the document
======================================= ==

Class API

.. class:: Document

 .. index::
 pair: filename; open
 pair: stream; open
 pair: filetype; open
 pair: rect; open
 pair: width; open
 pair: height; open
 pair: fontsize; open
 pair: open; Document
 pair: filename; Document
 pair: stream; Document
 pair: filetype; Document
 pair: rect; Document
 pair: fontsize; Document

 .. method:: __init__(self, filename=None, stream=None, *, filetype=None, rect=None, width=0, height=0, fontsize=11)

 * Changed in v1.14.13: support ``io.BytesIO`` for memory documents.
 * Changed in v1.19.6: Clearer, shorter and more consistent exception messages. File type "pdf" is always assumed if not specified. Empty files and memory areas will always lead to exceptions.

 Creates a *Document* object.

 * With default parameters, a **new empty PDF** document will be created.
 * If *stream* is given, then the document is created from memory and, if not a PDF, either *filename* or *filetype* must indicate its type.
 * If *stream* is *None*, then a document is created from the file given by *filename*. Its type is inferred from the extension. This can be overruled by *filetype.*

 :arg str,pathlib filename: A UTF-8 string or *pathlib* object containing a file path. The document type is inferred from the filename extension. If not present or not matching a supported type, a PDF document is assumed. For memory documents, this argument may be used instead of ``filetype``, see below.

 :arg bytes,bytearray,BytesIO stream: A memory area containing a supported document. If not a PDF, its type **must** be specified by either ``filename`` or ``filetype``.

 :arg str filetype: A string specifying the type of document. This may be anything looking like a filename (e.g. "x.pdf"), in which case MuPDF uses the extension to determine the type, or a mime type like *application/pdf*. Just using strings like "pdf" or ".pdf" will also work. May be omitted for PDF documents, otherwise must match a supported document type.

 :arg rect_like rect: a rectangle specifying the desired page size. This parameter is only meaningful for documents with a variable page layout ("reflowable" documents), like e-books or HTML, and ignored otherwise. If specified, it must be a non-empty, finite rectangle with top-left coordinates (0, 0). Together with parameter *fontsize*, each page will be accordingly laid out and hence also determine the number of pages.

 :arg float width: may used together with *height* as an alternative to *rect* to specify layout information.

 :arg float height: may used together with *width* as an alternative to *rect* to specify layout information.

 :arg float fontsize: the default fontsize for reflowable document types. This parameter is ignored if none of the parameters *rect* or *width* and *height* are specified. Will be used to calculate the page layout.

 :raises TypeError: if the *type* of any parameter does not conform.
 :raises FileNotFoundError: if the file / path cannot be found. Re-implemented as subclass of ``RuntimeError``.
 :raises EmptyFileError: if the file / path is empty or the ``bytes`` object in memory has zero length. A subclass of ``FileDataError`` and ``RuntimeError``.
 :raises ValueError: if an unknown file type is explicitely specified.
 :raises FileDataError: if the document has an invalid structure for the given type -- or is no file at all (but e.g. a folder). A subclass of ``RuntimeError``.

 :return: A document object. If the document cannot be created, an exception is raised in the above sequence. Note that PyMuPDF-specific exceptions, ``FileNotFoundError``, ``EmptyFileError`` and ``FileDataError`` are intercepted if you check for ``RuntimeError``.

 In case of problems you can see more detail in the internal messages store: ``print(fitz.TOOLS.mupdf_warnings())`` (which will be emptied by this call, but you can also prevent this -- consult :meth:`Tools.mupdf_warnings`).

 .. note:: Not all document types are checked for valid formats already at open time. Raster images for example will raise exceptions only later, when trying to access the content. Other types (notably with non-binary content) may also be opened (and sometimes **accessed**) successfully -- sometimes even when having invalid content for the format:

 * HTM, HTML, XHTML: **always** opened, ``metadata["format"]`` is "HTML5", resp. "XHTML".
 * XML, FB2: **always** opened, ``metadata["format"]`` is "FictionBook2".

 Overview of possible forms, note: ``open`` is a synonym of ``Document``::

 >>> # from a file
 >>> doc = fitz.open("some.xps")
 >>> # handle wrong extension
 >>> doc = fitz.open("some.file", filetype="xps")
 >>>
 >>> # from memory, filetype is required if not a PDF
 >>> doc = fitz.open("xps", mem_area)
 >>> doc = fitz.open(None, mem_area, "xps")
 >>> doc = fitz.open(stream=mem_area, filetype="xps")
 >>>
 >>> # new empty PDF
 >>> doc = fitz.open()
 >>> doc = fitz.open(None)
 >>> doc = fitz.open("")

 .. note:: Raster images with a wrong (but supported) file extension **are no problem**. MuPDF will determine the correct image type when file **content** is actually accessed and will process it without complaint. So ``fitz.open("file.jpg")`` will work even for a PNG image.

 The Document class can be also be used as a **context manager**. On exit, the document will automatically be closed.

 >>> import fitz
 >>> with fitz.open(...) as doc:
 for page in doc: print("page %i" % page.number)
 page 0
 page 1
 page 2
 page 3
 >>> doc.is_closed
 True
 >>>

 .. method:: get_oc(xref)

 * New in v1.18.4

 Return the cross reference number of an :data:`OCG` or :data:`OCMD` attached to an image or form xobject.

 :arg int xref: the :data:`xref` of an image or form xobject. Valid such cross reference numbers are returned by :meth:`Document.get_page_images`, resp. :meth:`Document.get_page_xobjects`. For invalid numbers, an exception is raised.
 :rtype: int
 :returns: the cross reference number of an optional contents object or zero if there is none.

 .. method:: set_oc(xref, ocxref)

 * New in v1.18.4

 If *xref* represents an image or form xobject, set or remove the cross reference number *ocxref* of an optional contents object.

 :arg int xref: the :data:`xref` of an image or form xobject [#f5]_. Valid such cross reference numbers are returned by :meth:`Document.get_page_images`, resp. :meth:`Document.get_page_xobjects`. For invalid numbers, an exception is raised.
 :arg int ocxref: the :data:`xref` number of an :data:`OCG` / :data:`OCMD`. If not zero, an invalid reference raises an exception. If zero, any OC reference is removed.

 .. method:: get_layers()

 * New in v1.18.3

 Show optional layer configurations. There always is a standard one, which is not included in the response.

 >>> for item in doc.get_layers(): print(item)
 {'number': 0, 'name': 'my-config', 'creator': ''}
 >>> # use 'number' as config identifyer in add_ocg

 .. method:: add_layer(name, creator=None, on=None)

 * New in v1.18.3

 Add an optional content configuration. Layers serve as a collection of ON / OFF states for optional content groups and allow fast visibility switches between different views on the same document.

 :arg str name: arbitrary name.
 :arg str creator: (optional) creating software.
 :arg sequ on: a sequence of OCG :data:`xref` numbers which should be set to ON when this layer gets activated. All OCGs not listed here will be set to OFF.

 .. method:: switch_layer(number, as_default=False)

 * New in v1.18.3

 Switch to a document view as defined by the optional layer's configuration number. This is temporary, except if established as default.

 :arg int number: config number as returned by :meth:`Document.layer_configs`.
 :arg bool as_default: make this the default configuration.

 Activates the ON / OFF states of OCGs as defined in the identified layer. If *as_default=True*, then additionally all layers, including the standard one, are merged and the result is written back to the standard layer, and **all optional layers are deleted**.

 .. method:: add_ocg(name, config=-1, on=True, intent="View", usage="Artwork")

 * New in v1.18.3

 Add an optional content group. An OCG is the most important unit of information to determine object visibility. For a PDF, in order to be regarded as having optional content, at least one OCG must exist.

 :arg str name: arbitrary name. Will show up in supporting PDF viewers.
 :arg int config: layer configuration number. Default -1 is the standard configuration.
 :arg bool on: standard visibility status for objects pointing to this OCG.
 :arg str,list intent: a string or list of strings declaring the visibility intents. There are two PDF standard values to choose from: "View" and "Design". Default is "View". Correct **spelling is important**.
 :arg str usage: another influencer for OCG visibility. This will become part of the OCG's ``/Usage`` key. There are two PDF standard values to choose from: "Artwork" and "Technical". Default is "Artwork". Please only change when required.

 :returns: :data:`xref` of the created OCG. Use as entry for ``oc`` parameter in supporting objects.

 .. note:: Multiple OCGs with identical parameters may be created. This will not cause problems. Garbage option 3 of :meth:`Document.save` will get rid of any duplicates.

 .. method:: set_ocmd(xref=0, ocgs=None, policy="AnyOn", ve=None)

 * New in v1.18.4

 Create or update an :data:`OCMD`, **Optional Content Membership Dictionary.**

 :arg int xref: :data:`xref` of the OCMD to be updated, or 0 for a new OCMD.
 :arg list ocgs: a sequence of :data:`xref` numbers of existing :data:`OCG` PDF objects.
 :arg str policy: one of "AnyOn" (default), "AnyOff", "AllOn", "AllOff" (mixed or lower case).
 :arg list ve: a "visibility expression". This is a list of arbitrarily nested other lists -- see explanation below. Use as an alternative to the combination *ocgs* / *policy* if you need to formulate more complex conditions.
 :rtype: int
 :returns: :data:`xref` of the OCMD. Use as ``oc=xref`` parameter in supporting objects, and respectively in :meth:`Document.set_oc` or :meth:`Annot.set_oc`.

 .. note::

 Like an OCG, an OCMD has a visibility state ON or OFF, and it can be used like an OCG. In contrast to an OCG, the OCMD state is determined by evaluating the state of one or more OCGs via special forms of **boolean expressions.** If the expression evaluates to true, the OCMD state is ON and OFF for false.

 There are two ways to formulate OCMD visibility:

 1. Use the combination of *ocgs* and *policy*: The *policy* value is interpreted as follows:

 - AnyOn -- (default) true if at least one OCG is ON.
 - AnyOff -- true if at least one OCG is OFF.
 - AllOn -- true if all OCGs are ON.
 - AllOff -- true if all OCGs are OFF.

 Suppose you want two PDF objects be displayed exactly one at a time (if one is ON, then the other one must be OFF):

 Solution: use an **OCG** for object 1 and an **OCMD** for object 2. Create the OCMD via ``set_ocmd(ocgs=[xref], policy="AllOff")``, with the :data:`xref` of the OCG.

 2. Use the **visibility expression** *ve*: This is a list of two or more items. The **first item** is a logical keyword: one of the strings **"and"**, **"or"**, or **"not"**. The **second** and all subsequent items must either be an integer or another list. An integer must be the :data:`xref` number of an OCG. A list must again have at least two items starting with one of the boolean keywords. This syntax is a bit awkward, but quite powerful:

 - Each list must start with a logical keyword.
 - If the keyword is a **"not"**, then the list must have exactly two items. If it is **"and"** or **"or"**, any number of other items may follow.
 - Items following the logical keyword may be either integers or again a list. An *integer* must be the xref of an OCG. A *list* must conform to the previous rules.

 Examples:

 - ``set_ocmd(ve=["or", 4, ["not", 5], ["and", 6, 7]])``. This delivers ON if the following is true: **"4 is ON, or 5 is OFF, or 6 and 7 are both ON"**.
 - ``set_ocmd(ve=["not", xref])``. This has the same effect as the OCMD example created under 1.

 For more details and examples see page 224 of :ref:`AdobeManual`. Also do have a look at example scripts `here <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/optional-content>`_.

 Visibility expressions, ``/VE``, are part of PDF specification version 1.6. So not all PDF viewers / readers may already support this feature and hence will react in some standard way for those cases.

 .. method:: get_ocmd(xref)

 * New in v1.18.4

 Retrieve the definition of an :data:`OCMD`.

 :arg int xref: the :data:`xref` of the OCMD.
 :rtype: dict
 :returns: a dictionary with the keys *xref*, *ocgs*, *policy* and *ve*.

 .. method:: get_layer(config=-1)

 * New in v1.18.3

 List of optional content groups by status in the specified configuration. This is a dictionary with lists of cross reference numbers for OCGs that occur in the arrays ``/ON``, ``/OFF`` or in some radio button group (``/RBGroups``).

 :arg int config: the configuration layer (default is the standard config layer).

 >>> pprint(doc.get_layer())
 {'off': [8, 9, 10], 'on': [5, 6, 7], 'rbgroups': [[7, 10]]}
 >>>

 .. method:: set_layer(config, on=None, off=None, basestate=None, rbgroups=None)

 * New in v1.18.3

 Mass status changes of optional content groups. **Permanently** sets the status of OCGs.

 :arg int config: desired configuration layer, choose -1 for the default one.
 :arg list on: list of :data:`xref` of OCGs to set ON. Replaces previous values. An empty list will cause no OCG being set to ON anymore. Should be specified if ``basestate="ON"`` is used.
 :arg list off: list of :data:`xref` of OCGs to set OFF. Replaces previous values. An empty list will cause no OCG being set to OFF anymore. Should be specified if ``basestate="OFF"`` is used.
 :arg str basestate: desired state of OCGs that are not mentioned in *on* resp. *off*. Possible values are "ON", "OFF" or "Unchanged". Upper / lower case possible.
 :arg list rbgroups: a list of lists. Replaces previous values. Each sublist should contain two or more OCG xrefs. OCGs in the same sublist are handled like buttons in a radio button group: setting one to ON automatically sets all other group members to OFF.

 Values *None* will not change the corresponding PDF array.

 >>> doc.set_layer(-1, basestate="OFF") # only changes the base state
 >>> pprint(doc.get_layer())
 {'basestate': 'OFF', 'off': [8, 9, 10], 'on': [5, 6, 7], 'rbgroups': [[7, 10]]}

 .. method:: get_ocgs()

 * New in v1.18.3

 Details of all optional content groups. This is a dictionary of dictionaries like this (key is the OCG's :data:`xref`):

 >>> pprint(doc.get_ocgs())
 {13: {'on': True,
 'intent': ['View', 'Design'],
 'name': 'Circle',
 'usage': 'Artwork'},
 14: {'on': True,
 'intent': ['View', 'Design'],
 'name': 'Square',
 'usage': 'Artwork'},
 15: {'on': False, 'intent': ['View'], 'name': 'Square', 'usage': 'Artwork'}}
 >>>

 .. method:: layer_ui_configs()

 * New in v1.18.3

 Show the visibility status of optional content that is modifyable by the user interface of supporting PDF viewers. Example:

 >>> pprint(doc.layer_ui_configs())
 ({'depth': 0,
 'locked': False,
 'number': 0,
 'on': True,
 'text': 'Circle',
 'type': 'checkbox'},
 {'depth': 0,
 'locked': False,
 'number': 1,
 'on': False,
 'text': 'Square',
 'type': 'checkbox'})
 >>> # refers to OCGs named "Circle" (ON), resp. "Square" (OFF)

 .. note::

 * Only reports items contained in the currently selected layer configuration.

 * The meaning of the dictionary keys is as follows:
 - *depth:* item's nesting level in the `/Order` array
 - *locked:* whether changing the item's state is prohibited
 - *number:* running sequence number
 - *on:* item state
 - *text:* text string or name field of the originating OCG
 - *type:* one of "label" (set by a text string), "checkbox" (set by a single OCG) or "radiobox" (set by a set of connected OCGs)

 .. method:: set_layer_ui_config(number, action=0)

 * New in v1.18.3

 Modify OC visibility status of content groups. This is analog to what supporting PDF viewers would offer.

 .. note::
 Visibility is **not** a property stored with the OCG. It is not even an information necessarily present in the PDF document at all. Instead, the current visibility is **temporarily** set using the user interface of some supporting PDF consumer software. The same type of functionality is offered by this method.

 To make **permanent** changes, use :meth:`Document.set_layer`.

 :arg in number: number as returned by :meth:`Document.layer_ui_configs`.
 :arg int action: 0 = set on (default), 1 = toggle on/off, 2 = set off.

 Example:

 >>> # let's make above "Square" visible:
 >>> doc.set_layer_ui_config(1, action=0)
 >>> pprint(doc.layer_ui_configs())
 ({'depth': 0,
 'locked': False,
 'number': 0,
 'on': True,
 'text': 'Circle',
 'type': 'checkbox'},
 {'depth': 0,
 'locked': False,
 'number': 1,
 'on': True, # <===
 'text': 'Square',
 'type': 'checkbox'})
 >>>

 .. method:: authenticate(password)

 Decrypts the document with the string *password*. If successful, document data can be accessed. For PDF documents, the "owner" and the "user" have different priviledges, and hence different passwords may exist for these authorization levels. The method will automatically establish the appropriate (owner or user) access rights for the provided password.

 :arg str password: owner or user password.

 :rtype: int
 :returns: a positive value if successful, zero otherwise (the string does not match either password). If positive, the indicator :attr:`Document.is_encrypted` is set to *False*. **Positive** return codes carry the following information detail:

 * 1 => authenticated, but the PDF has neither owner nor user passwords.
 * 2 => authenticated with the **user** password.
 * 4 => authenticated with the **owner** password.
 * 6 => authenticated and both passwords are equal -- probably a rare situation.

 .. note::

 The document may be protected by an owner, but **not** by a user password. Detect this situation via `doc.authenticate("") == 2`. This allows opening and reading the document without authentication, but, depending on the :attr:`Document.permissions` value, other actions may be prohibited. PyMuPDF (like MuPDF) in this case **ignores those restrictions**. So, -- in contrast to any PDF viewers -- you can for example extract text and add or modify content, even if the respective permission flags ``PDF_PERM_COPY``, ``PDF_PERM_MODIFY``, ``PDF_PERM_ANNOTATE``, etc. are set off! It is your responsibility building a legally compliant application where applicable.

 .. method:: get_page_numbers(label, only_one=False)

 * New in v 1.18.6

 PDF only: Return a list of page numbers that have the specified label -- note that labels may not be unique in a PDF. This implies a sequential search through **all page numbers** to compare their labels.

 .. note:: Implementation detail -- pages are **not loaded** for this purpose.

 :arg str label: the label to look for, e.g. "vii" (Roman number 7).
 :arg bool only_one: stop after first hit. Useful e.g. if labelling is known to be unique, or there are many pages, etc. The default will check every page number.
 :rtype: list
 :returns: list of page numbers that have this label. Empty if none found, no labels defined, etc.

 .. method:: get_page_labels()

 * New in v1.18.7

 PDF only: Extract the list of page label definitions. Typically used for modifications before feeding it into :meth:`Document.set_page_labels`.

 :returns: a list of dictionaries as defined in :meth:`Document.set_page_labels`.

 .. method:: set_page_labels(labels)

 * New in v1.18.6

 PDF only: Add or update the page label definitions of the PDF.

 :arg list labels: a list of dictionaries. Each dictionary defines a label building rule and a 0-based "start" page number. That start page is the first for which the label definition is valid. Each dictionary has up to 4 items and looks like ``{'startpage': int, 'prefix': str, 'style': str, 'firstpagenum': int}`` and has the following items.

 - ``startpage``: (int) the first page number (0-based) to apply the label rule. This key **must be present**. The rule is applied to all subsequent pages until either end of document or superseded by the rule with the next larger page number.
 - ``prefix``: (str) an arbitrary string to start the label with, e.g. "A-". Default is "".
 - ``style``: (str) the numbering style. Available are "D" (decimal), "r"/"R" (Roman numbers, lower / upper case), and "a"/"A" (lower / upper case alphabetical numbering: "a" through "z", then "aa" through "zz", etc.). Default is "". If "", no numbering will take place and the pages in that range will receive the same label consisting of the ``prefix`` value. If prefix is also omitted, then the label will be "".
 - ``firstpagenum``: (int) start numbering with this value. Default is 1, smaller values are ignored.

 For example::

 [{'startpage': 6, 'prefix': 'A-', 'style': 'D', 'firstpagenum': 10},
 {'startpage': 10, 'prefix': '', 'style': 'D', 'firstpagenum': 1}]

 will generate the labels "A-10", "A-11", "A-12", "A-13", "1", "2", "3", ... for pages 6, 7 and so on until end of document. Pages 0 through 5 will have the label "".

 .. method:: make_bookmark(loc)

 * New in v.1.17.3

 Return a page pointer in a reflowable document. After re-layouting the document, the result of this method can be used to find the new location of the page.

 .. note:: Do not confuse with items of a table of contents, TOC.

 :arg list,tuple loc: page location. Must be a valid *(chapter, pno)*.

 :rtype: pointer
 :returns: a long integer in pointer format. To be used for finding the new location of the page after re-layouting the document. Do not touch or re-assign.

 .. method:: find_bookmark(bookmark)

 * New in v.1.17.3

 Return the new page location after re-layouting the document.

 :arg pointer bookmark: created by :meth:`Document.make_bookmark`.

 :rtype: tuple
 :returns: the new (chapter, pno) of the page.

 .. method:: chapter_page_count(chapter)

 * New in v.1.17.0

 Return the number of pages of a chapter.

 :arg int chapter: the 0-based chapter number.

 :rtype: int
 :returns: number of pages in chapter. Relevant only for document types whith chapter support (EPUB currently).

 .. method:: next_location(page_id)

 * New in v.1.17.0

 Return the location of the following page.

 :arg tuple page_id: the current page id. This must be a tuple *(chapter, pno)* identifying an existing page.

 :returns: The tuple of the following page, i.e. either *(chapter, pno + 1)* or *(chapter + 1, 0)*, **or** the empty tuple *()* if the argument was the last page. Relevant only for document types whith chapter support (EPUB currently).

 .. method:: prev_location(page_id)

 * New in v.1.17.0

 Return the locator of the preceeding page.

 :arg tuple page_id: the current page id. This must be a tuple *(chapter, pno)* identifying an existing page.

 :returns: The tuple of the preceeding page, i.e. either *(chapter, pno - 1)* or the last page of the receeding chapter, **or** the empty tuple *()* if the argument was the first page. Relevant only for document types whith chapter support (EPUB currently).

 .. method:: load_page(page_id=0)

 * Changed in v1.17.0: For document types supporting a so-called "chapter structure" (like EPUB), pages can also be loaded via the combination of chapter number and relative page number, instead of the absolute page number. This should **significantly speed up access** for large documents.

 Create a :ref:`Page` object for further processing (like rendering, text searching, etc.).

 :arg int,tuple page_id: *(Changed in v1.17.0)*

 Either a 0-based page number, or a tuple *(chapter, pno)*. For an **integer**, any ``-â�� < page_id < page_count`` is acceptable. While page_id is negative, :attr:`page_count` will be added to it. For example: to load the last page, you can use *doc.load_page(-1)*. After this you have page.number = doc.page_count - 1.

 For a tuple, *chapter* must be in range :attr:`Document.chapter_count`, and *pno* must be in range :meth:`Document.chapter_page_count` of that chapter. Both values are 0-based. Using this notation, :attr:`Page.number` will equal the given tuple. Relevant only for document types whith chapter support (EPUB currently).

 :rtype: :ref:`Page`

 .. note::

 Documents also follow the Python sequence protocol with page numbers as indices: *doc.load_page(n) == doc[n]*.

 For **absolute page numbers** only, expressions like *"for page in doc: ..."* and *"for page in reversed(doc): ..."* will successively yield the document's pages. Refer to :meth:`Document.pages` which allows processing pages as with slicing.

 You can also use index notation with the new chapter-based page identification: use *page = doc[(5, 2)]* to load the third page of the sixth chapter.

 To maintain a consistent API, for document types not supporting a chapter structure (like PDFs), :attr:`Document.chapter_count` is 1, and pages can also be loaded via tuples *(0, pno)*. See this [#f3]_ footnote for comments on performance improvements.

 .. method:: reload_page(page)

 * New in v1.16.10

 PDF only: Provide a new copy of a page after finishing and updating all pending changes.

 :arg page: page object.
 :type page: :ref:`Page`

 :rtype: :ref:`Page`

 :returns: a new copy of the same page. All pending updates (e.g. to annotations or widgets) will be finalized and a fresh copy of the page will be loaded.

 .. note:: In a typical use case, a page :ref:`Pixmap` should be taken after annotations / widgets have been added or changed. To force all those changes being reflected in the page structure, this method re-instates a fresh copy while keeping the object hierarchy "document -> page -> annotations/widgets" intact.

 .. method:: page_cropbox(pno)

 * New in v1.17.7

 PDF only: Return the unrotated page rectangle -- **without loading the page** (via :meth:`Document.load_page`). This is meant for internal purpose requiring best possible performance.

 :arg int pno: 0-based page number.

 :returns: :ref:`Rect` of the page like :meth:`Page.rect`, but ignoring any rotation.

 .. method:: page_xref(pno)

 * New in v1.17.7

 PDF only: Return the :data:`xref` of the page -- **without loading the page** (via :meth:`Document.load_page`). This is meant for internal purpose requiring best possible performance.

 :arg int pno: 0-based page number.

 :returns: :data:`xref` of the page like :attr:`Page.xref`.

 .. method:: pages(start=None, [stop=None, [step=None]])

 * New in v1.16.4

 A generator for a range of pages. Parameters have the same meaning as in the built-in function *range()*. Intended for expressions of the form *"for page in doc.pages(start, stop, step): ..."*.

 :arg int start: start iteration with this page number. Default is zero, allowed values are ``-â�� < start < page_count``. While this is negative, :attr:`page_count` is added **before** starting the iteration.
 :arg int stop: stop iteration at this page number. Default is :attr:`page_count`, possible are ``-â�� < stop <= page_count``. Larger values are **silently replaced** by the default. Negative values will cyclically emit the pages in reversed order. As with the built-in *range()*, this is the first page **not** returned.
 :arg int step: stepping value. Defaults are 1 if start < stop and -1 if start > stop. Zero is not allowed.

 :returns: a generator iterator over the document's pages. Some examples:

 * "doc.pages()" emits all pages.
 * "doc.pages(4, 9, 2)" emits pages 4, 6, 8.
 * "doc.pages(0, None, 2)" emits all pages with even numbers.
 * "doc.pages(-2)" emits the last two pages.
 * "doc.pages(-1, -1)" emits all pages in reversed order.
 * "doc.pages(-1, -10)" always emits 10 pages in reversed order, starting with the last page -- **repeatedly** if the document has less than 10 pages. So for a 4-page document the following page numbers are emitted: 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3.

 .. index::
 pair: from_page; Document.convert_to_pdf
 pair: to_page; Document.convert_to_pdf
 pair: rotate; Document.convert_to_pdf

 .. method:: convert_to_pdf(from_page=-1, to_page=-1, rotate=0)

 Create a PDF version of the current document and write it to memory. **All document types** are supported. The parameters have the same meaning as in :meth:`insert_pdf`. In essence, you can restrict the conversion to a page subset, specify page rotation, and revert page sequence.

 :arg int from_page: first page to copy (0-based). Default is first page.

 :arg int to_page: last page to copy (0-based). Default is last page.

 :arg int rotate: rotation angle. Default is 0 (no rotation). Should be *n * 90* with an integer n (not checked).

 :rtype: bytes
 :returns: a Python *bytes* object containing a PDF file image. It is created by internally using ``tobytes(garbage=4, deflate=True)``. See :meth:`tobytes`. You can output it directly to disk or open it as a PDF. Here are some examples::

 >>> # convert an XPS file to PDF
 >>> xps = fitz.open("some.xps")
 >>> pdfbytes = xps.convert_to_pdf()
 >>>
 >>> # either do this -->
 >>> pdf = fitz.open("pdf", pdfbytes)
 >>> pdf.save("some.pdf")
 >>>
 >>> # or this -->
 >>> pdfout = open("some.pdf", "wb")
 >>> pdfout.tobytes(pdfbytes)
 >>> pdfout.close()

 >>> # copy image files to PDF pages
 >>> # each page will have image dimensions
 >>> doc = fitz.open() # new PDF
 >>> imglist = [... image file names ...] # e.g. a directory listing
 >>> for img in imglist:
 imgdoc=fitz.open(img) # open image as a document
 pdfbytes=imgdoc.convert_to_pdf() # make a 1-page PDF of it
 imgpdf=fitz.open("pdf", pdfbytes)
 doc.insert_pdf(imgpdf) # insert the image PDF
 >>> doc.save("allmyimages.pdf")

 .. note:: The method uses the same logic as the *mutool convert* CLI. This works very well in most cases -- however, beware of the following limitations.

 * Image files: perfect, no issues detected. Apparently however, image transparency is ignored. If you need that (like for a watermark), use :meth:`Page.insert_image` instead. Otherwise, this method is recommended for its much better prformance.
 * XPS: appearance very good. Links work fine, outlines (bookmarks) are lost, but can easily be recovered [#f2]_.
 * EPUB, CBZ, FB2: similar to XPS.
 * SVG: medium. Roughly comparable to `svglib <https://github.com/deeplook/svglib>`_.

 .. method:: get_toc(simple=True)

 Creates a table of contents (TOC) out of the document's outline chain.

 :arg bool simple: Indicates whether a simple or a detailed TOC is required. If *False*, each item of the list also contains a dictionary with :ref:`linkDest` details for each outline entry.

 :rtype: list

 :returns: a list of lists. Each entry has the form *[lvl, title, page, dest]*. Its entries have the following meanings:

 * *lvl* -- hierarchy level (positive *int*). The first entry is always 1. Entries in a row are either **equal**, **increase** by 1, or **decrease** by any number.
 * *title* -- title (*str*)
 * *page* -- 1-based page number (*int*). If `-1` either no destination or outside document.
 * *dest* -- (*dict*) included only if *simple=False*. Contains details of the TOC item as follows:

 - kind: destination kind, see :ref:`linkDest Kinds`.
 - file: filename if kind is :data:`LINK_GOTOR` or :data:`LINK_LAUNCH`.
 - page: target page, 0-based, :data:`LINK_GOTOR` or :data:`LINK_GOTO` only.
 - to: position on target page (:ref:`Point`).
 - zoom: (float) zoom factor on target page.
 - xref: :data:`xref` of the item (0 if no PDF).
 - color: item color in PDF RGB format ``(red, green, blue)``, or omitted (always omitted if no PDF).
 - bold: true if bold item text or omitted. PDF only.
 - italic: true if italic item text, or omitted. PDF only.
 - collapse: true if sub-items are folded, or omitted. PDF only.

 .. method:: xref_get_keys(xref)

 * New in v1.18.7

 PDF only: Return the PDF dictionary keys of the :data:`dictionary` object provided by its xref number.

 :arg int xref: the :data:`xref`. *(Changed in v1.18.10)* Use ``-1`` to access the special dictionary "PDF trailer".

 :returns: a tuple of dictionary keys present in object :data:`xref`. Examples:

 >>> from pprint import pprint
 >>> import fitz
 >>> doc=fitz.open("pymupdf.pdf")
 >>> xref = doc.page_xref(0) # xref of page 0
 >>> pprint(doc.xref_get_keys(xref)) # primary level keys of a page
 ('Type', 'Contents', 'Resources', 'MediaBox', 'Parent')
 >>> pprint(doc.xref_get_keys(-1)) # primary level keys of the trailer
 ('Type', 'Index', 'Size', 'W', 'Root', 'Info', 'ID', 'Length', 'Filter')
 >>>

 .. method:: xref_get_key(xref, key)

 * New in v1.18.7

 PDF only: Return type and value of a PDF dictionary key of a :data:`dictionary` object given by its xref.

 :arg int xref: the :data:`xref`. *Changed in v1.18.10:* Use ``-1`` to access the special dictionary "PDF trailer".

 :arg str key: the desired PDF key. Must **exactly** match (case-sensitive) one of the keys contained in :meth:`Document.xref_get_keys`.

 :rtype: tuple

 :returns: A tuple (type, value) of strings, where type is one of "xref", "array", "dict", "int", "float", "null", "bool", "name", "string" or "unknown" (should not occur). Independent of "type", the value of the key is **always** formatted as a string -- see the following example -- and (almost always) a faithful reflection of what is stored in the PDF. In most cases, the format of the value string also gives a clue about the key type:

 * A "name" always starts with a "/" slash.
 * An "xref" always ends with " 0 R".
 * An "array" is always enclosed in "[...]" brackets.
 * A "dict" is always enclosed in "<<...>>" brackets.
 * A "bool", resp. "null" always equal either "true", "false", resp. "null".
 * "float" and "int" are represented by their string format -- and are thus not always distinguishable.
 * A "string" is converted to UTF-8 and may therefore deviate from what is stored in the PDF. For example, the PDF key "Author" may have a value of "<FEFF004A006F0072006A00200058002E0020004D0063004B00690065>" in the file, but the method will return ``('string', 'Jorj X. McKie')``.

 >>> for key in doc.xref_get_keys(xref):
 print(key, "=" , doc.xref_get_key(xref, key))
 Type = ('name', '/Page')
 Contents = ('xref', '1297 0 R')
 Resources = ('xref', '1296 0 R')
 MediaBox = ('array', '[0 0 612 792]')
 Parent = ('xref', '1301 0 R')
 >>> #
 >>> # Now same thing for the PDF trailer.
 >>> # It has no xref, so -1 must be used instead.
 >>> #
 >>> for key in doc.xref_get_keys(-1):
 print(key, "=", doc.xref_get_key(-1, key))
 Type = ('name', '/XRef')
 Index = ('array', '[0 8802]')
 Size = ('int', '8802')
 W = ('array', '[1 3 1]')
 Root = ('xref', '8799 0 R')
 Info = ('xref', '8800 0 R')
 ID = ('array', '[<DC9D56A6277EFFD82084E64F9441E18C><DC9D56A6277EFFD82084E64F9441E18C>]')
 Length = ('int', '21111')
 Filter = ('name', '/FlateDecode')
 >>>

 .. method:: xref_set_key(xref, key, value)

 * New in v1.18.7, changed in v 1.18.13
 * Changed in v1.19.4: remove a key "physically" if set to "null".

 PDF only: Set (add, update, delete) the value of a PDF key for the :data:`dictionary` object given by its xref.

 .. caution:: This is an expert function: if you do not know what you are doing, there is a high risk to render (parts of) the PDF unusable. Please do consult :ref:`AdobeManual` about object specification formats (page 18) and the structure of special dictionary types like page objects.

 :arg int xref: the :data:`xref`. *Changed in v1.18.13:* To update the PDF trailer, specify -1.
 :arg str key: the desired PDF key (without leading "/"). Must not be empty. Any valid PDF key -- whether already present in the object (which will be overwritten) -- or new. It is possible to use PDF path notation like ``"Resources/ExtGState"`` -- which sets the value for key ``"/ExtGState"`` as a sub-object of ``"/Resources"``.
 :arg str value: the value for the key. It must be a non-empty string and, depending on the desired PDF object type, the following rules must be observed. There is some syntax checking, but **no type checking** and no checking if it makes sense PDF-wise, i.e. **no semantics checking**. Upper / lower case is important!

 * **xref** -- must be provided as ``"nnn 0 R"`` with a valid :data:`xref` number nnn of the PDF. The suffix "``0 R``" is required to be recognizable as an xref by PDF applications.
 * **array** -- a string like ``"[a b c d e f]"``. The brackets are required. Array items must be separated by at least one space (not commas like in Python). An empty array ``"[]"`` is possible and *equivalent* to removing the key. Array items may be any PDF objects, like dictionaries, xrefs, other arrays, etc. Like in Python, array items may be of different types.
 * **dict** -- a string like ``"<< ... >>"``. The brackets are required and must enclose a valid PDF dictionary definition. The empty dictionary ``"<<>>"`` is possible and *equivalent* to removing the key.
 * **int** -- an integer formatted **as a string**.
 * **float** -- a float formatted **as a string**. Scientific notation (with exponents) is **not allowed by PDF**.
 * **null** -- the string ``"null"``. This is the PDF equivalent to Python's ``None`` and causes the key to be ignored -- however not necessarily removed, resp. removed on saves with garbage collection. *Changed in v1.19.4:* If the key is no path hierarchy (i.e. contains no slash "/"), then it will be completely removed.
 * **bool** -- one of the strings ``"true"`` or ``"false"``.
 * **name** -- a valid PDF name with a leading slash: ``"/PageLayout"``. See page 16 of the :ref:`AdobeManual`.
 * **string** -- a valid PDF string. **All PDF strings must be enclosed by brackets**. Denote the empty string as ``"()"``. Depending on its content, the possible brackets are

 - "(...)" for ASCII-only text. Reserved PDF characters must be backslash-escaped and non-ASCII characters must be provided as 3-digit backslash-escaped octals -- including leading zeros. Example: 12 = 0x0C must be encoded as ``\014``.
 - "<...>" for hex-encoded text. Every character must be represented by two hex-digits (lower or upper case).

 - If in doubt, we **strongly recommend** to use :meth:`get_pdf_str`! This function automatically generates the right brackets, escapes, and overall format. It will for example do conversions like these:

 >>> # because of the â�¬ symbol, the following yields UTF-16BE BOM
 >>> fitz.get_pdf_str("Pay in $ or â�¬.")
 '<feff00500061007900200069006e002000240020006f0072002020ac002e>'
 >>> # escapes for brackets and non-ASCII
 >>> fitz.get_pdf_str("Prices in EUR (USD also accepted). Areas are in mÂ².")
 '(Prices in EUR \\(USD also accepted\\). Areas are in m\\262.)'

 .. method:: get_page_pixmap(pno: int, *, matrix: matrix_like = Identity, dpi=None, colorspace: Colorspace = csRGB, clip: rect_like = None, alpha: bool = False, annots: bool = True)

 Creates a pixmap from page *pno* (zero-based). Invokes :meth:`Page.get_pixmap`.

 All parameters except ``pno`` are *keyword-only.*

 :arg int pno: page number, 0-based in ``-â�� < pno < page_count``.

 :rtype: :ref:`Pixmap`

 .. method:: get_page_xobjects(pno)

 * New in v1.16.13
 * Changed in v1.18.11

 PDF only: Return a list of all XObjects referenced by a page.

 :arg int pno: page number, 0-based, ``-â�� < pno < page_count``.

 :rtype: list
 :returns: a list of (non-image) XObjects. These objects typically represent pages *embedded* (not copied) from other PDFs. For example, :meth:`Page.show_pdf_page` will create this type of object. An item of this list has the following layout: ``(xref, name, invoker, bbox)``, where

 * **xref** (*int*) is the XObject's :data:`xref`.
 * **name** (*str*) is the symbolic name to reference the XObject.
 * **invoker** (*int*) the :data:`xref` of the invoking XObject or zero if the page directly invokes it.
 * **bbox** (:ref:`Rect`) the boundary box of the XObject's location on the page **in untransformed coordinates**. To get actual, non-rotated page coordinates, multiply with the page's transformation matrix :attr:`Page.transformation_matrix`. *Changed in v.18.11:* the bbox is now formatted as :ref:`Rect`.

 .. method:: get_page_images(pno, full=False)

 PDF only: Return a list of all images (directly or indirectly) referenced by the page.

 :arg int pno: page number, 0-based, ``-â�� < pno < page_count``.
 :arg bool full: whether to also include the referencer's :data:`xref` (which is zero if this is the page).

 :rtype: list

 :returns: a list of images **referenced** by this page. Each item looks like

 ``(xref, smask, width, height, bpc, colorspace, alt. colorspace, name, filter, referencer)``

 Where

 * **xref** (*int*) is the image object number
 * **smask** (*int*) is the object number of its soft-mask image
 * **width** and **height** (*ints*) are the image dimensions
 * **bpc** (*int*) denotes the number of bits per component (normally 8)
 * **colorspace** (*str*) a string naming the colorspace (like **DeviceRGB**)
 * **alt. colorspace** (*str*) is any alternate colorspace depending on the value of **colorspace**
 * **name** (*str*) is the symbolic name by which the image is referenced
 * **filter** (*str*) is the decode filter of the image (:ref:`AdobeManual`, pp. 22).
 * **referencer** (*int*) the :data:`xref` of the referencer. Zero if directly referenced by the page. Only present if *full=True*.

 .. note:: In general, this is not the list of images that are **actually displayed**. This method only parses several PDF objects to collect references to embedded images. It does not analyse the page's :data:`contents`, where all the actual image display commands are defined. To get this information, please use :meth:`Page.get_image_info`. Also have a look at the discussion in section :ref:`textpagedict`.

 .. method:: get_page_fonts(pno, full=False)

 PDF only: Return a list of all fonts (directly or indirectly) referenced by the page.

 :arg int pno: page number, 0-based, ``-â�� < pno < page_count``.
 :arg bool full: whether to also include the referencer's :data:`xref`. If *True*, the returned items are one entry longer. Use this option if you need to know, whether the page directly references the font. In this case the last entry is 0. If the font is referenced by an ``/XObject`` of the page, you will find its :data:`xref` here.

 :rtype: list

 :returns: a list of fonts referenced by this page. Each entry looks like

 (xref, ext, type, basefont, name, encoding, referencer),

 where

 * **xref** (*int*) is the font object number (may be zero if the PDF uses one of the builtin fonts directly)
 * **ext** (*str*) font file extension (e.g. "ttf", see :ref:`FontExtensions`)
 * **type** (*str*) is the font type (like "Type1" or "TrueType" etc.)
 * **basefont** (*str*) is the base font name,
 * **name** (*str*) is the symbolic name, by which the font is referenced
 * **encoding** (*str*) the font's character encoding if different from its built-in encoding (:ref:`AdobeManual`, p. 254):
 * **referencer** (*int* optional) the :data:`xref` of the referencer. Zero if directly referenced by the page, otherwise the xref of an XObject. Only present if *full=True*.

 Example::

 >>> pprint(doc.get_page_fonts(0, full=False))
 [(12, 'ttf', 'TrueType', 'FNUUTH+Calibri-Bold', 'R8', ''),
 (13, 'ttf', 'TrueType', 'DOKBTG+Calibri', 'R10', ''),
 (14, 'ttf', 'TrueType', 'NOHSJV+Calibri-Light', 'R12', ''),
 (15, 'ttf', 'TrueType', 'NZNDCL+CourierNewPSMT', 'R14', ''),
 (16, 'ttf', 'Type0', 'MNCSJY+SymbolMT', 'R17', 'Identity-H'),
 (17, 'cff', 'Type1', 'UAEUYH+Helvetica', 'R20', 'WinAnsiEncoding'),
 (18, 'ttf', 'Type0', 'ECPLRU+Calibri', 'R23', 'Identity-H'),
 (19, 'ttf', 'Type0', 'TONAYT+CourierNewPSMT', 'R27', 'Identity-H')]

 .. note::
 * This list has no duplicate entries: the combination of :data:`xref`, *name* and *referencer* is unique.
 * In general, this is a superset of the fonts actually in use by this page. The PDF creator may e.g. have specified some global list, of which each page only makes partial use.

 .. method:: get_page_text(pno, output="text", flags=3, textpage=None, sort=False)

 Extracts the text of a page given its page number *pno* (zero-based). Invokes :meth:`Page.get_text`.

 :arg int pno: page number, 0-based, any value ``-â�� < pno < page_count``.

 For other parameter refer to the page method.

 :rtype: str

 .. index::
 pair: fontsize; Document.layout
 pair: rect; Document.layout
 pair: width; Document.layout
 pair: height; Document.layout

 .. method:: layout(rect=None, width=0, height=0, fontsize=11)

 Re-paginate ("reflow") the document based on the given page dimension and fontsize. This only affects some document types like e-books and HTML. Ignored if not supported. Supported documents have *True* in property :attr:`is_reflowable`.

 :arg rect_like rect: desired page size. Must be finite, not empty and start at point (0, 0).
 :arg float width: use it together with *height* as alternative to *rect*.
 :arg float height: use it together with *width* as alternative to *rect*.
 :arg float fontsize: the desired default fontsize.

 .. method:: select(s)

 PDF only: Keeps only those pages of the document whose numbers occur in the list. Empty sequences or elements outside ``range(doc.page_count)`` will cause a *ValueError*. For more details see remarks at the bottom or this chapter.

 :arg sequence s: The sequence (see :ref:`SequenceTypes`) of page numbers (zero-based) to be included. Pages not in the sequence will be deleted (from memory) and become unavailable until the document is reopened. **Page numbers can occur multiple times and in any order:** the resulting document will reflect the sequence exactly as specified.

 .. note::

 * Page numbers in the sequence need not be unique nor be in any particular order. This makes the method a versatile utility to e.g. select only the even or the odd pages or meeting some other criteria and so forth.

 * On a technical level, the method will always create a new :data:`pagetree`.

 * When dealing with only a few pages, methods :meth:`copy_page`, :meth:`move_page`, :meth:`delete_page` are easier to use. In fact, they are also **much faster** -- by at least one order of magnitude when the document has many pages.

 .. method:: set_metadata(m)

 PDF only: Sets or updates the metadata of the document as specified in *m*, a Python dictionary.

 :arg dict m: A dictionary with the same keys as *metadata* (see below). All keys are optional. A PDF's format and encryption method cannot be set or changed and will be ignored. If any value should not contain data, do not specify its key or set the value to *None*. If you use *{}* all metadata information will be cleared to the string *"none"*. If you want to selectively change only some values, modify a copy of *doc.metadata* and use it as the argument. Arbitrary unicode values are possible if specified as UTF-8-encoded.

 (Changed in v1.18.4) Empty values or "none" are no longer written, but completely omitted.

 .. method:: get_xml_metadata()

 PDF only: Get the document XML metadata.

 :rtype: str
 :returns: XML metadata of the document. Empty string if not present or not a PDF.

 .. method:: set_xml_metadata(xml)

 PDF only: Sets or updates XML metadata of the document.

 :arg str xml: the new XML metadata. Should be XML syntax, however no checking is done by this method and any string is accepted.

 .. method:: set_toc(toc, collapse=1)

 PDF only: Replaces the **complete current outline** tree (table of contents) with the one provided as the argument. After successful execution, the new outline tree can be accessed as usual via :meth:`Document.get_toc` or via :attr:`Document.outline`. Like with other output-oriented methods, changes become permanent only via :meth:`save` (incremental save supported). Internally, this method consists of the following two steps. For a demonstration see example below.

 - Step 1 deletes all existing bookmarks.

 - Step 2 creates a new TOC from the entries contained in *toc*.

 :arg sequence toc:

 A list / tuple with **all bookmark entries** that should form the new table of contents. Output variants of :meth:`get_toc` are acceptable. To completely remove the table of contents specify an empty sequence or None. Each item must be a list with the following format.

 * [lvl, title, page [, dest]] where

 - **lvl** is the hierarchy level (int > 0) of the item, which **must be 1** for the first item and at most 1 larger than the previous one.

 - **title** (str) is the title to be displayed. It is assumed to be UTF-8-encoded (relevant for multibyte code points only).

 - **page** (int) is the target page number **(attention: 1-based)**. Must be in valid range if positive. Set it to -1 if there is no target, or the target is external.

 - **dest** (optional) is a dictionary or a number. If a number, it will be interpreted as the desired height (in points) this entry should point to on the page. Use a dictionary (like the one given as output by ``get_toc(False)``) for a detailed control of the bookmark's properties, see :meth:`Document.get_toc` for a description.

 :arg int collapse: *(new in v1.16.9)* controls the hierarchy level beyond which outline entries should initially show up collapsed. The default 1 will hence only display level 1, higher levels must be unfolded using the PDF viewer. To unfold everything, specify either a large integer, 0 or None.

 :rtype: int
 :returns: the number of inserted, resp. deleted items.

 .. method:: outline_xref(idx)

 * New in v1.17.7

 PDF only: Return the :data:`xref` of the outline item. This is mainly used for internal purposes.

 arg int idx: index of the item in list :meth:`Document.get_toc`.

 :returns: :data:`xref`.

 .. method:: del_toc_item(idx)

 * New in v1.17.7
 * Changed in v1.18.14: no longer remove the item's text, but show it grayed-out.

 PDF only: Remove this TOC item. This is a high-speed method, which **disables** the respective item, but leaves the overall TOC struture intact. Physically, the item still exists in the TOC tree, but is shown grayed-out and will no longer point to any destination.

 This also implies that you can reassign the item to a new destination using :meth:`Document.set_toc_item`, when required.

 :arg int idx: the index of the item in list :meth:`Document.get_toc`.

 .. method:: set_toc_item(idx, dest_dict=None, kind=None, pno=None, uri=None, title=None, to=None, filename=None, zoom=0)

 * New in v1.17.7
 * Changed in v1.18.6

 PDF only: Changes the TOC item identified by its index. Change the item **title**, **destination**, **appearance** (color, bold, italic) or collapsing sub-items -- or to remove the item altogether.

 Use this method if you need specific changes for selected entries only and want to avoid replacing the complete TOC. This is beneficial especially when dealing with large table of contents.

 :arg int idx: the index of the entry in the list created by :meth:`Document.get_toc`.
 :arg dict dest_dict: the new destination. A dictionary like the last entry of an item in ``doc.get_toc(False)``. Using this as a template is recommended. When given, **all other parameters are ignored** -- except title.
 :arg int kind: the link kind, see :ref:`linkDest Kinds`. If :data:`LINK_NONE`, then all remaining parameter will be ignored, and the TOC item will be removed -- same as :meth:`Document.del_toc_item`. If None, then only the title is modified and the remaining parameters are ignored. All other values will lead to making a new destination dictionary using the subsequent arguments.
 :arg int pno: the 1-based page number, i.e. a value 1 <= pno <= doc.page_count. Required for LINK_GOTO.
 :arg str uri: the URL text. Required for LINK_URI.
 :arg str title: the desired new title. None if no change.
 :arg point_like to: (optional) points to a coordinate on the arget page. Relevant for LINK_GOTO. If omitted, a point near the page's top is chosen.
 :arg str filename: required for LINK_GOTOR and LINK_LAUNCH.
 :arg float zoom: use this zoom factor when showing the target page.

 Example use: Change the TOC of the SWIG manual to achieve this:

 Collapse everything below top level and show the chapter on Python support in red, bold and italic::

 >>> import fitz
 >>> doc=fitz.open("SWIGDocumentation.pdf")
 >>> toc = doc.get_toc(False) # we need the detailed TOC
 >>> # list of level 1 indices and their titles
 >>> lvl1 = [(i, item[1]) for i, item in enumerate(toc) if item[0] == 1]
 >>> for i, title in lvl1:
 d = toc[i][3] # get the destination dict
 d["collapse"] = True # collapse items underneath
 if "Python" in title: # show the 'Python' chapter
 d["color"] = (1, 0, 0) # in red,
 d["bold"] = True # bold and
 d["italic"] = True # italic
 doc.set_toc_item(i, dest_dict=d) # update this toc item
 >>> doc.save("NEWSWIG.pdf",garbage=3,deflate=True)

 In the previous example, we have changed only 42 of the 1240 TOC items of the file.

 .. method:: can_save_incrementally()

 * New in v1.16.0

 Check whether the document can be saved incrementally. Use it to choose the right option without encountering exceptions.

 .. method:: scrub(attached_files=True, clean_pages=True, embedded_files=True, hidden_text=True, javascript=True, metadata=True, redactions=True, redact_images=0, remove_links=True, reset_fields=True, reset_responses=True, thumbnails=True, xml_metadata=True)

 * New in v1.16.14

 PDF only: Remove potentially sensitive data from the PDF. This function is inspired by the similar "Sanitize" function in Adobe Acrobat products. The process is configurable by a number of options, which are all *True* by default.

 :arg bool attached_files: Search for 'FileAttachment' annotations and remove the file content.
 :arg bool clean_pages: Remove any comments from page painting sources. If this option is set to *False*, then this is also done for *hidden_text* and *redactions*.
 :arg bool embedded_files: Remove embedded files.
 :arg bool hidden_text: Remove OCRed text and invisible text [#f7]_.
 :arg bool javascript: Remove JavaScript sources.
 :arg bool metadata: Remove PDF standard metadata.
 :arg bool redactions: Apply redaction annotations.
 :arg int redact_images: how to handle images if applying redactions. One of 0 (ignore), 1 (blank out overlaps) or 2 (remove).
 :arg bool remove_links: Remove all links.
 :arg bool reset_fields: Reset all form fields to their defaults.
 :arg bool reset_responses: Remove all responses from all annotations.
 :arg bool thumbnails: Remove thumbnail images from pages.
 :arg bool xml_metadata: Remove XML metadata.

 .. method:: save(outfile, garbage=0, clean=False, deflate=False, deflate_images=False, deflate_fonts=False, incremental=False, ascii=False, expand=0, linear=False, pretty=False, no_new_id=False, encryption=PDF_ENCRYPT_NONE, permissions=-1, owner_pw=None, user_pw=None)

 * Changed in v1.18.7
 * Changed in v1.19.0

 PDF only: Saves the document in its **current state**.

 :arg str,Path,fp outfile: The file path, ``pathlib.Path`` or file object to save to. A file object must have been created before via ``open(...)`` or ``io.BytesIO()``. Choosing ``io.BytesIO()`` is similar to :meth:`Document.tobytes` below, which equals the ``getvalue()`` output of an internally created ``io.BytesIO()``.

 :arg int garbage: Do garbage collection. Positive values exclude "incremental".

 * 0 = none
 * 1 = remove unused (unreferenced) objects.
 * 2 = in addition to 1, compact the :data:`xref` table.
 * 3 = in addition to 2, merge duplicate objects.
 * 4 = in addition to 3, check :data:`stream` objects for duplication. This may be slow because such data are typically large.

 :arg bool clean: Clean and sanitize content streams [#f1]_. Corresponds to "mutool clean -sc".

 :arg bool deflate: Deflate (compress) uncompressed streams.
 :arg bool deflate_images: *(new in v1.18.3)* Deflate (compress) uncompressed image streams [#f4]_.
 :arg bool deflate_fonts: *(new in v1.18.3)* Deflate (compress) uncompressed fontfile streams [#f4]_.

 :arg bool incremental: Only save changes to the PDF. Excludes "garbage" and "linear". Can only be used if *outfile* is a string or a ``pathlib.Path`` and equal to :attr:`Document.name`. Cannot be used for files that are decrypted or repaired and also in some other cases. To be sure, check :meth:`Document.can_save_incrementally`. If this is false, saving to a new file is required.

 :arg bool ascii: convert binary data to ASCII.

 :arg int expand: Decompress objects. Generates versions that can be better read by some other programs and will lead to larger files.

 * 0 = none
 * 1 = images
 * 2 = fonts
 * 255 = all

 :arg bool linear: Save a linearised version of the document. This option creates a file format for improved performance for Internet access. Excludes "incremental".

 :arg bool pretty: Prettify the document source for better readability. PDF objects will be reformatted to look like the default output of :meth:`Document.xref_object`.

 :arg bool no_new_id: Suppress the update of the file's ``/ID`` field. If the file happens to have no such field at all, also suppress creation of a new one. Default is ``False``, so every save will lead to an updated file identification.

 :arg int permissions: *(new in v1.16.0)* Set the desired permission levels. See :ref:`PermissionCodes` for possible values. Default is granting all.

 :arg int encryption: *(new in v1.16.0)* set the desired encryption method. See :ref:`EncryptionMethods` for possible values.

 :arg str owner_pw: *(new in v1.16.0)* set the document's owner password. *(Changed in v1.18.3)* If not provided, the user password is taken if provided. The string length must not exceed 40 characters.

 :arg str user_pw: *(new in v1.16.0)* set the document's user password. The string length must not exceed 40 characters.

 .. note:: The method does not check, whether a file of that name already exists, will hence not ask for confirmation, and overwrite the file. It is your responsibility as a programmer to handle this.

 .. method:: ez_save(*args, **kwargs)

 * New in v1.18.11

 PDF only: The same as :meth:`Document.save` but with the changed defaults `deflate=True, garbage=3`.

 .. method:: saveIncr()

 PDF only: saves the document incrementally. This is a convenience abbreviation for *doc.save(doc.name, incremental=True, encryption=PDF_ENCRYPT_KEEP)*.

 .. note::

 Saving incrementally may be required if the document contains verified signatures which would be invalidated by saving to a new file.

 .. method:: tobytes(garbage=0, clean=False, deflate=False, deflate_images=False, deflate_fonts=False, ascii=False, expand=0, linear=False, pretty=False, no_new_id=False, encryption=PDF_ENCRYPT_NONE, permissions=-1, owner_pw=None, user_pw=None)

 * Changed in v1.18.7
 * Changed in v1.19.0

 PDF only: Writes the **current content of the document** to a bytes object instead of to a file. Obviously, you should be wary about memory requirements. The meanings of the parameters exactly equal those in :meth:`save`. Chapter :ref:`FAQ` contains an example for using this method as a pre-processor to `pdfrw <https://pypi.python.org/pypi/pdfrw/0.3>`_.

 (Changed in v1.16.0) for extended encryption support.

 :rtype: bytes
 :returns: a bytes object containing the complete document.

 .. method:: search_page_for(pno, text, quads=False)

 Search for "text" on page number "pno". Works exactly like the corresponding :meth:`Page.search_for`. Any integer ``-â�� < pno < page_count`` is acceptable.

 .. index::
 pair: from_page; Document.insert_pdf
 pair: to_page; Document.insert_pdf
 pair: start_at; Document.insert_pdf
 pair: rotate; Document.insert_pdf
 pair: links; Document.insert_pdf
 pair: annots; Document.insert_pdf
 pair: show_progress; Document.insert_pdf

 .. method:: insert_pdf(docsrc, from_page=-1, to_page=-1, start_at=-1, rotate=-1, links=True, annots=True, show_progress=0, final=1)

 * Changed in v1.19.3 - as a fix to issue `#537 <https://github.com/pymupdf/PyMuPDF/issues/537>`_, form fields are always excluded.

 PDF only: Copy the page range **[from_page, to_page]** (including both) of PDF document *docsrc* into the current one. Inserts will start with page number *start_at*. Value -1 indicates default values. All pages thus copied will be rotated as specified. Links and annotations can be excluded in the target, see below. All page numbers are 0-based.

 :arg docsrc: An opened PDF *Document* which must not be the current document. However, it may refer to the same underlying file.
 :type docsrc: *Document*

 :arg int from_page: First page number in *docsrc*. Default is zero.

 :arg int to_page: Last page number in *docsrc* to copy. Defaults to last page.

 :arg int start_at: First copied page, will become page number *start_at* in the target. Default -1 appends the page range to the end. If zero, the page range will be inserted before current first page.

 :arg int rotate: All copied pages will be rotated by the provided value (degrees, integer multiple of 90).

 :arg bool links: Choose whether (internal and external) links should be included in the copy. Default is *True*. Internal links to outside the copied page range are **always excluded**.
 :arg bool annots: *(new in v1.16.1)* choose whether annotations should be included in the copy. *(Fixed in v1.19.3)* Form fields can never be copied.
 :arg int show_progress: *(new in v1.17.7)* specify an interval size greater zero to see progress messages on ``sys.stdout``. After each interval, a message like ``Inserted 30 of 47 pages.`` will be printed.
 :arg int final: *(new in v1.18.0)* controls whether the list of already copied objects should be **dropped** after this method, default *True*. Set it to 0 except for the last one of multiple insertions from the same source PDF. This saves target file size and speeds up execution considerably.

 .. note::

 1. If *from_page > to_page*, pages will be **copied in reverse order**. If *0 <= from_page == to_page*, then one page will be copied.

 2. *docsrc* TOC entries **will not be copied**. It is easy however, to recover a table of contents for the resulting document. Look at the examples below and at program `PDFjoiner.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/PDFjoiner.py>`_ in the *examples* directory: it can join PDF documents and at the same time piece together respective parts of the tables of contents.

 .. index::
 pair: width; Document.new_page
 pair: height; Document.new_page

 .. method:: new_page(pno=-1, width=595, height=842)

 PDF only: Insert an empty page.

 :arg int pno: page number in front of which the new page should be inserted. Must be in *1 < pno <= page_count*. Special values -1 and *doc.page_count* insert **after** the last page.

 :arg float width: page width.
 :arg float height: page height.

 :rtype: :ref:`Page`
 :returns: the created page object.

 .. index::
 pair: fontsize; Document.insert_page
 pair: width; Document.insert_page
 pair: height; Document.insert_page
 pair: fontname; Document.insert_page
 pair: fontfile; Document.insert_page
 pair: color; Document.insert_page

 .. method:: insert_page(pno, text=None, fontsize=11, width=595, height=842, fontname="helv", fontfile=None, color=None)

 PDF only: Insert a new page and insert some text. Convenience function which combines :meth:`Document.new_page` and (parts of) :meth:`Page.insert_text`.

 :arg int pno: page number (0-based) **in front of which** to insert. Must be in ``range(-1, doc.page_count + 1)``. Special values -1 and ``doc.page_count`` insert **after** the last page.

 Changed in v1.14.12
 This is now a positional parameter

 For the other parameters, please consult the aforementioned methods.

 :rtype: int
 :returns: the result of :meth:`Page.insert_text` (number of successfully inserted lines).

 .. method:: delete_page(pno=-1)

 PDF only: Delete a page given by its 0-based number in ``-â�� < pno < page_count - 1``.

 * Changed in v1.18.14: support Python's ``del`` statement.

 :arg int pno: the page to be deleted. Negative number count backwards from the end of the document (like with indices). Default is the last page.

 .. method:: delete_pages(*args, **kwds)

 * Changed in v1.18.13: more flexibility specifying pages to delete.
 * Changed in v1.18.14: support Python's ``del`` statement.

 PDF only: Delete multiple pages given as 0-based numbers.

 Format 1: Use keywords. Represents the old format. A contiguous range of pages is removed.
 * "from_page": first page to delete. Zero if omitted.
 * "to_page": last page to delete. Last page in document if omitted. Must not be less then "from_page".

 Format 2: Two page numbers as positional parameters. Handled like Format 1.

 Format 3: One positional integer parameter. Equivalent to :meth:`Page.delete_page`.

 Format 4: One positional parameter of type *list*, *tuple* or *range()* of page numbers. The items of this sequence may be in any order and may contain duplicates.

 Format 5: *(New in v1.18.14)* Using the Python ``del`` statement and index / slice notation is now possible.

 .. note::

 (Changed in v1.14.17, optimized in v1.17.7) In an effort to maintain a valid PDF structure, this method and :meth:`delete_page` will also deactivate items in the table of contents which point to deleted pages. "Deactivation" here means, that the bookmark will point to nowhere and the title will be shown grayed-out by supporting PDF viewers. The overall TOC structure is left intact.

 It will also remove any **links on remaining pages** which point to a deleted one. This action may have an extended response time for documents with many pages.

 Following examples will all delete pages 500 through 519:

 * ``doc.delete_pages(500, 519)``
 * ``doc.delete_pages(from_page=500, to_page=519)``
 * ``doc.delete_pages((500, 501, 502, ... , 519))``
 * ``doc.delete_pages(range(500, 520))``
 * ``del doc[500:520]``
 * ``del doc[(500, 501, 502, ... , 519)]``
 * ``del doc[range(500, 520)]``

 For the :ref:`AdobeManual` the above takes about 0.6 seconds, because the remaining 1290 pages must be cleaned from invalid links.

 In general, the performance of this method is dependent on the number of remaining pages -- **not** on the number of deleted pages: in the above example, **deleting all pages except** those 20, will need much less time.

 .. method:: copy_page(pno, to=-1)

 PDF only: Copy a page reference within the document.

 :arg int pno: the page to be copied. Must be in range ``0 <= pno < page_count``.

 :arg int to: the page number in front of which to copy. The default inserts **after** the last page.

 .. note:: Only a new **reference** to the page object will be created -- not a new page object, all copied pages will have identical attribute values, including the :attr:`Page.xref`. This implies that any changes to one of these copies will appear on all of them.

 .. method:: fullcopy_page(pno, to=-1)

 * New in v1.14.17

 PDF only: Make a full copy (duplicate) of a page.

 :arg int pno: the page to be duplicated. Must be in range ``0 <= pno < page_count``.

 :arg int to: the page number in front of which to copy. The default inserts **after** the last page.

 .. note::

 * In contrast to :meth:`copy_page`, this method creates a new page object (with a new :data:`xref`), which can be changed independently from the original.

 * Any Popup and "IRT" ("in response to") annotations are **not copied** to avoid potentially incorrect situations.

 .. method:: move_page(pno, to=-1)

 PDF only: Move (copy and then delete original) a page within the document.

 :arg int pno: the page to be moved. Must be in range ``0 <= pno < page_count``.

 :arg int to: the page number in front of which to insert the moved page. The default moves **after** the last page.

 .. method:: need_appearances(value=None)

 * New in v1.17.4

 PDF only: Get or set the */NeedAppearances* property of Form PDFs. Quote: *"(Optional) A flag specifying whether to construct appearance streams and appearance dictionaries for all widget annotations in the document ... Default value: false."* This may help controlling the behavior of some readers / viewers.

 :arg bool value: set the property to this value. If omitted or *None*, inquire the current value.

 :rtype: bool
 :returns:
 * None: not a Form PDF, or property not defined.
 * True / False: the value of the property (either just set or existing for inquiries). Has no effect if no Form PDF.

 .. method:: get_sigflags()

 PDF only: Return whether the document contains signature fields. This is an optional PDF property: if not present (return value -1), no conclusions can be drawn -- the PDF creator may just not have bothered using it.

 :rtype: int
 :returns:
 * -1: not a Form PDF / no signature fields recorded / no *SigFlags* found.
 * 1: at least one signature field exists.
 * 3: contains signatures that may be invalidated if the file is saved (written) in a way that alters its previous contents, as opposed to an incremental update.

 .. index::
 pair: filename; Document.embfile_add
 pair: ufilename; Document.embfile_add
 pair: desc; Document.embfile_add

 .. method:: embfile_add(name, buffer, filename=None, ufilename=None, desc=None)

 * Changed in v1.14.16: The sequence of positional parameters "name" and "buffer" has been changed to comply with the call pattern of other functions.

 PDF only: Embed a new file. All string parameters except the name may be unicode (in previous versions, only ASCII worked correctly). File contents will be compressed (where beneficial).

 :arg str name: entry identifier, **must not already exist**.
 :arg bytes,bytearray,BytesIO buffer: file contents.

 (Changed in v1.14.13) *io.BytesIO* is now also supported.

 :arg str filename: optional filename. Documentation only, will be set to *name* if *None*.
 :arg str ufilename: optional unicode filename. Documentation only, will be set to *filename* if *None*.
 :arg str desc: optional description. Documentation only, will be set to *name* if *None*.

 :rtype: int
 :returns: *(Changed in v1.18.13)* The method now returns the :data:`xref` of the inserted file. In addition, the file object now will be automatically given the PDF keys ``/CreationDate`` and ``/ModDate`` based on the current date-time.

 .. method:: embfile_count()

 * Changed in v1.14.16: This is now a method. In previous versions, this was a property.

 PDF only: Return the number of embedded files.

 .. method:: embfile_get(item)

 PDF only: Retrieve the content of embedded file by its entry number or name. If the document is not a PDF, or entry cannot be found, an exception is raised.

 :arg int,str item: index or name of entry. An integer must be in ``range(embfile_count())``.

 :rtype: bytes

 .. method:: embfile_del(item)

 * Changed in v1.14.16: Items can now be deleted by index, too.

 PDF only: Remove an entry from `/EmbeddedFiles`. As always, physical deletion of the embedded file content (and file space regain) will occur only when the document is saved to a new file with a suitable garbage option.

 :arg int/str item: index or name of entry.

 .. warning:: When specifying an entry name, this function will only **delete the first item** with that name. Be aware that PDFs not created with PyMuPDF may contain duplicate names. So you may want to take appropriate precautions.

 .. method:: embfile_info(item)

 * Changed in v1.18.13

 PDF only: Retrieve information of an embedded file given by its number or by its name.

 :arg int/str item: index or name of entry. An integer must be in ``range(embfile_count())``.

 :rtype: dict
 :returns: a dictionary with the following keys:

 * *name* -- (*str*) name under which this entry is stored
 * *filename* -- (*str*) filename
 * *ufilename* -- (*unicode*) filename
 * *desc* -- (*str*) description
 * *size* -- (*int*) original file size
 * *length* -- (*int*) compressed file length
 * *creationDate* -- *(New in v1.18.13)* (*str*) date-time of item creation in PDF format
 * *modDate* -- *(New in v1.18.13)* (*str*) date-time of last change in PDF format
 * *collection* -- *(New in v1.18.13)* (*int*) :data:`xref` of the associated PDF portfolio item if any, else zero.
 * *checksum* -- *(New in v1.18.13)* (*str*) a hashcode of the stored file content as a hexadecimal string. Should be MD5 according to PDF specifications, but be prepared to see other hashing algorithms.

 .. method:: embfile_names()

 * New in v1.14.16

 PDF only: Return a list of embedded file names. The sequence of the names equals the physical sequence in the document.

 :rtype: list

 .. index::
 pair: filename; Document.embfile_upd
 pair: ufilename; Document.embfile_upd
 pair: desc; Document.embfile_upd

 .. method:: embfile_upd(item, buffer=None, filename=None, ufilename=None, desc=None)

 PDF only: Change an embedded file given its entry number or name. All parameters are optional. Letting them default leads to a no-operation.

 :arg int/str item: index or name of entry. An integer must be in ``range(embfile_count())``.
 :arg bytes,bytearray,BytesIO buffer: the new file content.

 (Changed in v1.14.13) *io.BytesIO* is now also supported.

 :arg str filename: the new filename.
 :arg str ufilename: the new unicode filename.
 :arg str desc: the new description.

 (Changed in v1.18.13) The method now returns the :data:`xref` of the file object.

 :rtype: int
 :returns: xref of the file object. Automatically, its ``/ModDate`` PDF key will be updated with the current date-time.

 .. method:: close()

 Release objects and space allocations associated with the document. If created from a file, also closes *filename* (releasing control to the OS). Explicitely closing a document is equivalent to deleting it, ``del doc``, or assigning it to something else like ``doc = None``.

 .. method:: xref_object(xref, compressed=False, ascii=False)

 * New in v1.16.8
 * Changed in v1.18.10

 PDF only: Return the definition source of a PDF object.

 :arg int xref: the object's :data`xref`. *Changed in v1.18.10:* A value of -1 returns the PDF trailer source.
 :arg bool compressed: whether to generate a compact output with no line breaks or spaces.
 :arg bool ascii: whether to ASCII-encode binary data.

 :rtype: str
 :returns: The object definition source.

 .. method:: pdf_catalog()

 * New in v1.16.8

 PDF only: Return the :data:`xref` number of the PDF catalog (or root) object. Use that number with :meth:`Document.xref_object` to see its source.

 .. method:: pdf_trailer(compressed=False)

 * New in v1.16.8

 PDF only: Return the trailer source of the PDF, which is usually located at the PDF file's end. This is :meth:`Document.xref_object` with an *xref* argument of -1.

 .. method:: xref_stream(xref)

 * New in v1.16.8

 PDF only: Return the **decompressed** contents of the :data:`xref` stream object.

 :arg int xref: :data:`xref` number.

 :rtype: bytes
 :returns: the (decompressed) stream of the object.

 .. method:: xref_stream_raw(xref)

 * New in v1.16.8

 PDF only: Return the **unmodified** (esp. **not decompressed**) contents of the :data:`xref` stream object. Otherwise equal to :meth:`Document.xref_stream`.

 :rtype: bytes
 :returns: the (original, unmodified) stream of the object.

 .. method:: update_object(xref, obj_str, page=None)

 * New in v1.16.8

 PDF only: Replace object definition of :data:`xref` with the provided string. The xref may also be new, in which case this instruction completes the object definition. If a page object is also given, its links and annotations will be reloaded afterwards.

 :arg int xref: :data:`xref` number.

 :arg str obj_str: a string containing a valid PDF object definition.

 :arg page: a page object. If provided, indicates, that annotations of this page should be refreshed (reloaded) to reflect changes incurred with links and / or annotations.
 :type page: :ref:`Page`

 :rtype: int
 :returns: zero if successful, otherwise an exception will be raised.

 .. method:: update_stream(xref, data, new=False, compress=True)

 * New in v.1.16.8
 * Changed in v1.19.2: added parameter "compress"
 * Changed in v1.19.6: deprecated parameter "new". Now confirms that the object is a PDF dictionary object.

 Replace the stream of an object identified by *xref*, which must be a PDF dictionary. If the object is no :data:`stream`, it will be turned into one. The function automatically performs a compress operation ("deflate") where beneficial.

 :arg int xref: :data:`xref` number.

 :arg bytes|bytearray|BytesIO stream: the new content of the stream.

 (Changed in v1.14.13:) *io.BytesIO* objects are now also supported.

 :arg bool new: *deprecated* and ignored. Will be removed some time after v1.20.0.
 :arg bool compress: whether to compress the inserted stream. If ``True`` (default), the stream will be inserted using ``/FlateDecode`` compression (if beneficial), otherwise the stream will inserted as is.

 :raises ValueError: if *xref* does not represent a PDF :data:`dict`. An empty dictionary ``<<>>`` is accepted. So if you just created the xref and want to give it a stream, first execute ``doc.update_object(xref, "<<>>")``, and then insert the stream data with this method.

 The method is primarily (but not exclusively) intended to manipulate streams containing PDF operator syntax (see pp. 643 of the :ref:`AdobeManual`) as it is the case for e.g. page content streams.

 If you update a contents stream, consider using save parameter *clean=True* to ensure consistency between PDF operator source and the object structure.

 Example: Let us assume that you no longer want a certain image appear on a page. This can be achieved by deleting the respective reference in its contents source(s) -- and indeed: the image will be gone after reloading the page. But the page's :data:`resources` object would still show the image as being referenced by the page. This save option will clean up any such mismatches.

 .. method:: Document.xref_copy(source, target, *, keep=None)

 * New in v1.19.5

 PDF Only: Make *target* xref an exact copy of *source*. If *source* is a :data:`stream`, then these data are also copied.

 :arg int source: the source :data:`xref`. It must be an existing **dictionary** object.
 :arg int target: the target xref. Must be an existing **dictionary** object. If the xref has just been created, make sure to initialize it as a PDF dictionary with the minimum specification ``<<>>``.
 :arg list keep: an optional list of top-level keys in *target*, that should not be removed in preparation of the copy process.

 .. note::

 * This method has much in common with Python's *dict* method ``copy()``.
 * Both xref numbers must represent existing dictionaries.
 * Before data is copied from *source*, all *target* dictionary keys are deleted. You can specify exceptions from this in the *keep* list. If *source* however has a same-named key, its value will still replace the target.
 * If *source* is a :data:`stream` object, then these data will also be copied over, and *target* will be converted to a stream object.
 * A typical use case is to replace or remove an existing image without using redaction annotations. Example scripts can be seen `here <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/image-replacement>`_.

 .. method:: Document.extract_image(xref)

 PDF Only: Extract data and meta information of an image stored in the document. The output can directly be used to be stored as an image file, as input for PIL, :ref:`Pixmap` creation, etc. This method avoids using pixmaps wherever possible to present the image in its original format (e.g. as JPEG).

 :arg int xref: :data:`xref` of an image object. If this is not in ``range(1, doc.xref_length())``, or the object is no image or other errors occur, *None* is returned and no exception is raised.

 :rtype: dict
 :returns: a dictionary with the following keys

 * *ext* (*str*) image type (e.g. *'jpeg'*), usable as image file extension
 * *smask* (*int*) :data:`xref` number of a stencil (/SMask) image or zero
 * *width* (*int*) image width
 * *height* (*int*) image height
 * *colorspace* (*int*) the image's *colorspace.n* number.
 * *cs-name* (*str*) the image's *colorspace.name*.
 * *xres* (*int*) resolution in x direction. Please also see :data:`resolution`.
 * *yres* (*int*) resolution in y direction. Please also see :data:`resolution`.
 * *image* (*bytes*) image data, usable as image file content

 >>> d = doc.extract_image(1373)
 >>> d
 {'ext': 'png', 'smask': 2934, 'width': 5, 'height': 629, 'colorspace': 3, 'xres': 96,
 'yres': 96, 'cs-name': 'DeviceRGB',
 'image': b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x05\ ...'}
 >>> imgout = open(f"image.{d['ext']}", "wb")
 >>> imgout.write(d["image"])
 102
 >>> imgout.close()

 .. note:: There is a functional overlap with *pix = fitz.Pixmap(doc, xref)*, followed by a *pix.tobytes()*. Main differences are that extract_image, **(1)** does not always deliver PNG image formats, **(2)** is **very** much faster with non-PNG images, **(3)** usually results in much less disk storage for extracted images, **(4)** returns *None* in error cases (generates no exception). Look at the following example images within the same PDF.

 * xref 1268 is a PNG -- Comparable execution time and identical output::

 In [23]: %timeit pix = fitz.Pixmap(doc, 1268);pix.tobytes()
 10.8 ms Â± 52.4 Âµs per loop (mean Â± std. dev. of 7 runs, 100 loops each)
 In [24]: len(pix.tobytes())
 Out[24]: 21462

 In [25]: %timeit img = doc.extract_image(1268)
 10.8 ms Â± 86 Âµs per loop (mean Â± std. dev. of 7 runs, 100 loops each)
 In [26]: len(img["image"])
 Out[26]: 21462

 * xref 1186 is a JPEG -- :meth:`Document.extract_image` is **many times faster** and produces a **much smaller** output (2.48 MB vs. 0.35 MB)::

 In [27]: %timeit pix = fitz.Pixmap(doc, 1186);pix.tobytes()
 341 ms Â± 2.86 ms per loop (mean Â± std. dev. of 7 runs, 1 loop each)
 In [28]: len(pix.tobytes())
 Out[28]: 2599433

 In [29]: %timeit img = doc.extract_image(1186)
 15.7 Âµs Â± 116 ns per loop (mean Â± std. dev. of 7 runs, 100000 loops each)
 In [30]: len(img["image"])
 Out[30]: 371177

 .. method:: Document.extract_font(xref, info_only=False, named=None)

 * Changed in v1.19.4: return a dictionary if ``named == True``.

 PDF Only: Return an embedded font file's data and appropriate file extension. This can be used to store the font as an external file. The method does not throw exceptions (other than via checking for PDF and valid :data:`xref`).

 :arg int xref: PDF object number of the font to extract.
 :arg bool info_only: only return font information, not the buffer. To be used for information-only purposes, avoids allocation of large buffer areas.
 :arg bool named: If true, a dictionary with the following keys is returned: 'name' (font base name), 'ext' (font file extension), 'type' (font type), 'content' (font file content).

 :rtype: tuple,dict
 :returns: a tuple ``(basename, ext, type, content)``, where *ext* is a 3-byte suggested file extension (*str*), *basename* is the font's name (*str*), *type* is the font's type (e.g. "Type1") and *content* is a bytes object containing the font file's content (or *b""*). For possible extension values and their meaning see :ref:`FontExtensions`. Return details on error:

 * ``("", "", "", b"")`` -- invalid xref or xref is not a (valid) font object.
 * ``(basename, "n/a", "Type1", b"")`` -- *basename* is not embedded and thus cannot be extracted. This is the case for e.g. the :ref:`Base-14-Fonts` and Type 3 fonts.

 Example:

 >>> # store font as an external file
 >>> name, ext, _, content = doc.extract_font(4711)
 >>> # assuming content is not None:
 >>> ofile = open(name + "." + ext, "wb")
 >>> ofile.write(content)
 >>> ofile.close()

 .. warning:: The basename is returned unchanged from the PDF. So it may contain characters (such as blanks) which may disqualify it as a filename for your operating system. Take appropriate action.

 .. note::
 * The returned *basename* in general is **not** the original file name, but it probably has some similarity.
 * If parameter ``named == True``, a dictionary with the following keys is returned: ``{'name': 'T1', 'ext': 'n/a', 'type': 'Type3', 'content': b''}``.

 .. method:: xref_xml_metadata()

 * New in v1.16.8

 PDF only: Return the :data:`xref` of the document's XML metadata.

 .. method:: has_links()

 .. method:: has_annots()

 * New in v1.18.7

 PDF only: Check whether there are links, resp. annotations anywhere in the document.

 :returns: *True* / *False*. As opposed to fields, which are also stored in a central place of a PDF document, the existence of links / annotations can only be detected by parsing each page. These methods are tuned to do this efficiently and will immediately return, if the answer is *True* for a page. For PDFs with many thousand pages however, an answer may take some time [#f6]_ if no link, resp. no annotation is found.

 .. method:: subset_fonts()

 * New in v1.18.7, changed in v1.18.9

 PDF only: Investigate eligible fonts for their use by text in the document. If a font is supported and a size reduction is possible, that font is replaced by a version with a character subset.

 Use this method immediately before saving the document. The following features and restrictions apply for the time being:

 * Package `fontTools <https://pypi.org/project/fonttools/>`_ **must be installed**. It is required for creating the font subsets. If not installed, the method raises an ``ImportError`` exception.
 * Supported font types only include embedded OTF, TTF and WOFF that are **not already subsets**.
 * **Changed in v1.18.9:** A subset font directly replaces its original -- text remains untouched and **is not rewritten.** It thus should retain all its properties, like spacing, hiddenness, control by Optional Content, etc.

 The greatest benefit can be achieved when creating new PDFs using large fonts like is typical for Asian scripts. In these cases, the set of actually used unicodes mostly is small compared to the number of glyphs in the font. Using this feature can easily reduce the embedded font binary by two orders of magnitude -- from several megabytes to a low two-digit kilobyte amount.

 .. method:: journal_enable()

 * New in v1.19.0

 PDF only: Enable journalling. Use this before you start logging operations.

 .. method:: journal_start_op(name)

 * New in v1.19.0

 PDF only: Start journalling an *"operation"* identified by a string "name". Updates will fail for a journal-enabled PDF, if no operation has been started.

 .. method:: journal_stop_op()

 * New in v1.19.0

 PDF only: Stop the current operation. The updates between start and stop of an operation belong to the same unit of work and will be undone / redone together.

 .. method:: journal_position()

 * New in v1.19.0

 PDF only: Return the numbers of the current operation and the total operation count.

 :returns: a tuple ``(step, steps)`` containing the current operation number and the total number of operations in the journal. If **step** is 0, we are at the top of the journal. If **step** equals **steps**, we are at the bottom. Updating the PDF with anything other than undo or redo will automatically remove all journal entries after the current one and the new update will become the new last entry in the journal. The updates corresponding to the removed journal entries will be permanently lost.

 .. method:: journal_op_name(step)

 * New in v1.19.0

 PDF only: Return the name of operation number *step.*

 .. method:: journal_can_do()

 * New in v1.19.0

 PDF only: Show whether forward ("redo") and / or backward ("undo") executions are possible from the current journal postion.

 :returns: a dictionary ``{"undo": bool, "redo": bool}``. The respective method is available if its value is ``True``.

 .. method:: journal_undo()

 * New in v1.19.0

 PDF only: Revert (undo) the current step in the journal. This moves towards the journal's top.

 .. method:: journal_redo()

 * New in v1.19.0

 PDF only: Re-apply (redo) the current step in the journal. This moves towards the journal's bottom.

 .. method:: journal_save(filename)

 * New in v1.19.0

 PDF only: Save the journal to a file.

 :arg str,fp filename: either a filename as string or a file object opened as "wb" (or an ``io.BytesIO()`` object).

 .. method:: journal_load(filename)

 * New in v1.19.0

 PDF only: Load journal from a file. Enables journalling for the document. If journalling is already enabled, an exception is raised.

 :arg str,fp filename: the filename (str) of the journal or a file object opened as "rb" (or an ``io.BytesIO()`` object).

 .. method:: save_snapshot()

 * New in v1.19.0

 PDF only: Saves a "snapshot" of the document. This is a PDF document with a special, incremental-save format compatible with journalling -- therefore no save options are available. Saving a snapshot is not possible for new documents.

 This is a normal PDF document with no usage restrictions whatsoever. If it is not being changed in any way, it can be used together with its journal to undo / redo operations or continue updating.

 .. attribute:: outline

 Contains the first :ref:`Outline` entry of the document (or *None*). Can be used as a starting point to walk through all outline items. Accessing this property for encrypted, not authenticated documents will raise an *AttributeError*.

 :type: :ref:`Outline`

 .. attribute:: is_closed

 False if document is still open. If closed, most other attributes and methods will have been deleted / disabled. In addition, :ref:`Page` objects referring to this document (i.e. created with :meth:`Document.load_page`) and their dependent objects will no longer be usable. For reference purposes, :attr:`Document.name` still exists and will contain the filename of the original document (if applicable).

 :type: bool

 .. attribute:: is_dirty

 True if this is a PDF document and contains unsaved changes, else *False*.

 :type: bool

 .. attribute:: is_pdf

 True if this is a PDF document, else *False*.

 :type: bool

 .. attribute:: is_form_pdf

 False if this is not a PDF or has no form fields, otherwise the number of root form fields (fields with no ancestors).

 (Changed in v1.16.4) Returns the total number of (root) form fields.

 :type: bool,int

 .. attribute:: is_reflowable

 True if document has a variable page layout (like e-books or HTML). In this case you can set the desired page dimensions during document creation (open) or via method :meth:`layout`.

 :type: bool

 .. attribute:: is_repaired

 * New in v1.18.2

 True if PDF has been repaired during open (because of major structure issues). Always *False* for non-PDF documents. If true, more details have been stored in ``TOOLS.mupdf_warnings()``, and :meth:`Document.can_save_incrementally` will return *False*.

 :type: bool

 .. attribute:: needs_pass

 Indicates whether the document is password-protected against access. This indicator remains unchanged -- **even after the document has been authenticated**. Precludes incremental saves if true.

 :type: bool

 .. attribute:: is_encrypted

 This indicator initially equals :attr:`Document.needs_pass`. After successful authentication, it is set to *False* to reflect the situation.

 :type: bool

 .. attribute:: permissions

 * Changed in v1.16.0: This is now an integer comprised of bit indicators. Was a dictionary previously.

 Contains the permissions to access the document. This is an integer containing bool values in respective bit positions. For example, if *doc.permissions & fitz.PDF_PERM_MODIFY > 0*, you may change the document. See :ref:`PermissionCodes` for details.

 :type: int

 .. attribute:: metadata

 Contains the document's meta data as a Python dictionary or *None* (if *is_encrypted=True* and *needPass=True*). Keys are *format*, *encryption*, *title*, *author*, *subject*, *keywords*, *creator*, *producer*, *creationDate*, *modDate*, *trapped*. All item values are strings or *None*.

 Except *format* and *encryption*, for PDF documents, the key names correspond in an obvious way to the PDF keys */Creator*, */Producer*, */CreationDate*, */ModDate*, */Title*, */Author*, */Subject*, */Trapped* and */Keywords* respectively.

 - *format* contains the document format (e.g. 'PDF-1.6', 'XPS', 'EPUB').

 - *encryption* either contains *None* (no encryption), or a string naming an encryption method (e.g. *'Standard V4 R4 128-bit RC4'*). Note that an encryption method may be specified **even if** *needs_pass=False*. In such cases not all permissions will probably have been granted. Check :attr:`Document.permissions` for details.

 - If the date fields contain valid data (which need not be the case at all!), they are strings in the PDF-specific timestamp format "D:<TS><TZ>", where

 - <TS> is the 12 character ISO timestamp *YYYYMMDDhhmmss* (*YYYY* - year, *MM* - month, *DD* - day, *hh* - hour, *mm* - minute, *ss* - second), and

 - <TZ> is a time zone value (time intervall relative to GMT) containing a sign ('+' or '-'), the hour (*hh*), and the minute (*'mm'*, note the apostrophies!).

 - A Paraguayan value might hence look like *D:20150415131602-04'00'*, which corresponds to the timestamp April 15, 2015, at 1:16:02 pm local time Asuncion.

 :type: dict

 .. Attribute:: name

 Contains the *filename* or *filetype* value with which *Document* was created.

 :type: str

 .. Attribute:: page_count

 Contains the number of pages of the document. May return 0 for documents with no pages. Function ``len(doc)`` will also deliver this result.

 :type: int

 .. Attribute:: chapter_count

 * New in v1.17.0

 Contains the number of chapters in the document. Always at least 1. Relevant only for document types with chapter support (EPUB currently). Other documents will return 1.

 :type: int

 .. Attribute:: last_location

 * New in v1.17.0

 Contains (chapter, pno) of the document's last page. Relevant only for document types with chapter support (EPUB currently). Other documents will return ``(0, page_count - 1)`` and ``(0, -1)`` if it has no pages.

 :type: int

 .. Attribute:: FormFonts

 A list of form field font names defined in the */AcroForm* object. *None* if not a PDF.

 :type: list

.. NOTE:: For methods that change the structure of a PDF (:meth:`insert_pdf`, :meth:`select`, :meth:`copy_page`, :meth:`delete_page` and others), be aware that objects or properties in your program may have been invalidated or orphaned. Examples are :ref:`Page` objects and their children (links, annotations, widgets), variables holding old page counts, tables of content and the like. Remember to keep such variables up to date or delete orphaned objects. Also refer to :ref:`ReferenialIntegrity`.

:meth:`set_metadata` Example

Clear metadata information. If you do this out of privacy / data protection concerns, make sure you save the document as a new file with *garbage > 0*. Only then the old */Info* object will also be physically removed from the file. In this case, you may also want to clear any XML metadata inserted by several PDF editors:

>>> import fitz
>>> doc=fitz.open("pymupdf.pdf")
>>> doc.metadata # look at what we currently have
{'producer': 'rst2pdf, reportlab', 'format': 'PDF 1.4', 'encryption': None, 'author':
'Jorj X. McKie', 'modDate': "D:20160611145816-04'00'", 'keywords': 'PDF, XPS, EPUB, CBZ',
'title': 'The PyMuPDF Documentation', 'creationDate': "D:20160611145816-04'00'",
'creator': 'sphinx', 'subject': 'PyMuPDF 1.9.1'}
>>> doc.set_metadata({}) # clear all fields
>>> doc.metadata # look again to show what happened
{'producer': 'none', 'format': 'PDF 1.4', 'encryption': None, 'author': 'none',
'modDate': 'none', 'keywords': 'none', 'title': 'none', 'creationDate': 'none',
'creator': 'none', 'subject': 'none'}
>>> doc._delXmlMetadata() # clear any XML metadata
>>> doc.save("anonymous.pdf", garbage = 4) # save anonymized doc

:meth:`set_toc` Demonstration

This shows how to modify or add a table of contents. Also have a look at `csv2toc.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/csv2toc.py>`_ and `toc2csv.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/toc2csv.py>`_ in the examples directory.

>>> import fitz
>>> doc = fitz.open("test.pdf")
>>> toc = doc.get_toc()
>>> for t in toc: print(t) # show what we have
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction', 1]
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]
>>> toc[1][1] += " modified by set_toc" # modify something
>>> doc.set_toc(toc) # replace outline tree
3 # number of bookmarks inserted
>>> for t in doc.get_toc(): print(t) # demonstrate it worked
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction modified by set_toc', 1] # <<< this has changed
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]

:meth:`insert_pdf` Examples

(1) Concatenate two documents including their TOCs:

>>> doc1 = fitz.open("file1.pdf") # must be a PDF
>>> doc2 = fitz.open("file2.pdf") # must be a PDF
>>> pages1 = len(doc1) # save doc1's page count
>>> toc1 = doc1.get_toc(False) # save TOC 1
>>> toc2 = doc2.get_toc(False) # save TOC 2
>>> doc1.insert_pdf(doc2) # doc2 at end of doc1
>>> for t in toc2: # increase toc2 page numbers
 t[2] += pages1 # by old len(doc1)
>>> doc1.set_toc(toc1 + toc2) # now result has total TOC

Obviously, similar ways can be found in more general situations. Just make sure that hierarchy levels in a row do not increase by more than one. Inserting dummy bookmarks before and after *toc2* segments would heal such cases. A ready-to-use GUI (wxPython) solution can be found in script `PDFjoiner.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/PDFjoiner.py>`_ of the examples directory.

(2) More examples:

>>> # insert 5 pages of doc2, where its page 21 becomes page 15 in doc1
>>> doc1.insert_pdf(doc2, from_page=21, to_page=25, start_at=15)

>>> # same example, but pages are rotated and copied in reverse order
>>> doc1.insert_pdf(doc2, from_page=25, to_page=21, start_at=15, rotate=90)

>>> # put copied pages in front of doc1
>>> doc1.insert_pdf(doc2, from_page=21, to_page=25, start_at=0)

Other Examples

Extract all page-referenced images of a PDF into separate PNG files::

 for i in range(doc.page_count):
 imglist = doc.get_page_images(i)
 for img in imglist:
 xref = img[0] # xref number
 pix = fitz.Pixmap(doc, xref) # make pixmap from image
 if pix.n - pix.alpha < 4: # can be saved as PNG
 pix.save("p%s-%s.png" % (i, xref))
 else: # CMYK: must convert first
 pix0 = fitz.Pixmap(fitz.csRGB, pix)
 pix0.save("p%s-%s.png" % (i, xref))
 pix0 = None # free Pixmap resources
 pix = None # free Pixmap resources

Rotate all pages of a PDF:

>>> for page in doc: page.set_rotation(90)

.. rubric:: Footnotes

.. [#f1] Content streams describe what (e.g. text or images) appears where and how on a page. PDF uses a specialized mini language similar to PostScript to do this (pp. 643 in :ref:`AdobeManual`), which gets interpreted when a page is loaded.

.. [#f2] However, you **can** use :meth:`Document.get_toc` and :meth:`Page.get_links` (which are available for all document types) and copy this information over to the output PDF. See demo `pdf-converter.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/pdf-converter.py>`_.

.. [#f3] For applicable (EPUB) document types, loading a page via its absolute number may result in layouting a large part of the document, before the page can be accessed. To avoid this performance impact, prefer chapter-based access. Use convenience methods and attributes :meth:`Document.next_location`, :meth:`Document.prev_location` and :attr:`Document.last_location` for maintaining a high level of coding efficiency.

.. [#f4] These parameters cause separate handling of stream categories: use it together with ``expand`` to restrict decompression to streams other than images / fontfiles.

.. [#f5] Examples for "Form XObjects" are created by :meth:`Page.show_pdf_page`.

.. [#f6] For a *False* the **complete document** must be scanned. Both methods **do not load pages,** but only scan object definitions. This makes them at least 10 times faster than application-level loops (where total response time roughly equals the time for loading all pages). For the :ref:`AdobeManual` (756 pages) and the Pandas documentation (over 3070 pages) -- both have no annotations -- the method needs about 11 ms for the answer *False*. So response times will probably become significant only well beyond this order of magnitude.

.. [#f7] This only works under certain conditions. For example, if there is normal text covered by some image on top of it, then this is undetectable and the respective text is **not** removed. Similar is true for white text on white background, and so on.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/extensions/__init__.py

PyMuPDF-1.21.1/docs/extensions/fulltoc.py

-*- encoding: utf-8 -*-
#
Copyright © 2012 New Dream Network, LLC (DreamHost)
#
Author: Doug Hellmann <doug.hellmann@dreamhost.com>
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

from sphinx import addnodes

def html_page_context(app, pagename, templatename, context, doctree):
 """Event handler for the html-page-context signal.
 Modifies the context directly.
 - Replaces the 'toc' value created by the HTML builder with one
 that shows all document titles and the local table of contents.
 - Sets display_toc to True so the table of contents is always
 displayed, even on empty pages.
 - Replaces the 'toctree' function with one that uses the entire
 document structure, ignores the maxdepth argument, and uses
 only prune and collapse.
 """
 rendered_toc = get_rendered_toctree(app.builder, pagename)
 context["toc"] = rendered_toc
 context["display_toc"] = True # force toctree to display

 if "toctree" not in context:
 # json builder doesn't use toctree func, so nothing to replace
 return

 def make_toctree(collapse=True, maxdepth=-1, includehidden=True):
 return get_rendered_toctree(
 app.builder,
 pagename,
 prune=False,
 collapse=collapse,
)

 context["toctree"] = make_toctree

def get_rendered_toctree(builder, docname, prune=False, collapse=True):
 """Build the toctree relative to the named document,
 with the given parameters, and then return the rendered
 HTML fragment.
 """
 fulltoc = build_full_toctree(
 builder,
 docname,
 prune=prune,
 collapse=collapse,
)
 rendered_toc = builder.render_partial(fulltoc)["fragment"]
 return rendered_toc

def build_full_toctree(builder, docname, prune, collapse):
 """Return a single toctree starting from docname containing all
 sub-document doctrees.
 """
 env = builder.env
 doctree = env.get_doctree(env.config.master_doc)
 toctrees = []
 for toctreenode in doctree.traverse(addnodes.toctree):
 toctree = env.resolve_toctree(
 docname,
 builder,
 toctreenode,
 collapse=collapse,
 prune=prune,
 includehidden=True,
)
 if toctree is not None:
 toctrees.append(toctree)

 if not toctrees:
 return None
 result = toctrees[0]
 for toctree in toctrees[1:]:
 if toctree:
 result.extend(toctree.children)
 env.resolve_references(result, docname, builder)
 return result

def setup(app):
 app.connect("html-page-context", html_page_context)

PyMuPDF-1.21.1/docs/extensions/searchrepair.py

import os

def modify_search_index(app, exception):
 if exception is None: # build succeeded
 filename = os.path.join(app.outdir, "searchindex.js")
 if os.path.exists(filename):
 searchfile = open(filename)
 data1 = searchfile.read()
 searchfile.close()
 p1 = data1.find("filenames:[")
 p2 = data1.find("]", p1)
 s = data1[p1:p2].replace(".txt", "")
 data2 = data1[:p1]
 data2 += s
 data2 += data1[p2:]
 searchfile = open(filename, "w")
 searchfile.write(data2)
 searchfile.close()

def setup(app):
 app.connect("build-finished", modify_search_index)

PyMuPDF-1.21.1/docs/faq.rst

.. include:: header.rst

.. _FAQ:

==============================
FAQ
==============================

A collection of recipes in “How-To” format for using PyMuPDF.

Please see:

:ref:`Recipes: Table of Contents<RecipesTOC>`

.. include:: footer.rst

PyMuPDF-1.21.1/docs/font.rst

.. include:: header.rst

.. _Font:

================
Font
================

* New in v1.16.18

This class represents a font as defined in MuPDF (*fz_font_s* structure). It is required for the new class :ref:`TextWriter` and the new :meth:`Page.write_text`. Currently, it has no connection to how fonts are used in methods :meth:`Page.insert_text` or :meth:`Page.insert_textbox`, respectively.

A Font object also contains useful general information, like the font bbox, the number of defined glyphs, glyph names or the bbox of a single glyph.

==================================== ==
Method / Attribute **Short Description**
==================================== ==
:meth:`~Font.glyph_advance` Width of a character
:meth:`~Font.glyph_bbox` Glyph rectangle
:meth:`~Font.glyph_name_to_unicode` Get unicode from glyph name
:meth:`~Font.has_glyph` Return glyph id of unicode
:meth:`~Font.text_length` Compute string length
:meth:`~Font.char_lengths` Tuple of char widths of a string
:meth:`~Font.unicode_to_glyph_name` Get glyph name of a unicode
:meth:`~Font.valid_codepoints` Array of supported unicodes
:attr:`~Font.ascender` Font ascender
:attr:`~Font.descender` Font descender
:attr:`~Font.bbox` Font rectangle
:attr:`~Font.buffer` Copy of the font's binary image
:attr:`~Font.flags` Collection of font properties
:attr:`~Font.glyph_count` Number of supported glyphs
:attr:`~Font.name` Name of font
:attr:`~Font.is_writable` Font usable with :ref:`TextWriter`
==================================== ==

Class API

.. class:: Font

 .. index::
 pair: Font, fontfile
 pair: Font, fontbuffer
 pair: Font, script
 pair: Font, ordering
 pair: Font, is_bold
 pair: Font, is_italic
 pair: Font, is_serif
 pair: Font, fontname
 pair: Font, language

 .. method:: __init__(self, fontname=None, fontfile=None,
 fontbuffer=None, script=0, language=None, ordering=-1, is_bold=0,
 is_italic=0, is_serif=0)

 Font constructor. The large number of parameters are used to locate font, which most closely resembles the requirements. Not all parameters are ever required -- see the below pseudo code explaining the logic how the parameters are evaluated.

 :arg str fontname: one of the :ref:`Base-14-Fonts` or CJK fontnames. Also possible are a select few other names like (watch the correct spelling): "Arial", "Times", "Times Roman".

 (Changed in v1.17.5)

 If you have installed `pymupdf-fonts <https://pypi.org/project/pymupdf-fonts/>`_, there are also new "reserved" fontnames available, which are listed in :attr:`fitz_fonts` and in the table further down.

 :arg str fontfile: the filename of a fontfile somewhere on your system [#f1]_.
 :arg bytes,bytearray,io.BytesIO fontbuffer: a fontfile loaded in memory [#f1]_.
 :arg in script: the number of a UCDN script. Currently supported in PyMuPDF are numbers 24, and 32 through 35.
 :arg str language: one of the values "zh-Hant" (traditional Chinese), "zh-Hans" (simplified Chinese), "ja" (Japanese) and "ko" (Korean). Otherwise, all ISO 639 codes from the subsets 1, 2, 3 and 5 are also possible, but are currently documentary only.
 :arg int ordering: an alternative selector for one of the CJK fonts.
 :arg bool is_bold: look for a bold font.
 :arg bool is_italic: look for an italic font.
 :arg bool is_serif: look for a serifed font.

 :returns: a MuPDF font if successful. This is the overall sequence of checks to determine an appropriate font:

 =========== ==
 Argument Action
 =========== ==
 fontfile? Create font from file, exception if failure.
 fontbuffer? Create font from buffer, exception if failure.
 ordering>=0 Create universal font, always succeeds.
 fontname? Create a Base-14 font, universal font, or font
 provided by `pymupdf-fonts <https://pypi.org/project/pymupdf-fonts/>`_. See table below.
 =========== ==

 .. note::

 With the usual reserved names "helv", "tiro", etc., you will create fonts with the expected names "Helvetica", "Times-Roman" and so on. **However**, and in contrast to :meth:`Page.insert_font` and friends,

 * a font file will **always** be embedded in your PDF,
 * Greek and Cyrillic characters are supported without needing the *encoding* parameter.

 Using *ordering >= 0*, or fontnames "cjk", "china-t", "china-s", "japan" or "korea" will **always create the same "universal"** font **"Droid Sans Fallback Regular"**. This font supports **all Chinese, Japanese, Korean and Latin characters**, including Greek and Cyrillic. This is a sans-serif font.

 Actually, you would rarely ever need another sans-serif font than **"Droid Sans Fallback Regular"**. **Except** that this font file is relatively large and adds about 1.65 MB (compressed) to your PDF file size. If you do not need CJK support, stick with specifying "helv", "tiro" etc., and you will get away with about 35 KB compressed.

 If you **know** you have a mixture of CJK and Latin text, consider just using ``Font("cjk")`` because this supports everything and also significantly (by a factor of up to three) speeds up execution: MuPDF will always find any character in this single font and never needs to check fallbacks.

 But if you do use some other font, you will still automatically be able to also write CJK characters: MuPDF detects this situation and silently falls back to the universal font (which will then of course also be embedded in your PDF).

 (New in v1.17.5) Optionally, some new "reserved" fontname codes become available if you install `pymupdf-fonts <https://pypi.org/project/pymupdf-fonts/>`_, ``pip install pymupdf-fonts``. **"Fira Mono"** is a mono-spaced sans font set and **FiraGO** is another non-serifed "universal" font set which supports all Latin (including Cyrillic and Greek) plus Thai, Arabian, Hewbrew and Devanagari -- but none of the CJK languages. The size of a FiraGO font is only a quarter of the "Droid Sans Fallback" size (compressed 400 KB vs. 1.65 MB) -- **and** it provides the weights bold, italic, bold-italic -- which the universal font doesn't.

 "Space Mono" is another nice and small mono-spaced font from Google Fonts, which supports Latin Extended characters and comes with all 4 important weights.

 The following table maps a fontname code to the corresponding font. For the current content of the package please see its documentation:

 =========== =========================== ======= =============================
 Code Fontname New in Comment
 =========== =========================== ======= =============================
 figo FiraGO Regular v1.0.0 narrower than Helvetica
 figbo FiraGO Bold v1.0.0
 figit FiraGO Italic v1.0.0
 figbi FiraGO Bold Italic v1.0.0
 fimo Fira Mono Regular v1.0.0
 fimbo Fira Mono Bold v1.0.0
 spacemo Space Mono Regular v1.0.1
 spacembo Space Mono Bold v1.0.1
 spacemit Space Mono Italic v1.0.1
 spacembi Space Mono Bold-Italic v1.0.1
 math Noto Sans Math Regular v1.0.2 math symbols
 music Noto Music Regular v1.0.2 musical symbols
 symbol1 Noto Sans Symbols Regular v1.0.2 replacement for "symb"
 symbol2 Noto Sans Symbols2 Regular v1.0.2 extended symbol set
 notos Noto Sans Regular v1.0.3 alternative to Helvetica
 notosit Noto Sans Italic v1.0.3
 notosbo Noto Sans Bold v1.0.3
 notosbi Noto Sans BoldItalic v1.0.3
 =========== =========================== ======= =============================

 .. index::
 pair: Font.has_glyph, language
 pair: Font.has_glyph, script
 pair: Font.has_glyph, fallback

 .. method:: has_glyph(chr, language=None, script=0, fallback=False)

 Check whether the unicode *chr* exists in the font or (option) some fallback font. May be used to check whether any "TOFU" symbols will appear on output.

 :arg int chr: the unicode of the character (i.e. *ord()*).
 :arg str language: the language -- currently unused.
 :arg int script: the UCDN script number.
 :arg bool fallback: *(new in v1.17.5)* perform an extended search in fallback fonts or restrict to current font (default).
 :returns: *(changed in 1.17.7)* the glyph number. Zero indicates no glyph found.

 .. method:: valid_codepoints()

 * New in v1.17.5

 Return an array of unicodes supported by this font.

 :returns: an *array.array* [#f2]_ of length at most :attr:`Font.glyph_count`. I.e. *chr()* of every item in this array has a glyph in the font without using fallbacks. This is an example display of the supported glyphs:

 >>> import fitz
 >>> font = fitz.Font("math")
 >>> vuc = font.valid_codepoints()
 >>> for i in vuc:
 print("%04X %s (%s)" % (i, chr(i), font.unicode_to_glyph_name(i)))
 0000
 000D (CR)
 0020 (space)
 0021 ! (exclam)
 0022 " (quotedbl)
 0023 # (numbersign)
 0024 $ (dollar)
 0025 % (percent)
 ...
 00AC ¬ (logicalnot)
 00B1 ± (plusminus)
 ...
 21D0 ⇐ (arrowdblleft)
 21D1 ⇑ (arrowdblup)
 21D2 ⇒ (arrowdblright)
 21D3 ⇓ (arrowdbldown)
 21D4 ⇔ (arrowdblboth)
 ...
 221E ∞ (infinity)
 ...

 .. note:: This method only returns meaningful data for fonts having a CMAP (character map, charmap, the `/ToUnicode` PDF key). Otherwise, this array will have length 1 and contain zero only.

 .. index::
 pair: Font.glyph_advance, language
 pair: Font.glyph_advance, script
 pair: Font.glyph_advance, wmode

 .. method:: glyph_advance(chr, language=None, script=0, wmode=0)

 Calculate the "width" of the character's glyph (visual representation).

 :arg int chr: the unicode number of the character. Use *ord()*, not the character itself. Again, this should normally work even if a character is not supported by that font, because fallback fonts will be checked where necessary.
 :arg int wmode: write mode, 0 = horizontal, 1 = vertical.

 The other parameters are not in use currently.

 :returns: a float representing the glyph's width relative to **fontsize 1**.

 .. method:: glyph_name_to_unicode(name)

 Return the unicode value for a given glyph name. Use it in conjunction with ``chr()`` if you want to output e.g. a certain symbol.

 :arg str name: The name of the glyph.

 :returns: The unicode integer, or 65533 = 0xFFFD if the name is unknown. Examples: ``font.glyph_name_to_unicode("Sigma") = 931``, ``font.glyph_name_to_unicode("sigma") = 963``. Refer to the `Adobe Glyph List <https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt>`_ publication for a list of glyph names and their unicode numbers. Example:

 >>> font = fitz.Font("helv")
 >>> font.has_glyph(font.glyph_name_to_unicode("infinity"))
 True

 .. index::
 pair: Font.glyph_bbox, language
 pair: Font.glyph_bbox, script

 .. method:: glyph_bbox(chr, language=None, script=0)

 The glyph rectangle relative to fontsize 1.

 :arg int chr: *ord()* of the character.

 :returns: a :ref:`Rect`.

 .. method:: unicode_to_glyph_name(ch)

 Show the name of the character's glyph.

 :arg int ch: the unicode number of the character. Use *ord()*, not the character itself.

 :returns: a string representing the glyph's name. E.g. ``font.glyph_name(ord("#")) = "numbersign"``. For an invalid code ".notfound" is returned.

 .. note:: *(Changed in v1.18.0)* This method and :meth:`Font.glyph_name_to_unicode` no longer depend on a font and instead retrieve information from the **Adobe Glyph List**. Also available as ``fitz.unicode_to_glyph_name()`` and resp. ``fitz.glyph_name_to_unicode()``.

 .. index::
 pair: text_length, fontsize

 .. method:: text_length(text, fontsize=11)

 Calculate the length in points of a unicode string.

 .. note:: There is a functional overlap with :meth:`get_text_length` for Base-14 fonts only.

 :arg str text: a text string, UTF-8 encoded.

 :arg float fontsize: the fontsize.

 :rtype: float

 :returns: the length of the string in points when stored in the PDF. If a character is not contained in the font, it will automatically be looked up in a fallback font.

 .. note:: This method was originally implemented in Python, based on calling :meth:`Font.glyph_advance`. For performance reasons, it has been rewritten in C for v1.18.14. To compute the width of a single character, you can now use either of the following without performance penalty:

 1. ``font.glyph_advance(ord("Ä")) * fontsize``
 2. ``font.text_length("Ä", fontsize=fontsize)``

 For multi-character strings, the method offers a huge performance advantage compared to the previous implementation: instead of about 0.5 microseconds for each character, only 12.5 nanoseconds are required for the second and subsequent ones.

 .. index::
 pair: char_lengths, fontsize

 .. method:: char_lengths(text, fontsize=11)

 New in v1.18.14

 Sequence of character lengths in points of a unicode string.

 :arg str text: a text string, UTF-8 encoded.

 :arg float fontsize: the fontsize.

 :rtype: tuple

 :returns: the lengths in points of the characters of a string when stored in the PDF. It works like :meth:`Font.text_length` broken down to single characters. This is a high speed method, used e.g. in :meth:`TextWriter.fill_textbox`. The following is true (allowing rounding errors): ``font.text_length(text) == sum(font.char_lengths(text))``.

 >>> font = fitz.Font("helv")
 >>> text = "PyMuPDF"
 >>> font.text_length(text)
 50.115999937057495
 >>> fitz.get_text_length(text, fontname="helv")
 50.115999937057495
 >>> sum(font.char_lengths(text))
 50.115999937057495
 >>> pprint(font.char_lengths(text))
 (7.336999952793121, # P
 5.5, # y
 9.163000047206879, # M
 6.115999937057495, # u
 7.336999952793121, # P
 7.942000031471252, # D
 6.721000015735626) # F

 .. attribute:: buffer

 * New in v1.17.6

 Copy of the binary font file content.

 :rtype: bytes

 .. attribute:: flags

 A dictionary with various font properties, each represented as bools. Example for Helvetica::

 >>> pprint(font.flags)
 {'bold': 0,
 'fake-bold': 0,
 'fake-italic': 0,
 'invalid-bbox': 0,
 'italic': 0,
 'mono': 0,
 'opentype': 0,
 'serif': 1,
 'stretch': 0,
 'substitute': 0}

 :rtype: dict

 .. attribute:: name

 :rtype: str

 Name of the font. May be "" or "(null)".

 .. attribute:: bbox

 The font bbox. This is the maximum of its glyph bboxes.

 :rtype: :ref:`Rect`

 .. attribute:: glyph_count

 :rtype: int

 The number of glyphs defined in the font.

 .. attribute:: ascender

 * New in v1.18.0

 The ascender value of the font, see `here <https://en.wikipedia.org/wiki/Ascender_(typography)>`_ for details. Please note that there is a difference to the strict definition: our value includes everything above the baseline -- not just the height difference between upper case "A" and and lower case "a".

 :rtype: float

 .. attribute:: descender

 * New in v1.18.0

 The descender value of the font, see `here <https://en.wikipedia.org/wiki/Descender>`_ for details. This value always is negative and is the portion that some glyphs descend below the base line, for example "g" or "y". As a consequence, the value ``ascender - descender`` is the total height, that every glyph of the font fits into. This is true at least for most fonts -- as always, there are exceptions, especially for calligraphic fonts, etc.

 :rtype: float

 .. attribute:: is_writable

 * New in v1.18.0

 Indicates whether this font can be used with :ref:`TextWriter`.

 :rtype: bool

.. rubric:: Footnotes

.. [#f1] MuPDF does not support all fontfiles with this feature and will raise exceptions like *"mupdf: FT_New_Memory_Face((null)): unknown file format"*, if it encounters issues. The :ref:`TextWriter` methods check :attr:`Font.is_writable`.

.. [#f2] The built-in module *array* has been chosen for its speed and its compact representation of values.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/footer.rst

.. note - this ensures that the Sphinx build system will pull in the image (as it is referenced in an RST file) to _images,
 we don't want to display it via rst markup due to limitations (hence width:0), however we do want it available for our raw HTML
 which we use in header.rst.

.. image:: images/discord-mark-blue.svg
 :alt: Discord logo
 :width: 0
 :height: 0
 :target: https://discord.gg/TSpYGBW4eq

PyMuPDF-1.21.1/docs/functions.rst

.. include:: header.rst

============
Functions
============
The following are miscellaneous functions and attributes on a fairly low-level technical detail.

Some functions provide detail access to PDF structures. Others are stripped-down, high performance versions of other functions which provide more information.

Yet others are handy, general-purpose utilities.

==================================== ==
Function **Short Description**
==================================== ==
:attr:`Annot.apn_bbox` PDF only: bbox of the appearance object
:attr:`Annot.apn_matrix` PDF only: the matrix of the appearance object
:attr:`Page.is_wrapped` check whether contents wrapping is present
:meth:`adobe_glyph_names` list of glyph names defined in **Adobe Glyph List**
:meth:`adobe_glyph_unicodes` list of unicodes defined in **Adobe Glyph List**
:meth:`Annot.clean_contents` PDF only: clean the annot's :data:`contents` object
:meth:`Annot.set_apn_bbox` PDF only: set the bbox of the appearance object
:meth:`Annot.set_apn_matrix` PDF only: set the matrix of the appearance object
:meth:`ConversionHeader` return header string for *get_text* methods
:meth:`ConversionTrailer` return trailer string for *get_text* methods
:meth:`Document.del_xml_metadata` PDF only: remove XML metadata
:meth:`Document.get_char_widths` PDF only: return a list of glyph widths of a font
:meth:`Document.get_new_xref` PDF only: create and return a new :data:`xref` entry
:meth:`Document.is_stream` PDF only: check whether an :data:`xref` is a stream object
:meth:`Document.xml_metadata_xref` PDF only: return XML metadata :data:`xref` number
:meth:`Document.xref_length` PDF only: return length of :data:`xref` table
:meth:`EMPTY_IRECT` return the (standard) empty / invalid rectangle
:meth:`EMPTY_QUAD` return the (standard) empty / invalid quad
:meth:`EMPTY_RECT` return the (standard) empty / invalid rectangle
:meth:`get_pdf_now` return the current timestamp in PDF format
:meth:`get_pdf_str` return PDF-compatible string
:meth:`get_text_length` return string length for a given font & fontsize
:meth:`glyph_name_to_unicode` return unicode from a glyph name
:meth:`image_profile` return a dictionary of basic image properties
:meth:`INFINITE_IRECT` return the (only existing) infinite rectangle
:meth:`INFINITE_QUAD` return the (only existing) infinite quad
:meth:`INFINITE_RECT` return the (only existing) infinite rectangle
:meth:`make_table` split rectangle in sub-rectangles
:meth:`Page.clean_contents` PDF only: clean the page's :data:`contents` objects
:meth:`Page.get_bboxlog` list of rectangles that envelop text, drawing or image objects
:meth:`Page.get_contents` PDF only: return a list of content :data:`xref` numbers
:meth:`Page.get_displaylist` create the page's display list
:meth:`Page.get_text_blocks` extract text blocks as a Python list
:meth:`Page.get_text_words` extract text words as a Python list
:meth:`Page.get_texttrace` low-level text information
:meth:`Page.read_contents` PDF only: get complete, concatenated /Contents source
:meth:`Page.run` run a page through a device
:meth:`Page.set_contents` PDF only: set page's :data:`contents` to some :data:`xref`
:meth:`Page.wrap_contents` wrap contents with stacking commands
:meth:`css_for_pymupdf_font` create CSS source for a font in package pymupdf_fonts
:meth:`paper_rect` return rectangle for a known paper format
:meth:`paper_size` return width, height for a known paper format
:meth:`paper_sizes` dictionary of pre-defined paper formats
:meth:`planish_line` matrix to map a line to the x-axis
:meth:`recover_char_quad` compute the quad of a char ("rawdict")
:meth:`recover_line_quad` compute the quad of a subset of line spans
:meth:`recover_quad` compute the quad of a span ("dict", "rawdict")
:meth:`recover_quad` return the quad for a text span ("dict" / "rawdict")
:meth:`recover_span_quad` compute the quad of a subset of span characters
:meth:`sRGB_to_pdf` return PDF RGB color tuple from an sRGB integer
:meth:`sRGB_to_rgb` return (R, G, B) color tuple from an sRGB integer
:meth:`unicode_to_glyph_name` return glyph name from a unicode
:attr:`fitz_fontdescriptors` dictionary of available supplement fonts
:attr:`TESSDATA_PREFIX` a copy of ``os.environ["TESSDATA_PREFIX"]``
:attr:`pdfcolor` dictionary of almost 500 RGB colors in PDF format.
==================================== ==

 .. method:: paper_size(s)

 Convenience function to return width and height of a known paper format code. These values are given in pixels for the standard resolution 72 pixels = 1 inch.

 Currently defined formats include **'A0'** through **'A10'**, **'B0'** through **'B10'**, **'C0'** through **'C10'**, **'Card-4x6'**, **'Card-5x7'**, **'Commercial'**, **'Executive'**, **'Invoice'**, **'Ledger'**, **'Legal'**, **'Legal-13'**, **'Letter'**, **'Monarch'** and **'Tabloid-Extra'**, each in either portrait or landscape format.

 A format name must be supplied as a string (case **in** \sensitive), optionally suffixed with "-L" (landscape) or "-P" (portrait). No suffix defaults to portrait.

 :arg str s: any format name from above in upper or lower case, like *"A4"* or *"letter-l"*.

 :rtype: tuple
 :returns: *(width, height)* of the paper format. For an unknown format *(-1, -1)* is returned. Examples: *fitz.paper_size("A4")* returns *(595, 842)* and *fitz.paper_size("letter-l")* delivers *(792, 612)*.

 .. method:: paper_rect(s)

 Convenience function to return a :ref:`Rect` for a known paper format.

 :arg str s: any format name supported by :meth:`paper_size`.

 :rtype: :ref:`Rect`
 :returns: *fitz.Rect(0, 0, width, height)* with *width, height=fitz.paper_size(s)*.

 >>> import fitz
 >>> fitz.paper_rect("letter-l")
 fitz.Rect(0.0, 0.0, 792.0, 612.0)
 >>>

 .. method:: sRGB_to_pdf(srgb)

 New in v1.17.4

 Convenience function returning a PDF color triple (red, green, blue) for a given sRGB color integer as it occurs in :meth:`Page.get_text` dictionaries "dict" and "rawdict".

 :arg int srgb: an integer of format RRGGBB, where each color component is an integer in range(255).

 :returns: a tuple (red, green, blue) with float items in intervall *0 <= item <= 1* representing the same color. Example ``sRGB_to_pdf(0xff0000) = (1, 0, 0)`` (red).

 .. method:: sRGB_to_rgb(srgb)

 New in v1.17.4

 Convenience function returning a color (red, green, blue) for a given *sRGB* color integer.

 :arg int srgb: an integer of format RRGGBB, where each color component is an integer in range(255).

 :returns: a tuple (red, green, blue) with integer items in ``range(256)`` representing the same color. Example ``sRGB_to_pdf(0xff0000) = (255, 0, 0)`` (red).

 .. method:: glyph_name_to_unicode(name)

 New in v1.18.0

 Return the unicode number of a glyph name based on the **Adobe Glyph List**.

 :arg str name: the name of some glyph. The function is based on the `Adobe Glyph List <https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt>`_.

 :rtype: int
 :returns: the unicode. Invalid *name* entries return ``0xfffd (65533)``.

 .. note:: A similar functionality is provided by package `fontTools <https://pypi.org/project/fonttools/>`_ in its *agl* sub-package.

 .. method:: unicode_to_glyph_name(ch)

 New in v1.18.0

 Return the glyph name of a unicode number, based on the **Adobe Glyph List**.

 :arg int ch: the unicode given by e.g. ``ord("ß")``. The function is based on the `Adobe Glyph List <https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt>`_.

 :rtype: str
 :returns: the glyph name. E.g. ``fitz.unicode_to_glyph_name(ord("Ä"))`` returns ``'Adieresis'``.

 .. note:: A similar functionality is provided by package `fontTools <https://pypi.org/project/fonttools/>`_: in its *agl* sub-package.

 .. method:: adobe_glyph_names()

 New in v1.18.0

 Return a list of glyph names defined in the **Adobe Glyph List**.

 :rtype: list
 :returns: list of strings.

 .. note:: A similar functionality is provided by package `fontTools <https://pypi.org/project/fonttools/>`_ in its *agl* sub-package.

 .. method:: adobe_glyph_unicodes()

 New in v1.18.0

 Return a list of unicodes for there exists a glyph name in the **Adobe Glyph List**.

 :rtype: list
 :returns: list of integers.

 .. note:: A similar functionality is provided by package `fontTools <https://pypi.org/project/fonttools/>`_ in its *agl* sub-package.

 .. method:: css_for_pymupdf_font(fontcode, *, CSS=None, archive=None, name=None)

 New in v1.21.0

 Utility function for use with "Story" applications.

 Create CSS ``@font-face`` items for the given fontcode in pymupdf-fonts. Creates a CSS font-family for all fonts starting with string "fontcode".

 The font naming convention in package pymupdf-fonts is "fontcode<sf>", where the suffix "sf" is one of "" (empty), "it"/"i", "bo"/"b" or "bi". These suffixes thus represent the regular, italic, bold or bold-italic variants of that font.

 For example, font code "notos" refers to fonts

 * "notos" - "Noto Sans Regular"
 * "notosit" - "Noto Sans Italic"
 * "notosbo" - "Noto Sans Bold"
 * "notosbi" - "Noto Sans Bold Italic"

 The function creates (up to) four CSS ``@font-face`` definitions and collectively assigns the ``font-family`` name "notos" to them (or the "name" value if provided). Associated font buffers are placed / added to the provided archive.

 To use the font in the Python API for :ref:`Story`, execute ``.set_font(fontcode)`` (or "name" if given). The correct font weight or style will automatically be selected as required.

 For example to replace the "sans-serif" HTML standard (i.e. Helvetica) with the above "notos", execute the following. Whenever "sans-serif" is used (whether explicitely or implicitely), the Noto Sans fonts will be selected.

 ``CSS = fitz.css_for_pymupdf_font("notos", name="sans-serif", archive=...)``

 Expects and returns the CSS source, with the new CSS definitions appended.

 :arg str fontcode: one of the font codes present in package `pymupdf-fonts <https://pypi.org/project/pymupdf-fonts/>`_ (usually) representing the regular version of the font family.
 :arg str CSS: any already existing CSS source, or ``None``. The function will append its new definitions to this. This is the string that **must be used** as ``user_css`` when creating the :ref:`Story`.
 :arg archive: :ref:`Archive`, **mandatory**. All font binaries (i.e. up to four) found for "fontcode" will be added to the archive. This is the archive that **must be used** as ``archive`` when creating the :ref:`Story`.
 :arg str name: the name under which the "fontcode" fonts should be found. If omitted, "fontcode" will be used.

 :rtype: str
 :returns: Modified CSS, with appended ``@font-face`` statements for each font variant of fontcode. Fontbuffers associated with "fontcode" will have been added to 'archive'. The function will automatically find up to 4 font variants. All pymupdf-fonts (that are no special purpose like math or music, etc.) have regular, bold, italic and bold-italic variants. To see currently available font codes check ``fitz.fitz_fontdescriptors.keys()``. This will show something like ``dict_keys(['cascadia', 'cascadiai', 'cascadiab', 'cascadiabi', 'figbo', 'figo', 'figbi', 'figit', 'fimbo', 'fimo', 'spacembo', 'spacembi', 'spacemit', 'spacemo', 'math', 'music', 'symbol1', 'symbol2', 'notosbo', 'notosbi', 'notosit', 'notos', 'ubuntu', 'ubuntubo', 'ubuntubi', 'ubuntuit', 'ubuntm', 'ubuntmbo', 'ubuntmbi', 'ubuntmit'])```.

 Here is a complete snippet for using the "Noto Sans" font instead of "Helvetica"::

 arch = fitz.Archive()
 CSS = fitz.css_for_pymupdf_font("notos", name="sans-serif", archive=arch)
 story = fitz.Story(user_css=CSS, archive=arch)

 .. method:: recover_quad(line_dir, span)

 New in v1.18.9

 Convenience function returning the quadrilateral envelopping the text of a text span, as returned by :meth:`Page.get_text` using the "dict" or "rawdict" options.

 :arg tuple line_dict: the value ``line["dir"]`` of the span's line.
 :arg dict span: the span sub-dictionary.

 :returns: the quadrilateral of the span's text.

.. _Functions_make_table:

 .. method:: make_table(rect, cols=1, rows=1)

 New in v1.17.4

 Convenience function to split a rectangle into sub-rectangles. Returns a list of *rows* lists, each containing *cols* :ref:`Rect` items. Each sub-rectangle can then be addressed by its row and column index.

 :arg rect_like rect: the rectangle to split.
 :arg int cols: the desired number of columns.
 :arg int rows: the desired number of rows.
 :returns: a list of :ref:`Rect` objects of equal size, whose union equals *rect*. Here is the layout of a 3x4 table created by ``cell = fitz.make_table(rect, cols=4, rows=3)``:

 .. image:: images/img-make-table.*
 :scale: 60

 .. method:: planish_line(p1, p2)

 * New in version 1.16.2)*

 Return a matrix which maps the line from p1 to p2 to the x-axis such that p1 will become (0,0) and p2 a point with the same distance to (0,0).

 :arg point_like p1: starting point of the line.
 :arg point_like p2: end point of the line.

 :rtype: :ref:`Matrix`
 :returns: a matrix which combines a rotation and a translation::

 >>> p1 = fitz.Point(1, 1)
 >>> p2 = fitz.Point(4, 5)
 >>> abs(p2 - p1) # distance of points
 5.0
 >>> m = fitz.planish_line(p1, p2)
 >>> p1 * m
 Point(0.0, 0.0)
 >>> p2 * m
 Point(5.0, -5.960464477539063e-08)
 >>> # distance of the resulting points
 >>> abs(p2 * m - p1 * m)
 5.0

 .. image:: images/img-planish.png
 :scale: 40

 .. method:: paper_sizes

 A dictionary of pre-defines paper formats. Used as basis for :meth:`paper_size`.

 .. attribute:: fitz_fontdescriptors

 * New in v1.17.5

 A dictionary of usable fonts from repository `pymupdf-fonts <https://pypi.org/project/pymupdf-fonts/>`_. Items are keyed by their reserved fontname and provide information like this::

 In [2]: fitz.fitz_fontdescriptors.keys()
 Out[2]: dict_keys(['figbo', 'figo', 'figbi', 'figit', 'fimbo', 'fimo',
 'spacembo', 'spacembi', 'spacemit', 'spacemo', 'math', 'music', 'symbol1',
 'symbol2'])
 In [3]: fitz.fitz_fontdescriptors["fimo"]
 Out[3]:
 {'name': 'Fira Mono Regular',
 'size': 125712,
 'mono': True,
 'bold': False,
 'italic': False,
 'serif': True,
 'glyphs': 1485}

 If ``pymupdf-fonts`` is not installed, the dictionary is empty.

 The dictionary keys can be used to define a :ref:`Font` via e.g. ``font = fitz.Font("fimo")`` -- just like you can do it with the builtin fonts "Helvetica" and friends.

 .. attribute:: TESSDATA_PREFIX

 * New in v1.19.4

 Copy of ``os.environ["TESSDATA_PREFIX"]`` for convenient checking whether there is integrated Tesseract OCR support.

 If this attribute is ``None``, Tesseract-OCR is either not installed, or the environment variable is not set to point to Tesseract's language support folder.

 .. note:: This variable is now checked before OCR functions are tried. This prevents verbose messages from MuPDF.

 .. attribute:: pdfcolor

 * New in v1.19.6

 Contains about 500 RGB colors in PDF format with the color name as key. To see what is there, you can obviously look at ``fitz.pdfcolor.keys()``.

 Examples:

 * ``fitz.pdfcolor["red"] = (1.0, 0.0, 0.0)``
 * ``fitz.pdfcolor["skyblue"] = (0.5294117647058824, 0.807843137254902, 0.9215686274509803)``
 * ``fitz.pdfcolor["wheat"] = (0.9607843137254902, 0.8705882352941177, 0.7019607843137254)``

 .. method:: get_pdf_now()

 Convenience function to return the current local timestamp in PDF compatible format, e.g. *D:20170501121525-04'00'* for local datetime May 1, 2017, 12:15:25 in a timezone 4 hours westward of the UTC meridian.

 :rtype: str
 :returns: current local PDF timestamp.

 .. method:: get_text_length(text, fontname="helv", fontsize=11, encoding=TEXT_ENCODING_LATIN)

 * New in version 1.14.7

 Calculate the length of text on output with a given **builtin** font, fontsize and encoding.

 :arg str text: the text string.
 :arg str fontname: the fontname. Must be one of either the :ref:`Base-14-Fonts` or the CJK fonts, identified by their "reserved" fontnames (see table in :meth.`Page.insert_font`).
 :arg float fontsize: the fontsize.
 :arg int encoding: the encoding to use. Besides 0 = Latin, 1 = Greek and 2 = Cyrillic (Russian) are available. Relevant for Base-14 fonts "Helvetica", "Courier" and "Times" and their variants only. Make sure to use the same value as in the corresponding text insertion.
 :rtype: float
 :returns: the length in points the string will have (e.g. when used in :meth:`Page.insert_text`).

 .. note:: This function will only do the calculation -- it won't insert font nor text.

 .. note:: The :ref:`Font` class offers a similar method, :meth:`Font.text_length`, which supports Base-14 fonts and any font with a character map (CMap, Type 0 fonts).

 .. warning:: If you use this function to determine the required rectangle width for the (:ref:`Page` or :ref:`Shape`) *insert_textbox* methods, be aware that they calculate on a **by-character level**. Because of rounding effects, this will mostly lead to a slightly larger number: *sum([fitz.get_text_length(c) for c in text]) > fitz.get_text_length(text)*. So either (1) do the same, or (2) use something like *fitz.get_text_length(text + "'")* for your calculation.

 .. method:: get_pdf_str(text)

 Make a PDF-compatible string: if the text contains code points *ord(c) > 255*, then it will be converted to UTF-16BE with BOM as a hexadecimal character string enclosed in "<>" brackets like *<feff...>*. Otherwise, it will return the string enclosed in (round) brackets, replacing any characters outside the ASCII range with some special code. Also, every "(", ")" or backslash is escaped with a backslash.

 :arg str text: the object to convert

 :rtype: str
 :returns: PDF-compatible string enclosed in either *()* or *<>*.

 .. method:: image_profile(stream)

 * New in v1.16.7
 * Changed in v1.19.5: also return natural image orientation extracted from EXIF data if present.

 Show important properties of an image provided as a memory area. Its main purpose is to avoid using other Python packages just to determine them.

 :arg bytes|bytearray|BytesIO|file stream: an image either in memory or an **opened** file. A memory resident image maybe any of the formats *bytes*, *bytearray* or *io.BytesIO*.

 :rtype: dict
 :returns:
 No exception is ever raised: in case of error, the empty dictionary ``{}`` is returned. Otherwise, there are the following items::

 In [2]: fitz.image_profile(open("nur-ruhig.jpg", "rb").read())
 Out[2]:
 {'width': 439,
 'height': 501,
 'orientation': 0, # natural orientation (from EXIF)
 'transform': (1.0, 0.0, 0.0, 1.0, 0.0, 0.0), # orientation matrix
 'xres': 96,
 'yres': 96,
 'colorspace': 3,
 'bpc': 8,
 'ext': 'jpeg',
 'cs-name': 'DeviceRGB'}

 There is the following relation to *Exif* information encoded in ``orientation``, and correspondingly in the ``transform`` matrix-like (quoted from MuPDF documentation, *ccw* = counter-clockwise):

 0. Undefined
 1. 0 degree ccw rotation. (Exif = 1)
 2. 90 degree ccw rotation. (Exif = 8)
 3. 180 degree ccw rotation. (Exif = 3)
 4. 270 degree ccw rotation. (Exif = 6)
 5. flip on X. (Exif = 2)
 6. flip on X, then rotate ccw by 90 degrees. (Exif = 5)
 7. flip on X, then rotate ccw by 180 degrees. (Exif = 4)
 8. flip on X, then rotate ccw by 270 degrees. (Exif = 7)

 .. note::

 * For some "exotic" images (FAX encodings, RAW formats and the like), this method will not work and return *None*. You can however still work with such images in PyMuPDF, e.g. by using :meth:`Document.extract_image` or create pixmaps via ``Pixmap(doc, xref)``. These methods will automatically convert exotic images to the PNG format before returning results.
 * You can also get the properties of images embedded in a PDF, via their :data:`xref`. In this case make sure to extract the raw stream: `fitz.image_profile(doc.xref_stream_raw(xref))`.
 * Images as returned by the image blocks of :meth:`Page.get_text` using "dict" or "rawdict" options are also supported.

 .. method:: ConversionHeader("text", filename="UNKNOWN")

 Return the header string required to make a valid document out of page text outputs.

 :arg str output: type of document. Use the same as the output parameter of *get_text()*.

 :arg str filename: optional arbitrary name to use in output types "json" and "xml".

 :rtype: str

 .. method:: ConversionTrailer(output)

 Return the trailer string required to make a valid document out of page text outputs. See :meth:`Page.get_text` for an example.

 :arg str output: type of document. Use the same as the output parameter of *get_text()*.

 :rtype: str

 .. method:: Document.del_xml_metadata()

 Delete an object containing XML-based metadata from the PDF. (Py-) MuPDF does not support XML-based metadata. Use this if you want to make sure that the conventional metadata dictionary will be used exclusively. Many thirdparty PDF programs insert their own metadata in XML format and thus may override what you store in the conventional dictionary. This method deletes any such reference, and the corresponding PDF object will be deleted during next garbage collection of the file.

 .. method:: Document.xml_metadata_xref()

 Return the XML-based metadata :data:`xref` of the PDF if present -- also refer to :meth:`Document.del_xml_metadata`. You can use it to retrieve the content via :meth:`Document.xref_stream` and then work with it using some XML software.

 :rtype: int
 :returns: :data:`xref` of PDF file level XML metadata -- or 0 if none exists.

 .. method:: Page.run(dev, transform)

 Run a page through a device.

 :arg dev: Device, obtained from one of the :ref:`Device` constructors.
 :type dev: :ref:`Device`

 :arg transform: Transformation to apply to the page. Set it to :ref:`Identity` if no transformation is desired.
 :type transform: :ref:`Matrix`

 .. method:: Page.get_bboxlog()

 * New in v1.19.0

 :returns: a list of rectangles that envelop text, image or drawing objects. Each item is a tuple `(type, (x0, y0, x1, y1))` where the second tuple consists of rectangle coordinates, and *type* is one of the following values:

 * ``"fill-text"`` -- normal text (painted without character borders)
 * ``"stroke-text"`` -- text showing character borders only
 * ``"ignore-text"`` -- text that should not be displayed (e.g. as used by OCR text layers)
 * ``"fill-path"`` -- drawing with fill color (and no border)
 * ``"stroke-path"`` -- drawing with border (and no fill color)
 * ``"fill-image"`` -- displays an image
 * ``"fill-shade"`` -- display a shading

 The item sequence represents the **sequence in which these commands are executed** to build the page's appearance. Therefore, if an item's bbox intersects or contains that of a previous item, then the previous item may be (partially) covered / hidden.

 So this list is useful to detect such situations. An item's index in this list equals the value of ``"seqno"`` keys you will find in the dictionaries returned by :meth:`Page.get_drawings` and :meth:`Page.get_texttrace`.

 .. method:: Page.get_texttrace()

 * New in v1.18.16
 * Changed in v1.19.0: added key "seqno".
 * Changed in v1.19.1: stroke and fill colors now always are either RGB or GRAY
 * Changed in v1.19.3: span and character bboxes are now also correct if ``dir != (1, 0)``.

 Return low-level text information of the page. The method is available for **all** document types. The result is a list of Python dictionaries with the following content::

 {
 'ascender': 0.83251953125, # font ascender (1)
 'bbox': (458.14019775390625, # span bbox x0 (7)
 749.4671630859375, # span bbox y0
 467.76458740234375, # span bbox x1
 757.5071411132812), # span bbox y1
 'bidi': 0, # bidirectional level (1)
 'chars': (# char information, tuple[tuple]
 (45, # unicode (4)
 16, # glyph id (font dependent)
 (458.14019775390625, # origin.x (1)
 755.3758544921875), # origin.y (1)
 (458.14019775390625, # char bbox x0 (6)
 749.4671630859375, # char bbox y0
 462.9649963378906, # char bbox x1
 757.5071411132812)), # char bbox y1
 (...), # more characters
),
 'color': (0.0,), # text color, tuple[float] (1)
 'colorspace': 1, # number of colorspace components (1)
 'descender': -0.30029296875, # font descender (1)
 'dir': (1.0, 0.0), # writing direction (1)
 'flags': 12, # font flags (1)
 'font': 'CourierNewPSMT', # font name (1)
 'linewidth': 0.4019999980926514, # current line width value (3)
 'opacity': 1.0, # alpha value of the text (5)
 'seqno': 246, # sequence number (8)
 'size': 8.039999961853027, # font size (1)
 'spacewidth': 4.824785133358091, # width of space char
 'type': 0, # span type (2)
 'wmode': 0 # writing mode (1)
 }

 Details:

 1. Information above tagged with "(1)" has the same meaning and value as explained in :ref:`TextPage`.

 - Please note that the font ``flags`` value will never contain a *superscript* flag bit: the detection of superscripts is done within MuPDF :ref:`TextPage` code -- it is not a property of any font.
 - Also note, that the text *color* is encoded as the usual tuple of floats 0 <= f <= 1 -- not in sRGB format. Depending on ``span["type"]``, interpret this as fill color or stroke color.

 2. There are 3 text span types:

 - 0: Filled text -- equivalent to PDF text rendering mode 0 (``0 Tr``, the default in PDF), only each character's "inside" is shown.
 - 1: Stroked text -- equivalent to ``1 Tr``, only the character borders are shown.
 - 3: Ignored text -- equivalent to ``3 Tr`` (hidden text).

 3. Line width in this context is important only for processing ``span["type"] != 0``: it determines the thickness of the character's border line. This value may not be provided at all with the text data. In this case, a value of 5% of the fontsize (``span["size"] * 0,05``) is generated. Often, an "artificial" bold text in PDF is created by ``2 Tr``. There is no equivalent span type for this case. Instead, respective text is represented by two consecutive spans -- which are identical in every aspect, except for their types, which are 0, resp 1. It is your responsibility to handle this type of situation - in :meth:`Page.get_text`, MuPDF is doing this for you.
 4. For data compactness, the character's unicode is provided here. Use built-in function ``chr()`` for the character itself.
 5. The alpha / opacity value of the span's text, ``0 <= opacity <= 1``, 0 is invisible text, 1 (100%) is intransparent. Depending in ``span["type"]``, interpret this value as *fill* opacity or, resp. *stroke* opacity.
 6. *(Changed in v1.19.0)* This value is equal or close to ``char["bbox"]`` of "rawdict". In particular, the bbox **height** value is always computed as if **"small glyph heights"** had been requested.
 7. *(New in v1.19.0)* This is the union of all character bboxes.
 8. *(New in v1.19.0)* Enumerates the commands that build up the page's appearance. Can be used to find out whether text is effectively hidden by objects, whch are painted "later", or *over* some object. So if there is a drawing or image with a higher sequence number, whose bbox overlaps (parts of) this text span, one may assume that such an object hides the resp. text. Different text spans have identical sequence numbers if they were created in one go.

 Here is a list of similarities and differences of ``page.get_texttrace()`` compared to ``page.get_text("rawdict")``:

 * The method is up to **twice as fast,** compared to "rawdict" extraction. Depends on the amount of text.
 * The returned data is very **much smaller in size** -- although it provides more information.
 * Additional types of text **invisibility can be detected**: opacity = 0 or type > 1 or overlapping bbox of an object with a higher sequence number.
 * If MuPDF returns unicode 0xFFFD (65533) for unrecognized characters, you may still be able to deduct desired information from the glyph id.
 * The ``span["chars"]`` **contains no spaces**, **except** the document creator has explicitely coded them. They **will never be generated** like it happens in :meth:`Page.get_text` methods. To provide some help for doing your own computations here, the width of a space character is given. This value is derived from the font where possible. Otherwise the value of a fallback font is taken.
 * There is no effort to organize text like it happens for a :ref:`TextPage` (the hierarchy of blocks, lines, spans, and characters). Characters are simply extracted in sequence, one by one, and put in a span. Whenever any of the span's characteristics changes, a new span is started. So you may find characters with different ``origin.y`` values in the same span (which means they would appear in different lines). You cannot assume, that span characters are sorted in any particular order -- you must make sense of the info yourself, taking ``span["dir"]``, ``span["wmode"]``, etc. into account.
 * Ligatures are represented like this:
 - MuPDF handles the following ligatures: "fi", "ff", "fl", "ft", "st", "ffi", and "ffl" (only the first 3 are mostly ever used). If the page contains e.g. ligature "fi", you will find the following two character items subsequent to each other::

 (102, glyph, (x, y), (x0, y0, x1, y1)) # 102 = ord("f")
 (105, -1, (x, y), (x0, y0, x0, y1)) # 105 = ord("i"), empty bbox!

 - This means that the bbox of the first ligature character is the area containing the complete, compound glyph. Subsequent ligature components are recognizable by their glyph value -1 and a bbox of width zero.
 - You may want to replace those 2 or 3 char tuples by one, that represents the ligature itself. Use the following mapping of ligatures to unicodes:

 + ``"ff" -> 0xFB00``
 + ``"fi" -> 0xFB01``
 + ``"fl" -> 0xFB02``
 + ``"ffi" -> 0xFB03``
 + ``"ffl" -> 0xFB04``
 + ``"ft" -> 0xFB05``
 + ``"st" -> 0xFB06``

 So you may want to replace the two example tuples above by the following single one: ``(0xFB01, glyph, (x, y), (x0, y0, x1, y1))`` (there is usually no need to lookup the correct glyph id for 0xFB01 in the resp. font, but you may execute ``font.has_glyph(0xFB01)`` and use its return value).

 * **Changed in v1.19.3:** Similar to other text extraction methods, the character and span bboxes envelop the character quads. To recover the quads, follow the same methods :meth:`recover_quad`, :meth:`recover_char_quad` or :meth:´recover_span_quad` as explained in :ref:`textpagedict`. Use either ``None`` or ``span["dir"]`` for the writing direction.

 .. method:: Page.wrap_contents()

 Put string pair "q" / "Q" before, resp. after a page's */Contents* object(s) to ensure that any "geometry" changes are **local** only.

 Use this method as an alternative, minimalistic version of :meth:`Page.clean_contents`. Its advantage is a small footprint in terms of processing time and impact on the data size of incremental saves. Multiple executions of this method are no problem and have no functional impact: ``b"q q contents Q Q"`` is treated like ``b"q contents Q"``.

 .. attribute:: Page.is_wrapped

 Indicate whether :meth:`Page.wrap_contents` may be required for object insertions in standard PDF geometry. Note that this is a quick, basic check only: a value of *False* may still be a false alarm. But nevertheless executing :meth:`Page.wrap_contents` will have no negative side effects.

 :rtype: bool

 .. method:: Page.get_text_blocks(flags=None)

 Deprecated wrapper for :meth:`TextPage.extractBLOCKS`. Use :meth:`Page.get_text` with the "blocks" option instead.

 :rtype: list[tuple]

 .. method:: Page.get_text_words(flags=None)

 Deprecated wrapper for :meth:`TextPage.extractWORDS`. Use :meth:`Page.get_text` with the "words" option instead.

 :rtype: list[tuple]

 .. method:: Page.get_displaylist()

 Run a page through a list device and return its display list.

 :rtype: :ref:`DisplayList`
 :returns: the display list of the page.

 .. method:: Page.get_contents()

 PDF only: Retrieve a list of :data:`xref` of :data:`contents` objects of a page. May be empty or contain multiple integers. If the page is cleaned (:meth:`Page.clean_contents`), it will be one entry at most. The "source" of each `/Contents` object can be individually read by :meth:`Document.xref_stream` using an item of this list. Method :meth:`Page.read_contents` in contrast walks through this list and concatenates the corresponding sources into one ``bytes`` object.

 :rtype: list[int]

 .. method:: Page.set_contents(xref)

 PDF only: Let the page's ``/Contents`` key point to this xref. Any previously used contents objects will be ignored and can be removed via garbage collection.

 .. method:: Page.clean_contents(sanitize=True)

 * Changed in v1.17.6

 PDF only: Clean and concatenate all :data:`contents` objects associated with this page. "Cleaning" includes syntactical corrections, standardizations and "pretty printing" of the contents stream. Discrepancies between :data:`contents` and :data:`resources` objects will also be corrected if sanitize is true. See :meth:`Page.get_contents` for more details.

 Changed in version 1.16.0 Annotations are no longer implicitely cleaned by this method. Use :meth:`Annot.clean_contents` separately.

 :arg bool sanitize: *(new in v1.17.6)* if true, synchronization between resources and their actual use in the contents object is snychronized. For example, if a font is not actually used for any text of the page, then it will be deleted from the ``/Resources/Font`` object.

 .. warning:: This is a complex function which may generate large amounts of new data and render old data unused. It is **not recommended** using it together with the **incremental save** option. Also note that the resulting singleton new */Contents* object is **uncompressed**. So you should save to a **new file** using options *"deflate=True, garbage=3"*.

 .. method:: Page.read_contents()

 New in version 1.17.0.
 Return the concatenation of all :data:`contents` objects associated with the page -- without cleaning or otherwise modifying them. Use this method whenever you need to parse this source in its entirety whithout having to bother how many separate contents objects exist.

 :rtype: bytes

 .. method:: Annot.clean_contents(sanitize=True)

 Clean the :data:`contents` streams associated with the annotation. This is the same type of action which :meth:`Page.clean_contents` performs -- just restricted to this annotation.

 .. method:: Document.get_char_widths(xref=0, limit=256)

 Return a list of character glyphs and their widths for a font that is present in the document. A font must be specified by its PDF cross reference number :data:`xref`. This function is called automatically from :meth:`Page.insert_text` and :meth:`Page.insert_textbox`. So you should rarely need to do this yourself.

 :arg int xref: cross reference number of a font embedded in the PDF. To find a font :data:`xref`, use e.g. *doc.get_page_fonts(pno)* of page number *pno* and take the first entry of one of the returned list entries.

 :arg int limit: limits the number of returned entries. The default of 256 is enforced for all fonts that only support 1-byte characters, so-called "simple fonts" (checked by this method). All :ref:`Base-14-Fonts` are simple fonts.

 :rtype: list
 :returns: a list of *limit* tuples. Each character *c* has an entry *(g, w)* in this list with an index of *ord(c)*. Entry *g* (integer) of the tuple is the glyph id of the character, and float *w* is its normalized width. The actual width for some fontsize can be calculated as *w * fontsize*. For simple fonts, the *g* entry can always be safely ignored. In all other cases *g* is the basis for graphically representing *c*.

 This function calculates the pixel width of a string called *text*::

 def pixlen(text, widthlist, fontsize):
 try:
 return sum([widthlist[ord(c)] for c in text]) * fontsize
 except IndexError:
 raise ValueError:("max. code point found: %i, increase limit" % ord(max(text)))

 .. method:: Document.is_stream(xref)

 * New in version 1.14.14

 PDF only: Check whether the object represented by :data:`xref` is a :data:`stream` type. Return is *False* if not a PDF or if the number is outside the valid xref range.

 :arg int xref: :data:`xref` number.

 :returns: *True* if the object definition is followed by data wrapped in keyword pair *stream*, *endstream*.

 .. method:: Document.get_new_xref()

 Increase the :data:`xref` by one entry and return that number. This can then be used to insert a new object.

 :rtype: int
 :returns: the number of the new :data:`xref` entry. Please note, that only a new entry in the PDF's cross reference table is created. At this point, there will not yet exist a PDF object associated with it. To create an (empty) object with this number use ``doc.update_xref(xref, "<<>>")``.

 .. method:: Document.xref_length()

 Return length of :data:`xref` table.

 :rtype: int
 :returns: the number of entries in the :data:`xref` table.

 .. method:: recover_quad(line_dir, span)

 Compute the quadrilateral of a text span extracted via options "dict" or "rawdict" of :meth:`Page.get_text`.

 :arg tuple line_dir: ``line["dir"]`` of the owning line. Use ``None`` for a span from :meth:`Page.get_texttrace`.
 :arg dict span: the span.
 :returns: the :ref:`Quad` of the span, usable for text marker annotations ('Highlight', etc.).

 .. method:: recover_char_quad(line_dir, span, char)

 Compute the quadrilateral of a text character extracted via option "rawdict" of :meth:`Page.get_text`.

 :arg tuple line_dir: ``line["dir"]`` of the owning line. Use ``None`` for a span from :meth:`Page.get_texttrace`.
 :arg dict span: the span.
 :arg dict char: the character.
 :returns: the :ref:`Quad` of the character, usable for text marker annotations ('Highlight', etc.).

 .. method:: recover_span_quad(line_dir, span, chars=None)

 Compute the quadrilateral of a subset of characters of a span extracted via option "rawdict" of :meth:`Page.get_text`.

 :arg tuple line_dir: ``line["dir"]`` of the owning line. Use ``None`` for a span from :meth:`Page.get_texttrace`.
 :arg dict span: the span.
 :arg list chars: the characters to consider. If omitted, identical to :meth:`recoer_span`. If given, the selected extraction option must be "rawdict".
 :returns: the :ref:`Quad` of the selected characters, usable for text marker annotations ('Highlight', etc.).

 .. method:: recover_line_quad(line, spans=None)

 Compute the quadrilateral of a subset of spans of a text line extracted via options "dict" or "rawdict" of :meth:`Page.get_text`.

 :arg dict line: the line.
 :arg list spans: a sub-list of ``line["spans"]``. If omitted, the full line quad will be returned.
 :returns: the :ref:`Quad` of the selected line spans, usable for text marker annotations ('Highlight', etc.).

 .. method:: INFINITE_QUAD()

 .. method:: INFINITE_RECT()

 .. method:: INFINITE_IRECT()

 Return the (unique) infinite rectangle ``Rect(-2147483648.0, -2147483648.0, 2147483520.0, 2147483520.0)``, resp. the :ref:`IRect` and :ref:`Quad` counterparts. It is the largest possible rectangle: all valid rectangles are contained in it.

 .. method:: EMPTY_QUAD()

 .. method:: EMPTY_RECT()

 .. method:: EMPTY_IRECT()

 Return the "standard" empty and invalid rectangle ``Rect(2147483520.0, 2147483520.0, -2147483648.0, -2147483648.0)`` resp. quad. Its top-left and bottom-right point values are reversed compared to the infinite rectangle. It will e.g. be used to indicate empty bboxes in ``page.get_text("dict")`` dictionaries. There are however infinitely many empty or invalid rectangles.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/glossary.rst

.. include:: header.rst

.. _Glossary:

==============
Glossary
==============

.. data:: matrix_like

 A Python sequence of 6 numbers.

.. data:: rect_like

 A Python sequence of 4 numbers.

.. data:: irect_like

 A Python sequence of 4 integers.

.. data:: point_like

 A Python sequence of 2 numbers.

.. data:: quad_like

 A Python sequence of 4 :data:`point_like` items.

.. data:: inheritable

 A number of values in a PDF can inherited by objects further down in a parent-child relationship. The mediabox (physical size) of pages may for example be specified only once or in some node(s) of the :data:`pagetree` and will then be taken as value for all *kids*, that do not specify their own value.

.. _Glossary_MediaBox:

.. data:: MediaBox

 A PDF array of 4 floats specifying a physical page size -- (:data:`inheritable`, mandatory). This rectangle should contain all other PDF -- optional -- page rectangles, which may be specified in addition: CropBox, TrimBox, ArtBox and BleedBox. Please consult :ref:`AdobeManual` for details. The MediaBox is the only rectangle, for which there is no difference between MuPDF and PDF coordinate systems: :attr:`Page.mediabox` will always show the same coordinates as the ``/MediaBox`` key in a page's object definition. For all other rectangles, MuPDF transforms coordinates such that the **top-left** corner is the point of reference. This can sometimes be confusing -- you may for example encounter a situation like this one:

 * The page definition contains the following identical values: ``/MediaBox [36 45 607.5 765]``, ``/CropBox [36 45 607.5 765]``.
 * PyMuPDF accordingly shows ``page.mediabox = Rect(36.0, 45.0, 607.5, 765.0)``.
 * **BUT:** ``page.cropbox = Rect(36.0, 0.0, 607.5, 720.0)``, because the two y-coordinates have been transformed (45 subtracted from both of them).

.. data:: CropBox

 A PDF array of 4 floats specifying a page's visible area -- (:data:`inheritable`, optional). It is the default for TrimBox, ArtBox and BleedBox. If not present, it defaults to MediaBox. This value is **not affected** if the page is rotated -- in contrast to :attr:`Page.rect`. Also, other than the page rectangle, the top-left corner of the cropbox may or may not be *(0, 0)*.

.. data:: catalog

 A central PDF :data:`dictionary` -- also called the "root" -- containing document-wide parameters and pointers to many other information. Its :data:`xref` is returned by :meth:`Document.pdf_catalog`.

.. data:: trailer

 More precisely, the **PDF trailer** contains information in :data:`dictionary` format. It is ususally located at the file's end. In this dictionary, you will find things like the xrefs of the catalog and the metadata, the number of :data:`xref` numbers, etc. Here is the definition of the PDF spec:

 "The trailer of a PDF file enables an application reading the file to quickly find the cross-reference table and certain special objects. Applications should read a PDF file from its end."

 To access the trailer in PyMuPDF, use the usual methods :meth:`Document.xref_object`, :meth:`Document.xref_get_key` and :meth:`Document.xref_get_keys` with ``-1`` instead of a positive xref number.

.. data:: contents

 A **content stream** is a PDF :data:`object` with an attached :data:`stream`, whose data consists of a sequence of instructions describing the graphical elements to be painted on a page, see "Stream Objects" on page 19 of :ref:`AdobeManual`. For an overview of the mini-language used in these streams, see chapter "Operator Summary" on page 643 of the :ref:`AdobeManual`. A PDF :data:`page` can have none to many contents objects. If it has none, the page is empty (but still may show annotations). If it has several, they will be interpreted in sequence as if their instructions had been present in one such object (i.e. like in a concatenated string). It should be noted that there are more stream object types which use the same syntax: e.g. appearance dictionaries associated with annotations and Form XObjects.

 PyMuPDF provides a number of methods to deal with contents of PDF pages:

 * :meth:`Page.read_contents()` -- reads and concatenates all page contents into one ``bytes`` object.
 * :meth:`Page.clean_contents()` -- a wrapper of a MuPDF function that reads, concatenates and syntax-cleans all page contents. After this, only one ``/Contents`` object will exist. In addition, page :data:`resources` will have been synchronized with it such that it will contain exactly those images, fonts and other objects that the page actually references.
 * :meth:`Page.get_contents()` -- return a list of :data:`xref` numbers of a page's :data:`contents` objects. May be empty. Use :meth:`Document.xref_stream()` with one of these xrefs to read the resp. contents section.
 * :meth:`Page.set_contents()` -- set a page's ``/Contents`` key to the provided :data:`xref` number.

.. data:: resources

 A :data:`dictionary` containing references to any resources (like images or fonts) required by a PDF :data:`page` (required, inheritable, :ref:`AdobeManual` p. 81) and certain other objects (Form XObjects). This dictionary appears as a sub-dictionary in the object definition under the key */Resources*. Being an inheritable object type, there may exist "parent" resources for all pages or certain subsets of pages.

.. data:: dictionary

 A PDF :data:`object` type, which is somewhat comparable to the same-named Python notion: "A dictionary object is an associative table containing pairs of objects, known as the dictionary's entries. The first element of each entry is the key and the second element is the value. The key must be a name (...). The value can be any kind of object, including another dictionary. A dictionary entry whose value is null (...) is equivalent to an absent entry." (:ref:`AdobeManual` p. 18).

 Dictionaries are the most important :data:`object` type in PDF. Here is an example (describing a :data:`page`)::

 <<
 /Contents 40 0 R % value: an indirect object
 /Type/Page % value: a name object
 /MediaBox[0 0 595.32 841.92] % value: an array object
 /Rotate 0 % value: a number object
 /Parent 12 0 R % value: an indirect object
 /Resources<< % value: a dictionary object
 /ExtGState<</R7 26 0 R>>
 /Font<<
 /R8 27 0 R/R10 21 0 R/R12 24 0 R/R14 15 0 R
 /R17 4 0 R/R20 30 0 R/R23 7 0 R /R27 20 0 R
 >>
 /ProcSet[/PDF/Text] % value: array of two name objects
 >>
 /Annots[55 0 R] % value: array, one entry (indirect object)
 >>

 Contents, *Type*, *MediaBox*, etc. are **keys**, *40 0 R*, *Page*, *[0 0 595.32 841.92]*, etc. are the respective **values**. The strings *"<<"* and *">>"* are used to enclose object definitions.

 This example also shows the syntax of **nested** dictionary values: *Resources* has an object as its value, which in turn is a dictionary with keys like *ExtGState* (with the value *<</R7 26 0 R>>*, which is another dictionary), etc.

.. data:: page

 A PDF page is a :data:`dictionary` object which defines one page in a PDF, see :ref:`AdobeManual` p. 71.

.. data:: pagetree

 The pages of a document are accessed through a structure known as the page tree, which defines the ordering of pages in the document. The tree structure allows PDF consumer applications, using only limited memory, to quickly open a document containing thousands of pages. The tree contains nodes of two types: intermediate nodes, called page tree nodes, and leaf nodes, called page objects. (:ref:`AdobeManual` p. 75).

 While it is possible to list all page references in just one array, PDFs with many pages are often created using *balanced tree* structures ("page trees") for faster access to any single page. In relation to the total number of pages, this can reduce the average page access time by page number from a linear to some logarithmic order of magnitude.

 For fast page access, MuPDF can use its own array in memory -- independently from what may or may not be present in the document file. This array is indexed by page number and therefore much faster than even the access via a perfectly balanced page tree.

.. data:: object

 Similar to Python, PDF supports the notion *object*, which can come in eight basic types: boolean values ("true" or "false"), integer and real numbers, strings (**always** enclosed in brackets -- either "()", or "<>" to indicate hexadecimal), names (must always start with a "/", e.g. ``/Contents``), arrays (enclosed in brackets "[]"), dictionaries (enclosed in brackets "<<>>"), streams (enclosed by keywords "stream" / "endstream"), and the null object ("null") (:ref:`AdobeManual` p. 13). Objects can be made identifyable by assigning a label. This label is then called *indirect* object. PyMuPDF supports retrieving definitions of indirect objects via their cross reference number via :meth:`Document.xref_object`.

.. data:: stream

 A PDF :data:`dictionary` :data:`object` type which is followed by a sequence of bytes, similar to Python *bytes*. "However, a PDF application can read a stream incrementally, while a string must be read in its entirety. Furthermore, a stream can be of unlimited length, whereas a string is subject to an implementation limit. For this reason, objects with potentially large amounts of data, such as images and page descriptions, are represented as streams." "A stream consists of a :data:`dictionary` followed by zero or more bytes bracketed between the keywords *stream* and *endstream*"::

 nnn 0 obj
 <<
 dictionary definition
 >>
 stream
 (zero or more bytes)
 endstream
 endobj

 See :ref:`AdobeManual` p. 19. PyMuPDF supports retrieving stream content via :meth:`Document.xref_stream`. Use :meth:`Document.is_stream` to determine whether an object is of stream type.

.. data:: unitvector

 A mathematical notion meaning a vector of norm ("length") 1 -- usually the Euclidean norm is implied. In PyMuPDF, this term is restricted to :ref:`Point` objects, see :attr:`Point.unit`.

.. data:: xref

 Abbreviation for cross-reference number: this is an integer unique identification for objects in a PDF. There exists a cross-reference table (which may physically consist of several separate segments) in each PDF, which stores the relative position of each object for quick lookup. The cross-reference table is one entry longer than the number of existing object: item zero is reserved and must not be used in any way. Many PyMuPDF classes have an *xref* attribute (which is zero for non-PDFs), and one can find out the total number of objects in a PDF via :meth:`Document.xref_length` *- 1*.

.. data:: resolution

 Images and :ref:`Pixmap` objects may contain resolution information provided as "dots per inch", dpi, in each direction (horizontal and vertical). When MuPDF reads an image form a file or from a PDF object, it will parse this information and put it in :attr:`Pixmap.xres`, :attr:`Pixmap.yres`, respectively. When it finds not meaningful information in the input (like non-positive values or values exceeding 4800), it will use "sane" defaults instead. The usual default value is 96, but it may also be 72 in some cases (e.g. for JPX images).

.. data:: OCPD

 Optional content properties dictionary - a sub :data:`dictionary` of the PDF :data:`catalog`. The central place to store optional content information, which is identified by the key `/OCProperties`. This dictionary has two required and one optional entry: (1) `/OCGs`, required, an array listing all optional content groups, (2) `/D`, required, the default optional content configuration dictionary (OCCD), (3) `/Configs`, optional, an array of alternative OCCDs.

.. data:: OCCD

 Optional content configuration dictionary - a PDF :data:`dictionary` inside the PDF :data:`OCPD`. It stores a setting of ON / OFF states of OCGs and how they are presented to a PDF viewer program. Selecting a configuration is quick way to achieve temporary mass visibility state changes. After opening a PDF, the `/D` configuration of the :data:`OCPD` is always activated. Viewer should offer a way to switch between the `/D`, or one of the optional configurations contained in array `/Configs`.

.. data:: OCG

 Optional content group -- a :data:`dictionary` object used to control the visibility of other PDF objects like images or annotations. Independently on which page they are defined, objects with the same OCG can simultaneously be shown or hidden by setting their OCG to ON or OFF. This can be achieved via the user interface provided by many PDF viewers (Adobe Acrobat), or programmatically.

.. data:: OCMD

 Optional content membership dictionary -- a :data:`dictionary` object which can be used like an :data:`OCG`: it has a visibility state. The visibility of an OCMD is **computed:** it is a logical expression, which uses the state of one or more OCGs to produce a boolean value. The expression's result is interpreted as ON (true) or OFF (false).

.. data:: ligature

 Some frequent character combinations are represented by their own special glyphs in more advanced fonts. Typical examples are "fi", "fl", "ffi" and "ffl". These compounds are called *ligatures*. In PyMuPDF text extractions, there is the option to either return the corresponding unicode unchanged, or split ligatures up into their constituent parts: "fi" ==> "f" + "i", etc.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/header.rst

.. raw:: html

 <div class="discordLink">Find #pymupdf on Discord</div>

PyMuPDF-1.21.1/docs/identity.rst

.. include:: header.rst

.. _Identity:

============
Identity
============

Identity is a :ref:`Matrix` that performs no action -- to be used whenever the syntax requires a matrix, but no actual transformation should take place. It has the form *fitz.Matrix(1, 0, 0, 1, 0, 0)*.

Identity is a constant, an "immutable" object. So, all of its matrix properties are read-only and its methods are disabled.

If you need a **mutable** identity matrix as a starting point, use one of the following statements::

 >>> m = fitz.Matrix(1, 0, 0, 1, 0, 0) # specify the values
 >>> m = fitz.Matrix(1, 1) # use scaling by factor 1
 >>> m = fitz.Matrix(0) # use rotation by zero degrees
 >>> m = fitz.Matrix(fitz.Identity) # make a copy of Identity

.. include:: footer.rst

PyMuPDF-1.21.1/docs/images/discord-mark-blue.svg

 .cls-1{fill:#5865f2;}

PyMuPDF-1.21.1/docs/images/img-4up.png

PyMuPDF-1.21.1/docs/images/img-7edges.png

PyMuPDF-1.21.1/docs/images/img-a-is--1.png

PyMuPDF-1.21.1/docs/images/img-adobe.png

PyMuPDF-1.21.1/docs/images/img-alpha-0.png

PyMuPDF-1.21.1/docs/images/img-alpha-1.png

PyMuPDF-1.21.1/docs/images/img-annots.jpg

PyMuPDF-1.21.1/docs/images/img-asc-desc.png

PyMuPDF-1.21.1/docs/images/img-attach-result.jpg

PyMuPDF-1.21.1/docs/images/img-b-is-0.5.png

PyMuPDF-1.21.1/docs/images/img-binsetupdirs.png

PyMuPDF-1.21.1/docs/images/img-breadth.png

PyMuPDF-1.21.1/docs/images/img-c-is-0.5.png

PyMuPDF-1.21.1/docs/images/img-cake.png

PyMuPDF-1.21.1/docs/images/img-caret-annot.jpg

PyMuPDF-1.21.1/docs/images/img-circle.png

PyMuPDF-1.21.1/docs/images/img-clip.jpg

PyMuPDF-1.21.1/docs/images/img-colordb.png

PyMuPDF-1.21.1/docs/images/img-convexity.png

PyMuPDF-1.21.1/docs/images/img-copy-speed-1.png

PyMuPDF-1.21.1/docs/images/img-copy-speed-2.png

PyMuPDF-1.21.1/docs/images/img-d-is--1.png

PyMuPDF-1.21.1/docs/images/img-drawBezier.png

PyMuPDF-1.21.1/docs/images/img-drawCurve.png

PyMuPDF-1.21.1/docs/images/img-drawSector1.png

PyMuPDF-1.21.1/docs/images/img-drawSector2.png

PyMuPDF-1.21.1/docs/images/img-drawcircle.jpg

PyMuPDF-1.21.1/docs/images/img-drawquad.jpg

PyMuPDF-1.21.1/docs/images/img-e-is-100.png

PyMuPDF-1.21.1/docs/images/img-embed-progress.jpg

PyMuPDF-1.21.1/docs/images/img-encoding.jpg

PyMuPDF-1.21.1/docs/images/img-encrypting.jpg

PyMuPDF-1.21.1/docs/images/img-even-odd.png

PyMuPDF-1.21.1/docs/images/img-extract-imga.jpg

PyMuPDF-1.21.1/docs/images/img-extract-imgb.jpg

PyMuPDF-1.21.1/docs/images/img-f-is-100.png

PyMuPDF-1.21.1/docs/images/img-filesizes.png

PyMuPDF-1.21.1/docs/images/img-freetext.jpg

PyMuPDF-1.21.1/docs/images/img-getdrawings.png

PyMuPDF-1.21.1/docs/images/img-import-progress.jpg

PyMuPDF-1.21.1/docs/images/img-inkannot.jpg

PyMuPDF-1.21.1/docs/images/img-inserttext.jpg

PyMuPDF-1.21.1/docs/images/img-layout-text.jpg

PyMuPDF-1.21.1/docs/images/img-line-dir.png

PyMuPDF-1.21.1/docs/images/img-linequad.jpg

PyMuPDF-1.21.1/docs/images/img-make-table.jpg

PyMuPDF-1.21.1/docs/images/img-markedpdf.jpg

PyMuPDF-1.21.1/docs/images/img-markers.jpg

PyMuPDF-1.21.1/docs/images/img-matrix.png

PyMuPDF-1.21.1/docs/images/img-opacity.jpg

PyMuPDF-1.21.1/docs/images/img-original.png

PyMuPDF-1.21.1/docs/images/img-pdfjoiner.jpg

PyMuPDF-1.21.1/docs/images/img-pdftext.jpg

PyMuPDF-1.21.1/docs/images/img-pixmapcopy.jpg

PyMuPDF-1.21.1/docs/images/img-planish.png

PyMuPDF-1.21.1/docs/images/img-point-unit.jpg

PyMuPDF-1.21.1/docs/images/img-polyline.png

PyMuPDF-1.21.1/docs/images/img-posterize.png

PyMuPDF-1.21.1/docs/images/img-quads.jpg

PyMuPDF-1.21.1/docs/images/img-rect-contains.png

PyMuPDF-1.21.1/docs/images/img-redact.jpg

PyMuPDF-1.21.1/docs/images/img-render-speed.png

PyMuPDF-1.21.1/docs/images/img-rendermode.jpg

PyMuPDF-1.21.1/docs/images/img-rot+morph.png

PyMuPDF-1.21.1/docs/images/img-rot-60.png

PyMuPDF-1.21.1/docs/images/img-rotate.png

PyMuPDF-1.21.1/docs/images/img-showpdfpage.jpg

PyMuPDF-1.21.1/docs/images/img-sierpinski.png

PyMuPDF-1.21.1/docs/images/img-smallcaps.jpg

PyMuPDF-1.21.1/docs/images/img-span-rect.png

PyMuPDF-1.21.1/docs/images/img-squiggly.png

PyMuPDF-1.21.1/docs/images/img-stampannot.jpg

PyMuPDF-1.21.1/docs/images/img-stencil.jpg

PyMuPDF-1.21.1/docs/images/img-symbols.jpg

PyMuPDF-1.21.1/docs/images/img-target.png

PyMuPDF-1.21.1/docs/images/img-textbox.jpg

PyMuPDF-1.21.1/docs/images/img-textboxtract.png

PyMuPDF-1.21.1/docs/images/img-textmarker.jpg

PyMuPDF-1.21.1/docs/images/img-textmethods.png

PyMuPDF-1.21.1/docs/images/img-textpage-char.png

PyMuPDF-1.21.1/docs/images/img-textpage.png

PyMuPDF-1.21.1/docs/images/img-textperformance.png

PyMuPDF-1.21.1/docs/images/img-timings.png

PyMuPDF-1.21.1/docs/images/img-warp.png

PyMuPDF-1.21.1/docs/images/img-writeimage.png

PyMuPDF-1.21.1/docs/images/mupdf-icons.jpg

PyMuPDF-1.21.1/docs/images/pymupdf-logo.png

PyMuPDF-1.21.1/docs/images/pymupdf-sidebar-logo.png

PyMuPDF-1.21.1/docs/index.rst

.. include:: intro.rst

PyMuPDF-1.21.1/docs/installation.rst

.. include:: header.rst

Installation
=============

PyMuPDF should be installed using pip with::

 python -m pip install --upgrade pip
 python -m pip install --upgrade pymupdf

This will install from a Python wheel if one is available for your platform.

Installation when a suitable wheel is not available
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If a suitable Python wheel is not available, pip will automatically build from
source using a Python sdist.

**This requires C/C++ development tools and SWIG to be installed**:

* On Unix-style systems such as Linux, OpenBSD and FreeBSD,
  use the system package manager to install SWIG.

  * For example on Debian Linux, do: ``sudo apt install swig``

* On Windows:

  * Install Visual Studio 2019. If not installed in a standard location, set
    environmental variable ``PYMUPDF_SETUP_DEVENV`` to the location of the
    ``devenv.com`` binary.

  * Install SWIG by following the instructions at:
    https://swig.org/Doc4.0/Windows.html#Windows_installation

* On MacOS, install MacPorts using the instructions at:
  https://www.macports.org/install.php

  * Then install SWIG with: ``sudo port install swig``
  * You may also need: ``sudo port install swig-python``

As of ``PyMuPDF-1.20.0``, the required MuPDF source code is already in the
sdist and is automatically built into PyMuPDF.


Notes
~~~~~

Wheels are available for Windows (32-bit Intel, 64-bit Intel), Linux (64-bit Intel, 64-bit ARM) and Mac OSX (64-bit Intel, 64-bit ARM), Python versions 3.7 and up.

Wheels are not available for Python installed with `Chocolatey
<https://chocolatey.org/>`_ on Windows. Instead install Python
using the Windows installer from the python.org website, see:
http://www.python.org/downloads

PyMuPDF does not support Python versions prior to 3.7. Older wheels can be found in `this <https://github.com/pymupdf/PyMuPDF-Optional-Material/tree/master/wheels-upto-Py3.5>`_ repository and on `PyPI <https://pypi.org/project/PyMuPDF/>`_.
Please note that we generally follow the official Python release schedules. For Python versions dropping out of official support this means, that generation of wheels will also be ceased for them.

There are no **mandatory** external dependencies. However, some optional feature are available only if additional components are installed:

* `Pillow <https://pypi.org/project/Pillow/>`_ is required for :meth:`Pixmap.pil_save` and :meth:`Pixmap.pil_tobytes`.
* `fontTools <https://pypi.org/project/fonttools/>`_ is required for :meth:`Document.subset_fonts`.
* `pymupdf-fonts <https://pypi.org/project/pymupdf-fonts/>`_ is a collection of nice fonts to be used for text output methods.
* `Tesseract-OCR <https://github.com/tesseract-ocr/tesseract>`_ for optical character recognition in images and document pages. Tesseract is separate software, not a Python package. To enable OCR functions in PyMuPDF, the software must be installed and the system environment variable ``"TESSDATA_PREFIX"`` must be defined and contain the ``tessdata`` folder name of the Tesseract installation location. See below.

.. note:: You can install these additional components at any time -- before or after installing PyMuPDF. PyMuPDF will detect their presence during import or when the respective functions are being used.

Install from source without using an sdist
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* First get a PyMuPDF source tree:

  * Clone the git repository at https://github.com/pymupdf/PyMuPDF,
    for example::

      git clone https://github.com/pymupdf/PyMuPDF.git

  * Or download and extract a ``.zip`` or ``.tar.gz`` source release from
    https://github.com/pymupdf/PyMuPDF/releases.

* Install C/C++ development tools and SWIG as described above.

* Build and install PyMuPDF::

    cd PyMuPDF && python setup.py install

  This will automatically download a specific hard-coded MuPDF source release,
  and build it into PyMuPDF.
  
  One can build with a non-default MuPDF (for example one installed on the
  system, or a local checkout) by setting environmental variables. See the
  comments at the start of ``PyMuPDF/setup.py`` for more information.

.. note:: When running Python scripts that use PyMuPDF, make sure that the
  current directory is not the ``PyMuPDF/`` directory.

  Otherwise, confusingly, Python will attempt to import ``fitz`` from the local
  ``fitz/`` directory, which will fail because it only contains source files.


Running tests
~~~~~~~~~~~~~

PyMuPDF has a set of ``pytest`` scripts within the ``tests/`` directory.

Run tests with::

 pip install pytest fontTools
 pytest PyMuPDF/tests

If PyMuPDF has been built with a non-default build of MuPDF (using
environmental variable ``PYMUPDF_SETUP_MUPDF_BUILD``), it is possible that
``tests/test_textbox.py:test_textbox3()`` will fail, because it relies on MuPDF
having been built with PyMuPDF's customized configuration, ``fitz/_config.h``.

One can skip this particular test by adding ``-k 'not test_textbox3'`` to the
``pytest`` command line.

Enabling Integrated OCR Support
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you do not intend to use this feature, skip this step. Otherwise, it is required for both installation paths: **from wheels and from sources.**

PyMuPDF will already contain all the logic to support OCR functions. But it additionally does need Tesseract's language support data, so installation of Tesseract-OCR is still required.

The language support folder location must currently [#f1]_ be communicated via storing it in the environment variable ``"TESSDATA_PREFIX"``.

So for a working OCR functionality, make sure to complete this checklist:

1. Install Tesseract.

2. Locate Tesseract's language support folder. Typically you will find it here:
    - Windows: ``C:\Program Files\Tesseract-OCR\tessdata``
    - Unix systems: ``/usr/share/tesseract-ocr/4.00/tessdata``

3. Set the environment variable ``TESSDATA_PREFIX``
    - Windows: ``set TESSDATA_PREFIX=C:\Program Files\Tesseract-OCR\tessdata``
    - Unix systems: ``export TESSDATA_PREFIX=/usr/share/tesseract-ocr/4.00/tessdata``

.. note:: This must happen outside Python -- before starting your script. Just manipulating ``os.environ`` will not work!

.. rubric:: Footnotes

.. [#f1] In the next MuPDF version, it will be possible to pass this value as a parameter -- directly in the OCR invocations.

.. include:: footer.rst







PyMuPDF-1.21.1/docs/intro.rst

.. include:: header.rst

Introduction
==============

.. image:: images/pymupdf-logo.png
   :align: center
   :scale: 10%

..
   Don't delete the bar symbol - it forces a line break beneath the image - which is required.

|

**PyMuPDF** is a Python binding for `MuPDF <https://www.mupdf.com/>`_ --  a lightweight PDF, XPS, and E-book viewer, renderer, and toolkit, which is maintained and developed by Artifex Software, Inc

MuPDF can access files in PDF, XPS, OpenXPS, CBZ, EPUB, MOBI and FB2 (e-books) formats, and it is known for its top performance and high rendering quality.

MuPDF stands out among all similar products for its top rendering capability and unsurpassed processing speed. At the same time, its "light weight" makes it an excellent choice for platforms where resources are typically limited, like smartphones.

Check this out yourself and compare the various free PDF-viewers. In terms of speed and rendering quality `SumatraPDF <http://www.sumatrapdfreader.org/>`_ ranges at the top (apart from MuPDF's own standalone viewer) -- since it has changed its library basis to  MuPDF!

With PyMuPDF you can access files with extensions like “.pdf”, “.xps”, “.oxps”, “.cbz”, “.fb2”, ".mobi" or “.epub”. In addition, about 10 popular image formats can also be opened and handled like documents.

PyMuPDF provides access to many important functions of MuPDF from within a Python environment, and we are continuously seeking to expand this function set.

PyMuPDF runs and has been tested on Mac, Linux and Windows for Python versions 3.7 [#f1]_ and up. Other platforms should work too, as long as MuPDF and Python support them.

PyMuPDF is hosted on `GitHub <https://github.com/pymupdf/PyMuPDF>`_ and registered on `PyPI <https://pypi.org/project/PyMuPDF/>`_.

For MS Windows, Mac OSX and Linux Python wheels are available -- please see the installation chapter.

The GitHub repository `PyMuPDF-Utilities <https://github.com/pymupdf/PyMuPDF-Utilities>`_ contains a full range of examples, demonstrations and use cases.

Note on the Name *fitz*
--------------------------
The top level Python import name for this library is **"fitz"**. This has historical reasons:

The original rendering library for MuPDF was called *Libart*.

*"After Artifex Software acquired the MuPDF project, the development focus shifted on writing a new modern graphics library called "Fitz". Fitz was originally intended as an R&D project to replace the aging Ghostscript graphics library, but has instead become the rendering engine powering MuPDF."* (Quoted from `Wikipedia <https://en.wikipedia.org/wiki/MuPDF>`_).

So PyMuPDF **cannot coexist** with packages named "fitz" in the same Python environment.

License and Copyright
----------------------
In order to comply with MuPDF’s dual licensing model, PyMuPDF has entered into an agreement with Artifex who has the right to sublicense PyMuPDF to third parties.

PyMuPDF and MuPDF are now available under both, open-source AGPL and commercial license agreements. Please read the full text of the AGPL license agreement, available in the distribution material (file COPYING) and `here <https://www.gnu.org/licenses/agpl-3.0.html>`_, to ensure that your use case complies with the guidelines of the license. If you determine you cannot meet the requirements of the AGPL, please contact `Artifex <https://artifex.com/contact/>`_ for more information regarding a commercial license.

Artifex is the exclusive commercial licensing agent for MuPDF.

Artifex, the Artifex logo, MuPDF, and the MuPDF logo are registered trademarks of Artifex Software Inc. © 2022 Artifex Software, Inc. All rights reserved.

.. include:: version.rst

-----

.. rubric:: Footnotes


.. [#f1] PyMuPDF generally only supports Python versions that are still maintained by the Python Software Foundation. Once a Python version is being retired, PyMuPDF support will also be ended. This means that wheels for a retired Python platform will no longer be provided, and that Python language features may be used that did not exist in the retired Python version.

.. include:: footer.rst







PyMuPDF-1.21.1/docs/irect.rst

.. include:: header.rst

.. _IRect:

==========
IRect
==========

IRect is a rectangular bounding box, very similar to :ref:`Rect`, except that all corner coordinates are integers. IRect is used to specify an area of pixels, e.g. to receive image data during rendering. Otherwise, e.g. considerations concerning emptiness and validity of rectangles also apply to this class. Methods and attributes have the same names, and in many cases are implemented by re-using the respective :ref:`Rect` counterparts.

============================== ==============================================
**Attribute / Method**          **Short Description**
============================== ==============================================
:meth:`IRect.contains`         checks containment of another object
:meth:`IRect.get_area`         calculate rectangle area
:meth:`IRect.intersect`        common part with another rectangle
:meth:`IRect.intersects`       checks for non-empty intersection
:meth:`IRect.morph`            transform with a point and a matrix
:meth:`IRect.torect`           matrix that transforms to another rectangle
:meth:`IRect.norm`             the Euclidean norm
:meth:`IRect.normalize`        makes a rectangle finite
:attr:`IRect.bottom_left`      bottom left point, synonym *bl*
:attr:`IRect.bottom_right`     bottom right point, synonym *br*
:attr:`IRect.height`           height of the rectangle
:attr:`IRect.is_empty`         whether rectangle is empty
:attr:`IRect.is_infinite`      whether rectangle is infinite
:attr:`IRect.rect`             the :ref:`Rect` equivalent
:attr:`IRect.top_left`         top left point, synonym *tl*
:attr:`IRect.top_right`        top_right point, synonym *tr*
:attr:`IRect.quad`             :ref:`Quad` made from rectangle corners
:attr:`IRect.width`            width of the rectangle
:attr:`IRect.x0`               X-coordinate of the top left corner
:attr:`IRect.x1`               X-coordinate of the bottom right corner
:attr:`IRect.y0`               Y-coordinate of the top left corner
:attr:`IRect.y1`               Y-coordinate of the bottom right corner
============================== ==============================================

**Class API**

.. class:: IRect

   .. method:: __init__(self)

   .. method:: __init__(self, x0, y0, x1, y1)

   .. method:: __init__(self, irect)

   .. method:: __init__(self, sequence)

      Overloaded constructors. Also see examples below and those for the :ref:`Rect` class.

      If another irect is specified, a **new copy** will be made.

      If sequence is specified, it must be a Python sequence type of 4 numbers (see :ref:`SequenceTypes`). Non-integer numbers will be truncated, non-numeric values will raise an exception.

      The other parameters mean integer coordinates.


   .. method:: get_area([unit])

      Calculates the area of the rectangle and, with no parameter, equals *abs(IRect)*. Like an empty rectangle, the area of an infinite rectangle is also zero.

      :arg str unit: Specify required unit: respective squares of "px" (pixels, default), "in" (inches), "cm" (centimeters), or "mm" (millimeters).

      :rtype: float

   .. method:: intersect(ir)

      The intersection (common rectangular area) of the current rectangle and *ir* is calculated and replaces the current rectangle. If either rectangle is empty, the result is also empty. If either rectangle is infinite, the other one is taken as the result -- and hence also infinite if both rectangles were infinite.

      :arg rect_like ir: Second rectangle.

   .. method:: contains(x)

      Checks whether *x* is contained in the rectangle. It may be :data:`rect_like`, :data:`point_like` or a number. If *x* is an empty rectangle, this is always true. Conversely, if the rectangle is empty this is always *False*, if *x* is not an empty rectangle and not a number. If *x* is a number, it will be checked to be one of the four components. *x in irect* and *irect.contains(x)* are equivalent.

      :arg x: the object to check.
      :type x: :ref:`IRect` or :ref:`Rect` or :ref:`Point` or int

      :rtype: bool

   .. method:: intersects(r)

      Checks whether the rectangle and the :data:`rect_like` "r" contain a common non-empty :ref:`IRect`. This will always be *False* if either is infinite or empty.

      :arg rect_like r: the rectangle to check.

      :rtype: bool

   .. method:: torect(rect)

      * New in version 1.19.3
      
      Compute the matrix which transforms this rectangle to a given one. See :meth:`Rect.torect`.

      :arg rect_like rect: the target rectangle. Must not be empty or infinite.
      :rtype: :ref:`Matrix`
      :returns: a matrix ``mat`` such that ``self * mat = rect``. Can for example be used to transform between the page and the pixmap coordinates.


   .. method:: morph(fixpoint, matrix)

      * New in version 1.17.0
      
      Return a new quad after applying a matrix to it using a fixed point.

      :arg point_like fixpoint: the fixed point.
      :arg matrix_like matrix: the matrix.
      :returns: a new :ref:`Quad`. This a wrapper of the same-named quad method. If infinite, the infinite quad is returned.

   .. method:: norm()

      * New in version 1.16.0
      
      Return the Euclidean norm of the rectangle treated as a vector of four numbers.

   .. method:: normalize()

      Make the rectangle finite. This is done by shuffling rectangle corners. After this, the bottom right corner will indeed be south-eastern to the top left one. See :ref:`Rect` for a more details.

   .. attribute:: top_left

   .. attribute:: tl

      Equals *Point(x0, y0)*.

      :type: :ref:`Point`

   .. attribute:: top_right

   .. attribute:: tr

      Equals *Point(x1, y0)*.

      :type: :ref:`Point`

   .. attribute:: bottom_left

   .. attribute:: bl

      Equals *Point(x0, y1)*.

      :type: :ref:`Point`

   .. attribute:: bottom_right

   .. attribute:: br

      Equals *Point(x1, y1)*.

      :type: :ref:`Point`

   .. attribute:: rect

      The :ref:`Rect` with the same coordinates as floats.

      :type: :ref:`Rect`

   .. attribute:: quad

      The quadrilateral *Quad(irect.tl, irect.tr, irect.bl, irect.br)*.

      :type: :ref:`Quad`

   .. attribute:: width

      Contains the width of the bounding box. Equals *abs(x1 - x0)*.

      :type: int

   .. attribute:: height

      Contains the height of the bounding box. Equals *abs(y1 - y0)*.

      :type: int

   .. attribute:: x0

      X-coordinate of the left corners.

      :type: int

   .. attribute:: y0

      Y-coordinate of the top corners.

      :type: int

   .. attribute:: x1

      X-coordinate of the right corners.

      :type: int

   .. attribute:: y1

      Y-coordinate of the bottom corners.

      :type: int

   .. attribute:: is_infinite

      *True* if rectangle is infinite, *False* otherwise.

      :type: bool

   .. attribute:: is_empty

      *True* if rectangle is empty, *False* otherwise.

      :type: bool


.. note::

   * This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also refer to :ref:`SequenceTypes`.
   * Rectangles can be used with arithmetic operators -- see chapter :ref:`Algebra`.

.. include:: footer.rst








PyMuPDF-1.21.1/docs/kerning.style

fontsAlias:
    stdBold: DejaVu Sans-Bold
    stdBoldItalic: DejaVu Sans-BoldOblique
    stdFont: DejaVu Sans
    stdItalic: DejaVu Sans-Oblique
    stdMono: Courier New
    stdMonoBold: DejaVu Sans Mono-Bold
    stdMonoBoldItalic: DejaVu Sans Mono-BoldOblique
    stdMonoItalic: DejaVu Sans Mono-Oblique
    stdSans: DejaVu Sans
    stdSansBold: DejaVu Sans-Bold
    stdSansBoldItalic: DejaVu Sans-BoldOblique
    stdSansItalic: DejaVu Sans-Oblique
    stdSerif: DejaVu Serif

styles: base: kerning: true

styles: bodytext: alignment: left







PyMuPDF-1.21.1/docs/link.rst

.. include:: header.rst

.. _Link:

================
Link
================
Represents a pointer to somewhere (this document, other documents, the internet). Links exist per document page, and they are forward-chained to each other, starting from an initial link which is accessible by the :attr:`Page.first_link` property.

There is a parent-child relationship between a link and its page. If the page object becomes unusable (closed document, any document structure change, etc.), then so does every of its existing link objects -- an exception is raised saying that the object is "orphaned", whenever a link property or method is accessed.

========================= ============================================
**Attribute**             **Short Description**
========================= ============================================
:meth:`Link.set_border`   modify border properties
:meth:`Link.set_colors`   modify color properties
:meth:`Link.set_flags`    modify link flags
:attr:`Link.border`       border characteristics
:attr:`Link.colors`       border line color
:attr:`Link.dest`         points to destination details
:attr:`Link.is_external`  external destination?
:attr:`Link.flags`        link annotation flags
:attr:`Link.next`         points to next link
:attr:`Link.rect`         clickable area in untransformed coordinates.
:attr:`Link.uri`          link destination
:attr:`Link.xref`         :data:`xref` number of the entry
========================= ============================================

**Class API**

.. class:: Link

   .. method:: set_border(border=None, width=0, style=None, dashes=None)

      PDF only: Change border width and dashing properties.

      *(Changed in version 1.16.9)* Allow specification without using a dictionary. The direct parameters are used if *border* is not a dictionary.

      :arg dict border: a dictionary as returned by the :attr:`border` property, with keys *"width"* (*float*), *"style"* (*str*) and *"dashes"* (*sequence*). Omitted keys will leave the resp. property unchanged. To e.g. remove dashing use: *"dashes": []*. If dashes is not an empty sequence, "style" will automatically be set to "D" (dashed).

      :arg float width: see above.
      :arg str style: see above.
      :arg sequence dashes: see above.

   .. method:: set_colors(colors=None, stroke=None)

      PDF only: Changes the "stroke" color.
      
      .. note:: In PDF, links are a subtype of annotations technically and **do not support fill colors**. However, to keep a consistent API, we do allow specifying a ``fill=`` parameter like with all annotations, which will be ignored with a warning.

      *(Changed in version 1.16.9)* Allow colors to be directly set. These parameters are used if *colors* is not a dictionary.

      :arg dict colors: a dictionary containing color specifications. For accepted dictionary keys and values see below. The most practical way should be to first make a copy of the *colors* property and then modify this dictionary as required.
      :arg sequence stroke: see above.

   .. method:: set_flags(flags)

      *New in v1.18.16*

      Set the PDF ``/F`` property of the link annotation. See :meth:`Annot.set_flags` for details. If not a PDF, this method is a no-op.


   .. attribute:: flags

      *New in v1.18.16*

      Return the link annotation flags, an integer (see :attr:`Annot.flags` for details). Zero if not a PDF.


   .. attribute:: colors

      Meaningful for PDF only: A dictionary of two tuples of floats in range ``0 <= float <= 1`` specifying the *stroke* and the interior (*fill*) colors. If not a PDF, *None* is returned. As mentioned above, the fill color is always ``None`` for links. The stroke color is used for the border of the link rectangle. The length of the tuple implicitely determines the colorspace: 1 = GRAY, 3 = RGB, 4 = CMYK. So ``(1.0, 0.0, 0.0)`` stands for RGB color red. The value of each float *f* is mapped to the integer value *i* in range 0 to 255 via the computation *f = i / 255*.

      :rtype: dict

   .. attribute:: border

      Meaningful for PDF only: A dictionary containing border characteristics. It will be *None* for non-PDFs and an empty dictionary if no border information exists. The following keys can occur:

      * *width* -- a float indicating the border thickness in points. The value is -1.0 if no width is specified.

      * *dashes* -- a sequence of integers specifying a line dash pattern. *[]* means no dashes, *[n]* means equal on-off lengths of *n* points, longer lists will be interpreted as specifying alternating on-off length values. See the :ref:`AdobeManual` page 126 for more detail.

      * *style* -- 1-byte border style: *S* (Solid) = solid rectangle surrounding the annotation, *D* (Dashed) = dashed rectangle surrounding the link, the dash pattern is specified by the *dashes* entry, *B* (Beveled) = a simulated embossed rectangle that appears to be raised above the surface of the page, *I* (Inset) = a simulated engraved rectangle that appears to be recessed below the surface of the page, *U* (Underline) = a single line along the bottom of the annotation rectangle.

      :rtype: dict
      
   .. attribute:: rect

      The area that can be clicked in untransformed coordinates.

      :type: :ref:`Rect`

   .. attribute:: isExternal

      A bool specifying whether the link target is outside of the current document.

      :type: bool

   .. attribute:: uri

      A string specifying the link target. The meaning of this property should be evaluated in conjunction with property *isExternal*. The value may be *None*, in which case *isExternal == False*. If *uri* starts with *file://*, *mailto:*, or an internet resource name, *isExternal* is *True*. In all other cases *isExternal == False* and *uri* points to an internal location. In case of PDF documents, this should either be *#nnnn* to indicate a 1-based (!) page number *nnnn*, or a named location. The format varies for other document types, e.g. *uri = '../FixedDoc.fdoc#PG_2_LNK_1'* for page number 2 (1-based) in an XPS document.

      :type: str

   .. attribute:: xref

      An integer specifying the PDF :data:`xref`. Zero if not a PDF.

      :type: int

   .. attribute:: next

      The next link or *None*.

      :type: *Link*

   .. attribute:: dest

      The link destination details object.

      :type: :ref:`linkDest`

.. include:: footer.rst







PyMuPDF-1.21.1/docs/linkdest.rst

.. include:: header.rst

.. _linkDest:

================
linkDest
================
Class representing the `dest` property of an outline entry or a link. Describes the destination to which such entries point.

.. note:: Up to MuPDF v1.9.0 this class existed inside MuPDF and was dropped in version 1.10.0. For backward compatibility, PyMuPDF is still maintaining it, although some of its attributes are no longer backed by data actually available via MuPDF.

=========================== ====================================
**Attribute**               **Short Description**
=========================== ====================================
:attr:`linkDest.dest`       destination
:attr:`linkDest.fileSpec`   file specification (path, filename)
:attr:`linkDest.flags`      descriptive flags
:attr:`linkDest.isMap`      is this a MAP?
:attr:`linkDest.isUri`      is this a URI?
:attr:`linkDest.kind`       kind of destination
:attr:`linkDest.lt`         top left coordinates
:attr:`linkDest.named`      name if named destination
:attr:`linkDest.newWindow`  name of new window
:attr:`linkDest.page`       page number
:attr:`linkDest.rb`         bottom right coordinates
:attr:`linkDest.uri`        URI
=========================== ====================================

**Class API**

.. class:: linkDest

   .. attribute:: dest

      Target destination name if :attr:`linkDest.kind` is :data:`LINK_GOTOR` and :attr:`linkDest.page` is *-1*.

      :type: str

   .. attribute:: fileSpec

      Contains the filename and path this link points to, if :attr:`linkDest.kind` is :data:`LINK_GOTOR` or :data:`LINK_LAUNCH`.

      :type: str

   .. attribute:: flags

      A bitfield describing the validity and meaning of the different aspects of the destination. As far as possible, link destinations are constructed such that e.g. :attr:`linkDest.lt` and :attr:`linkDest.rb` can be treated as defining a bounding box. But the flags indicate which of the values were actually specified, see :ref:`linkDest Flags`.

      :type: int

   .. attribute:: isMap

      This flag specifies whether to track the mouse position when the URI is resolved. Default value: False.

      :type: bool

   .. attribute:: isUri

      Specifies whether this destination is an internet resource (as opposed to e.g. a local file specification in URI format).

      :type: bool

   .. attribute:: kind

      Indicates the type of this destination, like a place in this document, a URI, a file launch, an action or a place in another file. Look at :ref:`linkDest Kinds` to see the names and numerical values.

      :type: int

   .. attribute:: lt

      The top left :ref:`Point` of the destination.

      :type: :ref:`Point`

   .. attribute:: named

      This destination refers to some named action to perform (e.g. a javascript, see :ref:`AdobeManual`). Standard actions provided are *NextPage*, *PrevPage*, *FirstPage*,  and *LastPage*.

      :type: str

   .. attribute:: newWindow

      If true, the destination should be launched in a new window.

      :type: bool

   .. attribute:: page

      The page number (in this or the target document) this destination points to. Only set if :attr:`linkDest.kind` is :data:`LINK_GOTOR` or :data:`LINK_GOTO`. May be *-1* if :attr:`linkDest.kind` is :data:`LINK_GOTOR`. In this case :attr:`linkDest.dest` contains the **name** of a destination in the target document.

      :type: int

   .. attribute:: rb

      The bottom right :ref:`Point` of this destination.

      :type: :ref:`Point`

   .. attribute:: uri

      The name of the URI this destination points to.

      :type: str

.. include:: footer.rst







PyMuPDF-1.21.1/docs/lowlevel.rst

.. include:: header.rst

=================================
Low Level Functions and Classes
=================================
Contains a number of functions and classes for the experienced user. To be used for special needs or performance requirements.

.. toctree::
   :maxdepth: 1

   functions
   device
   coop_low

.. include:: footer.rst







PyMuPDF-1.21.1/docs/matrix.rst

.. include:: header.rst

.. _Matrix:

==========
Matrix
==========

Matrix is a row-major 3x3 matrix used by image transformations in MuPDF (which complies with the respective concepts laid down in the :ref:`AdobeManual`). With matrices you can manipulate the rendered image of a page in a variety of ways: (parts of) the page can be rotated, zoomed, flipped, sheared and shifted by setting some or all of just six float values.

.. |matrix| image:: images/img-matrix.*

Since all points or pixels live in a two-dimensional space, one column vector of that matrix is a constant unit vector, and only the remaining six elements are used for manipulations. These six elements are usually represented by *[a, b, c, d, e, f]*. Here is how they are positioned in the matrix:

|matrix|

Please note:

    * the below methods are just convenience functions -- everything they do, can also be achieved by directly manipulating the six numerical values
    * all manipulations can be combined -- you can construct a matrix that rotates **and** shears **and** scales **and** shifts, etc. in one go. If you however choose to do this, do have a look at the **remarks** further down or at the :ref:`AdobeManual`.

================================ ==============================================
**Method / Attribute**             **Description**
================================ ==============================================
:meth:`Matrix.prerotate`         perform a rotation
:meth:`Matrix.prescale`          perform a scaling
:meth:`Matrix.preshear`          perform a shearing (skewing)
:meth:`Matrix.pretranslate`      perform a translation (shifting)
:meth:`Matrix.concat`            perform a matrix multiplication
:meth:`Matrix.invert`            calculate the inverted matrix
:meth:`Matrix.norm`              the Euclidean norm
:attr:`Matrix.a`                 zoom factor X direction
:attr:`Matrix.b`                 shearing effect Y direction
:attr:`Matrix.c`                 shearing effect X direction
:attr:`Matrix.d`                 zoom factor Y direction
:attr:`Matrix.e`                 horizontal shift
:attr:`Matrix.f`                 vertical shift
:attr:`Matrix.is_rectilinear`     true if rect corners will remain rect corners
================================ ==============================================

**Class API**

.. class:: Matrix

   .. method:: __init__(self)

   .. method:: __init__(self, zoom-x, zoom-y)

   .. method:: __init__(self, shear-x, shear-y, 1)

   .. method:: __init__(self, a, b, c, d, e, f)

   .. method:: __init__(self, matrix)

   .. method:: __init__(self, degree)

   .. method:: __init__(self, sequence)

      Overloaded constructors.

      Without parameters, the zero matrix *Matrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)* will be created.

      *zoom-** and *shear-** specify zoom or shear values (float) and create a zoom or shear matrix, respectively.

      For "matrix" a **new copy** of another matrix will be made.

      Float value "degree" specifies the creation of a rotation matrix which rotates anit-clockwise.

      A "sequence" must be any Python sequence object with exactly 6 float entries (see :ref:`SequenceTypes`).

      *fitz.Matrix(1, 1)*, *fitz.Matrix(0.0 and *fitz.Matrix(fitz.Identity)* create modifyable versions of the :ref:`Identity` matrix, which looks like *[1, 0, 0, 1, 0, 0]*.

   .. method:: norm()

      * New in version 1.16.0
      
      Return the Euclidean norm of the matrix as a vector.

   .. method:: prerotate(deg)

      Modify the matrix to perform a counter-clockwise rotation for positive *deg* degrees, else clockwise. The matrix elements of an identity matrix will change in the following way:

      *[1, 0, 0, 1, 0, 0] -> [cos(deg), sin(deg), -sin(deg), cos(deg), 0, 0]*.

      :arg float deg: The rotation angle in degrees (use conventional notation based on Pi = 180 degrees).

   .. method:: prescale(sx, sy)

      Modify the matrix to scale by the zoom factors sx and sy. Has effects on attributes *a* thru *d* only: *[a, b, c, d, e, f] -> [a*sx, b*sx, c*sy, d*sy, e, f]*.

      :arg float sx: Zoom factor in X direction. For the effect see description of attribute *a*.

      :arg float sy: Zoom factor in Y direction. For the effect see description of attribute *d*.

   .. method:: preshear(sx, sy)

      Modify the matrix to perform a shearing, i.e. transformation of rectangles into parallelograms (rhomboids). Has effects on attributes *a* thru *d* only: *[a, b, c, d, e, f] -> [c*sy, d*sy, a*sx, b*sx, e, f]*.

      :arg float sx: Shearing effect in X direction. See attribute *c*.

      :arg float sy: Shearing effect in Y direction. See attribute *b*.

   .. method:: pretranslate(tx, ty)

      Modify the matrix to perform a shifting / translation operation along the x and / or y axis. Has effects on attributes *e* and *f* only: *[a, b, c, d, e, f] -> [a, b, c, d, tx*a + ty*c, tx*b + ty*d]*.

      :arg float tx: Translation effect in X direction. See attribute *e*.

      :arg float ty: Translation effect in Y direction. See attribute *f*.

   .. method:: concat(m1, m2)

      Calculate the matrix product *m1 * m2* and store the result in the current matrix. Any of *m1* or *m2* may be the current matrix. Be aware that matrix multiplication is not commutative. So the sequence of *m1*, *m2* is important.

      :arg m1: First (left) matrix.
      :type m1: :ref:`Matrix`

      :arg m2: Second (right) matrix.
      :type m2: :ref:`Matrix`

   .. method:: invert(m = None)

      Calculate the matrix inverse of *m* and store the result in the current matrix. Returns *1* if *m* is not invertible ("degenerate"). In this case the current matrix **will not change**. Returns *0* if *m* is invertible, and the current matrix is replaced with the inverted *m*.

      :arg m: Matrix to be inverted. If not provided, the current matrix will be used.
      :type m: :ref:`Matrix`

      :rtype: int

   .. attribute:: a

      Scaling in X-direction **(width)**. For example, a value of 0.5 performs a shrink of the **width** by a factor of 2. If a < 0, a left-right flip will (additionally) occur.

      :type: float

   .. attribute:: b

      Causes a shearing effect: each *Point(x, y)* will become *Point(x, y - b*x)*. Therefore, looking from left to right, e.g. horizontal lines will be "tilt" -- downwards if b > 0, upwards otherwise (b is the tangens of the tilting angle).

      :type: float

   .. attribute:: c

      Causes a shearing effect: each *Point(x, y)* will become *Point(x - c*y, y)*. Therefore, looking upwards, vertical lines will be "tilt" -- to the left if c > 0, to the right otherwise (c ist the tangens of the tilting angle).

      :type: float

   .. attribute:: d

      Scaling in Y-direction **(height)**. For example, a value of 1.5 performs a stretch of the **height** by 50%. If d < 0, an up-down flip will (additionally) occur.

      :type: float

   .. attribute:: e

      Causes a horizontal shift effect: Each *Point(x, y)* will become *Point(x + e, y)*. Positive (negative) values of *e* will shift right (left).

      :type: float

   .. attribute:: f

      Causes a vertical shift effect: Each *Point(x, y)* will become *Point(x, y - f)*. Positive (negative) values of *f* will shift down (up).

      :type: float

   .. attribute:: is_rectilinear

      Rectilinear means that no shearing is present and that any rotations are integer multiples of 90 degrees. Usually this is used to confirm that (axis-aligned) rectangles before the transformation are still axis-aligned rectangles afterwards.

      :type: bool

.. note::

   * This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also refer to :ref:`SequenceTypes`.
   * A matrix can be used with arithmetic operators -- see chapter :ref:`Algebra`.
   * Changes of matrix properties and execution of matrix methods can be executed consecutively. This is the same as multiplying the respective matrices.
   * Matrix multiplication is **not commutative** -- changing the execution sequence in general changes the result. So it can quickly become unclear which result a transformation will yield.


Examples
-------------
Here are examples to illustrate some of the effects achievable. The following pictures start with a page of the PDF version of this help file. We show what happens when a matrix is being applied (though always full pages are created, only parts are displayed here to save space).

.. |original| image:: images/img-original.*

This is the original page image:

|original|

Shifting
------------
.. |e100| image:: images/img-e-is-100.*

We transform it with a matrix where *e = 100* (right shift by 100 pixels).

|e100|

.. |f100| image:: images/img-f-is-100.*

Next we do a down shift by 100 pixels: *f = 100*.

|f100|

Flipping
--------------
.. |aminus1| image:: images/img-a-is--1.*

Flip the page left-right (*a = -1*).

|aminus1|

.. |dminus1| image:: images/img-d-is--1.*

Flip up-down (*d = -1*).

|dminus1|

Shearing
----------------
.. |bnull5| image:: images/img-b-is-0.5.*

First a shear in Y direction (*b = 0.5*).

|bnull5|

.. |cnull5| image:: images/img-c-is-0.5.*

Second a shear in X direction (*c = 0.5*).

|cnull5|

Rotating
---------
.. |rot60| image:: images/img-rot-60.*

Finally a rotation by 30 clockwise degrees (*prerotate(-30)*).

|rot60|

.. include:: footer.rst







PyMuPDF-1.21.1/docs/module.rst

.. include:: header.rst

.. _Module:

============================
Module *fitz*
============================

* New in version 1.16.8

PyMuPDF can also be used in the command line as a **module** to perform utility functions. This feature should obsolete writing some of the most basic scripts.

Admittedly, there is some functional overlap with the MuPDF CLI ``mutool``. On the other hand, PDF embedded files are no longer supported by MuPDF, so PyMuPDF is offering something unique here.

Invocation
-----------

Invoke the module like this::

    python -m fitz <command and parameters>

.. highlight:: python

General remarks:

* Request help via ``"-h"``, resp. command-specific help via ``"command -h"``.
* Parameters may be abbreviated where this does not introduce ambiguities.
* Several commands support parameters ``-pages`` and ``-xrefs``. They are intended for down-selection. Please note that:

    - **page numbers** for this utility must be given **1-based**.
    - valid :data:`xref` numbers start at 1.
    - Specify a comma-separated list of either *single* integers or integer *ranges*. A **range** is a pair of integers separated by one hyphen "-". Integers must not exceed the maximum page, resp. xref number. To specify that maximum, the symbolic variable "N" may be used. Integers or ranges may occur several times, in any sequence and may overlap. If in a range the first number is greater than the second one, the respective items will be processed in reversed order.

* How to use the module inside your script::

    >>> from fitz.__main__ import main as fitz_command
    >>> cmd = "clean input.pdf output.pdf -pages 1,N".split()  # prepare command line
    >>> saved_parms = sys.argv[1:]  # save original command line
    >>> sys.argv[1:] = cmd  # store new command line
    >>> fitz_command()  # execute module
    >>> sys.argv[1:] = saved_parms  # restore original command line

* Use the following 2-liner and compile it with `Nuitka <https://pypi.org/project/Nuitka/>`_ in standalone mode. This will give you a CLI executable with all the module's features, that can be used on all compatible platforms without Python, PyMuPDF or MuPDF being installed.

::

    from fitz.__main__ import main
    main()


Cleaning and Copying
----------------------

.. highlight:: text

This command will optimize the PDF and store the result in a new file. You can use it also for encryption, decryption and creating sub documents. It is mostly similar to the MuPDF command line utility *"mutool clean"*::

    python -m fitz clean -h
    usage: fitz clean [-h] [-password PASSWORD]
                    [-encryption {keep,none,rc4-40,rc4-128,aes-128,aes-256}]
                    [-owner OWNER] [-user USER] [-garbage {0,1,2,3,4}]
                    [-compress] [-ascii] [-linear] [-permission PERMISSION]
                    [-sanitize] [-pretty] [-pages PAGES]
                    input output

    -------------- optimize PDF or create sub-PDF if pages given --------------

    positional arguments:
    input                 PDF filename
    output                output PDF filename

    optional arguments:
    -h, --help            show this help message and exit
    -password PASSWORD    password
    -encryption {keep,none,rc4-40,rc4-128,aes-128,aes-256}
                          encryption method
    -owner OWNER          owner password
    -user USER            user password
    -garbage {0,1,2,3,4}  garbage collection level
    -compress             compress (deflate) output
    -ascii                ASCII encode binary data
    -linear               format for fast web display
    -permission PERMISSION
                          integer with permission levels
    -sanitize             sanitize / clean contents
    -pretty               prettify PDF structure
    -pages PAGES          output selected pages, format: 1,5-7,50-N

If you specify "-pages", be aware that only page-related objects are copied, **no document-level items** like e.g. embedded files.

Please consult :meth:`Document.save` for the parameter meanings.


Extracting Fonts and Images
----------------------------
Extract fonts or images from selected PDF pages to a desired directory::

    python -m fitz extract -h
    usage: fitz extract [-h] [-images] [-fonts] [-output OUTPUT] [-password PASSWORD]
                        [-pages PAGES]
                        input

    --------------------- extract images and fonts to disk --------------------

    positional arguments:
    input                 PDF filename

    optional arguments:
    -h, --help            show this help message and exit
    -images               extract images
    -fonts                extract fonts
    -output OUTPUT        output directory, defaults to current
    -password PASSWORD    password
    -pages PAGES          only consider these pages, format: 1,5-7,50-N

**Image filenames** are built according to the naming scheme: **"img-xref.ext"**, where "ext" is the extension associated with the image and "xref" the :data:`xref` of the image PDF object.

**Font filenames** consist of the fontname and the associated extension. Any spaces in the fontname are replaced with hyphens "-".

The output directory must already exist.

.. note:: Except for output directory creation, this feature is **functionally equivalent** to and obsoletes `this script <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/extract-imga.py>`_.


Joining PDF Documents
-----------------------
To join several PDF files specify::

    python -m fitz join -h
    usage: fitz join [-h] -output OUTPUT [input [input ...]]

    ---------------------------- join PDF documents ---------------------------

    positional arguments:
    input           input filenames

    optional arguments:
    -h, --help      show this help message and exit
    -output OUTPUT  output filename

    specify each input as 'filename[,password[,pages]]'


.. note::

    1. Each input must be entered as **"filename,password,pages"**. Password and pages are optional.
    2. The password entry **is required** if the "pages" entry is used. If the PDF needs no password, specify two commas.
    3. The **"pages"** format is the same as explained at the top of this section.
    4. Each input file is immediately closed after use. Therefore you can use one of them as output filename, and thus overwrite it.


Example: To join the following files

1. **file1.pdf:** all pages, back to front, no password
2. **file2.pdf:** last page, first page, password: "secret"
3. **file3.pdf:** pages 5 to last, no password

and store the result as **output.pdf** enter this command:

*python -m fitz join -o output.pdf file1.pdf,,N-1 file2.pdf,secret,N,1 file3.pdf,,5-N*


Low Level Information
----------------------

Display PDF internal information. Again, there are similarities to *"mutool show"*::

    python -m fitz show -h
    usage: fitz show [-h] [-password PASSWORD] [-catalog] [-trailer] [-metadata]
                    [-xrefs XREFS] [-pages PAGES]
                    input

    ------------------------- display PDF information -------------------------

    positional arguments:
    input               PDF filename

    optional arguments:
    -h, --help          show this help message and exit
    -password PASSWORD  password
    -catalog            show PDF catalog
    -trailer            show PDF trailer
    -metadata           show PDF metadata
    -xrefs XREFS        show selected objects, format: 1,5-7,N
    -pages PAGES        show selected pages, format: 1,5-7,50-N

Examples::

    python -m fitz show x.pdf
    PDF is password protected

    python -m fitz show x.pdf -pass hugo
    authentication unsuccessful

    python -m fitz show x.pdf -pass jorjmckie
    authenticated as owner
    file 'x.pdf', pages: 1, objects: 19, 58 MB, PDF 1.4, encryption: Standard V5 R6 256-bit AES
    Document contains 15 embedded files.

    python -m fitz show FDA-1572_508_R6_FINAL.pdf -tr -m
    'FDA-1572_508_R6_FINAL.pdf', pages: 2, objects: 1645, 1.4 MB, PDF 1.6, encryption: Standard V4 R4 128-bit AES
    document contains 740 root form fields and is signed

    ------------------------------- PDF metadata ------------------------------
           format: PDF 1.6
            title: FORM FDA 1572
           author: PSC Publishing Services
          subject: Statement of Investigator
         keywords: None
          creator: PScript5.dll Version 5.2.2
         producer: Acrobat Distiller 9.0.0 (Windows)
     creationDate: D:20130522104413-04'00'
          modDate: D:20190718154905-07'00'
       encryption: Standard V4 R4 128-bit AES

    ------------------------------- PDF trailer -------------------------------
    <<
    /DecodeParms <<
        /Columns 5
        /Predictor 12
    >>
    /Encrypt 1389 0 R
    /Filter /FlateDecode
    /ID [ <9252E9E39183F2A0B0C51BE557B8A8FC> <85227BE9B84B724E8F678E1529BA8351> ]
    /Index [ 1388 258 ]
    /Info 1387 0 R
    /Length 253
    /Prev 1510559
    /Root 1390 0 R
    /Size 1646
    /Type /XRef
    /W [ 1 3 1 ]
    >>

Embedded Files Commands
------------------------

The following commands deal with embedded files -- which is a feature completely removed from MuPDF after v1.14, and hence from all its command line tools.

Information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Show the embedded file names (long or short format)::

 python -m fitz embed-info -h
 usage: fitz embed-info [-h] [-name NAME] [-detail] [-password PASSWORD] input

 --------------------------- list embedded files ---------------------------

 positional arguments:
 input PDF filename

 optional arguments:
 -h, --help show this help message and exit
 -name NAME if given, report only this one
 -detail show detail information
 -password PASSWORD password

Example::

 python -m fitz embed-info some.pdf
 'some.pdf' contains the following 15 embedded files.

 20110813_180956_0002.jpg
 20110813_181009_0003.jpg
 20110813_181012_0004.jpg
 20110813_181131_0005.jpg
 20110813_181144_0006.jpg
 20110813_181306_0007.jpg
 20110813_181307_0008.jpg
 20110813_181314_0009.jpg
 20110813_181315_0010.jpg
 20110813_181324_0011.jpg
 20110813_181339_0012.jpg
 20110813_181913_0013.jpg
 insta-20110813_180944_0001.jpg
 markiert-20110813_180944_0001.jpg
 neue.datei

Detailed output would look like this per entry::

 name: neue.datei
 filename: text-tester.pdf
 ufilename: text-tester.pdf
 desc: nur zum Testen!
 size: 4639
 length: 1566

Extraction
~~~~~~~~~~~~~~~~~~~~~~~~~

Extract an embedded file like this::

    python -m fitz embed-extract -h
    usage: fitz embed-extract [-h] -name NAME [-password PASSWORD] [-output OUTPUT]
                            input

    ---------------------- extract embedded file to disk ----------------------

    positional arguments:
    input                 PDF filename

    optional arguments:
    -h, --help            show this help message and exit
    -name NAME            name of entry
    -password PASSWORD    password
    -output OUTPUT        output filename, default is stored name

For details consult :meth:`Document.embfile_get`. Example (refer to previous section)::

    python -m fitz embed-extract some.pdf -name neue.datei
    Saved entry 'neue.datei' as 'text-tester.pdf'

Deletion
~~~~~~~~~~~~~~~~~~~~~~~~
Delete an embedded file like this::

 python -m fitz embed-del -h
 usage: fitz embed-del [-h] [-password PASSWORD] [-output OUTPUT] -name NAME input

 --------------------------- delete embedded file --------------------------

 positional arguments:
 input PDF filename

 optional arguments:
 -h, --help show this help message and exit
 -password PASSWORD password
 -output OUTPUT output PDF filename, incremental save if none
 -name NAME name of entry to delete

For details consult :meth:`Document.embfile_del`.

Insertion
~~~~~~~~~~~~~~~~~~~~~~~~
Add a new embedded file using this command::

    python -m fitz embed-add -h
    usage: fitz embed-add [-h] [-password PASSWORD] [-output OUTPUT] -name NAME -path
                        PATH [-desc DESC]
                        input

    ---------------------------- add embedded file ----------------------------

    positional arguments:
    input                 PDF filename

    optional arguments:
    -h, --help            show this help message and exit
    -password PASSWORD    password
    -output OUTPUT        output PDF filename, incremental save if none
    -name NAME            name of new entry
    -path PATH            path to data for new entry
    -desc DESC            description of new entry

*"NAME"* **must not** already exist in the PDF. For details consult :meth:`Document.embfile_add`.

Updates
~~~~~~~~~~~~~~~~~~~~~~~
Update an existing embedded file using this command::

 python -m fitz embed-upd -h
 usage: fitz embed-upd [-h] -name NAME [-password PASSWORD] [-output OUTPUT]
 [-path PATH] [-filename FILENAME] [-ufilename UFILENAME]
 [-desc DESC]
 input

 --------------------------- update embedded file --------------------------

 positional arguments:
 input PDF filename

 optional arguments:
 -h, --help show this help message and exit
 -name NAME name of entry
 -password PASSWORD password
 -output OUTPUT Output PDF filename, incremental save if none
 -path PATH path to new data for entry
 -filename FILENAME new filename to store in entry
 -ufilename UFILENAME new unicode filename to store in entry
 -desc DESC new description to store in entry

 except '-name' all parameters are optional

Use this method to change meta-information of the file -- just omit the *"PATH"*. For details consult :meth:`Document.embfile_upd`.

Copying
~~~~~~~~~~~~~~~~~~~~~~~
Copy embedded files between PDFs::

    python -m fitz embed-copy -h
    usage: fitz embed-copy [-h] [-password PASSWORD] [-output OUTPUT] -source
                        SOURCE [-pwdsource PWDSOURCE]
                        [-name [NAME [NAME ...]]]
                        input

    --------------------- copy embedded files between PDFs --------------------

    positional arguments:
    input                 PDF to receive embedded files

    optional arguments:
    -h, --help            show this help message and exit
    -password PASSWORD    password of input
    -output OUTPUT        output PDF, incremental save to 'input' if omitted
    -source SOURCE        copy embedded files from here
    -pwdsource PWDSOURCE  password of 'source' PDF
    -name [NAME [NAME ...]]
                          restrict copy to these entries


Text Extraction 
----------------
* New in v1.18.16

Extract text from arbitrary supported documents **(not only PDF)** to a textfile. Currently, there are three output formatting modes available: simple, block sorting and reproduction of physical layout.

* **Simple** text extraction reproduces all text as it appears in the document pages -- no effort is made to rearrange in any particular reading order.
* **Block sorting** sorts text blocks (as identified by MuPDF) by ascending vertical, then horizontal coordinates. This should be sufficient to establish a "natural" reading order for basic pages of text.
* **Layout** strives to reproduce the original appearance of the input pages. You can expect results like this (produced by the command ``python -m fitz gettext -pages 1 demo1.pdf``):

.. image:: images/img-layout-text.*
    :scale: 60

.. note:: The "gettext" command offers a functionality similar to the CLI tool ``pdftotext`` by XPDF software, http://www.foolabs.com/xpdf/ -- this is especially true for "layout" mode, which combines that tool's ``-layout`` and ``-table`` options.



After each page of the output file, a formfeed character, ``hex(12)`` is written -- even if the input page has no text at all. This behavior can be controlled via options.

.. note:: For "layout" mode, **only horizontal, left-to-right, top-to bottom** text is supported, other text is ignored. In this mode, text is also ignored, if its fontsize is too small.

   "Simple" and "blocks" mode in contrast output **all text** for any text size or orientation.

Command::

    python -m fitz gettext -h
    usage: fitz gettext [-h] [-password PASSWORD] [-mode {simple,blocks,layout}] [-pages PAGES] [-noligatures]
                        [-convert-white] [-extra-spaces] [-noformfeed] [-skip-empty] [-output OUTPUT] [-grid GRID]
                        [-fontsize FONTSIZE]
                        input

    ----------------- extract text in various formatting modes ----------------

    positional arguments:
    input                 input document filename

    optional arguments:
    -h, --help            show this help message and exit
    -password PASSWORD    password for input document
    -mode {simple,blocks,layout}
                            mode: simple, block sort, or layout (default)
    -pages PAGES          select pages, format: 1,5-7,50-N
    -noligatures          expand ligature characters (default False)
    -convert-white        convert whitespace characters to space (default False)
    -extra-spaces         fill gaps with spaces (default False)
    -noformfeed           write linefeeds, no formfeeds (default False)
    -skip-empty           suppress pages with no text (default False)
    -output OUTPUT        store text in this file (default inputfilename.txt)
    -grid GRID            merge lines if closer than this (default 2)
    -fontsize FONTSIZE    only include text with a larger fontsize (default 3)

.. note:: Command options may be abbreviated as long as no ambiguities are introduced. So the following do the same:

    * ``... -output text.txt -noligatures -noformfeed -convert-white -grid 3 -extra-spaces ...``
    * ``... -o text.txt -nol -nof -c -g 3 -e ...``

  The output filename defaults to the input with its extension replaced by ``.txt``. As with other commands, you can select page ranges **(caution: 1-based!)** in ``mutool`` format, as indicated above.

* **mode:** (str) select a formatting mode -- default is "layout".
* **noligatures:** (bool) corresponds to **not** :data:`TEXT_PRESERVE_LIGATURES`. If specified, ligatures (present in advanced fonts: glyphs combining multiple characters like "fi") are split up into their components (i.e. "f", "i"). Default is passing them through.
* **convert-white:** corresponds to **not** :data:`TEXT_PRESERVE_WHITESPACE`. If specified, all white space characters (like tabs) are replaced with one or more spaces. Default is passing them through.
* **extra-spaces:**  (bool) corresponds to **not** :data:`TEXT_INHIBIT_SPACES`. If specified, large gaps between adjacent characters will be filled with one or more spaces. Default is off.
* **noformfeed:**  (bool) instead of ``hex(12)`` (formfeed), write linebreaks ``\n`` at end of output pages.
* **skip-empty:**  (bool) skip pages with no text.
* **grid:** lines with a vertical coordinate difference of no more than this value (in points) will be merged into the same output line. Only relevant for "layout" mode. **Use with care:** 3 or the default 2 should be adequate in most cases. If **too large**, lines that are *intended* to be different in the original may be merged and will result in garbled and / or incomplete output. If **too low**, artifact separate output lines may be generated for some spans in the input line, just because they are coded in a different font with slightly deviating properties.
* **fontsize:** include text with fontsize larger than this value only (default 3). Only relevant for "layout" option.


.. highlight:: python

.. include:: footer.rst







PyMuPDF-1.21.1/docs/outline.rst

.. include:: header.rst

.. _Outline:

================
Outline
================

*outline* (or "bookmark"), is a property of *Document*. If not *None*, it stands for the first outline item of the document. Its properties in turn define the characteristics of this item and also point to other outline items in "horizontal" or downward direction. The full tree of all outline items for e.g. a conventional table of contents (TOC) can be recovered by following these "pointers".

============================ ==================================================
**Method / Attribute**       **Short Description**
============================ ==================================================
:attr:`Outline.down`         next item downwards
:attr:`Outline.next`         next item same level
:attr:`Outline.page`         page number (0-based)
:attr:`Outline.title`        title
:attr:`Outline.uri`          string further specifying outline target
:attr:`Outline.is_external`  target outside document
:attr:`Outline.is_open`      whether sub-outlines are open or collapsed
:attr:`Outline.dest`         points to destination details object
============================ ==================================================

**Class API**

.. class:: Outline

   .. attribute:: down

      The next outline item on the next level down. Is *None* if the item has no kids.

      :type: :ref:`Outline`

   .. attribute:: next

      The next outline item at the same level as this item. Is *None* if this is the last one in its level.

      :type: `Outline`

   .. attribute:: page

      The page number (0-based) this bookmark points to.

      :type: int

   .. attribute:: title

      The item's title as a string or *None*.

      :type: str

   .. attribute:: is_open

      Indicator showing whether any sub-outlines should be expanded (*True*) or be collapsed (*False*). This information is interpreted by PDF reader software.

      :type: bool

   .. attribute:: is_external

      A bool specifying whether the target is outside (*True*) of the current document.

      :type: bool

   .. attribute:: uri

      A string specifying the link target. The meaning of this property should be evaluated in conjunction with *isExternal*. The value may be *None*, in which case *isExternal == False*. If *uri* starts with *file://*, *mailto:*, or an internet resource name, *isExternal* is *True*. In all other cases *isExternal == False* and *uri* points to an internal location. In case of PDF documents, this should either be *#nnnn* to indicate a 1-based (!) page number *nnnn*, or a named location. The format varies for other document types, e.g. *uri = '../FixedDoc.fdoc#PG_21_LNK_84'* for page number 21 (1-based) in an XPS document.

      :type: str

   .. attribute:: dest

      The link destination details object.

      :type: :ref:`linkDest`

.. include:: footer.rst







PyMuPDF-1.21.1/docs/page.rst

.. include:: header.rst

.. _Page:

================
Page
================

Class representing a document page. A page object is created by :meth:`Document.load_page` or, equivalently, via indexing the document like ``doc[n]`` - it has no independent constructor.

There is a parent-child relationship between a document and its pages. If the document is closed or deleted, all page objects (and their respective children, too) in existence will become unusable ("orphaned"): If a page property or method is being used, an exception is raised.

Several page methods have a :ref:`Document` counterpart for convenience. At the end of this chapter you will find a synopsis.

Modifying Pages
---------------
Changing page properties and adding or changing page content is available for PDF documents only.

In a nutshell, this is what you can do with PyMuPDF:

* Modify page rotation and the visible part ("cropbox") of the page.
* Insert images, other PDF pages, text and simple geometrical objects.
* Add annotations and form fields.

.. note::

   Methods require coordinates (points, rectangles) to put content in desired places. Please be aware that since v1.17.0 these coordinates **must always** be provided relative to the **unrotated** page. The reverse is also true: expcept :attr:`Page.rect`, resp. :meth:`Page.bound` (both *reflect* when the page is rotated), all coordinates returned by methods and attributes pertain to the unrotated page.

   So the returned value of e.g. :meth:`Page.get_image_bbox` will not change if you do a :meth:`Page.set_rotation`. The same is true for coordinates returned by :meth:`Page.get_text`, annotation rectangles, and so on. If you want to find out, where an object is located in **rotated coordinates**, multiply the coordinates with :attr:`Page.rotation_matrix`. There also is its inverse, :attr:`Page.derotation_matrix`, which you can use when interfacing with other readers, which may behave differently in this respect.

.. note::

   If you add or update annotations, links or form fields on the page and immediately afterwards need to work with them (i.e. **without leaving the page**), you should reload the page using :meth:`Document.reload_page` before referring to these new or updated items.

   Reloading the page is generally recommended -- although not strictly required in all cases. However, some annotation and widget types have extended features in PyMuPDF compared to MuPDF. More of these extensions may also be added in the future.

   Releoading the page ensures all your changes have been fully applied to PDF structures, so you can safely create Pixmaps or successfully iterate over annotations, links and form fields.

================================== =======================================================
**Method / Attribute**             **Short Description**
================================== =======================================================
:meth:`Page.add_caret_annot`       PDF only: add a caret annotation
:meth:`Page.add_circle_annot`      PDF only: add a circle annotation
:meth:`Page.add_file_annot`        PDF only: add a file attachment annotation
:meth:`Page.add_freetext_annot`    PDF only: add a text annotation
:meth:`Page.add_highlight_annot`   PDF only: add a "highlight" annotation
:meth:`Page.add_ink_annot`         PDF only: add an ink annotation
:meth:`Page.add_line_annot`        PDF only: add a line annotation
:meth:`Page.add_polygon_annot`     PDF only: add a polygon annotation
:meth:`Page.add_polyline_annot`    PDF only: add a multi-line annotation
:meth:`Page.add_rect_annot`        PDF only: add a rectangle annotation
:meth:`Page.add_redact_annot`      PDF only: add a redaction annotation
:meth:`Page.add_squiggly_annot`    PDF only: add a "squiggly" annotation
:meth:`Page.add_stamp_annot`       PDF only: add a "rubber stamp" annotation
:meth:`Page.add_strikeout_annot`   PDF only: add a "strike-out" annotation
:meth:`Page.add_text_annot`        PDF only: add a comment
:meth:`Page.add_underline_annot`   PDF only: add an "underline" annotation
:meth:`Page.add_widget`            PDF only: add a PDF Form field
:meth:`Page.annot_names`           PDF only: a list of annotation (and widget) names
:meth:`Page.annot_xrefs`           PDF only: a list of annotation (and widget) xrefs
:meth:`Page.annots`                return a generator over the annots on the page
:meth:`Page.apply_redactions`      PDF olny: process the redactions of the page
:meth:`Page.bound`                 rectangle of the page
:meth:`Page.delete_annot`          PDF only: delete an annotation
:meth:`Page.delete_image`          PDF only: delete an image
:meth:`Page.delete_link`           PDF only: delete a link
:meth:`Page.delete_widget`         PDF only: delete a widget / field
:meth:`Page.draw_bezier`           PDF only: draw a cubic Bezier curve
:meth:`Page.draw_circle`           PDF only: draw a circle
:meth:`Page.draw_curve`            PDF only: draw a special Bezier curve
:meth:`Page.draw_line`             PDF only: draw a line
:meth:`Page.draw_oval`             PDF only: draw an oval / ellipse
:meth:`Page.draw_polyline`         PDF only: connect a point sequence
:meth:`Page.draw_quad`             PDF only: draw a quad
:meth:`Page.draw_rect`             PDF only: draw a rectangle
:meth:`Page.draw_sector`           PDF only: draw a circular sector
:meth:`Page.draw_squiggle`         PDF only: draw a squiggly line
:meth:`Page.draw_zigzag`           PDF only: draw a zig-zagged line
:meth:`Page.get_drawings`          get list of the draw commands contained in the page
:meth:`Page.get_fonts`             PDF only: get list of referenced fonts
:meth:`Page.get_image_bbox`        PDF only: get bbox and matrix of embedded image
:meth:`Page.get_image_info`        get list of meta information for all used images
:meth:`Page.get_image_rects`       PDF only: improved version of :meth:`Page.get_image_bbox`
:meth:`Page.get_images`            PDF only: get list of referenced images
:meth:`Page.get_label`             PDF only: return the label of the page
:meth:`Page.get_links`             get all links
:meth:`Page.get_pixmap`            create a page image in raster format
:meth:`Page.get_svg_image`         create a page image in SVG format
:meth:`Page.get_text`              extract the page's text
:meth:`Page.get_textbox`           extract text contained in a rectangle
:meth:`Page.get_textpage_ocr`      create a TextPage with OCR for the page
:meth:`Page.get_textpage`          create a TextPage for the page
:meth:`Page.get_xobjects`          PDF only: get list of referenced xobjects
:meth:`Page.insert_font`           PDF only: insert a font for use by the page
:meth:`Page.insert_image`          PDF only: insert an image
:meth:`Page.insert_link`           PDF only: insert a link
:meth:`Page.insert_text`           PDF only: insert text
:meth:`Page.insert_textbox`        PDF only: insert a text box
:meth:`Page.links`                 return a generator of the links on the page
:meth:`Page.load_annot`            PDF only: load a specific annotation
:meth:`Page.load_widget`           PDF only: load a specific field
:meth:`Page.load_links`            return the first link on a page
:meth:`Page.new_shape`             PDF only: create a new :ref:`Shape`
:meth:`Page.replace_image`         PDF only: replace an image
:meth:`Page.search_for`            search for a string
:meth:`Page.set_artbox`            PDF only: modify ``/ArtBox``
:meth:`Page.set_bleedbox`          PDF only: modify ``/BleedBox``
:meth:`Page.set_cropbox`           PDF only: modify the :data:`cropbox` (visible page)
:meth:`Page.set_mediabox`          PDF only: modify ``/MediaBox``
:meth:`Page.set_rotation`          PDF only: set page rotation
:meth:`Page.set_trimbox`           PDF only: modify ``/TrimBox``
:meth:`Page.show_pdf_page`         PDF only: display PDF page image
:meth:`Page.update_link`           PDF only: modify a link
:meth:`Page.widgets`               return a generator over the fields on the page
:meth:`Page.write_text`            write one or more :ref:`Textwriter` objects
:attr:`Page.cropbox_position`      displacement of the :data:`cropbox`
:attr:`Page.cropbox`               the page's :data:`cropbox`
:attr:`Page.artbox`                the page's ``/ArtBox``
:attr:`Page.bleedbox`              the page's ``/BleedBox``
:attr:`Page.trimbox`               the page's ``/TrimBox``
:attr:`Page.derotation_matrix`     PDF only: get coordinates in unrotated page space
:attr:`Page.first_annot`           first :ref:`Annot` on the page
:attr:`Page.first_link`            first :ref:`Link` on the page
:attr:`Page.first_widget`          first widget (form field) on the page
:attr:`Page.mediabox_size`         bottom-right point of :data:`mediabox`
:attr:`Page.mediabox`              the page's :data:`mediabox`
:attr:`Page.number`                page number
:attr:`Page.parent`                owning document object
:attr:`Page.rect`                  rectangle of the page
:attr:`Page.rotation_matrix`       PDF only: get coordinates in rotated page space
:attr:`Page.rotation`              PDF only: page rotation
:attr:`Page.transformation_matrix` PDF only: translate between PDF and MuPDF space
:attr:`Page.xref`                  PDF only: page :data:`xref`
================================== =======================================================

**Class API**

.. class:: Page

   .. method:: bound()

      Determine the rectangle of the page. Same as property :attr:`Page.rect` below. For PDF documents this **usually** also coincides with :data:`mediabox` and :data:`cropbox`, but not always. For example, if the page is rotated, then this is reflected by this method -- the :attr:`Page.cropbox` however will not change.

      :rtype: :ref:`Rect`

   .. method:: add_caret_annot(point)

      * New in v1.16.0

      PDF only: Add a caret icon. A caret annotation is a visual symbol normally used to indicate the presence of text edits on the page.

      :arg point_like point: the top left point of a 20 x 20 rectangle containing the MuPDF-provided icon.

      :rtype: :ref:`Annot`
      :returns: the created annotation. Stroke color blue = (0, 0, 1), no fill color support.

      .. image:: images/img-caret-annot.*
         :scale: 70

   .. method:: add_text_annot(point, text, icon="Note")

      PDF only: Add a comment icon ("sticky note") with accompanying text. Only the icon is visible, the accompanying text is hidden and can be visualized by many PDF viewers by hovering the mouse over the symbol.

      :arg point_like point: the top left point of a 20 x 20 rectangle containing the MuPDF-provided "note" icon.

      :arg str text: the commentary text. This will be shown on double clicking or hovering over the icon. May contain any Latin characters.
      :arg str icon: *(new in v1.16.0)* choose one of "Note" (default), "Comment", "Help", "Insert", "Key", "NewParagraph", "Paragraph" as the visual symbol for the embodied text [#f4]_.

      :rtype: :ref:`Annot`
      :returns: the created annotation. Stroke color yellow = (1, 1, 0), no fill color support.

   .. index::
      pair: color; add_freetext_annot
      pair: fontname; add_freetext_annot
      pair: fontsize; add_freetext_annot
      pair: rect; add_freetext_annot
      pair: rotate; add_freetext_annot
      pair: align; add_freetext_annot
      pair: text_color; add_freetext_annot
      pair: border_color; add_freetext_annot
      pair: fill_color; add_freetext_annot

   .. method:: add_freetext_annot(rect, text, fontsize=12, fontname="helv", border_color=None, text_color=0, fill_color=1, rotate=0, align=TEXT_ALIGN_LEFT)

      * Changed in v1.19.6: add border color parameter

      PDF only: Add text in a given rectangle.

      :arg rect_like rect: the rectangle into which the text should be inserted. Text is automatically wrapped to a new line at box width. Lines not fitting into the box will be invisible.

      :arg str text: the text. *(New in v1.17.0)* May contain any mixture of Latin, Greek, Cyrillic, Chinese, Japanese and Korean characters. The respective required font is automatically determined.
      :arg float fontsize: the font size. Default is 12.
      :arg str fontname: the font name. Default is "Helv". Accepted alternatives are "Cour", "TiRo", "ZaDb" and "Symb". The name may be abbreviated to the first two characters, like "Co" for "Cour". Lower case is also accepted. *(Changed in v1.16.0)* Bold or italic variants of the fonts are **no longer accepted**. A user-contributed script provides a circumvention for this restriction -- see section *Using Buttons and JavaScript* in chapter :ref:`FAQ`. *(New in v1.17.0)* The actual font to use is now determined on a by-character level, and all required fonts (or sub-fonts) are automatically included. Therefore, you should rarely ever need to care about this parameter and let it default (except you insist on a serifed font for your non-CJK text parts).
      :arg sequence,float text_color: *(new in v1.16.0)* the text color. Default is black.

      :arg sequence,float fill_color: *(new in v1.16.0)* the fill color. Default is white.
      :arg sequence,float text_color: the text color. Default is black.
      :arg sequence,float border_color: *(new in v1.19.6)* the border color. Default is ``None``.
      :arg int align: *(new in v1.17.0)* text alignment, one of TEXT_ALIGN_LEFT, TEXT_ALIGN_CENTER, TEXT_ALIGN_RIGHT - justify is **not supported**.


      :arg int rotate: the text orientation. Accepted values are 0, 90, 270, invalid entries are set to zero.

      :rtype: :ref:`Annot`
      :returns: the created annotation. Color properties **can only be changed** using special parameters of :meth:`Annot.update`. There, you can also set a border color different from the text color.

   .. method:: add_file_annot(pos, buffer, filename, ufilename=None, desc=None, icon="PushPin")

      PDF only: Add a file attachment annotation with a "PushPin" icon at the specified location.

      :arg point_like pos: the top-left point of a 18x18 rectangle containing the MuPDF-provided "PushPin" icon.

      :arg bytes,bytearray,BytesIO buffer: the data to be stored (actual file content, any data, etc.).

         Changed in v1.14.13 *io.BytesIO* is now also supported.

      :arg str filename: the filename to associate with the data.
      :arg str ufilename: the optional PDF unicode version of filename. Defaults to filename.
      :arg str desc: an optional description of the file. Defaults to filename.
      :arg str icon: *(new in v1.16.0)* choose one of "PushPin" (default), "Graph", "Paperclip", "Tag" as the visual symbol for the attached data [#f4]_.

      :rtype: :ref:`Annot`
      :returns: the created annotation.  Stroke color yellow = (1, 1, 0), no fill color support.

   .. method:: add_ink_annot(list)

      PDF only: Add a "freehand" scribble annotation.

      :arg sequence list: a list of one or more lists, each containing :data:`point_like` items. Each item in these sublists is interpreted as a :ref:`Point` through which a connecting line is drawn. Separate sublists thus represent separate drawing lines.

      :rtype: :ref:`Annot`
      :returns: the created annotation in default appearance black =(0, 0, 0),line width 1. No fill color support.

   .. method:: add_line_annot(p1, p2)

      PDF only: Add a line annotation.

      :arg point_like p1: the starting point of the line.

      :arg point_like p2: the end point of the line.

      :rtype: :ref:`Annot`
      :returns: the created annotation. It is drawn with line (stroke) color red = (1, 0, 0) and line width 1. No fill color support. The **annot rectangle** is automatically created to contain both points, each one surrounded by a circle of radius 3 * line width to make room for any line end symbols.

   .. method:: add_rect_annot(rect)

   .. method:: add_circle_annot(rect)

      PDF only: Add a rectangle, resp. circle annotation.

      :arg rect_like rect: the rectangle in which the circle or rectangle is drawn, must be finite and not empty. If the rectangle is not equal-sided, an ellipse is drawn.

      :rtype: :ref:`Annot`
      :returns: the created annotation. It is drawn with line (stroke) color red = (1, 0, 0), line width 1, fill color is supported.

   .. method:: add_redact_annot(quad, text=None, fontname=None, fontsize=11, align=TEXT_ALIGN_LEFT, fill=(1, 1, 1), text_color=(0, 0, 0), cross_out=True)

      * New in v1.16.11
      
      PDF only: Add a redaction annotation. A redaction annotation identifies content to be removed from the document. Adding such an annotation is the first of two steps. It makes visible what will be removed in the subsequent step, :meth:`Page.apply_redactions`.

      :arg quad_like,rect_like quad: specifies the (rectangular) area to be removed which is always equal to the annotation rectangle. This may be a :data:`rect_like` or :data:`quad_like` object. If a quad is specified, then the envelopping rectangle is taken.

      :arg str text: *(New in v1.16.12)* text to be placed in the rectangle after applying the redaction (and thus removing old content).

      :arg str fontname: *(New in v1.16.12)* the font to use when *text* is given, otherwise ignored. The same rules apply as for :meth:`Page.insert_textbox` -- which is the method :meth:`Page.apply_redactions` internally invokes. The replacement text will be **vertically centered**, if this is one of the CJK or :ref:`Base-14-Fonts`.

         .. note::

            * For an **existing** font of the page, use its reference name as *fontname* (this is *item[4]* of its entry in :meth:`Page.get_fonts`).
            * For a **new, non-builtin** font, proceed as follows::

               page.insert_text(point,  # anywhere, but outside all redaction rectangles
                   "somthing",  # some non-empty string
                   fontname="newname",  # new, unused reference name
                   fontfile="...",  # desired font file
                   render_mode=3,  # makes the text invisible
               )
               page.add_redact_annot(..., fontname="newname")

      :arg float fontsize: *(New in v1.16.12)* the fontsize to use for the replacing text. If the text is too large to fit, several insertion attempts will be made, gradually reducing the fontsize to no less than 4. If then the text will still not fit, no text insertion will take place at all.

      :arg int align: *(New in v1.16.12)* the horizontal alignment for the replacing text. See :meth:`insert_textbox` for available values. The vertical alignment is (approximately) centered if a PDF built-in font is used (CJK or :ref:`Base-14-Fonts`).

      :arg sequence fill: *(New in v1.16.12)* the fill color of the rectangle **after applying** the redaction. The default is *white = (1, 1, 1)*, which is also taken if *None* is specified. *(Changed in v1.16.13)* To suppress a fill color alltogether, specify *False*. In this cases the rectangle remains transparent.

      :arg sequence text_color: *(New in v1.16.12)* the color of the replacing text. Default is *black = (0, 0, 0)*.

      :arg bool cross_out: *(new in v1.17.2)* add two diagonal lines to the annotation rectangle.

      :rtype: :ref:`Annot`
      :returns: the created annotation. *(Changed in v1.17.2)* Its standard appearance looks like a red rectangle (no fill color), optionally showing two diagonal lines. Colors, line width, dashing, opacity and blend mode can now be set and applied via :meth:`Annot.update` like with other annotations.

      .. image:: images/img-redact.*

   .. method:: add_polyline_annot(points)

   .. method:: add_polygon_annot(points)

      PDF only: Add an annotation consisting of lines which connect the given points. A **Polygon's** first and last points are automatically connected, which does not happen for a **PolyLine**. The **rectangle** is automatically created as the smallest rectangle containing the points, each one surrounded by a circle of radius 3 (= 3 * line width). The following shows a 'PolyLine' that has been modified with colors and line ends.

      :arg list points: a list of :data:`point_like` objects.

      :rtype: :ref:`Annot`
      :returns: the created annotation. It is drawn with line color black, line width 1 no fill color but fill color support. Use methods of :ref:`Annot` to make any changes to achieve something like this:

      .. image:: images/img-polyline.*
         :scale: 70

   .. method:: add_underline_annot(quads=None, start=None, stop=None, clip=None)

   .. method:: add_strikeout_annot(quads=None, start=None, stop=None, clip=None)

   .. method:: add_squiggly_annot(quads=None, start=None, stop=None, clip=None)

   .. method:: add_highlight_annot(quads=None, start=None, stop=None, clip=None)

      PDF only: These annotations are normally used for **marking text** which has previously been somehow located (for example via :meth:`Page.search_for`). But this is not required: you are free to "mark" just anything.

      Standard (stroke only -- no fill color support) colors are chosen per annotation type: **yellow** for highlighting, **red** for striking out, **green** for underlining, and **magenta** for wavy underlining.

      All these four methods convert the arguments into a list of :ref:`Quad` objects. The **annotation** rectangle is then calculated to envelop all these quadrilaterals.

      .. note::

        :meth:`search_for` delivers a list of either :ref:`Rect` or :ref:`Quad` objects. Such a list can be directly used as an argument for these annotation types and will deliver **one common annotation** for all occurrences of the search string::

           >>> # prefer quads=True in text searching for annotations!
           >>> quads = page.search_for("pymupdf", quads=True)
           >>> page.add_highlight_annot(quads)

      .. note::
        Obviously, text marker annotations need to know what is the top, the bottom, the left, and the right side of the area(s) to be marked. If the arguments are quads, this information is given by the sequence of the quad points. In contrast, a rectangle delivers much less information -- this is illustrated by the fact, that 4! = 24 different quads can be constructed with the four corners of a reactangle.

        Therefore, we **strongly recommend** to use the ``quads`` option for text searches, to ensure correct annotations. A similar consideration applies to marking **text spans** extracted with the "dict" / "rawdict" options of :meth:`Page.get_text`. For more details on how to compute quadrilaterals in this case, see section "How to Mark Non-horizontal Text" of :ref:`FAQ`.

      :arg rect_like,quad_like,list,tuple quads: *(Changed in v1.14.20)* the location(s) -- rectangle(s) or quad(s) -- to be marked. A list or tuple must consist of :data:`rect_like` or :data:`quad_like` items (or even a mixture of either). Every item must be finite, convex and not empty (as applicable). *(Changed in v1.16.14)* **Set this parameter to** *None* if you want to use the following arguments.
      :arg point_like start: *(New in v1.16.14)* start text marking at this point. Defaults to the top-left point of *clip*.
      :arg point_like stop: *(New in v1.16.14)* stop text marking at this point. Defaults to the bottom-right point of *clip*.
      :arg rect_like clip: *(New in v1.16.14)* only consider text lines intersecting this area. Defaults to the page rectangle.

      :rtype: :ref:`Annot` or *(changed in v1.16.14)* *None*
      :returns: the created annotation. *(Changed in v1.16.14)* If *quads* is an empty list, **no annotation** is created.

      .. note:: Starting with v1.16.14 you can use parameters *start*, *stop* and *clip* to highlight consecutive lines between the points *start* and *stop*. Make use of *clip* to further reduce the selected line bboxes and thus deal with e.g. multi-column pages. The following multi-line highlight on a page with three text columnbs was created by specifying the two red points and setting clip accordingly.

      .. image:: images/img-markers.*
         :scale: 100

   .. method:: add_stamp_annot(rect, stamp=0)

      PDF only: Add a "rubber stamp" like annotation to e.g. indicate the document's intended use ("DRAFT", "CONFIDENTIAL", etc.).

      :arg rect_like rect: rectangle where to place the annotation.

      :arg int stamp: id number of the stamp text. For available stamps see :ref:`StampIcons`.

      .. note::

         * The stamp's text and its border line will automatically be sized and be put horizontally and vertically centered in the given rectangle. :attr:`Annot.rect` is automatically calculated to fit the given **width** and will usually be smaller than this parameter.
         * The font chosen is "Times Bold" and the text will be upper case.
         * The appearance can be changed using :meth:`Annot.set_opacity` and by setting the "stroke" color (no "fill" color supported).
         * This can be used to create watermark images: on a temporary PDF page create a stamp annotation with a low opacity value, make a pixmap from it with *alpha=True* (and potentially also rotate it), discard the temporary PDF page and use the pixmap with :meth:`insert_image` for your target PDF.


      .. image :: images/img-stampannot.*
         :scale: 80

   .. method:: add_widget(widget)

      PDF only: Add a PDF Form field ("widget") to a page. This also **turns the PDF into a Form PDF**. Because of the large amount of different options available for widgets, we have developed a new class :ref:`Widget`, which contains the possible PDF field attributes. It must be used for both, form field creation and updates.

      :arg widget: a :ref:`Widget` object which must have been created upfront.
      :type widget: :ref:`Widget`

      :returns: a widget annotation.

   .. method:: delete_annot(annot)

      * Changed in v1.16.6: The removal will now include any bound 'Popup' or response annotations and related objects.

      PDF only: Delete annotation from the page and return the next one.

      :arg annot: the annotation to be deleted.
      :type annot: :ref:`Annot`

      :rtype: :ref:`Annot`
      :returns: the annotation following the deleted one. Please remember that physical removal requires saving to a new file with garbage > 0.

   .. method:: delete_widget(widget)

      * New in v1.18.4

      PDF only: Delete field from the page and return the next one.

      :arg widget: the widget to be deleted.
      :type widget: :ref:`Widget`

      :rtype: :ref:`Widget`
      :returns: the widget following the deleted one. Please remember that physical removal requires saving to a new file with garbage > 0.

   .. method:: apply_redactions(images=PDF_REDACT_IMAGE_PIXELS)

      * New in v1.16.11
      * Changed in v1.16.12: The previous *mark* parameter is gone. Instead, the respective rectangles are filled with the individual *fill* color of each redaction annotation. If a *text* was given in the annotation, then :meth:`insert_textbox` is invoked to insert it, using parameters provided with the redaction.
      * Changed in v1.18.0: added option for handling images that overlap redaction areas.

      PDF only: Remove all **text content** contained in any redaction rectangle.

      **This method applies and then deletes all redactions from the page.**

      :arg int images: How to redact overlapping images. The default (2) blanks out overlapping pixels. *PDF_REDACT_IMAGE_NONE* (0) ignores, and *PDF_REDACT_IMAGE_REMOVE* (1) completely removes all overlapping images.


      :returns: *True* if at least one redaction annotation has been processed, *False* otherwise.

      .. note::
         * Text contained in a redaction rectangle will be **physically** removed from the page (assuming :meth:`Document.save` with a suitable garbage option) and will no longer appear in e.g. text extractions or anywhere else. All redaction annotations will also be removed. Other annotations are unaffected.

         * All overlapping links will be removed. If the rectangle of the link was covering text, then only the overlapping part of the text is being removed. Similar applies to images covered by link rectangles.

         * *(Changed in v1.18.0)* The overlapping parts of **images** will be blanked-out for default option ``PDF_REDACT_IMAGE_PIXELS``. Option 0 does not touch any images and 1 will remove any image with an overlap. Please be aware that there is a bug for option *PDF_REDACT_IMAGE_PIXELS = 2*: transparent images will be incorrectly handled!

         * For option ``images=PDF_REDACT_IMAGE_REMOVE`` only this page's **references to the images** are removed - not necessarily the images themselves. Images are completely removed from the file only, if no longer referenced at all (assuming suitable garbage collection options).

         * For option ``images=PDF_REDACT_IMAGE_PIXELS`` a new image of format PNG is created, which the page will use in place of the original one. The original image is not deleted or replaced as part of this process, so other pages may still show the original. In addition, the new, modified PNG image currently is **stored uncompressed**. Do keep these aspects in mind when choosing the right garbage collection method and compression options during save.

         * **Text removal** is done by character: A character is removed if its bbox has a **non-empty overlap** with a redaction rectangle *(changed in MuPDF v1.17)*. Depending on the font properties and / or the chosen line height, deletion may occur for undesired text parts. Using :meth:`Tools.set_small_glyph_heights` with a *True* argument before text search may help to prevent this.

         * Redactions are a simple way to replace single words in a PDF, or to just physically remove them. Locate the word "secret" using some text extraction or search method and insert a redaction using "xxxxxx" as replacement text for each occurrence.

            - Be wary if the replacement is longer than the original -- this may lead to an awkward appearance, line breaks or no new text at all.

            - For a number of reasons, the new text may not exactly be positioned on the same line like the old one -- especially true if the replacement font was not one of CJK or :ref:`Base-14-Fonts`.

   .. method:: delete_link(linkdict)

      PDF only: Delete the specified link from the page. The parameter must be an **original item** of :meth:`get_links()` (see below). The reason for this is the dictionary's *"xref"* key, which identifies the PDF object to be deleted.

      :arg dict linkdict: the link to be deleted.

   .. method:: insert_link(linkdict)

      PDF only: Insert a new link on this page. The parameter must be a dictionary of format as provided by :meth:`get_links()` (see below).

      :arg dict linkdict: the link to be inserted.

   .. method:: update_link(linkdict)

      PDF only: Modify the specified link. The parameter must be a (modified) **original item** of :meth:`get_links()` (see below). The reason for this is the dictionary's *"xref"* key, which identifies the PDF object to be changed.

      :arg dict linkdict: the link to be modified.

      .. warning:: If updating / inserting a URI link (``"kind": LINK_URI``), please make sure to start the value for the ``"uri"`` key with a disambiguating string like ``"http://"``, ``"https://"``, ``"file://"``, ``"ftp://"``, ``"mailto:"``, etc. Otherwise -- depending on your browser or other "consumer" software -- unexpected default assumptions may lead to unwanted behaviours.


   .. method:: get_label()

      * New in v1.18.6

      PDF only: Return the label for the page.

      :rtype: str

      :returns: the label string like "vii" for Roman numbering or "" if not defined.



   .. method:: get_links()

      Retrieves **all** links of a page.

      :rtype: list
      :returns: A list of dictionaries. For a description of the dictionary entries see below. Always use this or the :meth:`Page.links` method if you intend to make changes to the links of a page.

   .. method:: links(kinds=None)

      * New in v1.16.4

      Return a generator over the page's links. The results equal the entries of :meth:`Page.get_links`.

      :arg sequence kinds: a sequence of integers to down-select to one or more link kinds. Default is all links. Example: *kinds=(fitz.LINK_GOTO,)* will only return internal links.

      :rtype: generator
      :returns: an entry of :meth:`Page.get_links()` for each iteration.

   .. method:: annots(types=None)

      * New in v1.16.4

      Return a generator over the page's annotations.

      :arg sequence types: a sequence of integers to down-select to one or more annotation types. Default is all annotations. Example: *types=(fitz.PDF_ANNOT_FREETEXT, fitz.PDF_ANNOT_TEXT)* will only return 'FreeText' and 'Text' annotations.

      :rtype: generator
      :returns: an :ref:`Annot` for each iteration.

         .. caution::
              You **cannot safely update annotations** from within this generator. This is because most annotation updates require reloading the page via ``page = doc.reload_page(page)``. To circumvent this restriction, make a list of annotations xref numbers first and then iterate over these numbers::

               In [4]: xrefs = [annot.xref for annot in page.annots(types=[...])]
               In [5]: for xref in xrefs:
                  ...:     annot = page.load_annot(xref)
                  ...:     annot.update()
                  ...:     page = doc.reload_page(page)
               In [6]:

   .. method:: widgets(types=None)

      * New in v1.16.4

      Return a generator over the page's form fields.

      :arg sequence types: a sequence of integers to down-select to one or more widget types. Default is all form fields. Example: ``types=(fitz.PDF_WIDGET_TYPE_TEXT,)`` will only return 'Text' fields.

      :rtype: generator
      :returns: a :ref:`Widget` for each iteration.


   .. method:: write_text(rect=None, writers=None, overlay=True, color=None, opacity=None, keep_proportion=True, rotate=0, oc=0)

      * New in v1.16.18

      PDF only: Write the text of one or more :ref:`Textwriter` ojects to the page.

      :arg rect_like rect: where to place the text. If omitted, the rectangle union of the text writers is used.
      :arg sequence writers: a non-empty tuple / list of :ref:`TextWriter` objects or a single :ref:`TextWriter`.
      :arg float opacity: set transparency, overwrites resp. value in the text writers.
      :arg sequ color: set the text color, overwrites  resp. value in the text writers.
      :arg bool overlay: put the text in foreground or background.
      :arg bool keep_proportion: maintain the aspect ratio.
      :arg float rotate: rotate the text by an arbitrary angle.
      :arg int oc: *(new in v1.18.4)* the :data:`xref` of an :data:`OCG` or :data:`OCMD`.

      .. note:: Parameters *overlay, keep_proportion, rotate* and *oc* have the same meaning as in :meth:`Page.show_pdf_page`.


   .. index::
      pair: border_width; insert_text
      pair: color; insert_text
      pair: encoding; insert_text
      pair: fill; insert_text
      pair: fontfile; insert_text
      pair: fontname; insert_text
      pair: fontsize; insert_text
      pair: morph; insert_text
      pair: overlay; insert_text
      pair: render_mode; insert_text
      pair: rotate; insert_text
      pair: stroke_opacity; insert_text
      pair: fill_opacity; insert_text
      pair: oc; insert_text

   .. method:: insert_text(point, text, fontsize=11, fontname="helv", fontfile=None, idx=0, color=None, fill=None, render_mode=0, border_width=1, encoding=TEXT_ENCODING_LATIN, rotate=0, morph=None, stroke_opacity=1, fill_opacity=1, overlay=True, oc=0)

      * Changed in v1.18.4

      PDF only: Insert text starting at :data:`point_like` *point*. See :meth:`Shape.insert_text`.

   .. index::
      pair: align; insert_textbox
      pair: border_width; insert_textbox
      pair: color; insert_textbox
      pair: encoding; insert_textbox
      pair: expandtabs; insert_textbox
      pair: fill; insert_textbox
      pair: fontfile; insert_textbox
      pair: fontname; insert_textbox
      pair: fontsize; insert_textbox
      pair: morph; insert_textbox
      pair: overlay; insert_textbox
      pair: render_mode; insert_textbox
      pair: rotate; insert_textbox
      pair: stroke_opacity; insert_textbox
      pair: fill_opacity; insert_textbox
      pair: oc; insert_textbox

   .. method:: insert_textbox(rect, buffer, fontsize=11, fontname="helv", fontfile=None, idx=0, color=None, fill=None, render_mode=0, border_width=1, encoding=TEXT_ENCODING_LATIN, expandtabs=8, align=TEXT_ALIGN_LEFT, charwidths=None, rotate=0, morph=None, stroke_opacity=1, fill_opacity=1, oc=0, overlay=True)

      * Changed in v1.18.4

      PDF only: Insert text into the specified :data:`rect_like` *rect*. See :meth:`Shape.insert_textbox`.

   .. index::
      pair: closePath; draw_line
      pair: color; draw_line
      pair: dashes; draw_line
      pair: fill; draw_line
      pair: lineCap; draw_line
      pair: lineJoin; draw_line
      pair: lineJoin; draw_line
      pair: morph; draw_line
      pair: overlay; draw_line
      pair: width; draw_line
      pair: stroke_opacity; draw_line
      pair: fill_opacity; draw_line
      pair: oc; draw_line

   .. method:: draw_line(p1, p2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw a line from *p1* to *p2* (:data:`point_like` \s). See :meth:`Shape.draw_line`.

   .. index::
      pair: breadth; draw_zigzag
      pair: closePath; draw_zigzag
      pair: color; draw_zigzag
      pair: dashes; draw_zigzag
      pair: fill; draw_zigzag
      pair: lineCap; draw_zigzag
      pair: lineJoin; draw_zigzag
      pair: morph; draw_zigzag
      pair: overlay; draw_zigzag
      pair: width; draw_zigzag
      pair: stroke_opacity; draw_zigzag
      pair: fill_opacity; draw_zigzag
      pair: oc; draw_zigzag

   .. method:: draw_zigzag(p1, p2, breadth=2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw a zigzag line from *p1* to *p2* (:data:`point_like` \s). See :meth:`Shape.draw_zigzag`.

   .. index::
      pair: breadth; draw_squiggle
      pair: closePath; draw_squiggle
      pair: color; draw_squiggle
      pair: dashes; draw_squiggle
      pair: fill; draw_squiggle
      pair: lineCap; draw_squiggle
      pair: lineJoin; draw_squiggle
      pair: morph; draw_squiggle
      pair: overlay; draw_squiggle
      pair: width; draw_squiggle
      pair: stroke_opacity; draw_squiggle
      pair: fill_opacity; draw_squiggle
      pair: oc; draw_squiggle

   .. method:: draw_squiggle(p1, p2, breadth=2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw a squiggly (wavy, undulated) line from *p1* to *p2* (:data:`point_like` \s). See :meth:`Shape.draw_squiggle`.

   .. index::
      pair: closePath; draw_circle
      pair: color; draw_circle
      pair: dashes; draw_circle
      pair: fill; draw_circle
      pair: lineCap; draw_circle
      pair: lineJoin; draw_circle
      pair: morph; draw_circle
      pair: overlay; draw_circle
      pair: width; draw_circle
      pair: stroke_opacity; draw_circle
      pair: fill_opacity; draw_circle
      pair: oc; draw_circle

   .. method:: draw_circle(center, radius, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw a circle around *center* (:data:`point_like`) with a radius of *radius*. See :meth:`Shape.draw_circle`.

   .. index::
      pair: closePath; draw_oval
      pair: color; draw_oval
      pair: dashes; draw_oval
      pair: fill; draw_oval
      pair: lineCap; draw_oval
      pair: lineJoin; draw_oval
      pair: morph; draw_oval
      pair: overlay; draw_oval
      pair: width; draw_oval
      pair: stroke_opacity; draw_oval
      pair: fill_opacity; draw_oval
      pair: oc; draw_oval

   .. method:: draw_oval(quad, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw an oval (ellipse) within the given :data:`rect_like` or :data:`quad_like`. See :meth:`Shape.draw_oval`.

   .. index::
      pair: closePath; draw_sector
      pair: color; draw_sector
      pair: dashes; draw_sector
      pair: fill; draw_sector
      pair: fullSector; draw_sector
      pair: lineCap; draw_sector
      pair: lineJoin; draw_sector
      pair: morph; draw_sector
      pair: overlay; draw_sector
      pair: width; draw_sector
      pair: stroke_opacity; draw_sector
      pair: fill_opacity; draw_sector
      pair: oc; draw_sector

   .. method:: draw_sector(center, point, angle, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, fullSector=True, overlay=True, closePath=False, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw a circular sector, optionally connecting the arc to the circle's center (like a piece of pie). See :meth:`Shape.draw_sector`.

   .. index::
      pair: closePath; draw_polyline
      pair: color; draw_polyline
      pair: dashes; draw_polyline
      pair: fill; draw_polyline
      pair: lineCap; draw_polyline
      pair: lineJoin; draw_polyline
      pair: morph; draw_polyline
      pair: overlay; draw_polyline
      pair: width; draw_polyline
      pair: stroke_opacity; draw_polyline
      pair: fill_opacity; draw_polyline
      pair: oc; draw_polyline

   .. method:: draw_polyline(points, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, closePath=False, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw several connected lines defined by a sequence of :data:`point_like` \s. See :meth:`Shape.draw_polyline`.


   .. index::
      pair: closePath; draw_bezier
      pair: color; draw_bezier
      pair: dashes; draw_bezier
      pair: fill; draw_bezier
      pair: lineCap; draw_bezier
      pair: lineJoin; draw_bezier
      pair: morph; draw_bezier
      pair: overlay; draw_bezier
      pair: width; draw_bezier
      pair: stroke_opacity; draw_bezier
      pair: fill_opacity; draw_bezier
      pair: oc; draw_bezier

   .. method:: draw_bezier(p1, p2, p3, p4, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, closePath=False, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw a cubic BÃ©zier curve from *p1* to *p4* with the control points *p2* and *p3* (all are :data:`point_like` \s). See :meth:`Shape.draw_bezier`.

   .. index::
      pair: closePath; draw_curve
      pair: color; draw_curve
      pair: dashes; draw_curve
      pair: fill; draw_curve
      pair: lineCap; draw_curve
      pair: lineJoin; draw_curve
      pair: morph; draw_curve
      pair: overlay; draw_curve
      pair: width; draw_curve
      pair: stroke_opacity; draw_curve
      pair: fill_opacity; draw_curve
      pair: oc; draw_curve

   .. method:: draw_curve(p1, p2, p3, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, closePath=False, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: This is a special case of *draw_bezier()*. See :meth:`Shape.draw_curve`.

   .. index::
      pair: closePath; draw_rect
      pair: color; draw_rect
      pair: dashes; draw_rect
      pair: fill; draw_rect
      pair: lineCap; draw_rect
      pair: lineJoin; draw_rect
      pair: morph; draw_rect
      pair: overlay; draw_rect
      pair: width; draw_rect
      pair: stroke_opacity; draw_rect
      pair: fill_opacity; draw_rect
      pair: oc; draw_rect

   .. method:: draw_rect(rect, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw a rectangle. See :meth:`Shape.draw_rect`.

      .. note:: An efficient way to background-color a PDF page with the old Python paper color is

          >>> col = fitz.utils.getColor("py_color")
          >>> page.draw_rect(page.rect, color=col, fill=col, overlay=False)

   .. index::
      pair: closePath; draw_quad
      pair: color; draw_quad
      pair: dashes; draw_quad
      pair: fill; draw_quad
      pair: lineCap; draw_quad
      pair: lineJoin; draw_quad
      pair: morph; draw_quad
      pair: overlay; draw_quad
      pair: width; draw_quad
      pair: stroke_opacity; draw_quad
      pair: fill_opacity; draw_quad
      pair: oc; draw_quad

   .. method:: draw_quad(quad, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

      * Changed in v1.18.4

      PDF only: Draw a quadrilateral. See :meth:`Shape.draw_quad`.


   .. index::
      pair: encoding; insert_font
      pair: fontbuffer; insert_font
      pair: fontfile; insert_font
      pair: fontname; insert_font
      pair: set_simple; insert_font

   .. method:: insert_font(fontname="helv", fontfile=None, fontbuffer=None, set_simple=False, encoding=TEXT_ENCODING_LATIN)

      PDF only: Add a new font to be used by text output methods and return its :data:`xref`. If not already present in the file, the font definition will be added. Supported are the built-in :data:`Base14_Fonts` and the CJK fonts via **"reserved"** fontnames. Fonts can also be provided as a file path or a memory area containing the image of a font file.

      :arg str fontname: The name by which this font shall be referenced when outputting text on this page. In general, you have a "free" choice here (but consult the :ref:`AdobeManual`, page 16, section 7.3.5 for a formal description of building legal PDF names). However, if it matches one of the :data:`Base14_Fonts` or one of the CJK fonts, *fontfile* and *fontbuffer* **are ignored**.

      In other words, you cannot insert a font via *fontfile* / *fontbuffer* and also give it a reserved *fontname*.

      .. note:: A reserved fontname can be specified in any mixture of upper or lower case and still match the right built-in font definition: fontnames "helv", "Helv", "HELV", "Helvetica", etc. all lead to the same font definition "Helvetica". But from a :ref:`Page` perspective, these are **different references**. You can exploit this fact when using different *encoding* variants (Latin, Greek, Cyrillic) of the same font on a page.

      :arg str fontfile: a path to a font file. If used, *fontname* must be **different from all reserved names**.

      :arg bytes/bytearray fontbuffer: the memory image of a font file. If used, *fontname* must be **different from all reserved names**. This parameter would typically be used with :attr:`Font.buffer` for fonts supported / available via :ref:`Font`.

      :arg int set_simple: applicable for *fontfile* / *fontbuffer* cases only: enforce treatment as a "simple" font, i.e. one that only uses character codes up to 255.

      :arg int encoding: applicable for the "Helvetica", "Courier" and "Times" sets of :data:`Base14_Fonts` only. Select one of the available encodings Latin (0), Cyrillic (2) or Greek (1). Only use the default (0 = Latin) for "Symbol" and "ZapfDingBats".

      :rytpe: int
      :returns: the :data:`xref` of the installed font.

      .. note:: Built-in fonts will not lead to the inclusion of a font file. So the resulting PDF file will remain small. However, your PDF viewer software is responsible for generating an appropriate appearance -- and there **exist** differences on whether or how each one of them does this. This is especially true for the CJK fonts. But also Symbol and ZapfDingbats are incorrectly handled in some cases. Following are the **Font Names** and their correspondingly installed **Base Font** names:

         **Base-14 Fonts** [#f1]_

         ============= ============================ =========================================
         **Font Name** **Installed Base Font**      **Comments**
         ============= ============================ =========================================
         helv          Helvetica                    normal
         heit          Helvetica-Oblique            italic
         hebo          Helvetica-Bold               bold
         hebi          Helvetica-BoldOblique        bold-italic
         cour          Courier                      normal
         coit          Courier-Oblique              italic
         cobo          Courier-Bold                 bold
         cobi          Courier-BoldOblique          bold-italic
         tiro          Times-Roman                  normal
         tiit          Times-Italic                 italic
         tibo          Times-Bold                   bold
         tibi          Times-BoldItalic             bold-italic
         symb          Symbol                       [#f3]_
         zadb          ZapfDingbats                 [#f3]_
         ============= ============================ =========================================

         **CJK Fonts** [#f2]_ (China, Japan, Korea)

         ============= ============================ =========================================
         **Font Name** **Installed Base Font**      **Comments**
         ============= ============================ =========================================
         china-s       Heiti                        simplified Chinese
         china-ss      Song                         simplified Chinese (serif)
         china-t       Fangti                       traditional Chinese
         china-ts      Ming                         traditional Chinese (serif)
         japan         Gothic                       Japanese
         japan-s       Mincho                       Japanese (serif)
         korea         Dotum                        Korean
         korea-s       Batang                       Korean (serif)
         ============= ============================ =========================================

   .. index::
      pair: filename; insert_image
      pair: keep_proportion; insert_image
      pair: overlay; insert_image
      pair: pixmap; insert_image
      pair: rotate; insert_image
      pair: stream; insert_image
      pair: mask; insert_image
      pair: oc; insert_image
      pair: xref; insert_image

   .. method:: insert_image(rect, filename=None, pixmap=None, stream=None, mask=None, rotate=0, alpha=-1, oc=0, xref=0, keep_proportion=True, overlay=True)

      PDF only: Put an image inside the given rectangle. The image may already exist in the PDF or be taken from a pixmap, a file, or a memory area.

         * Changed in v1.14.1: By default, the image keeps its aspect ratio.
         * Changed in v1.14.13: The image is now always placed **centered** in the rectangle, i.e. the centers of image and rectangle are equal.
         * Changed in v1.17.6: Insertion rectangle no longer needs to have a non-empty intersection with the page's :attr:`Page.cropbox` [#f5]_.
         * Changed in v1.18.13: Allow providing the image as the xref of an existing one.

      :arg rect_like rect: where to put the image. Must be finite and not empty.
      :arg str filename: name of an image file (all formats supported by MuPDF -- see :ref:`ImageFiles`).
      :arg bytes,bytearray,io.BytesIO stream: image in memory (all formats supported by MuPDF -- see :ref:`ImageFiles`).

         Changed in v1.14.13: *io.BytesIO* is now also supported.

      :arg pixmap: a pixmap containing the image.
      :type pixmap: :ref:`Pixmap`

      :arg bytes,bytearray,io.BytesIO mask: *(new in version v1.18.1)* image in memory -- to be used as image mask (alpha values) for the base image. When specified, the base image must be provided as a filename or a stream -- and must not be an image that already has a mask.

      :arg int xref: *(New in v1.18.13)* the :data:`xref` of an image already present in the PDF. If given, parameters ``filename``, ``pixmap``, ``stream``, ``alpha`` and ``mask`` are ignored. The page will simply receive a reference to the exsting image.

      :arg int alpha: *(Changed in v1.19.3)* deprecated. No longer needed -- ignored when given.

      :arg int rotate: *(new in version v1.14.11)* rotate the image. Must be an integer multiple of 90 degrees. If you need a rotation by an arbitrary angle, consider converting the image to a PDF (:meth:`Document.convert_to_pdf`) first and then use :meth:`Page.show_pdf_page` instead.

      :arg int oc: *(new in v1.18.3)* (:data:`xref`) make image visibility dependent on this :data:`OCG` or :data:`OCMD`. Ignored after the first of multiple insertions. The property is stored with the generated PDF image object and therefore controls the image's visibility throughout the PDF.
      :arg bool keep_proportion: *(new in version v1.14.11)* maintain the aspect ratio of the image.

      For a description of *overlay* see :ref:`CommonParms`.

      *Changed in v1.18.13:* Return xref of stored image.

      :rtype: int
      :returns: The xref of the embedded image. This can be used as the ``xref`` argument for very significant performance boosts, if the image is inserted again.

      This example puts the same image on every page of a document::

         >>> doc = fitz.open(...)
         >>> rect = fitz.Rect(0, 0, 50, 50)       # put thumbnail in upper left corner
         >>> img = open("some.jpg", "rb").read()  # an image file
         >>> img_xref = 0                         # first execution embeds the image
         >>> for page in doc:
               img_xref = page.insert_image(rect, stream=img,
                          xref=img_xref,  2nd time reuses existing image
                   )
         >>> doc.save(...)

      .. note::

         1. The method detects multiple insertions of the same image (like in above example) and will store its data only on the first execution. This is even true (although less performant), if using the default ``xref=0``.
         
         2. The method cannot detect if the same image had already been part of the file before opening it.

         3. You can use this method to provide a background or foreground image for the page, like a copyright or a watermark. Please remember, that watermarks require a transparent image if put in foreground ...

         4. The image may be inserted uncompressed, e.g. if a *Pixmap* is used or if the image has an alpha channel. Therefore, consider using *deflate=True* when saving the file. In addition, there exist effective ways to control the image size -- even if transparency comes into play. Have a look at `this <https://pymupdf.readthedocs.io/en/latest/faq.html#how-to-add-images-to-a-pdf-page>`_ section of the documentation.

         5. The image is stored in the PDF in its original quality. This may be much better than what you ever need for your display. Consider **decreasing the image size** before insertion -- e.g. by using the pixmap option and then shrinking it or scaling it down (see :ref:`Pixmap` chapter). The PIL method *Image.thumbnail()* can also be used for that purpose. The file size savings can be very significant.

         6. Another efficient way to display the same image on multiple pages is another method: :meth:`show_pdf_page`. Consult :meth:`Document.convert_to_pdf` for how to obtain intermediary PDFs usable for that method. Demo script `fitz-logo.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/fitz-logo.py>`_ implements a fairly complete approach.

   
   .. index::
      pair: filename; replace_image
      pair: pixmap; replace_image
      pair: stream; replace_image
      pair: xref; replace_image

   .. method:: replace_image(xref, filename=None, pixmap=None, stream=None)

      * New in v1.21.0

      Replace the image at xref with another one.

      :arg int xref: the :data:`xref` of the image.
      :arg filename: the filename of the new image.
      :arg pixmap: the :ref:`Pixmap` of the new image.
      :arg stream: the memory area containing the new image.

      Arguments ``filename``, ``pixmap``, ``stream`` have the same meaning as in :meth:`Page.insert_image`, especially exactly one of these must be provided.

      This is a **global replacement:** the new image will also be shown wherever the old one has been displayed throughout the file.

      This method mainly exists for technical purposes. Typical uses include replacing large images by smaller versions, like a lower resolution, graylevel instead of colored, etc., or changing transparency.
   
   
   .. index::
      pair: xref; delete_image

   .. method:: delete_image(xref)

      * New in v1.21.0

      Delete the image at xref. This is slightly misleading: actually the image is being replaced with a small transparent :ref:`Pixmap` using above :meth:`Page.replace_image`. The visible effect however is equivalent.

      :arg int xref: the :data:`xref` of the image.

      This is a **global replacement:** the image will disappear wherever the old one has been displayed throughout the file.
   
   
   .. index::
      pair: blocks; Page.get_text
      pair: dict; Page.get_text
      pair: clip; Page.get_text
      pair: flags; Page.get_text
      pair: html; Page.get_text
      pair: json; Page.get_text
      pair: rawdict; Page.get_text
      pair: text; Page.get_text
      pair: words; Page.get_text
      pair: xhtml; Page.get_text
      pair: xml; Page.get_text
      pair: textpage; Page.get_text
      pair: sort; Page.get_text

   .. method:: get_text(opt,*, clip=None, flags=None, textpage=None, sort=False)

      * Changed in v1.19.0: added ``textpage`` parameter
      * Changed in v1.19.1: added ``sort`` parameter
      * Changed in v1.19.6: added new constants for defining default flags per method.

      Retrieves the content of a page in a variety of formats. This is a wrapper for :ref:`TextPage` methods by choosing the output option as follows:

      * "text" -- :meth:`TextPage.extractTEXT`, default
      * "blocks" -- :meth:`TextPage.extractBLOCKS`
      * "words" -- :meth:`TextPage.extractWORDS`
      * "html" -- :meth:`TextPage.extractHTML`
      * "xhtml" -- :meth:`TextPage.extractXHTML`
      * "xml" -- :meth:`TextPage.extractXML`
      * "dict" -- :meth:`TextPage.extractDICT`
      * "json" -- :meth:`TextPage.extractJSON`
      * "rawdict" -- :meth:`TextPage.extractRAWDICT`
      * "rawjson" -- :meth:`TextPage.extractRAWJSON`

      :arg str opt: A string indicating the requested format, one of the above. A mixture of upper and lower case is supported.

         Changed in v1.16.3 Values "words" and "blocks" are now also accepted.

      :arg rect-like clip: *(new in v1.17.7)* restrict extracted text to this rectangle. If None, the full page is taken. Has **no effect** for options "html", "xhtml" and "xml".

      :arg int flags: *(new in v1.16.2)* indicator bits to control whether to include images or how text should be handled with respect to white spaces and :data:`ligatures`. See :ref:`TextPreserve` for available indicators and :ref:`text_extraction_flags` for default settings.

      :arg textpage: (new in v1.19.0) use a previously created :ref:`TextPage`. This reduces execution time **very significantly:** by more than 50% and up to 95%, depending on the extraction option. If specified, the 'flags' and 'clip' arguments are ignored, because they are textpage-only properties. If omitted, a new, temporary textpage will be created.

      :arg bool sort: (new in v1.19.1) sort the output by vertical, then horizontal coordinates. In many cases, this should suffice to generate a "natural" reading order. Has no effect on (X)HTML and XML. Output option **"words"** sorts by ``(y1, x0)`` of the words' bboxes. Similar is true for "blocks", "dict", "json", "rawdict", "rawjson": they all are sorted by ``(y1, x0)`` of the resp. block bbox. If specified for "text", then internally "blocks" is used.

      :rtype: *str, list, dict*
      :returns: The page's content as a string, a list or a dictionary. Refer to the corresponding :ref:`TextPage` method for details.

      .. note::

        1. You can use this method as a **document conversion tool** from any supported document type (not only PDF!) to one of TEXT, HTML, XHTML or XML documents.
        2. The inclusion of text via the *clip* parameter is decided on a by-character level: **(changed in v1.18.2)** a character becomes part of the output, if its bbox is contained in *clip*. This **deviates** from the algorithm used in redaction annotations: a character will be **removed if its bbox intersects** any redaction annotation.

   .. index::
      pair: rect; get_textbox
      pair: textpage; get_textbox

   .. method:: get_textbox(rect, textpage=None)

      * New in v1.17.7
      * Changed in v1.19.0: add ``textpage`` parameter

      Retrieve the text contained in a rectangle.

      :arg rect-like rect: rect-like.
      :arg textpage: a :ref:`TextPage` to use. If omitted, a new, temporary textpage will be created.

      :returns: a string with interspersed linebreaks where necessary. Changed in v1.19.0: It is based on dedicated code. A tyical use is checking the result of :meth:`Page.search_for`:

        >>> rl = page.search_for("currency:")
        >>> page.get_textbox(rl[0])
        'Currency:'
        >>>


   .. index::
      pair: flags; get_textpage
      pair: clip; get_textpage

   .. method:: get_textpage(clip=None, flags=3)

      * New in v1.16.5
      * Changed in v1.17.7: introduced ``clip`` parameter.

      Create a :ref:`TextPage` for the page.

      :arg in flags: indicator bits controlling the content available for subsequent text extractions and searches -- see the parameter of :meth:`Page.get_text`.

      :arg rect-like clip: *(new in v1.17.7)* restrict extracted text to this area.

      :returns: :ref:`TextPage`


   .. index::
      pair: flags; get_textpage_ocr
      pair: language; get_textpage_ocr
      pair: dpi; get_textpage_ocr
      pair: full; get_textpage_ocr

   .. method:: get_textpage_ocr(flags=3, language="eng", dpi=72, full=False)

      * New in v.1.19.0
      * Changed in v1.19.1: support full and partial OCRing a page.

      Create a :ref:`TextPage` for the page that includes OCRed text. MuPDF will invoke Tesseract-OCR if this method is used. Otherwise this is a normal :ref:`TextPage` object.

      :arg in flags: indicator bits controlling the content available for subsequent test extractions and searches -- see the parameter of :meth:`Page.get_text`.
      :arg str language: the expected language(s). Use "+"-separated values if multiple languages are expected, "eng+spa" for English and Spanish.
      :arg int dpi: the desired resolution in dots per inch. Influences recognition quality (and execution time).
      :arg bool full: whether to OCR the full page, or just the displayed images.

      .. note:: This method does **not** support a clip parameter -- OCR will always happen for the complete page rectangle.

      :returns:
      
         a :ref:`TextPage`. Excution may be significantly longer than :meth:`Page.get_textpage`.

         For a full page OCR, **all text** will have the font "GlyphlessFont" from Tesseract. In case of partial OCR, normal text will keep its properties, and only text coming from images will have the GlyphlessFont.

         .. note::
         
            **OCRed text is only available** to PyMuPDF's text extractions and searches if their ``textpage`` parameter specifies the output of this method.

            `This <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/jupyter-notebooks/partial-ocr.ipynb>`_ Jupyter notebook walks through an example for using OCR textpages.


   .. method:: get_drawings()

      * New in v1.18.0
      * Changed in v1.18.17
      * Changed in v1.19.0: add "seqno" key, remove "clippings" key
      * Changed in v1.19.1: "color" / "fill" keys now always are either are RGB tuples or ``None``. This resolves issues caused by exotic colorspaces.
      * Changed in v1.19.2: add an indicator for the *"orientation"* of the area covered by an "re" item.

      Return the draw commands of the page. These are instructions which draw lines, rectangles, quadruples or curves, including properties like colors, transparency, line width and dashing, etc.

      :returns: a list of dictionaries. Each dictionary item contains one or more single draw commands belonging together: they have the same properties (colors, dashing, etc.). This is called a **"path"** in PDF, but the method **works for all document types**.

      The path dictionary has been designed to be compatible with class :ref:`Shape`. There are the following keys:

            ============== ============================================================================
            Key            Value
            ============== ============================================================================
            closePath      Same as the parameter in :ref:`Shape`.
            color          Stroke color (see :ref:`Shape`).
            dashes         Dashed line specification (see :ref:`Shape`).
            even_odd       Fill colors of area overlaps -- same as the parameter in :ref:`Shape`.
            fill           Fill color  (see :ref:`Shape`).
            items          List of draw commands: lines, rectangles, quads or curves.
            lineCap        Number 3-tuple, use its max value on output with :ref:`Shape`.
            lineJoin       Same as the parameter in :ref:`Shape`.
            fill_opacity   (new in v1.18.17) fill color transparency (see :ref:`Shape`).
            stroke_opacity (new in v1.18.17) stroke color transparency  (see :ref:`Shape`).
            rect           Page area covered by this path. Information only.
            seqno          (new in v1.19.0) command number when building page appearance
            type           (new in v1.18.17) type of this path.
            width          Stroke line width  (see :ref:`Shape`).
            ============== ============================================================================

            * *(Changed in v1.18.17)* Key ``"opacity"`` has been replaced by the new keys ``"fill_opacity"`` and ``"stroke_opacity"``. This is now compatible with the corresponding parameters of :meth:`Shape.finish`.

            Key ``"type"`` takes one of the following values:

            * **"f"** -- this is a *fill-only* path. Only key-values relevant for this operation have a meaning, irrelevant ones have been added with default values for backward compatibility: ``"color"``, ``"lineCap"``, ``"lineJoin"``, ``"width"``, ``"closePath"``, ``"dashes"`` and should be ignored.
            * **"s"** -- this is a *stroke-only* path. Similar to previous, key ``"fill"`` is present with value ``None``.
            * **"fs"** -- this is a path performing combined *fill* and *stroke* operations.

            Each item in ``path["items"]`` is one of the following:

            * ``("l", p1, p2)`` - a line from p1 to p2 (:ref:`Point` objects).
            * ``("c", p1, p2, p3, p4)`` - cubic BÃ©zier curve **from p1 to p4** (p2 and p3 are the control points). All objects are of type :ref:`Point`.
            * ``("re", rect, orientation)`` - a :ref:`Rect`. *Changed in v1.18.17:* Multiple rectangles within the same path are now detected. *Changed in v1.19.2:* added integer ``orientation`` which is 1 resp. -1 indicating whether the enclosed area is rotated left (1 = anti-clockwise), or resp. right [#f7]_.
            * ``("qu", quad)`` - a :ref:`Quad`. *New in v1.18.17, changed in v1.19.2:* 3 or 4 consecutive lines are detected to actually represent a :ref:`Quad`.

            .. note:: Starting with v1.19.2, quads and rectangles are more reliably recognized as such.

            Using class :ref:`Shape`, you should be able to recreate the original drawings on a separate (PDF) page with high fidelity under normal, not too sophisticated circumstances. Please see the following comments on restrictions. A coding draft can be found in section "Extractings Drawings" of chapter :ref:`FAQ`.

      .. note::
           * The visual appearance of a page may have been designed in a very complex way. For example in PDF:
           
              - Layers (Optional Content Groups) can control the visibility of items (drawings and other objects) depending on whatever condition: for example showing or suppressing a watermark depending on the current output device (screen, paper, ...), or option-based inclusion / omission of details in a technical document, and so on. Effects like these are ignored by the method -- it will **unconditionally return all paths**.
              - Clipping paths are ignored by the method.
              - Shadings (gradient colorization effects) are not supported.
           
           * When a viewer software builds a page's appearance, it will sequentially walk through a list of commands (in PDF, those are stored in the ``/Contents`` object), containing instructions like "draw this path, show this image, paint this text, etc.". The key ``"seqno"`` (new in v1.19.0) is the command number, that draws this path. You can use it to determine if objects cover other objects on the page. For example, the rectangle of a "fill" path will cover objects drawn earlier -- i.e. having a smaller ``"seqno"`` -- if the rectangles overlap. Please also see :meth:`Page.get_bboxlog` and :meth:`Page.get_texttrace`.

      .. note:: The method is now based on the output of :meth:`Page.get_cdrawings` -- which is much faster, but requires somewhat more attention processing its output.


   .. method:: get_cdrawings()

      * New in v1.18.17
      * Changed in v1.19.0: removed "clippings" key, added "seqno" key.
      * Changed in v1.19.1: always generate RGB color tuples.

      Extract the drawing paths on the page. Apart from following technical differences, functionally equivalent to :meth:`Page.get_drawings`, but much faster (factor 3 or more):

      * Every path type only contains the relevant keys, e.g. a stroke path has no ``"fill"`` color key. See comment in method :meth:`Page.get_drawings`.
      * Coordinates are given as :data:`point_like`, :data:`rect_like` and :data:`quad_like` **tuples** -- not as :ref:`Point`, :ref:`Rect`, :ref:`Quad` objects.

      .. note:: If performance is a concern (e.g. because your page has tens of thousands of drawings), consider using this method: Compared to versions earlier than 1.18.17, you should see much shorter response times. We have seen pages that required 2 seconds then, now only need 200 ms with this method.


   .. method:: get_fonts(full=False)

      PDF only: Return a list of fonts referenced by the page. Wrapper for :meth:`Document.get_page_fonts`.


   .. method:: get_images(full=False)

      PDF only: Return a list of images referenced by the page. Wrapper for :meth:`Document.get_page_images`.


   .. index::
      pair: hashes; get_image_info
      pair: xrefs; get_image_info

   .. method:: get_image_info(hashes=False, xrefs=False)

      * *New in v1.18.11*
      * *Changed in v1.18.13:* added image MD5 hashcode computation and :data:`xref` search.

      Return a list of meta information dictionaries for all images shown on the page. This works for all document types. Technically, this is a subset of the dictionary output of :meth:`Page.get_text`: the image binary content and any text on the page are ignored.

      :arg bool hashes: *New in v1.18.13:* Compute the MD5 hashcode for each encountered image, which allows identifying image duplicates. This adds the key ``"digest"`` to the output, whose value is a 16 byte ``bytes`` object.

      :arg bool xrefs: *New in v1.18.13:* **PDF only.** Try to find the :data:`xref` for each image. Implies ``hashes=True``. Adds the ``"xref"`` key to the dictionary. If not found, the value is 0, which means, the image is either "inline" or otherwise undetectable. Please note that this option has an extended response time, because the MD5 hashcode will be computed at least two times for each image with an xref.

      :rtype: list[dict]
      :returns: A list of dictionaries. This includes information for **exactly those** images, that are shown on the page -- including *"inline images"*. In contrast to images included in :meth:`Page.get_text`, image **binary content** is not loaded, which drastically reduces memory usage. The dictionary layout is similar to that of image blocks in ``page.get_text("dict")``.

         =============== ===============================================================
         **Key**             **Value**
         =============== ===============================================================
         number          block number *(int)*
         bbox            image bbox on page, :data:`rect_like`
         width           original image width *(int)*
         height          original image height *(int)*
         cs-name         colorspace name *(str)*
         colorspace      colorspace.n *(int)*
         xres            resolution in x-direction *(int)*
         yres            resolution in y-direction *(int)*
         bpc             bits per component *(int)*
         size            storage occupied by image *(int)*
         digest          MD5 hashcode *(bytes)*, if *hashes* is true
         xref            image :data:`xref` or 0, if *xrefs* is true
         transform       matrix transforming image rect to bbox, :data:`matrix_like`
         =============== ===============================================================

         Multiple occurrences of the same image are always reported. You can detect duplicates by comparing their ``digest`` values.


   .. method:: get_xobjects()

      PDF only: Return a list of Form XObjects referenced by the page. Wrapper for :meth:`Document.get_page_xobjects`.


   .. index::
      pair: transform; get_image_rects

   .. method:: get_image_rects(item, transform=False)

      *New in v1.18.13*

      PDF only: Return boundary boxes and transformation matrices of an embedded image. This is an improved version of :meth:`Page.get_image_bbox` with the following differences:

      * There is no restriction on **how** the image is invoked (by the page or one of its Form XObjects). The result is always complete and correct.
      * The result is a list of :ref:`Rect` or (:ref:`Rect`, :ref:`Matrix`) objects -- depending on *transform*. Each list item represents one location of the image on the page. Multiple occurrences might not be detectable by :meth:`Page.get_image_bbox`.
      * The method invokes :meth:`Page.get_image_info` with ``xrefs=True`` and therefore has a noticeably longer response time than :meth:`Page.get_image_bbox`.

      :arg list,str,int item: an item of the list :meth:`Page.get_images`, or the reference **name** entry of such an item (item[7]), or the image :data:`xref`.
      :arg bool transform: also return the matrix used to transform the image rectangle to the bbox on the page. If true, then tuples ``(bbox, matrix)`` are returned.

      :rtype: list
      :returns: Boundary boxes and respective transformation matrices for each image occurrence on the page. If the item is not on the page, an empty list ``[]`` is returned.


   .. index::
      pair: transform; get_image_bbox

   .. method:: get_image_bbox(item, transform=False)

      * Changed in v1.18.11: return image transformation matrix

      PDF only: Return boundary box and transformation matrix of an embedded image.

      :arg list,str item: an item of the list :meth:`Page.get_images` with *full=True* specified, or the reference **name** entry of such an item, which is item[-3] (or item[7] respectively).
      :arg bool transform: *(new in v1.18.11)* also return the matrix used to transform the image rectangle to the bbox on the page. Default is just the bbox. If true, then a tuple ``(bbox, matrix)`` is returned.

      :rtype: :ref:`Rect` or (:ref:`Rect`, :ref:`Matrix`)
      :returns: the boundary box of the image -- optionally also its transformation matrix.

         * *(Changed in v1.16.7)* -- If the page in fact does not display this image, an infinite rectangle is returned now. In previous versions, an exception was raised. Formally invalid parameters still raise exceptions.
         * *(Changed in v1.17.0)* -- Only images referenced directly by the page are considered. This means that images occurring in embedded PDF pages are ignored and an exception is raised.
         * *(Changed in v1.18.5)* -- Removed the restriction introduced in v1.17.0: any item of the page's image list may be specified.
         * *(Changed in v1.18.11)* -- Partially re-instated a restriction: only those images are considered, that are either directly referenced by the page or by a Form XObject directly referenced by the page.
         * *(Changed in v1.18.11)* -- Optionally also return the transformation matrix together with the bbox as the tuple ``(bbox, transform)``.

      .. note::

         1. Be aware that :meth:`Page.get_images` may contain "dead" entries i.e. images, which the page **does not display**. This is no error, but intended by the PDF creator. No exception will be raised in this case, but an infinite rectangle is returned. You can avoid this from happening by executing :meth:`Page.clean_contents` before this method.
         2. The image's "transformation matrix" is defined as the matrix, for which the expression ``bbox / transform == fitz.Rect(0, 0, 1, 1)`` is true, lookup details here: :ref:`ImageTransformation`.

   .. index::
      pair: matrix; get_svg_image

   .. method:: get_svg_image(matrix=fitz.Identity, text_as_path=True)

      Create an SVG image from the page. Only full page images are currently supported.

     :arg matrix_like matrix: a matrix, default is :ref:`Identity`.
     :arg bool text_as_path: *(new in v1.17.5)* -- controls how text is represented. *True* outputs each character as a series of elementary draw commands, which leads to a more precise text display in browsers, but a **very much larger** output for text-oriented pages. Display quality for *False* relies on the presence of the referenced fonts on the current system. For missing fonts, the internet browser will fall back to some default -- leading to unpleasant appearances. Choose *False* if you want to parse the text of the SVG.

     :returns: a UTF-8 encoded string that contains the image. Because SVG has XML syntax it can be saved in a text file, the standard extension is ``.svg``.

         .. note:: In case of a PDF, you can circumvent the "full page image only" restriction by modifying the page's CropBox before using the method.

   .. index::
      pair: alpha; get_pixmap
      pair: annots; get_pixmap
      pair: clip; get_pixmap
      pair: colorspace; get_pixmap
      pair: matrix; get_pixmap
      pair: dpi; get_pixmap

   .. method:: get_pixmap(*, matrix=fitz.Identity, dpi=None, colorspace=fitz.csRGB, clip=None, alpha=False, annots=True)

     * Changed in v1.19.2: added support of parameter dpi.

     Create a pixmap from the page. This is probably the most often used method to create a :ref:`Pixmap`.

     All parameters are *keyword-only.*

     :arg matrix_like matrix: default is :ref:`Identity`.
     :arg int dpi: (new in v1.19.2) desired resolution in x and y direction. If not ``None``, the ``"matrix"`` parameter is ignored.
     :arg colorspace: The desired colorspace, one of "GRAY", "RGB" or "CMYK" (case insensitive). Or specify a :ref:`Colorspace`, ie. one of the predefined ones: :data:`csGRAY`, :data:`csRGB` or :data:`csCMYK`.
     :type colorspace: str or :ref:`Colorspace`
     :arg irect_like clip: restrict rendering to the intersection of this area with the page's rectangle.
     :arg bool alpha: whether to add an alpha channel. Always accept the default *False* if you do not really need transparency. This will save a lot of memory (25% in case of RGB ... and pixmaps are typically **large**!), and also processing time. Also note an **important difference** in how the image will be rendered: with *True* the pixmap's samples area will be pre-cleared with *0x00*. This results in **transparent** areas where the page is empty. With *False* the pixmap's samples will be pre-cleared with *0xff*. This results in **white** where the page has nothing to show.

      Changed in v1.14.17
         The default alpha value is now *False*.

         * Generated with *alpha=True*

         .. image:: images/img-alpha-1.*


         * Generated with *alpha=False*

         .. image:: images/img-alpha-0.*

     :arg bool annots: *(new in vrsion 1.16.0)* whether to also render annotations or to suppress them. You can create pixmaps for annotations separately.

     :rtype: :ref:`Pixmap`
     :returns: Pixmap of the page. For fine-controlling the generated image, the by far most important parameter is **matrix**. E.g. you can increase or decrease the image resolution by using **Matrix(xzoom, yzoom)**. If zoom > 1, you will get a higher resolution: zoom=2 will double the number of pixels in that direction and thus generate a 2 times larger image. Non-positive values will flip horizontally, resp. vertically. Similarly, matrices also let you rotate or shear, and you can combine effects via e.g. matrix multiplication. See the :ref:`Matrix` section to learn more.

     .. note::
         The method will respect any page rotation and will not exceed the intersection of ``clip`` and :attr:`Page.cropbox`. If you need the page's mediabox (and if this is a different rectangle), you can use a snippet like the following to achieve this::

            In [1]: import fitz
            In [2]: doc=fitz.open("demo1.pdf")
            In [3]: page=doc[0]
            In [4]: rotation = page.rotation
            In [5]: cropbox = page.cropbox
            In [6]: page.set_cropbox(page.mediabox)
            In [7]: page.set_rotation(0)
            In [8]: pix = page.get_pixmap()
            In [9]: page.set_cropbox(cropbox)
            In [10]: if rotation != 0:
               ...:     page.set_rotation(rotation)
               ...:
            In [11]:



   .. method:: annot_names()

      * New in v1.16.10

      PDF only: return a list of the names of annotations, widgets and links. Technically, these are the */NM* values of every PDF object found in the page's */Annots*  array.

      :rtype: list


   .. method:: annot_xrefs()

      * New in v1.17.1

      PDF only: return a list of the :data`xref` numbers of annotations, widgets and links -- technically of all entries found in the page's */Annots*  array.

      :rtype: list
      :returns: a list of items *(xref, type)* where type is the annotation type. Use the type to tell apart links, fields and annotations, see :ref:`AnnotationTypes`.


   .. method:: load_annot(ident)

      * New in v1.17.1

      PDF only: return the annotation identified by *ident*. This may be its unique name (PDF ``/NM`` key), or its :data:`xref`.

      :arg str,int ident: the annotation name or xref.

      :rtype: :ref:`Annot`
      :returns: the annotation or *None*.

      .. note:: Methods :meth:`Page.annot_names`, :meth:`Page.annot_xrefs` provide lists of names or xrefs, respectively, from where an item may be picked and loaded via this method.

   .. method:: load_widget(xref)

      * New in v1.19.6

      PDF only: return the field identified by *xref*.

      :arg int xref: the field's xref.

      :rtype: :ref:`Widget`
      :returns: the field or *None*.

      .. note:: This is similar to the analogous method :meth:`Page.load_annot` -- except that here only the xref is supported as identifier.

   .. method:: load_links()

      Return the first link on a page. Synonym of property :attr:`first_link`.

      :rtype: :ref:`Link`
      :returns: first link on the page (or *None*).

   .. index::
      pair: rotate; set_rotation

   .. method:: set_rotation(rotate)

      PDF only: Set the rotation of the page.

      :arg int rotate: An integer specifying the required rotation in degrees. Must be an integer multiple of 90. Values will be converted to one of 0, 90, 180, 270.

   .. index::
      pair: clip; show_pdf_page
      pair: keep_proportion; show_pdf_page
      pair: overlay; show_pdf_page
      pair: rotate; show_pdf_page

   .. method:: show_pdf_page(rect, docsrc, pno=0, keep_proportion=True, overlay=True, oc=0, rotate=0, clip=None)

      * Changed in v1.14.11: Parameter *reuse_xref* has been deprecated. Position the source rectangle centered in target rectangle. Any rotation angle is now supported.
      * Changed in v1.18.3: New parameter ``oc``.

      PDF only: Display a page of another PDF as a **vector image** (otherwise similar to :meth:`Page.insert_image`). This is a multi-purpose method. For example, you can use it to

      * create "n-up" versions of existing PDF files, combining several input pages into **one output page** (see example `4-up.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/4-up.py>`_),
      * create "posterized" PDF files, i.e. every input page is split up in parts which each create a separate output page (see `posterize.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/posterize.py>`_),
      * include PDF-based vector images like company logos, watermarks, etc., see `svg-logo.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/svg-logo.py>`_, which puts an SVG-based logo on each page (requires additional packages to deal with SVG-to-PDF conversions).

      :arg rect_like rect: where to place the image on current page. Must be finite and its intersection with the page must not be empty.
      :arg docsrc: source PDF document containing the page. Must be a different document object, but may be the same file.
      :type docsrc: :ref:`Document`

      :arg int pno: page number (0-based, in ``-â�� < pno < docsrc.page_count``) to be shown.

      :arg bool keep_proportion: whether to maintain the width-height-ratio (default). If false, all 4 corners are always positioned on the border of the target rectangle -- whatever the rotation value. In general, this will deliver distorted and /or non-rectangular images.

      :arg bool overlay: put image in foreground (default) or background.

      :arg int oc: *(new in v1.18.3)* (:data:`xref`) make visibility dependent on this OCG (optional content group).
      :arg float rotate: *(new in v1.14.10)* show the source rectangle rotated by some angle. *Changed in v1.14.11:* Any angle is now supported.

      :arg rect_like clip: choose which part of the source page to show. Default is the full page, else must be finite and its intersection with the source page must not be empty.

      .. note:: In contrast to method :meth:`Document.insert_pdf`, this method does not copy annotations, widgets or links, so these are not included in the target [#f6]_. But all its **other resources (text, images, fonts, etc.)** will be imported into the current PDF. They will therefore appear in text extractions and in :meth:`get_fonts` and :meth:`get_images` lists -- even if they are not contained in the visible area given by *clip*.

      Example: Show the same source page, rotated by 90 and by -90 degrees:

      >>> doc = fitz.open()  # new empty PDF
      >>> page=doc.new_page()  # new page in A4 format
      >>>
      >>> # upper half page
      >>> r1 = fitz.Rect(0, 0, page.rect.width, page.rect.height/2)
      >>>
      >>> # lower half page
      >>> r2 = r1 + (0, page.rect.height/2, 0, page.rect.height/2)
      >>>
      >>> src = fitz.open("PyMuPDF.pdf")  # show page 0 of this
      >>>
      >>> page.show_pdf_page(r1, src, 0, rotate=90)
      >>> page.show_pdf_page(r2, src, 0, rotate=-90)
      >>> doc.save("show.pdf")

      .. image:: images/img-showpdfpage.*
         :scale: 70

   .. method:: new_shape()

      PDF only: Create a new :ref:`Shape` object for the page.

      :rtype: :ref:`Shape`
      :returns: a new :ref:`Shape` to use for compound drawings. See description there.


   .. index::
      pair: flags; search_for
      pair: quads; search_for
      pair: clip; search_for
      pair: textpage; search_for

   .. method:: search_for(needle, *, clip=clip, quads=False, flags=TEXT_DEHYPHENATE | TEXT_PRESERVE_WHITESPACE | TEXT_PRESERVE_LIGATURES, textpage=None)

      * Changed in v1.18.2: added ``clip`` parameter. Remove ``hit_max`` parameter. Add default "dehyphenate".
      * Changed in v1.19.0: added ``textpage`` parameter.

      Search for *needle* on a page. Wrapper for :meth:`TextPage.search`.

      :arg str needle: Text to search for. May contain spaces. Upper / lower case is ignored, but only works for ASCII characters: For example, "COMPÃ�TENCES" will not be found if needle is "compÃ©tences" -- "compÃ�tences" however will. Similar is true for German umlauts and the like.
      :arg rect_like clip: *(New in v1.18.2)* only search within this area.
      :arg bool quads: Return object type :ref:`Quad` instead of :ref:`Rect`.
      :arg int flags: Control the data extracted by the underlying :ref:`TextPage`. By default, ligatures and white spaces are kept, and hyphenation [#f8]_ is detected.
      :arg textpage: (new in v1.19.0) use a previously created :ref:`TextPage`. This reduces execution time **significantly.** If specified, the 'flags' and 'clip' arguments are ignored. If omitted, a temporary textpage will be created.

      :rtype: list

      :returns:

        A list of :ref:`Rect` or  :ref:`Quad` objects, each of which  -- **normally!** -- surrounds one occurrence of *needle*. **However:** if parts of *needle* occur on more than one line, then a separate item is generated for each these parts. So, if ``needle = "search string"``, two rectangles may be generated.

        **Changes in v1.18.2:**

          * There no longer is a limit on the list length (removal of the ``hit_max`` parameter).
          * If a word is **hyphenated** at a line break, it will still be found. E.g. the needle "method" will be found even if hyphenated as "meth-od" at a line break, and two rectangles will be returned: one surrounding "meth" (without the hyphen) and another one surrounding "od".

      .. note:: The method supports multi-line text marker annotations: you can use the full returned list as **one single** parameter for creating the annotation.

      .. caution::

         * There is a tricky aspect: the search logic regards **contiguous multiple occurrences** of *needle* as one: assuming *needle* is "abc", and the page contains "abc" and "abcabc", then only **two** rectangles will be returned, one for "abc", and a second one for "abcabc".
         * You can always use :meth:`Page.get_textbox` to check what text actually is being surrounded by each rectangle.

      .. note:: A feature repeatedly asked for is supporting **regular expressions** when specifying the ``"needle"`` string: **There is no way to do this.** If you need something in that direction, first extract text in the desired format and then subselect the result by matching with some regex pattern. Here is an example for matching words::

         >>> pattern = re.compile(r"...")  # the regex pattern
         >>> words = page.get_text("words")  # extract words on page
         >>> matches = [w for w in words if pattern.search(w[4])]

         The ``matches`` list will contain the words matching the given pattern. In the same way you can select ``span["text"]`` from the output of ``page.get_text("dict")``.


   .. method:: set_mediabox(r)

      * New in v1.16.13
      * Changed in v1.19.4: remove all other rectangle definitions.

      PDF only: Change the physical page dimension by setting :data:`mediabox` in the page's object definition.

      :arg rect-like r: the new :data:`mediabox` value.

      .. note:: This method also removes the page's other (optional) rectangles (:data:`cropbox`, ArtBox, TrimBox and Bleedbox) to prevent inconsistent situations. This will cause those to assume their default values.

      .. caution:: For non-empty pages this may have undesired effects, because the location of all content depends on this value and will therefore change position or even disappear.


   .. method:: set_cropbox(r)

      PDF only: change the visible part of the page.

      :arg rect_like r: the new visible area of the page. Note that this **must** be specified in **unrotated coordinates**, not empty, nor infinite and be completely contained in the :attr:`Page.mediabox`.

      After execution **(if the page is not rotated)**, :attr:`Page.rect` will equal this rectangle, but be shifted to the top-left position (0, 0) if necessary. Example session:

      >>> page = doc.new_page()
      >>> page.rect
      fitz.Rect(0.0, 0.0, 595.0, 842.0)
      >>>
      >>> page.cropbox  # cropbox and mediabox still equal
      fitz.Rect(0.0, 0.0, 595.0, 842.0)
      >>>
      >>> # now set cropbox to a part of the page
      >>> page.set_cropbox(fitz.Rect(100, 100, 400, 400))
      >>> # this will also change the "rect" property:
      >>> page.rect
      fitz.Rect(0.0, 0.0, 300.0, 300.0)
      >>>
      >>> # but mediabox remains unaffected
      >>> page.mediabox
      fitz.Rect(0.0, 0.0, 595.0, 842.0)
      >>>
      >>> # revert CropBox change
      >>> # either set it to MediaBox
      >>> page.set_cropbox(page.mediabox)
      >>> # or 'refresh' MediaBox: will remove all other rectangles
      >>> page.set_mediabox(page.mediabox)

   .. method:: set_artbox(r)

   .. method:: set_bleedbox(r)

   .. method:: set_trimbox(r)

      * New in v1.19.4

      PDF only: Set the resp. rectangle in the page object. For the meaning of these objects see :ref:`AdobeManual`, page 77. Parameter and restrictions are the same as for :meth:`Page.set_cropbox`.


   .. attribute:: rotation

      Contains the rotation of the page in degrees (always 0 for non-PDF types).

      :type: int

   .. attribute:: cropbox_position

      Contains the top-left point of the page's ``/CropBox`` for a PDF, otherwise *Point(0, 0)*.

      :type: :ref:`Point`

   .. attribute:: cropbox

      The page's ``/CropBox`` for a PDF. Always the **unrotated** page rectangle is returned. For a non-PDF this will always equal the page rectangle.

      .. note:: In PDF, the relationship between ``/MediaBox``, ``/CropBox`` and page rectangle may sometimes be confusing, please do lookup the glossary for :data:`MediaBox`.

      :type: :ref:`Rect`

   .. attribute:: artbox

   .. attribute:: bleedbox

   .. attribute:: trimbox

      The page's ``/ArtBox``, ``/BleedBox``, ``/TrimBox``, respectively. If not provided, defaulting to :attr:`Page.cropbox`.

      :type: :ref:`Rect`

   .. attribute:: mediabox_size

      Contains the width and height of the page's :attr:`Page.mediabox` for a PDF, otherwise the bottom-right coordinates of :attr:`Page.rect`.

      :type: :ref:`Point`

   .. attribute:: mediabox

      The page's :data:`mediabox` for a PDF, otherwise :attr:`Page.rect`.

      :type: :ref:`Rect`

      .. note:: For most PDF documents and for **all other document types**, ``page.rect == page.cropbox == page.mediabox`` is true. However, for some PDFs the visible page is a true subset of :data:`mediabox`. Also, if the page is rotated, its ``Page.rect`` may not equal ``Page.cropbox``. In these cases the above attributes help to correctly locate page elements.

   .. attribute:: transformation_matrix

      This matrix translates coordinates from the PDF space to the MuPDF space. For example, in PDF ``/Rect [x0 y0 x1 y1]`` the pair (x0, y0) specifies the **bottom-left** point of the rectangle -- in contrast to MuPDF's system, where (x0, y0) specify top-left. Multiplying the PDF coordinates with this matrix will deliver the (Py-) MuPDF rectangle version. Obviously, the inverse matrix will again yield the PDF rectangle.

      :type: :ref:`Matrix`

   .. attribute:: rotation_matrix

   .. attribute:: derotation_matrix

      These matrices may be used for dealing with rotated PDF pages. When adding / inserting anything to a PDF page, the coordinates of the **unrotated** page are always used. These matrices help translating between the two states. Example: if a page is rotated by 90 degrees -- what would then be the coordinates of the top-left Point(0, 0) of an A4 page?

         >>> page.set_rotation(90)  # rotate an ISO A4 page
         >>> page.rect
         Rect(0.0, 0.0, 842.0, 595.0)
         >>> p = fitz.Point(0, 0)  # where did top-left point land?
         >>> p * page.rotation_matrix
         Point(842.0, 0.0)
         >>>

      :type: :ref:`Matrix`

   .. attribute:: first_link

      Contains the first :ref:`Link` of a page (or *None*).

      :type: :ref:`Link`

   .. attribute:: first_annot

      Contains the first :ref:`Annot` of a page (or *None*).

      :type: :ref:`Annot`

   .. attribute:: first_widget

      Contains the first :ref:`Widget` of a page (or *None*).

      :type: :ref:`Widget`

   .. attribute:: number

      The page number.

      :type: int

   .. attribute:: parent

      The owning document object.

      :type: :ref:`Document`


   .. attribute:: rect

      Contains the rectangle of the page. Same as result of :meth:`Page.bound()`.

      :type: :ref:`Rect`

   .. attribute:: xref

      The page's PDF :data:`xref`. Zero if not a PDF.

      :type: :ref:`Rect`

-----

Description of *get_links()* Entries
----------------------------------------
Each entry of the :meth:`Page.get_links` list is a dictionay with the following keys:

* *kind*:  (required) an integer indicating the kind of link. This is one of *LINK_NONE*, *LINK_GOTO*, *LINK_GOTOR*, *LINK_LAUNCH*, or *LINK_URI*. For values and meaning of these names refer to :ref:`linkDest Kinds`.

* *from*:  (required) a :ref:`Rect` describing the "hot spot" location on the page's visible representation (where the cursor changes to a hand image, usually).

* *page*:  a 0-based integer indicating the destination page. Required for *LINK_GOTO* and *LINK_GOTOR*, else ignored.

* *to*:   either a *fitz.Point*, specifying the destination location on the provided page, default is *fitz.Point(0, 0)*, or a symbolic (indirect) name. If an indirect name is specified, *page = -1* is required and the name must be defined in the PDF in order for this to work. Required for *LINK_GOTO* and *LINK_GOTOR*, else ignored.

* *file*: a string specifying the destination file. Required for *LINK_GOTOR* and *LINK_LAUNCH*, else ignored.

* *uri*:  a string specifying the destination internet resource. Required for *LINK_URI*, else ignored. You should make sure to start this string with an unambiguous substring, that classifies the subtype of the URL, like ``"http://"``, ``"https://"``, ``"file://"``, ``"ftp://"``, ``"mailto:"``, etc. Otherwise your browser will try to interpret the text and come to unwanted / unexpected conclusions about the intended URL type.

* *xref*: an integer specifying the PDF :data:`xref` of the link object. Do not change this entry in any way. Required for link deletion and update, otherwise ignored. For non-PDF documents, this entry contains *-1*. It is also *-1* for **all** entries in the *get_links()* list, if **any** of the links is not supported by MuPDF - see the note below.

Notes on Supporting Links
---------------------------
MuPDF's support for links has changed in **v1.10a**. These changes affect link types :data:`LINK_GOTO` and :data:`LINK_GOTOR`.

Reading (pertains to method *get_links()* and the *first_link* property chain)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If MuPDF detects a link to another file, it will supply either a *LINK_GOTOR* or a *LINK_LAUNCH* link kind. In case of *LINK_GOTOR* destination details may either be given as page number (eventually including position information), or as an indirect destination.

If an indirect destination is given, then this is indicated by *page = -1*, and *link.dest.dest* will contain this name. The dictionaries in the *get_links()* list will contain this information as the *to* value.

Internal links are always of kind *LINK_GOTO*. If an internal link specifies an indirect destination, it **will always be resolved** and the resulting direct destination will be returned. Names are **never returned for internal links**, and undefined destinations will cause the link to be ignored.

Writing
~~~~~~~~~

PyMuPDF writes (updates, inserts) links by constructing and writing the appropriate PDF object **source**. This makes it possible to specify indirect destinations for *LINK_GOTOR* **and** *LINK_GOTO* link kinds (pre *PDF 1.2* file formats are **not supported**).

.. warning:: If a *LINK_GOTO* indirect destination specifies an undefined name, this link can later on not be found / read again with MuPDF / PyMuPDF. Other readers however **will** detect it, but flag it as erroneous.

Indirect *LINK_GOTOR* destinations can in general of course not be checked for validity and are therefore **always accepted**.

**Example: How to insert a link pointing to another page in the same document**

1. Determine the rectangle on the current page, where the link should be placed. This may be the bbox of an image or some text.

2. Determine the target page number ("pno", 0-based) and a :ref:`Point` on it, where the link should be directed to.

3. Create a dictionary ``d = {"kind": fitz.LINK_GOTO, "page": pno, "from": bbox, "to": point}``.

4. Execute ``page.insert_link(d)``.


Homologous Methods of :ref:`Document` and :ref:`Page`
--------------------------------------------------------
This is an overview of homologous methods on the :ref:`Document` and on the :ref:`Page` level.

====================================== =====================================
**Document Level**                     **Page Level**
====================================== =====================================
*Document.get_page_fonts(pno)*         :meth:`Page.get_fonts`
*Document.get_page_images(pno)*        :meth:`Page.get_images`
*Document.get_page_pixmap(pno, ...)*   :meth:`Page.get_pixmap`
*Document.get_page_text(pno, ...)*     :meth:`Page.get_text`
*Document.search_page_for(pno, ...)*   :meth:`Page.search_for`
====================================== =====================================

The page number "pno" is a 0-based integer ``-â�� < pno < page_count``.

.. note::

   Most document methods (left column) exist for convenience reasons, and are just wrappers for: *Document[pno].<page method>*. So they **load and discard the page** on each execution.

   However, the first two methods work differently. They only need a page's object definition statement - the page itself will **not** be loaded. So e.g. :meth:`Page.get_fonts` is a wrapper the other way round and defined as follows: *page.get_fonts == page.parent.get_page_fonts(page.number)*.

.. rubric:: Footnotes

.. [#f1] If your existing code already uses the installed base name as a font reference (as it was supported by PyMuPDF versions earlier than 1.14), this will continue to work.

.. [#f2] Not all PDF reader software (including internet browsers and office software) display all of these fonts. And if they do, the difference between the **serifed** and the **non-serifed** version may hardly be noticable. But serifed and non-serifed versions lead to different installed base fonts, thus providing an option to be displayable with your specific PDF viewer.

.. [#f3] Not all PDF readers display these fonts at all. Some others do, but use a wrong character spacing, etc.

.. [#f4] You are generally free to choose any of the :ref:`mupdficons` you consider adequate.

.. [#f5] The previous algorithm caused images to be **shrunk** to this intersection. Now the image can be anywhere on :attr:`Page.mediabox`, potentially being invisible or only partially visible if the cropbox (representing the visible page part) is smaller.

.. [#f6] If you need to also see annotations or fields in the target page, you can try and convert the source PDF to another PDF using :meth:`Document.convert_to_pdf`. The underlying MuPDF function of that method will convert these objects to normal page content. Then use :meth:`Page.show_pdf_page` with the converted PDF page.

.. [#f7] In PDF, an area enclosed by some lines or curves can have a property called "orientation". This is significant for switching on or off the fill color of that area when there exist multiple area overlaps - see discussion in method :meth:`Shape.finish` using the "non-zero winding number" rule. While orientation of curves, quads, triangles and other shapes enclosed by lines always was detectable, this has been impossible for "re" (rectangle) items in the past. Adding the orientation parameter now delivers the missing information.

.. [#f8] Hyphenation detection simply means that if the last character of a line is "-", it will be assumed to be a continuation character. That character will not be found by text searching with its default flag setting. Please take note, that a MuPDF *line* may not always be what you expect: words separated by overly large gaps (e.g. caused by text justification) may constitute seperate MuPDF lines. If then any of these words ends with a hyphen, it will only be found by text searching if hyphenation is switched off.

.. include:: footer.rst







PyMuPDF-1.21.1/docs/pixmap.rst

.. include:: header.rst

.. _Pixmap:

================
Pixmap
================

Pixmaps ("pixel maps") are objects at the heart of MuPDF's rendering capabilities. They represent plane rectangular sets of pixels. Each pixel is described by a number of bytes ("components") defining its color, plus an optional alpha byte defining its transparency.

In PyMuPDF, there exist several ways to create a pixmap. Except the first one, all of them are available as overloaded constructors. A pixmap can be created ...

1. from a document page (method :meth:`Page.get_pixmap`)
2. empty, based on :ref:`Colorspace` and :ref:`IRect` information
3. from a file
4. from an in-memory image
5. from a memory area of plain pixels
6. from an image inside a PDF document
7. as a copy of another pixmap

.. note:: A number of image formats is supported as input for points 3. and 4. above. See section :ref:`ImageFiles`.

Have a look at the :ref:`FAQ` section to see some pixmap usage "at work".

================================ ===================================================
**Method / Attribute**           **Short Description**
================================ ===================================================
:meth:`Pixmap.clear_with`        clear parts of the pixmap
:meth:`Pixmap.color_count`       determine used colors
:meth:`Pixmap.color_topusage`    determine share of top used color
:meth:`Pixmap.copy`              copy parts of another pixmap
:meth:`Pixmap.gamma_with`        apply a gamma factor to the pixmap
:meth:`Pixmap.invert_irect`      invert the pixels of a given area
:meth:`Pixmap.pdfocr_save`       save the pixmap as an OCRed 1-page PDF
:meth:`Pixmap.pdfocr_tobytes`    save the pixmap as an OCRed 1-page PDF
:meth:`Pixmap.pil_save`          save as image using pillow
:meth:`Pixmap.pil_tobytes`       write to ``bytes`` object using pillow
:meth:`Pixmap.pixel`             return the value of a pixel
:meth:`Pixmap.save`              save the pixmap in a variety of formats
:meth:`Pixmap.set_alpha`         set alpha values
:meth:`Pixmap.set_dpi`           set the image resolution
:meth:`Pixmap.set_origin`        set pixmap x,y values
:meth:`Pixmap.set_pixel`         set color and alpha of a pixel
:meth:`Pixmap.set_rect`          set color and alpha of all pixels in a rectangle
:meth:`Pixmap.shrink`            reduce size keeping proportions
:meth:`Pixmap.tint_with`         tint the pixmap with a color
:meth:`Pixmap.tobytes`           return a memory area in a variety of formats
:meth:`Pixmap.warp`              return a pixmap made from a quad inside
:attr:`Pixmap.alpha`             transparency indicator
:attr:`Pixmap.colorspace`        pixmap's :ref:`Colorspace`
:attr:`Pixmap.digest`            MD5 hashcode of the pixmap
:attr:`Pixmap.height`            pixmap height
:attr:`Pixmap.interpolate`       interpolation method indicator
:attr:`Pixmap.is_monochrome`     check if only black and white occur
:attr:`Pixmap.is_unicolor`       check if only one color occurs
:attr:`Pixmap.irect`             :ref:`IRect` of the pixmap
:attr:`Pixmap.n`                 bytes per pixel
:attr:`Pixmap.samples_mv`        ``memoryview`` of pixel area
:attr:`Pixmap.samples_ptr`       Python pointer to pixel area
:attr:`Pixmap.samples`           ``bytes`` copy of pixel area
:attr:`Pixmap.size`              pixmap's total length
:attr:`Pixmap.stride`            size of one image row
:attr:`Pixmap.width`             pixmap width
:attr:`Pixmap.x`                 X-coordinate of top-left corner
:attr:`Pixmap.xres`              resolution in X-direction
:attr:`Pixmap.y`                 Y-coordinate of top-left corner
:attr:`Pixmap.yres`              resolution in Y-direction
================================ ===================================================

**Class API**

.. class:: Pixmap

   .. method:: __init__(self, colorspace, irect, alpha)

      **New empty pixmap:** Create an empty pixmap of size and origin given by the rectangle. So, *irect.top_left* designates the top left corner of the pixmap, and its width and height are *irect.width* resp. *irect.height*. Note that the image area is **not initialized** and will contain crap data -- use eg. :meth:`clear_with` or :meth:`set_rect` to be sure.

      :arg colorspace: colorspace.
      :type colorspace: :ref:`Colorspace`

      :arg irect_like irect: The pixmap's position and dimension.

      :arg bool alpha: Specifies whether transparency bytes should be included. Default is *False*.

   .. method:: __init__(self, colorspace, source)

      **Copy and set colorspace:** Copy *source* pixmap converting colorspace. Any colorspace combination is possible, but source colorspace must not be *None*.

      :arg colorspace: desired **target** colorspace. This **may also be** *None*. In this case, a "masking" pixmap is created: its :attr:`Pixmap.samples` will consist of the source's alpha bytes only.
      :type colorspace: :ref:`Colorspace`

      :arg source: the source pixmap.
      :type source: *Pixmap*

   .. method:: __init__(self, source, mask)

      * New in v1.18.18

      **Copy and add image mask:** Copy *source* pixmap, add an alpha channel with transparency data from a mask pixmap.

      :arg source: pixmap without alpha channel.
      :type source: :ref:`Pixmap`

      :arg mask: a mask pixmap. Must be a graysale pixmap.
      :type mask: :ref:`Pixmap`

   .. method:: __init__(self, source, width, height, [clip])

      **Copy and scale:** Copy *source* pixmap, scaling new width and height values -- the image will appear stretched or shrunk accordingly. Supports partial copying. The source colorspace may be *None*.

      :arg source: the source pixmap.
      :type source: *Pixmap*

      :arg float width: desired target width.

      :arg float height: desired target height.

      :arg irect_like clip: restrict the resulting pixmap to this region of the **scaled** pixmap.

      .. note:: If width or height do not *represent* integers (i.e. ``value.is_integer() != True``), then the resulting pixmap **will have an alpha channel**.

   .. method:: __init__(self, source, alpha=1)

      **Copy and add or drop alpha:** Copy *source* and add or drop its alpha channel. Identical copy if *alpha* equals *source.alpha*. If an alpha channel is added, its values will be set to 255.

      :arg source: source pixmap.
      :type source: *Pixmap*

      :arg bool alpha: whether the target will have an alpha channel, default and mandatory if source colorspace is *None*.

      .. note:: A typical use includes separation of color and transparency bytes in separate pixmaps. Some applications require this like e.g. *wx.Bitmap.FromBufferAndAlpha()* of *wxPython*:

         >>> # 'pix' is an RGBA pixmap
         >>> pixcolors = fitz.Pixmap(pix, 0)    # extract the RGB part (drop alpha)
         >>> pixalpha = fitz.Pixmap(None, pix)  # extract the alpha part
         >>> bm = wx.Bitmap.FromBufferAndAlpha(pix.widht, pix.height, pixcolors.samples, pixalpha.samples)


   .. method:: __init__(self, filename)

      **From a file:** Create a pixmap from *filename*. All properties are inferred from the input. The origin of the resulting pixmap is *(0, 0)*.

      :arg str filename: Path of the image file.

   .. method:: __init__(self, stream)

      **From memory:** Create a pixmap from a memory area. All properties are inferred from the input. The origin of the resulting pixmap is *(0, 0)*.

      :arg bytes,bytearray,BytesIO stream: Data containing a complete, valid image. Could have been created by e.g. *stream = bytearray(open('image.file', 'rb').read())*. Type *bytes* is supported in **Python 3 only**, because *bytes == str* in Python 2 and the method will interpret the stream as a filename.

         *Changed in version 1.14.13:* *io.BytesIO* is now also supported.


   .. method:: __init__(self, colorspace, width, height, samples, alpha)

      **From plain pixels:** Create a pixmap from *samples*. Each pixel must be represented by a number of bytes as controlled by the *colorspace* and *alpha* parameters. The origin of the resulting pixmap is *(0, 0)*. This method is useful when raw image data are provided by some other program -- see :ref:`FAQ`.

      :arg colorspace: Colorspace of image.
      :type colorspace: :ref:`Colorspace`

      :arg int width: image width

      :arg int height: image height

      :arg bytes,bytearray,BytesIO samples:  an area containing all pixels of the image. Must include alpha values if specified.

         *Changed in version 1.14.13:* (1) *io.BytesIO* can now also be used. (2) Data are now **copied** to the pixmap, so may safely be deleted or become unavailable.

      :arg bool alpha: whether a transparency channel is included.

      .. note::

         1. The following equation **must be true**: *(colorspace.n + alpha) * width * height == len(samples)*.
         2. Starting with version 1.14.13, the samples data are **copied** to the pixmap.


   .. method:: __init__(self, doc, xref)

      **From a PDF image:** Create a pixmap from an image **contained in PDF** *doc* identified by its :data:`xref`. All pimap properties are set by the image. Have a look at `extract-img1.py <https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img1.py>`_ and `extract-img2.py <https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img2.py>`_ to see how this can be used to recover all of a PDF's images.

      :arg doc: an opened **PDF** document.
      :type doc: :ref:`Document`

      :arg int xref: the :data:`xref` of an image object. For example, you can make a list of images used on a particular page with :meth:`Document.get_page_images`, which also shows the :data:`xref` numbers of each image.

   .. method:: clear_with([value [, irect]])

      Initialize the samples area.

      :arg int value: if specified, values from 0 to 255 are valid. Each color byte of each pixel will be set to this value, while alpha will be set to 255 (non-transparent) if present. If omitted, then all bytes (including any alpha) are cleared to *0x00*.

      :arg irect_like irect: the area to be cleared. Omit to clear the whole pixmap. Can only be specified, if *value* is also specified.

   .. method:: tint_with(red, green, blue)

      Colorize (tint) a pixmap with a color provided as an integer triple (red, green, blue). Only colorspaces :data:`CS_GRAY` and :data:`CS_RGB` are supported, others are ignored with a warning.

      If the colorspace is :data:`CS_GRAY`, *(red + green + blue)/3* will be taken as the tint value.

      :arg int red: *red* component.

      :arg int green: *green* component.

      :arg int blue: *blue* component.

   .. method:: gamma_with(gamma)

      Apply a gamma factor to a pixmap, i.e. lighten or darken it. Pixmaps with colorspace *None* are ignored with a warning.

      :arg float gamma: *gamma = 1.0* does nothing, *gamma < 1.0* lightens, *gamma > 1.0* darkens the image.

   .. method:: shrink(n)

      Shrink the pixmap by dividing both, its width and height by 2\ :sup:`n`.

      :arg int n: determines the new pixmap (samples) size. For example, a value of 2 divides width and height by 4 and thus results in a size of one 16\ :sup:`th` of the original. Values less than 1 are ignored with a warning.

      .. note:: Use this methods to reduce a pixmap's size retaining its proportion. The pixmap is changed "in place". If you want to keep original and also have more granular choices, use the resp. copy constructor above.

   .. method:: pixel(x, y)

      *New in version:: 1.14.5:* Return the value of the pixel at location (x, y) (column, line).

      :arg int x: the column number of the pixel. Must be in ``range(pix.width)``.
      :arg int y: the line number of the pixel, Must be in ``range(pix.height)``.

      :rtype: list
      :returns: a list of color values and, potentially the alpha value. Its length and content depend on the pixmap's colorspace and the presence of an alpha. For RGBA pixmaps the result would e.g. be *[r, g, b, a]*. All items are integers in ``range(256)``.

   .. method:: set_pixel(x, y, color)

      *New in version 1.14.7:* Manipulate the pixel at location (x, y) (column, line).

      :arg int x: the column number of the pixel. Must be in ``range(pix.width)``.
      :arg int y: the line number of the pixel. Must be in ``range(pix.height)``.
      :arg sequence color: the desired pixel value given as a sequence of integers in ``range(256)``. The length of the sequence must equal :attr:`Pixmap.n`, which includes any alpha byte.

   .. method:: set_rect(irect, color)

      *New in version 1.14.8:* Set the pixels of a rectangle to a value.

      :arg irect_like irect: the rectangle to be filled with the value. The actual area is the intersection of this parameter and :attr:`Pixmap.irect`. For an empty intersection (or an invalid parameter), no change will happen.
      :arg sequence color: the desired value, given as a sequence of integers in ``range(256)``. The length of the sequence must equal :attr:`Pixmap.n`, which includes any alpha byte.

      :rtype: bool
      :returns: *False* if the rectangle was invalid or had an empty intersection with :attr:`Pixmap.irect`, else *True*.

      .. note::

         1. This method is equivalent to :meth:`Pixmap.set_pixel` executed for each pixel in the rectangle, but is obviously **very much faster** if many pixels are involved.
         2. This method can be used similar to :meth:`Pixmap.clear_with` to initialize a pixmap with a certain color like this: *pix.set_rect(pix.irect, (255, 255, 0))* (RGB example, colors the complete pixmap with yellow).

   .. method:: set_origin(x, y)

      * New in v1.17.7
      
      Set the x and y values of the pixmap's top-left point.

      :arg int x: x coordinate
      :arg int y: y coordinate


   .. method:: set_dpi(xres, yres)

      * New in v1.16.17

      * Changed in v1.18.0: When saving as a PNG image, these values will be stored now.

      Set the resolution (dpi) in x and y direction.

      :arg int xres: resolution in x direction.
      :arg int yres: resolution in y direction.


   .. method:: set_alpha(alphavalues, premultiply=1, opaque=None)

      * Changed in v 1.18.13

      Change the alpha values. The pixmap must have an alpha channel.

      :arg bytes,bytearray,BytesIO alphavalues: the new alpha values. If provided, its length must be at least *width * height*. If omitted (``None``), all alpha values are set to 255 (no transparency). *Changed in version 1.14.13:* *io.BytesIO* is now also accepted.
      :arg bool premultiply: *New in v1.18.13:* whether to premultiply color components with the alpha value.
      :arg list,tuple opaque: ignore the alpha value and set this color to fully transparent. A sequence of integers in ``range(256)`` with a length of :attr:`Pixmap.n`. Default is *None*. For example, a typical choice for RGB would be ``opaque=(255, 255, 255)`` (white).


   .. method:: invert_irect([irect])

      Invert the color of all pixels in :ref:`IRect` *irect*. Will have no effect if colorspace is *None*.

      :arg irect_like irect: The area to be inverted. Omit to invert everything.

   .. method:: copy(source, irect)

      Copy the *irect* part of the *source* pixmap into the corresponding area of this one. The two pixmaps may have different dimensions and can each have :data:`CS_GRAY` or :data:`CS_RGB` colorspaces, but they currently **must** have the same alpha property [#f2]_. The copy mechanism automatically adjusts discrepancies between source and target like so:

      If copying from :data:`CS_GRAY` to :data:`CS_RGB`, the source gray-shade value will be put into each of the three rgb component bytes. If the other way round, *(r + g + b) / 3* will be taken as the gray-shade value of the target.

      Between *irect* and the target pixmap's rectangle, an "intersection" is calculated at first. This takes into account the rectangle coordinates and the current attribute values :attr:`Pixmap.x` and :attr:`Pixmap.y` (which you are free to modify for this purpose via :meth:`Pixmap.set_origin`). Then the corresponding data of this intersection are copied. If the intersection is empty, nothing will happen.

      :arg source: source pixmap.
      :type source: :ref:`Pixmap`

      :arg irect_like irect: The area to be copied.

      .. note:: Example: Suppose you have two pixmaps, ``pix1`` and ``pix2`` and you want to copy the lower right quarter of ``pix2`` to ``pix1`` such that it starts at the top-left point of ``pix1``. Use the following snippet::

         >>> # safeguard: set top-left of pix1 and pix2 to (0, 0)
         >>> pix1.set_origin(0, 0)
         >>> pix2.set_origin(0, 0)
         >>> # compute top-left coordinates of pix2 region to copy
         >>> x1 = int(pix2.width / 2)
         >>> y1 = int(pix2.height / 2)
         >>> # shift top-left of pix2 such, that the to-be-copied
         >>> # area starts at (0, 0):
         >>> pix2.set_origin(-x1, -y1)
         >>> # now copy ...
         >>> pix1.copy(pix2, (0, 0, x1, y1))

         .. image:: images/img-pixmapcopy.*
             :scale: 20

   .. method:: save(filename, output=None)

      Save pixmap as an image file. Depending on the output chosen, only some or all colorspaces are supported and different file extensions can be chosen. Please see the table below. Since MuPDF v1.10a the *savealpha* option is no longer supported and will be silently ignored.

      :arg str,Path,file filename: The file to save to. May be provided as a string, as a ``pathlib.Path`` or as a Python file object. In the latter two cases, the filename is taken from the resp. object. The filename's extension determines the image format, which can be overruled by the output parameter.

      :arg str output: The requested image format. The default is the filename's extension. If not recognized, *png* is assumed. For other possible values see :ref:`PixmapOutput`.

   .. method:: pdfocr_save(filename, compress=True, language="eng")

      * New in v1.19.0

      Perform text recognition using Tesseract and save the image as a 1-page PDF with an OCR text layer.

      :arg str,fp filename: identifies the file to save to. May be either a string or a pointer to a file opened with "wb" (includes ``io.BytesIO()`` objects).
      :arg bool compress: whether to compress the resulting PDF, default is ``True``.
      :arg str language: the languages occurring in the image. This must be specified in Tesseract format. Default is "eng" for English. Use "+"-separated Tesseract language codes for multiple languages, like "eng+spa" for English and Spanish.

      .. note:: **Will fail** if Tesseract is not installed or if the environment variable "TESSDATA_PREFIX" is not set to the ``tessdata`` folder name. This is what you would typically see on a Windows platform:

         >>> print(os.environ["TESSDATA_PREFIX"])
         C:\Program Files\Tesseract-OCR\tessdata

      Respectively on a Linux system:

         >>> print(os.environ["TESSDATA_PREFIX"])
         /usr/share/tesseract-ocr/4.00/tessdata


   .. method:: pdfocr_tobytes(compress=True, language="eng")

      * New in v1.19.0

      Perform text recognition using Tesseract and convert the image to a 1-page PDF with an OCR text layer. Internally invokes :meth:`Pixmap.pdfocr_save`.

      :returns: A 1-page PDF file in memory. Could be opened like ``doc=fitz.open("pdf", pix.pdfocr_tobytes())``, and text extractions could be performed on its ``page=doc[0]``.
      
         .. note::
         
            Another possible use is insertion into some pdf. The following snippet reads the images of a folder and stores them as pages in a new PDF that contain an OCR text layer::

               doc = fitz.open()
               for imgfile in os.listdir(folder):
                  pix = fitz.Pixmap(imgfile)
                  imgpdf = fitz.open("pdf", pix.pdfocr_tobytes())
                  doc.insert_pdf(imgpdf)
                  pix = None
                  imgpdf.close()
               doc.save("ocr-images.pdf")


   .. method:: tobytes(output="png")

      *New in version 1.14.5:* Return the pixmap as a *bytes* memory object of the specified format -- similar to :meth:`save`.

      :arg str output: The requested image format. The default is "png" for which this function equals :meth:`tobytes`. For other possible values see :ref:`PixmapOutput`.

      :rtype: bytes

   ..  method:: pil_save(*args, **kwargs)

      * New in v1.17.3

      Write the pixmap as an image file using Pillow. Use this method for output unsupported by MuPDF. Examples are

      * Formats JPEG, JPX, J2K, WebP, etc.
      * Storing EXIF information.
      * If you do not provide dpi information, the values *xres*, *yres* stored with the pixmap are automatically used.

      A simple example: ``pix.pil_save("some.jpg", optimize=True, dpi=(150, 150))``. For details on other parameters see the Pillow documentation.

      .. note:: *(Changed in v1.18.0)* :meth:`Pixmap.save` now also sets dpi from *xres* / *yres* automatically, when saving a PNG image.

         If Pillow is not installed an ``ImportError`` exception is raised.

   ..  method:: pil_tobytes(*args, **kwargs)

      * New in v1.17.3

      Return an image as a bytes object in the specified format using Pillow. For example ``stream = pix.pil_tobytes(format="JPEG", optimize=True)``. Also see above. For details on other parameters see the Pillow documentation. If Pillow is not installed, an ``ImportError`` exception is raised.

      :rtype: bytes


   ..  method:: warp(quad, width, height)

      * New in v1.19.3

      Return a new pixmap by "warping" the quad such that the quad corners become the new pixmap's corners. The target pixmap's ``irect`` will be ``(0, 0, width, height)``.

      :arg quad_like quad: a convex quad with coordinates inside :attr:`Pixmap.irect` (including the border points).
      :arg int width: desired resulting width.
      :arg int height: desired resulting height.
      :returns: A new pixmap where the quad corners are mapped to the pixmap corners in a clockwise fashion: ``quad.ul -> irect.tl``, ``quad.ur -> irect.tr``, etc.
      :rtype: :ref:`Pixmap`

         .. image:: images/img-warp.*
              :scale: 40
              :align: center


   ..  method:: color_count(colors=False, clip=None)

      * New in v1.19.2
      * Changed in v1.19.3

      Determine the pixmap's unique colors and their count.

      :arg bool colors: *(changed in v1.19.3)* If ``True`` return a dictionary of color pixels and their usage count, else just the number of unique colors.
      :arg rect_like clip: a rectangle inside :attr:`Pixmap.irect`. If provided, only those pixels are considered. This allows inspecting sub-rectangles of a given pixmap directly -- instead of building sub-pixmaps.
      :rtype: dict or int
      :returns: either the number of colors, or a dictionary with the items ``pixel: count``. The pixel key is a ``bytes`` object of length :attr:`Pixmap.n`.
      
         .. note:: To recover the **tuple** of a pixel, use ``tuple(colors.keys()[i])`` for the i-th item.

            * The response time depends on the pixmap's samples size and may be more than a second for very large pixmaps.
            * Where applicable, pixels with different alpha values will be treated as different colors.


   ..  method:: color_topusage(clip=None)

      * New in v1.19.3

      Return the most frequently used color and its relative frequency.

      :arg rect_like clip: a rectangle inside :attr:`Pixmap.irect`. If provided, only those pixels are considered. This allows inspecting sub-rectangles of a given pixmap directly -- instead of building sub-pixmaps.
      :rtype: tuple[float, bytes]
      :returns: A tuple ``(ratio, pixel)`` where ``0 < ratio <= 1`` and *pixel* is the pixel value of the color. Use this to decide if the image is "almost" unicolor: a response ``(0.95, b"\x00\x00\x00")`` means that 95% of all pixels are black.


   .. attribute:: alpha

      Indicates whether the pixmap contains transparency information.

      :type: bool

   .. attribute:: digest

      The MD5 hashcode (16 bytes) of the pixmap. This is a technical value used for unique identifications.

      :type: bytes

   .. attribute:: colorspace

      The colorspace of the pixmap. This value may be *None* if the image is to be treated as a so-called *image mask* or *stencil mask* (currently happens for extracted PDF document images only).

      :type: :ref:`Colorspace`

   .. attribute:: stride

      Contains the length of one row of image data in :attr:`Pixmap.samples`. This is primarily used for calculation purposes. The following expressions are true:

      * ``len(samples) == height * stride``
      * ``width * n == stride``

      :type: int


   .. attribute:: is_monochrome

      * New in v1.19.2

      Is ``True`` for a gray pixmap which only has the colors black and white.

      :type: bool


   .. attribute:: is_unicolor

      * New in v1.19.2

      Is ``True`` if all pixels are identical (any colorspace). Where applicable, pixels with different alpha values will be treated as different colors.

      :type: bool


   .. attribute:: irect

      Contains the :ref:`IRect` of the pixmap.

      :type: :ref:`IRect`

   .. attribute:: samples

      The color and (if :attr:`Pixmap.alpha` is true) transparency values for all pixels. It is an area of ``width * height * n`` bytes. Each n bytes define one pixel. Each successive n bytes yield another pixel in scanline order. Subsequent scanlines follow each other with no padding. E.g. for an RGBA colorspace this means, *samples* is a sequence of bytes like *..., R, G, B, A, ...*, and the four byte values R, G, B, A define one pixel.

      This area can be passed to other graphics libraries like PIL (Python Imaging Library) to do additional processing like saving the pixmap in other image formats.

      .. note::
         * The underlying data is typically a **large** memory area, from which a ``bytes`` copy is made for this attribute ... each time you access it: for example an RGB-rendered letter page has a samples size of almost 1.4 MB. So consider assigning a new variable to it or use the ``memoryview`` version :attr:`Pixmap.samples_mv` (new in v1.18.17).
         * Any changes to the underlying data are available only after accessing this attribute again. This is different from using the memoryview version.

      :type: bytes

   .. attribute:: samples_mv

      * New in v1.18.17

      Like :attr:`Pixmap.samples`, but in Python ``memoryview`` format. It is built pointing to the memory in the pixmap -- not from a copy of it. So its creation speed is independent from the pixmap size, and any changes to pixels will be available immediately.

      Copies like ``bytearray(pix.samples_mv)``, or ``bytes(pixmap.samples_mv)`` are equivalent to and can be used in place of ``pix.samples``.
      
      We also have ``len(pix.samples) == len(pix.samples_mv)``.
      
      Look at this example from a 2 MB JPEG: the memoryview is **ten thousand times faster**::

         In [3]: %timeit len(pix.samples_mv)
         367 ns Â± 1.75 ns per loop (mean Â± std. dev. of 7 runs, 1000000 loops each)
         In [4]: %timeit len(pix.samples)
         3.52 ms Â± 57.5 Âµs per loop (mean Â± std. dev. of 7 runs, 100 loops each)

      :type: memoryview

   .. attribute:: samples_ptr

      * New in v1.18.17

      Python pointer to the pixel area. This is a special integer format, which can be used by supporting applications (such as PyQt) to directly address the samples area and thus build their images extremely fast. For example::

         img = QtGui.QImage(pix.samples, pix.width, pix.height, format) # (1)
         img = QtGui.QImage(pix.samples_ptr, pix.width, pix.height, format) # (2)

      Both of the above lead to the same Qt image, but (2) can be **many hundred times faster**, because it avoids an additional copy of the pixel area.

      :type: int

   .. attribute:: size

      Contains *len(pixmap)*. This will generally equal *len(pix.samples)* plus some platform-specific value for defining other attributes of the object.

      :type: int

   .. attribute:: width

   .. attribute:: w

      Width of the region in pixels.

      :type: int

   .. attribute:: height

   .. attribute:: h

      Height of the region in pixels.

      :type: int

   .. attribute:: x

      X-coordinate of top-left corner in pixels. Cannot directly be changed -- use :meth:`Pixmap.set_origin`.

      :type: int

   .. attribute:: y

      Y-coordinate of top-left corner in pixels. Cannot directly be changed -- use :meth:`Pixmap.set_origin`.

      :type: int

   .. attribute:: n

      Number of components per pixel. This number depends on colorspace and alpha. If colorspace is not *None* (stencil masks), then *Pixmap.n - Pixmap.aslpha == pixmap.colorspace.n* is true. If colorspace is *None*, then *n == alpha == 1*.

      :type: int

   .. attribute:: xres

      Horizontal resolution in dpi (dots per inch). Please also see :data:`resolution`. Cannot directly be changed -- use :meth:`Pixmap.set_dpi`.

      :type: int

   .. attribute:: yres

      Vertical resolution in dpi (dots per inch). Please also see :data:`resolution`. Cannot directly be changed -- use :meth:`Pixmap.set_dpi`.

      :type: int

   .. attribute:: interpolate

      An information-only boolean flag set to *True* if the image will be drawn using "linear interpolation". If *False* "nearest neighbour sampling" will be used.

      :type: bool

.. _ImageFiles:

Supported Input Image Formats
-----------------------------------------------
The following file types are supported as **input** to construct pixmaps: **BMP, JPEG, GIF, TIFF, JXR, JPX**, **PNG**, **PAM** and all of the **Portable Anymap** family (**PBM, PGM, PNM, PPM**). This support is two-fold:

1. Directly create a pixmap with *Pixmap(filename)* or *Pixmap(byterray)*. The pixmap will then have properties as determined by the image.

2. Open such files with *fitz.open(...)*. The result will then appear as a document containing one single page. Creating a pixmap of this page offers all the options available in this context: apply a matrix, choose colorspace and alpha, confine the pixmap to a clip area, etc.

**SVG images** are only supported via method 2 above, not directly as pixmaps. But remember: the result of this is a **raster image** as is always the case with pixmaps [#f1]_.

.. _PixmapOutput:

Supported Output Image Formats
---------------------------------------------------------------------------
A number of image **output** formats are supported. You have the option to either write an image directly to a file (:meth:`Pixmap.save`), or to generate a bytes object (:meth:`Pixmap.tobytes`). Both methods accept a 3-letter string identifying the desired format (**Format** column below). Please note that not all combinations of pixmap colorspace, transparency support (alpha) and image format are possible.

========== =============== ========= ============== ===========================
**Format** **Colorspaces** **alpha** **Extensions** **Description**
========== =============== ========= ============== ===========================
pam        gray, rgb, cmyk yes       .pam           Portable Arbitrary Map
pbm        gray, rgb       no        .pbm           Portable Bitmap
pgm        gray, rgb       no        .pgm           Portable Graymap
png        gray, rgb       yes       .png           Portable Network Graphics
pnm        gray, rgb       no        .pnm           Portable Anymap
ppm        gray, rgb       no        .ppm           Portable Pixmap
ps         gray, rgb, cmyk no        .ps            Adobe PostScript Image
psd        gray, rgb, cmyk yes       .psd           Adobe Photoshop Document
========== =============== ========= ============== ===========================

.. note::
    * Not all image file types are supported (or at least common) on all OS platforms. E.g. PAM and the Portable Anymap formats are rare or even unknown on Windows.
    * Especially pertaining to CMYK colorspaces, you can always convert a CMYK pixmap to an RGB pixmap with *rgb_pix = fitz.Pixmap(fitz.csRGB, cmyk_pix)* and then save that in the desired format.
    * As can be seen, MuPDF's image support range is different for input and output. Among those supported both ways, PNG is probably the most popular. We recommend using Pillow whenever you face a support gap.
    * We also recommend using "ppm" formats as input to tkinter's *PhotoImage* method like this: *tkimg = tkinter.PhotoImage(data=pix.tobytes("ppm"))* (also see the tutorial). This is **very** fast (**60 times** faster than PNG) and will work under Python 2 or 3.



.. rubric:: Footnotes

.. [#f1] If you need a **vector image** from the SVG, you must first convert it to a PDF. Try :meth:`Document.convert_to_pdf`. If this is not good enough, look for other SVG-to-PDF conversion tools like the Python packages `svglib <https://pypi.org/project/svglib>`_, `CairoSVG <https://pypi.org/project/cairosvg>`_, `Uniconvertor <https://sk1project.net/modules.php?name=Products&product=uniconvertor&op=download>`_ or the Java solution `Apache Batik <https://github.com/apache/batik>`_. Have a look at our Wiki for more examples.

.. [#f2] To also set the alpha property, add an additional step to this method by dropping or adding an alpha channel to the result.

.. include:: footer.rst







PyMuPDF-1.21.1/docs/point.rst

.. include:: header.rst

.. _Point:

================
Point
================

*Point* represents a point in the plane, defined by its x and y coordinates.

============================ ============================================
**Attribute / Method**       **Description**
============================ ============================================
:meth:`Point.distance_to`    calculate distance to point or rect
:meth:`Point.norm`           the Euclidean norm
:meth:`Point.transform`      transform point with a matrix
:attr:`Point.abs_unit`       same as unit, but positive coordinates
:attr:`Point.unit`           point coordinates divided by *abs(point)*
:attr:`Point.x`              the X-coordinate
:attr:`Point.y`              the Y-coordinate
============================ ============================================

**Class API**

.. class:: Point

   .. method:: __init__(self)

   .. method:: __init__(self, x, y)

   .. method:: __init__(self, point)

   .. method:: __init__(self, sequence)

      Overloaded constructors.

      Without parameters, *Point(0, 0)* will be created.

      With another point specified, a **new copy** will be crated, "sequence" is a Python sequence of 2 numbers (see :ref:`SequenceTypes`).

     :arg float x: x coordinate of the point

     :arg float y: y coordinate of the point

   .. method:: distance_to(x [, unit])

      Calculate the distance to *x*, which may be :data:`point_like` or :data:`rect_like`. The distance is given in units of either pixels (default), inches, centimeters or millimeters.

     :arg point_like,rect_like x: to which to compute the distance.

     :arg str unit: the unit to be measured in. One of "px", "in", "cm", "mm".

     :rtype: float
     :returns: the distance to *x*. If this is :data:`rect_like`, then the distance

         * is the length of the shortest line connecting to one of the rectangle sides
         * is calculated to the **finite version** of it
         * is zero if it **contains** the point

   .. method:: norm()

      * New in version 1.16.0
      
      Return the Euclidean norm (the length) of the point as a vector. Equals result of function *abs()*.

   .. method:: transform(m)

      Apply a matrix to the point and replace it with the result.

     :arg matrix_like m: The matrix to be applied.

     :rtype: :ref:`Point`

   .. attribute:: unit

      Result of dividing each coordinate by *norm(point)*, the distance of the point to (0,0). This is a vector of length 1 pointing in the same direction as the point does. Its x, resp. y values are equal to the cosine, resp. sine of the angle this vector (and the point itself) has with the x axis.

      .. image:: images/img-point-unit.*

      :type: :ref:`Point`

   .. attribute:: abs_unit

      Same as :attr:`unit` above, replacing the coordinates with their absolute values.

      :type: :ref:`Point`

   .. attribute:: x

      The x coordinate

      :type: float

   .. attribute:: y

      The y coordinate

      :type: float

.. note::

   * This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also refer to :ref:`SequenceTypes`.
   * Rectangles can be used with arithmetic operators -- see chapter :ref:`Algebra`.

.. include:: footer.rst







PyMuPDF-1.21.1/docs/quad.rst

.. include:: header.rst

.. _Quad:

==========
Quad
==========

Represents a four-sided mathematical shape (also called "quadrilateral" or "tetragon") in the plane, defined as a sequence of four :ref:`Point` objects ul, ur, ll, lr (conveniently called upper left, upper right, lower left, lower right).

Quads can **be obtained** as results of text search methods (:meth:`Page.search_for`), and they **are used** to define text marker annotations (see e.g. :meth:`Page.add_squiggly_annot` and friends), and in several draw methods (like :meth:`Page.draw_quad` / :meth:`Shape.draw_quad`, :meth:`Page.draw_oval`/ :meth:`Shape.draw_quad`).

.. note::

   * If the corners of a rectangle are transformed with a **rotation**, **scale** or **translation** :ref:`Matrix`, then the resulting quad is **rectangular** (= congruent to a rectangle), i.e. all of its corners again enclose angles of 90 degrees. Property :attr:`Quad.is_rectangular` checks whether a quad can be thought of being the result of such an operation.

   * This is not true for all matrices: e.g. shear matrices produce parallelograms, and non-invertible matrices deliver "degenerate" tetragons like triangles or lines.

   * Attribute :attr:`Quad.rect` obtains the envelopping rectangle. Vice versa, rectangles now have attributes :attr:`Rect.quad`, resp. :attr:`IRect.quad` to obtain their respective tetragon versions.


============================= =======================================================
**Methods / Attributes**      **Short Description**
============================= =======================================================
:meth:`Quad.transform`        transform with a matrix
:meth:`Quad.morph`            transform with a point and matrix
:attr:`Quad.ul`               upper left point
:attr:`Quad.ur`               upper right point
:attr:`Quad.ll`               lower left point
:attr:`Quad.lr`               lower right point
:attr:`Quad.is_convex`        true if quad is a convex set
:attr:`Quad.is_empty`         true if quad is an empty set
:attr:`Quad.is_rectangular`   true if quad is congruent to a rectangle
:attr:`Quad.rect`             smallest containing :ref:`Rect`
:attr:`Quad.width`            the longest width value
:attr:`Quad.height`           the longest height value
============================= =======================================================

**Class API**

.. class:: Quad

   .. method:: __init__(self)

   .. method:: __init__(self, ul, ur, ll, lr)

   .. method:: __init__(self, quad)

   .. method:: __init__(self, sequence)

      Overloaded constructors: "ul", "ur", "ll", "lr" stand for :data:`point_like` objects (the four corners), "sequence" is a Python sequence with four :data:`point_like` objects.

      If "quad" is specified, the constructor creates a **new copy** of it.

      Without parameters, a quad consisting of 4 copies of *Point(0, 0)* is created.


   .. method:: transform(matrix)

      Modify the quadrilateral by transforming each of its corners with a matrix.

      :arg matrix_like matrix: the matrix.

   .. method:: morph(fixpoint, matrix)

      *(New in version 1.17.0)* "Morph" the quad with a matrix-like using a point-like as fixed point.

      :arg point_like fixpoint: the point.
      :arg matrix_like matrix: the matrix.
      :returns: a new quad (no operation if this is the infinite quad).


   .. attribute:: rect

      The smallest rectangle containing the quad, represented by the blue area in the following picture.

      .. image:: images/img-quads.*

      :type: :ref:`Rect`

   .. attribute:: ul

      Upper left point.

      :type: :ref:`Point`

   .. attribute:: ur

      Upper right point.

      :type: :ref:`Point`

   .. attribute:: ll

      Lower left point.

      :type: :ref:`Point`

   .. attribute:: lr

      Lower right point.

      :type: :ref:`Point`

   .. attribute:: is_convex

      * New in version 1.16.1

      Checks if for any two points of the quad, all points on their connecting line also belong to the quad.

         .. image:: images/img-convexity.*
            :scale: 30

      :type: bool

   .. attribute:: is_empty

      True if enclosed area is zero, which means that at least three of the four corners are on the same line. If this is false, the quad may still be degenerate or not look like a tetragon at all (triangles, parallelograms, trapezoids, ...).

      :type: bool

   .. attribute:: is_rectangular

      True if all corner angles are 90 degrees. This implies that the quad is **convex and not empty**.

      :type: bool

   .. attribute:: width

      The maximum length of the top and the bottom side.

      :type: float

   .. attribute:: height

      The maximum length of the left and the right side.

      :type: float

Remark
------
This class adheres to the sequence protocol, so components can be dealt with via their indices, too. Also refer to :ref:`SequenceTypes`.

Algebra and Containment Checks
-------------------------------
Starting with v1.19.6, quads can be used in algebraic expressions like the other geometry object -- the respective restrictions have been lifted. In particular, all the following combinations of containment checking are now possible:

``{Point | IRect | Rect | Quad} in {IRect | Rect | Quad}``

Please note the following interesting detail:

For a rectangle, only its top-left point belongs to it. Since v1.19.0, rectangles are defined to be "open", such that its bottom and its right edge do not belong to it -- including the respective corners. But for quads there exists no such notion like "openness", so we have the following somewhat surprising implication:

   >>> rect.br in rect
   False
   >>> # but:
   >>> rect.br in rect.quad
   True

.. include:: footer.rst







PyMuPDF-1.21.1/docs/recipes-annotations.rst

.. include:: header.rst

.. _RecipesAnnotations:

==============================
Recipes: Annotations
==============================


In v1.14.0, annotation handling has been considerably extended:

* New annotation type support for 'Ink', 'Rubber Stamp' and 'Squiggly' annotations. Ink annots simulate handwriting by combining one or more lists of interconnected points. Stamps are intended to visually inform about a document's status or intended usage (like "draft", "confidential", etc.). 'Squiggly' is a text marker annot, which underlines selected text with a zig-zagged line.

* Extended 'FreeText' support:
    1. all characters from the *Latin* character set are now available,
    2. colors of text, rectangle background and rectangle border can be independently set
    3. text in rectangle can be rotated by either +90 or -90 degrees
    4. text is automatically wrapped (made multi-line) in available rectangle
    5. all Base-14 fonts are now available (*normal* variants only, i.e. no bold, no italic).
* MuPDF now supports line end icons for 'Line' annots (only). PyMuPDF supported that in v1.13.x already -- and for (almost) the full range of applicable types. So we adjusted the appearance of 'Polygon' and 'PolyLine' annots to closely resemble the one of MuPDF for 'Line'.
* MuPDF now provides its own annotation icons where relevant. PyMuPDF switched to using them (for 'FileAttachment' and 'Text' ["sticky note"] so far).
* MuPDF now also supports 'Caret', 'Movie', 'Sound' and 'Signature' annotations, which we may include in PyMuPDF at some later time.

How to Add and Modify Annotations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In PyMuPDF, new annotations can be added via :ref:`Page` methods. Once an annotation exists, it can be modified to a large extent using methods of the :ref:`Annot` class.

In contrast to many other tools, initial insert of annotations happens with a minimum number of properties. We leave it to the programmer to e.g. set attributes like author, creation date or subject.

As an overview for these capabilities, look at the following script that fills a PDF page with most of the available annotations. Look in the next sections for more special situations:

.. literalinclude:: samples/new-annots.py
 :language: python

This script should lead to the following output:

.. image:: images/img-annots.*
 :scale: 80

How to Use FreeText
~~~~~~~~~~~~~~~~~~~~~
This script shows a couple of ways to deal with 'FreeText' annotations::

    # -*- coding: utf-8 -*-
    import fitz

    # some colors
    blue  = (0,0,1)
    green = (0,1,0)
    red   = (1,0,0)
    gold  = (1,1,0)

    # a new PDF with 1 page
    doc = fitz.open()
    page = doc.new_page()

    # 3 rectangles, same size, above each other
    r1 = fitz.Rect(100,100,200,150)
    r2 = r1 + (0,75,0,75)
    r3 = r2 + (0,75,0,75)

    # the text, Latin alphabet
    t = "¡Un pequeño texto para practicar!"

    # add 3 annots, modify the last one somewhat
    a1 = page.add_freetext_annot(r1, t, color=red)
    a2 = page.add_freetext_annot(r2, t, fontname="Ti", color=blue)
    a3 = page.add_freetext_annot(r3, t, fontname="Co", color=blue, rotate=90)
    a3.set_border(width=0)
    a3.update(fontsize=8, fill_color=gold)

    # save the PDF
    doc.save("a-freetext.pdf")

The result looks like this:

.. image:: images/img-freetext.*
   :scale: 80

------------------------------

Using Buttons and JavaScript
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since MuPDF v1.16, 'FreeText' annotations no longer support bold or italic versions of the Times-Roman, Helvetica or Courier fonts.

A big **thank you** to our user `@kurokawaikki <https://github.com/kurokawaikki>`_, who contributed the following script to **circumvent this restriction**.

.. literalinclude:: samples/make-bold.py
 :language: python

How to Use Ink Annotations
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ink annotations are used to contain freehand scribbling. A typical example may be an image of your signature consisting of first name and last name. Technically an ink annotation is implemented as a **list of lists of points**. Each point list is regarded as a continuous line connecting the points. Different point lists represent independent line segments of the annotation.

The following script creates an ink annotation with two mathematical curves (sine and cosine function graphs) as line segments::

    import math
    import fitz

    #------------------------------------------------------------------------------
    # preliminary stuff: create function value lists for sine and cosine
    #------------------------------------------------------------------------------
    w360 = math.pi * 2  # go through full circle
    deg = w360 / 360  # 1 degree as radians
    rect = fitz.Rect(100,200, 300, 300)  # use this rectangle
    first_x = rect.x0  # x starts from left
    first_y = rect.y0 + rect.height / 2.  # rect middle means y = 0
    x_step = rect.width / 360  # rect width means 360 degrees
    y_scale = rect.height / 2.  # rect height means 2
    sin_points = []  # sine values go here
    cos_points = []  # cosine values go here
    for x in range(362):  # now fill in the values
        x_coord = x * x_step + first_x  # current x coordinate
        y = -math.sin(x * deg)  # sine
        p = (x_coord, y * y_scale + first_y)  # corresponding point
        sin_points.append(p)  # append
        y = -math.cos(x * deg)  # cosine
        p = (x_coord, y * y_scale + first_y)  # corresponding point
        cos_points.append(p)  # append

    #------------------------------------------------------------------------------
    # create the document with one page
    #------------------------------------------------------------------------------
    doc = fitz.open()  # make new PDF
    page = doc.new_page()  # give it a page

    #------------------------------------------------------------------------------
    # add the Ink annotation, consisting of 2 curve segments
    #------------------------------------------------------------------------------
    annot = page.addInkAnnot((sin_points, cos_points))
    # let it look a little nicer
    annot.set_border(width=0.3, dashes=[1,])  # line thickness, some dashing
    annot.set_colors(stroke=(0,0,1))  # make the lines blue
    annot.update()  # update the appearance

    page.draw_rect(rect, width=0.3)  # only to demonstrate we did OK

    doc.save("a-inktest.pdf")

This is the result:

.. image:: images/img-inkannot.*
    :scale: 50

.. include:: footer.rst







PyMuPDF-1.21.1/docs/recipes-common-issues-and-their-solutions.rst

.. include:: header.rst

.. _RecipesCommonIssuesAndTheirSolutions:

==========================================
Recipes: Common Issues and their Solutions
==========================================



Changing Annotations: Unexpected Behaviour
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Problem
^^^^^^^^^
There are two scenarios:

1. **Updating** an annotation with PyMuPDF which was created by some other software.
2. **Creating** an annotation with PyMuPDF and later changing it with some other software.

In both cases you may experience unintended changes, like a different annotation icon or text font, the fill color or line dashing have disappeared, line end symbols have changed their size or even have disappeared too, etc.

Cause
^^^^^^
Annotation maintenance is handled differently by each PDF maintenance application. Some annotation types may not be supported, or not be supported fully or some details may be handled in a different way than in another application. **There is no standard.**

Almost always a PDF application also comes with its own icons (file attachments, sticky notes and stamps) and its own set of supported text fonts. For example:

* (Py-) MuPDF only supports these 5 basic fonts for 'FreeText' annotations: Helvetica, Times-Roman, Courier, ZapfDingbats and Symbol -- no italics / no bold variations. When changing a 'FreeText' annotation created by some other app, its font will probably not be recognized nor accepted and be replaced by Helvetica.

* PyMuPDF supports all PDF text markers (highlight, underline, strikeout, squiggly), but these types cannot be updated with Adobe Acrobat Reader.

In most cases there also exists limited support for line dashing which causes existing dashes to be replaced by straight lines. For example:

* PyMuPDF fully supports all line dashing forms, while other viewers only accept a limited subset.

Solutions
^^^^^^^^^^
Unfortunately there is not much you can do in most of these cases.

1. Stay with the same software for **creating and changing** an annotation.
2. When using PyMuPDF to change an "alien" annotation, try to **avoid** :meth:`Annot.update`. The following methods **can be used without it,** so that the original appearance should be maintained:

 * :meth:`Annot.set_rect` (location changes)
 * :meth:`Annot.set_flags` (annotation behaviour)
 * :meth:`Annot.set_info` (meta information, except changes to *content*)
 * :meth:`Annot.set_popup` (create popup or change its rect)
 * :meth:`Annot.set_optional_content` (add / remove reference to optional content information)
 * :meth:`Annot.set_open`
 * :meth:`Annot.update_file` (file attachment changes)

Misplaced Item Insertions on PDF Pages
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Problem
^^^^^^^^^

You inserted an item (like an image, an annotation or some text) on an existing PDF page, but later you find it being placed at a different location than intended. For example an image should be inserted at the top, but it unexpectedly appears near the bottom of the page.

Cause
^^^^^^

The creator of the PDF has established a non-standard page geometry without keeping it "local" (as they should!). Most commonly, the PDF standard point (0,0) at *bottom-left* has been changed to the *top-left* point. So top and bottom are reversed -- causing your insertion to be misplaced.

The visible image of a PDF page is controlled by commands coded in a special mini-language. For an overview of this language consult "Operator Summary" on pp. 643 of the :ref:`AdobeManual`. These commands are stored in :data:`contents` objects as strings (*bytes* in PyMuPDF).

There are commands in that language, which change the coordinate system of the page for all the following commands. In order to limit the scope of such commands to "local", they must be wrapped by the command pair *q* ("save graphics state", or "stack") and *Q* ("restore graphics state", or "unstack").

.. highlight:: text

So the PDF creator did this::

    stream
    1 0 0 -1 0 792 cm    % <=== change of coordinate system:
    ...                  % letter page, top / bottom reversed
    ...                  % remains active beyond these lines
    endstream

where they should have done this::

    stream
    q                    % put the following in a stack
    1 0 0 -1 0 792 cm    % <=== scope of this is limited by Q command
    ...                  % here, a different geometry exists
    Q                    % after this line, geometry of outer scope prevails
    endstream

.. note::

   * In the mini-language's syntax, spaces and line breaks are equally accepted token delimiters.
   * Multiple consecutive delimiters are treated as one.
   * Keywords "stream" and "endstream" are inserted automatically -- not by the programmer.

.. highlight:: python

Solutions
^^^^^^^^^^

Since v1.16.0, there is the property :attr:`Page.is_wrapped`, which lets you check whether a page's contents are wrapped in that string pair.

If it is *False* or if you want to be on the safe side, pick one of the following:

1. The easiest way: in your script, do a :meth:`Page.clean_contents` before you do your first item insertion.
2. Pre-process your PDF with the MuPDF command line utility *mutool clean -c ...* and work with its output file instead.
3. Directly wrap the page's :data:`contents` with the stacking commands before you do your first item insertion.

**Solutions 1. and 2.** use the same technical basis and **do a lot more** than what is required in this context: they also clean up other inconsistencies or redundancies that may exist, multiple */Contents* objects will be concatenated into one, and much more.

.. note:: For **incremental saves,** solution 1. has an unpleasant implication: it will bloat the update delta, because it changes so many things and, in addition, stores the **cleaned contents uncompressed**. So, if you use :meth:`Page.clean_contents` you should consider **saving to a new file** with (at least) *garbage=3* and *deflate=True*.

**Solution 3.** is completely under your control and only does the minimum corrective action. There is a handy low-level utility function which you can use for this. Suggested procedure:

* **Prepend** the missing stacking command by executing *fitz.TOOLS._insert_contents(page, b"q\n", False)*.
* **Append** an unstacking command by executing *fitz.TOOLS._insert_contents(page, b"\nQ", True)*.
* Alternatively, just use :meth:`Page._wrap_contents`, which executes the previous two functions.

.. note:: If small incremental update deltas are a concern, this approach is the most effective. Other contents objects are not touched. The utility method creates two new PDF :data:`stream` objects and inserts them before, resp. after the page's other :data:`contents`. We therefore recommend the following snippet to get this situation under control:

    >>> if not page.is_wrapped:
            page.wrap_contents()
    >>> # start inserting text, images or annotations here


Missing or Unreadable Extracted Text
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fairly often, text extraction does not work text as you would expect: text may be missing, or may not appear in the reading sequence visible on your screen, or contain garbled characters (like a ? or a "TOFU" symbol), etc. This can be caused by a number of different problems.

Problem: no text is extracted
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Your PDF viewer does display text, but you cannot select it with your cursor, and text extraction delivers nothing.

Cause
^^^^^^
1. You may be looking at an image embedded in the PDF page (e.g. a scanned PDF).
2. The PDF creator used no font, but **simulated** text by painting it, using little lines and curves. E.g. a capital "D" could be painted by a line "|" and a left-open semi-circle, an "o" by an ellipse, and so on.

Solution
^^^^^^^^^^
Use an OCR software like `OCRmyPDF <https://pypi.org/project/ocrmypdf/>`_ to insert a hidden text layer underneath the visible page. The resulting PDF should behave as expected.

Problem: unreadable text
^^^^^^^^^^^^^^^^^^^^^^^^
Text extraction does not deliver the text in readable order, duplicates some text, or is otherwise garbled.

Cause
^^^^^^
1. The single characters are readable as such (no "<?>" symbols), but the sequence in which the text is **coded in the file** deviates from the reading order. The motivation behind may be technical or protection of data against unwanted copies.
2. Many "<?>" symbols occur, indicating MuPDF could not interpret these characters. The font may indeed be unsupported by MuPDF, or the PDF creator may haved used a font that displays readable text, but on purpose obfuscates the originating corresponding unicode character.

Solution
^^^^^^^^
1. Use layout preserving text extraction: ``python -m fitz gettext file.pdf``.
2. If other text extraction tools also don't work, then the only solution again is OCRing the page.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/recipes-drawing-and-graphics.rst

.. include:: header.rst

.. _RecipesDrawingAndGraphics:

==============================
Recipes: Drawing and Graphics
==============================

PDF files support elementary drawing operations as part of their syntax. This includes basic geometrical objects like lines, curves, circles, rectangles including specifying colors.

The syntax for such operations is defined in "A Operator Summary" on page 643 of the :ref:`AdobeManual`. Specifying these operators for a PDF page happens in its :data:`contents` objects.

PyMuPDF implements a large part of the available features via its :ref:`Shape` class, which is comparable to notions like "canvas" in other packages (e.g. `reportlab <https://pypi.org/project/reportlab/>`_).

A shape is always created as a **child of a page**, usually with an instruction like *shape = page.new_shape()*. The class defines numerous methods that perform drawing operations on the page's area. For example, *last_point = shape.draw_rect(rect)* draws a rectangle along the borders of a suitably defined *rect = fitz.Rect(...)*.

The returned *last_point* **always** is the :ref:`Point` where drawing operation ended ("last point"). Every such elementary drawing requires a subsequent :meth:`Shape.finish` to "close" it, but there may be multiple drawings which have one common *finish()* method.

In fact, :meth:`Shape.finish` *defines* a group of preceding draw operations to form one -- potentially rather complex -- graphics object. PyMuPDF provides several predefined graphics in `shapes_and_symbols.py <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/shapes/shapes_and_symbols.py>`_ which demonstrate how this works.

If you import this script, you can also directly use its graphics as in the following example::

 # -*- coding: utf-8 -*-
 """
 Created on Sun Dec 9 08:34:06 2018

 @author: Jorj
 @license: GNU AFFERO GPL V3

 Create a list of available symbols defined in shapes_and_symbols.py

 This also demonstrates an example usage: how these symbols could be used
 as bullet-point symbols in some text.

 """

 import fitz
 import shapes_and_symbols as sas

 # list of available symbol functions and their descriptions
 tlist = [
 (sas.arrow, "arrow (easy)"),
 (sas.caro, "caro (easy)"),
 (sas.clover, "clover (easy)"),
 (sas.diamond, "diamond (easy)"),
 (sas.dontenter, "do not enter (medium)"),
 (sas.frowney, "frowney (medium)"),
 (sas.hand, "hand (complex)"),
 (sas.heart, "heart (easy)"),
 (sas.pencil, "pencil (very complex)"),
 (sas.smiley, "smiley (easy)"),
]

 r = fitz.Rect(50, 50, 100, 100) # first rect to contain a symbol
 d = fitz.Rect(0, r.height + 10, 0, r.height + 10) # displacement to next rect
 p = (15, -r.height * 0.2) # starting point of explanation text
 rlist = [r] # rectangle list

 for i in range(1, len(tlist)): # fill in all the rectangles
 rlist.append(rlist[i-1] + d)

 doc = fitz.open() # create empty PDF
 page = doc.new_page() # create an empty page
 shape = page.new_shape() # start a Shape (canvas)

 for i, r in enumerate(rlist):
 tlist[i][0](shape, rlist[i]) # execute symbol creation
 shape.insert_text(rlist[i].br + p, # insert description text
 tlist[i][1], fontsize=r.height/1.2)

 # store everything to the page's /Contents object
 shape.commit()

 import os
 scriptdir = os.path.dirname(__file__)
 doc.save(os.path.join(scriptdir, "symbol-list.pdf")) # save the PDF

This is the script's outcome:

.. image:: images/img-symbols.*
 :scale: 50

Extracting Drawings
~~~~~~~~~~~~~~~~~~~~~~~~~~~

* New in v1.18.0

The drawing commands issued by a page can be extracted. Interestingly, this is possible for **all supported document types** -- not just PDF: so you can use it for XPS, EPUB and others as well.

Page method, :meth:`Page.get_drawings()` accesses draw commands and converts them into a list of Python dictionaries. Each dictionary -- called a "path" -- represents a separate drawing -- it may be simple like a single line, or a complex combination of lines and curves representing one of the shapes of the previous section.

The *path* dictionary has been designed such that it can easily be used by the :ref:`Shape` class and its methods. Here is an example for a page with one path, that draws a red-bordered yellow circle inside rectangle `Rect(100, 100, 200, 200)`::

    >>> pprint(page.get_drawings())
    [{'closePath': True,
    'color': [1.0, 0.0, 0.0],
    'dashes': '[] 0',
    'even_odd': False,
    'fill': [1.0, 1.0, 0.0],
    'items': [('c',
                Point(100.0, 150.0),
                Point(100.0, 177.614013671875),
                Point(122.38600158691406, 200.0),
                Point(150.0, 200.0)),
                ('c',
                Point(150.0, 200.0),
                Point(177.61399841308594, 200.0),
                Point(200.0, 177.614013671875),
                Point(200.0, 150.0)),
                ('c',
                Point(200.0, 150.0),
                Point(200.0, 122.385986328125),
                Point(177.61399841308594, 100.0),
                Point(150.0, 100.0)),
                ('c',
                Point(150.0, 100.0),
                Point(122.38600158691406, 100.0),
                Point(100.0, 122.385986328125),
                Point(100.0, 150.0))],
    'lineCap': (0, 0, 0),
    'lineJoin': 0,
    'opacity': 1.0,
    'rect': Rect(100.0, 100.0, 200.0, 200.0),
    'width': 1.0}]
    >>>

.. note:: You need (at least) 4 Bézier curves (of 3rd order) to draw a circle with acceptable precision. See this `Wikipedia article <https://en.wikipedia.org/wiki/B%C3%A9zier_curve>`_ for some background.


The following is a code snippet which extracts the drawings of a page and re-draws them on a new page::

    import fitz
    doc = fitz.open("some.file")
    page = doc[0]
    paths = page.get_drawings()  # extract existing drawings
    # this is a list of "paths", which can directly be drawn again using Shape
    # -------------------------------------------------------------------------
    #
    # define some output page with the same dimensions
    outpdf = fitz.open()
    outpage = outpdf.new_page(width=page.rect.width, height=page.rect.height)
    shape = outpage.new_shape()  # make a drawing canvas for the output page
    # --------------------------------------
    # loop through the paths and draw them
    # --------------------------------------
    for path in paths:
        # ------------------------------------
        # draw each entry of the 'items' list
        # ------------------------------------
        for item in path["items"]:  # these are the draw commands
            if item[0] == "l":  # line
                shape.draw_line(item[1], item[2])
            elif item[0] == "re":  # rectangle
                shape.draw_rect(item[1])
            elif item[0] == "qu":  # quad
                shape.draw_quad(item[1])
            elif item[0] == "c":  # curve
                shape.draw_bezier(item[1], item[2], item[3], item[4])
            else:
                raise ValueError("unhandled drawing", item)
        # ------------------------------------------------------
        # all items are drawn, now apply the common properties
        # to finish the path
        # ------------------------------------------------------
        shape.finish(
            fill=path["fill"],  # fill color
            color=path["color"],  # line color
            dashes=path["dashes"],  # line dashing
            even_odd=path.get("even_odd", True),  # control color of overlaps
            closePath=path["closePath"],  # whether to connect last and first point
            lineJoin=path["lineJoin"],  # how line joins should look like
            lineCap=max(path["lineCap"]),  # how line ends should look like
            width=path["width"],  # line width
            stroke_opacity=path.get("stroke_opacity", 1),  # same value for both
            fill_opacity=path.get("fill_opacity", 1),  # opacity parameters
            )
    # all paths processed - commit the shape to its page
    shape.commit()
    outpdf.save("drawings-page-0.pdf")

As can be seen, there is a high congruence level with the :ref:`Shape` class. With one exception: For technical reasons ``lineCap`` is a tuple of 3 numbers here, whereas it is an integer in :ref:`Shape` (and in PDF). So we simply take the maximum value of that tuple.

Here is a comparison between input and output of an example page, created by the previous script:

.. image:: images/img-getdrawings.png
   :scale: 50

.. note:: The reconstruction of graphics, like shown here, is not perfect. The following aspects will not be reproduced as of this version:

   * Page definitions can be complex and include instructions for not showing / hiding certain areas to keep them invisible. Things like this are ignored by :meth:`Page.get_drawings` - it will always return all paths.

.. note:: You can use the path list to make your own lists of e.g. all lines or all rectangles on the page and subselect them by criteria, like color or position on the page etc.

.. include:: footer.rst







PyMuPDF-1.21.1/docs/recipes-general.rst

.. include:: header.rst

.. _RecipesGeneral:

==============================
Recipes: General
==============================


How to Open with :index:`a Wrong File Extension <pair: wrong; file extension>`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you have a document with a wrong file extension for its type, you can still correctly open it.

Assume that "some.file" is actually an XPS. Open it like so:

>>> doc = fitz.open("some.file", filetype="xps")

.. note::

 MuPDF itself does not try to determine the file type from the file contents. **You** are responsible for supplying the filetype info in some way -- either implicitly via the file extension, or explicitly as shown. There are pure Python packages like `filetype <https://pypi.org/project/filetype/>`_ that help you doing this. Also consult the :ref:`Document` chapter for a full description.

 If MuPDF encounters a file with an unknown / missing extension, it will try to open it as a PDF. So in these cases there is no need to for additional precautions. Similarly, for memory documents, you can just specify ``doc=fitz.open(stream=mem_area)`` to open it as a PDF document.

How to :index:`Embed or Attach Files <triple: attach;embed;file>`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PDF supports incorporating arbitrary data. This can be done in one of two ways: "embedding" or "attaching". PyMuPDF supports both options.

1. Attached Files: data are **attached to a page** by way of a *FileAttachment* annotation with this statement: *annot = page.add_file_annot(pos, ...)*, for details see :meth:`Page.add_file_annot`. The first parameter "pos" is the :ref:`Point`, where a "PushPin" icon should be placed on the page.

2. Embedded Files: data are embedded on the **document level** via method :meth:`Document.embfile_add`.

The basic differences between these options are **(1)** you need edit permission to embed a file, but only annotation permission to attach, **(2)** like all annotations, attachments are visible on a page, embedded files are not.

There exist several example scripts: `embedded-list.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-list.py>`_, `new-annots.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/new-annots.py>`_.

Also look at the sections above and at chapter :ref:`Appendix 3`.

----------

.. index::
   pair: delete;pages
   pair: rearrange;pages

How to Delete and Re-Arrange Pages
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With PyMuPDF you have all options to copy, move, delete or re-arrange the pages of a PDF. Intuitive methods exist that allow you to do this on a page-by-page level, like the :meth:`Document.copy_page` method.

Or you alternatively prepare a complete new page layout in form of a Python sequence, that contains the page numbers you want, in the sequence you want, and as many times as you want each page. The following may illustrate what can be done with :meth:`Document.select`:

doc.select([1, 1, 1, 5, 4, 9, 9, 9, 0, 2, 2, 2])

Now let's prepare a PDF for double-sided printing (on a printer not directly supporting this):

The number of pages is given by ``len(doc)`` (equal to ``doc.page_count``). The following lists represent the even and the odd page numbers, respectively:

>>> p_even = [p in range(doc.page_count) if p % 2 == 0]
>>> p_odd = [p in range(doc.page_count) if p % 2 == 1]

This snippet creates the respective sub documents which can then be used to print the document:

>>> doc.select(p_even) # only the even pages left over
>>> doc.save("even.pdf") # save the "even" PDF
>>> doc.close() # recycle the file
>>> doc = fitz.open(doc.name) # re-open
>>> doc.select(p_odd) # and do the same with the odd pages
>>> doc.save("odd.pdf")

For more information also have a look at this Wiki `article <https://github.com/pymupdf/PyMuPDF/wiki/Rearranging-Pages-of-a-PDF>`_.

The following example will reverse the order of all pages (**extremely fast:** sub-second time for the 756 pages of the :ref:`AdobeManual`):

>>> lastPage = doc.page_count - 1
>>> for i in range(lastPage):
 doc.move_page(lastPage, i) # move current last page to the front

This snippet duplicates the PDF with itself so that it will contain the pages *0, 1, ..., n, 0, 1, ..., n* **(extremely fast and without noticeably increasing the file size!)**:

>>> page_count = len(doc)
>>> for i in range(page_count):
 doc.copy_page(i) # copy this page to after last page

How to Join PDFs
~~~~~~~~~~~~~~~~~~
It is easy to join PDFs with method :meth:`Document.insert_pdf`. Given open PDF documents, you can copy page ranges from one to the other. You can select the point where the copied pages should be placed, you can revert the page sequence and also change page rotation. This Wiki `article <https://github.com/pymupdf/PyMuPDF/wiki/Inserting-Pages-from-other-PDFs>`_ contains a full description.

The GUI script `PDFjoiner.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/PDFjoiner.py>`_ uses this method to join a list of files while also joining the respective table of contents segments. It looks like this:

.. image:: images/img-pdfjoiner.*
   :scale: 60

----------

How to Add Pages
~~~~~~~~~~~~~~~~~~
There two methods for adding new pages to a PDF: :meth:`Document.insert_page` and :meth:`Document.new_page` (and they share a common code base).

new_page

:meth:`Document.new_page` returns the created :ref:`Page` object. Here is the constructor showing defaults::

 >>> doc = fitz.open(...) # some new or existing PDF document
 >>> page = doc.new_page(to = -1, # insertion point: end of document
 width = 595, # page dimension: A4 portrait
 height = 842)

The above could also have been achieved with the short form *page = doc.new_page()*. The *to* parameter specifies the document's page number (0-based) **in front of which** to insert.

To create a page in *landscape* format, just exchange the width and height values.

Use this to create the page with another pre-defined paper format:

>>> w, h = fitz.paper_size("letter-l") # 'Letter' landscape
>>> page = doc.new_page(width = w, height = h)

The convenience function :meth:`paper_size` knows over 40 industry standard paper formats to choose from. To see them, inspect dictionary :attr:`paperSizes`. Pass the desired dictionary key to :meth:`paper_size` to retrieve the paper dimensions. Upper and lower case is supported. If you append "-L" to the format name, the landscape version is returned.

.. note:: Here is a 3-liner that creates a PDF with one empty page. Its file size is 470 bytes:

 >>> doc = fitz.open()
 >>> doc.new_page()
 >>> doc.save("A4.pdf")

insert_page

:meth:`Document.insert_page` also inserts a new page and accepts the same parameters *to*, *width* and *height*. But it lets you also insert arbitrary text into the new page and returns the number of inserted lines::

 >>> doc = fitz.open(...) # some new or existing PDF document
 >>> n = doc.insert_page(to = -1, # default insertion point
 text = None, # string or sequence of strings
 fontsize = 11,
 width = 595,
 height = 842,
 fontname = "Helvetica", # default font
 fontfile = None, # any font file name
 color = (0, 0, 0)) # text color (RGB)

The text parameter can be a (sequence of) string (assuming UTF-8 encoding). Insertion will start at :ref:`Point` (50, 72), which is one inch below top of page and 50 points from the left. The number of inserted text lines is returned. See the method definition for more details.

How To Dynamically Clean Up Corrupt PDFs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This shows a potential use of PyMuPDF with another Python PDF library (the excellent pure Python package `pdfrw <https://pypi.python.org/pypi/pdfrw>`_ is used here as an example).

If a clean, non-corrupt / decompressed PDF is needed, one could dynamically invoke PyMuPDF to recover from many problems like so::

 import sys
 from io import BytesIO
 from pdfrw import PdfReader
 import fitz

 #---------------------------------------
 # 'Tolerant' PDF reader
 #---------------------------------------
 def reader(fname, password = None):
     idata = open(fname, "rb").read()  # read the PDF into memory and
     ibuffer = BytesIO(idata)  # convert to stream
     if password is None:
         try:
             return PdfReader(ibuffer)  # if this works: fine!
         except:
             pass

     # either we need a password or it is a problem-PDF
     # create a repaired / decompressed / decrypted version
     doc = fitz.open("pdf", ibuffer)
     if password is not None:  # decrypt if password provided
         rc = doc.authenticate(password)
         if not rc > 0:
             raise ValueError("wrong password")
     c = doc.tobytes(garbage=3, deflate=True)
     del doc  # close & delete doc
     return PdfReader(BytesIO(c))  # let pdfrw retry
 #---------------------------------------
 # Main program
 #---------------------------------------
 pdf = reader("pymupdf.pdf", password = None) # include a password if necessary
 print pdf.Info
 # do further processing

With the command line utility *pdftk* (`available <https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/>`_ for Windows only, but reported to also run under `Wine <https://www.winehq.org/>`_) a similar result can be achieved, see `here <http://www.overthere.co.uk/2013/07/22/improving-pypdf2-with-pdftk/>`_. However, you must invoke it as a separate process via *subprocess.Popen*, using stdin and stdout as communication vehicles.

How to Split Single Pages
~~~~~~~~~~~~~~~~~~~~~~~~~~

This deals with splitting up pages of a PDF in arbitrary pieces. For example, you may have a PDF with *Letter* format pages which you want to print with a magnification factor of four: each page is split up in 4 pieces which each go to a separate PDF page in *Letter* format again::

 """
 Create a PDF copy with split-up pages (posterize)

 License: GNU AFFERO GPL V3
 (c) 2018 Jorj X. McKie

 Usage

 python posterize.py input.pdf

 Result

 A file "poster-input.pdf" with 4 output pages for every input page.

 Notes

 (1) Output file is chosen to have page dimensions of 1/4 of input.

 (2) Easily adapt the example to make n pages per input, or decide per each
 input page or whatever.

 Dependencies

 PyMuPDF 1.12.2 or later
 """
 import fitz, sys
 infile = sys.argv[1] # input file name
 src = fitz.open(infile)
 doc = fitz.open() # empty output PDF

 for spage in src: # for each page in input
 r = spage.rect # input page rectangle
 d = fitz.Rect(spage.cropbox_position, # CropBox displacement if not
 spage.cropbox_position) # starting at (0, 0)
 #--
 # example: cut input page into 2 x 2 parts
 #--
 r1 = r / 2 # top left rect
 r2 = r1 + (r1.width, 0, r1.width, 0) # top right rect
 r3 = r1 + (0, r1.height, 0, r1.height) # bottom left rect
 r4 = fitz.Rect(r1.br, r.br) # bottom right rect
 rect_list = [r1, r2, r3, r4] # put them in a list

 for rx in rect_list: # run thru rect list
 rx += d # add the CropBox displacement
 page = doc.new_page(-1, # new output page with rx dimensions
 width = rx.width,
 height = rx.height)
 page.show_pdf_page(
 page.rect, # fill all new page with the image
 src, # input document
 spage.number, # input page number
 clip = rx, # which part to use of input page
)

 # that's it, save output file
 doc.save("poster-" + src.name,
 garbage=3, # eliminate duplicate objects
 deflate=True, # compress stuff where possible
)

This shows what happens to an input page:

.. image:: images/img-posterize.png

How to Combine Single Pages
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This deals with joining PDF pages to form a new PDF with pages each combining two or four original ones (also called "2-up", "4-up", etc.). This could be used to create booklets or thumbnail-like overviews::

    '''
    Copy an input PDF to output combining every 4 pages
    ---------------------------------------------------
    License: GNU AFFERO GPL V3
    (c) 2018 Jorj X. McKie

    Usage
    ------
    python 4up.py input.pdf

    Result
    -------
    A file "4up-input.pdf" with 1 output page for every 4 input pages.

    Notes
    -----
    (1) Output file is chosen to have A4 portrait pages. Input pages are scaled
        maintaining side proportions. Both can be changed, e.g. based on input
        page size. However, note that not all pages need to have the same size, etc.

    (2) Easily adapt the example to combine just 2 pages (like for a booklet) or
        make the output page dimension dependent on input, or whatever.

    Dependencies
    -------------
    PyMuPDF 1.12.1 or later
    '''
    import fitz, sys
    infile = sys.argv[1]
    src = fitz.open(infile)
    doc = fitz.open()  # empty output PDF

    width, height = fitz.paper_size("a4")  # A4 portrait output page format
    r = fitz.Rect(0, 0, width, height)

    # define the 4 rectangles per page
    r1 = r / 2  # top left rect
    r2 = r1 + (r1.width, 0, r1.width, 0)  # top right
    r3 = r1 + (0, r1.height, 0, r1.height)  # bottom left
    r4 = fitz.Rect(r1.br, r.br)  # bottom right

    # put them in a list
    r_tab = [r1, r2, r3, r4]

    # now copy input pages to output
    for spage in src:
        if spage.number % 4 == 0:  # create new output page
            page = doc.new_page(-1,
                          width = width,
                          height = height)
        # insert input page into the correct rectangle
        page.show_pdf_page(r_tab[spage.number % 4],  # select output rect
                         src,  # input document
                         spage.number)  # input page number

    # by all means, save new file using garbage collection and compression
    doc.save("4up-" + infile, garbage=3, deflate=True)

Example effect:

.. image:: images/img-4up.png


--------------------------

How to Convert Any Document to PDF
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Here is a script that converts any PyMuPDF supported document to a PDF. These include XPS, EPUB, FB2, CBZ and all image formats, including multi-page TIFF images.

It features maintaining any metadata, table of contents and links contained in the source document::

 """
 Demo script: Convert input file to a PDF

 Intended for multi-page input files like XPS, EPUB etc.

 Features:

 Recovery of table of contents and links of input file.
 While this works well for bookmarks (outlines, table of contents),
 links will only work if they are not of type "LINK_NAMED".
 This link type is skipped by the script.

 For XPS and EPUB input, internal links however **are** of type "LINK_NAMED".
 Base library MuPDF does not resolve them to page numbers.

 So, for anyone expert enough to know the internal structure of these
 document types, can further interpret and resolve these link types.

 Dependencies

 PyMuPDF v1.14.0+
 """
 import sys
 import fitz
 if not (list(map(int, fitz.VersionBind.split("."))) >= [1,14,0]):
 raise SystemExit("need PyMuPDF v1.14.0+")
 fn = sys.argv[1]

 print("Converting '%s' to '%s.pdf'" % (fn, fn))

 doc = fitz.open(fn)

 b = doc.convert_to_pdf() # convert to pdf
 pdf = fitz.open("pdf", b) # open as pdf

 toc= doc.het_toc() # table of contents of input
 pdf.set_toc(toc) # simply set it for output
 meta = doc.metadata # read and set metadata
 if not meta["producer"]:
 meta["producer"] = "PyMuPDF v" + fitz.VersionBind

 if not meta["creator"]:
 meta["creator"] = "PyMuPDF PDF converter"
 meta["modDate"] = fitz.get_pdf_now()
 meta["creationDate"] = meta["modDate"]
 pdf.set_metadata(meta)

 # now process the links
 link_cnti = 0
 link_skip = 0
 for pinput in doc: # iterate through input pages
 links = pinput.get_links() # get list of links
 link_cnti += len(links) # count how many
 pout = pdf[pinput.number] # read corresp. output page
 for l in links: # iterate though the links
 if l["kind"] == fitz.LINK_NAMED: # we do not handle named links
 print("named link page", pinput.number, l)
 link_skip += 1 # count them
 continue
 pout.insert_link(l) # simply output the others

 # save the conversion result
 pdf.save(fn + ".pdf", garbage=4, deflate=True)
 # say how many named links we skipped
 if link_cnti > 0:
 print("Skipped %i named links of a total of %i in input." % (link_skip, link_cnti))

How to Deal with Messages Issued by MuPDF
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since PyMuPDF v1.16.0, **error messages** issued by the underlying MuPDF library are being redirected to the Python standard device *sys.stderr*. So you can handle them like any other output going to this devices.

In addition, these messages go to the internal buffer together with any MuPDF warnings -- see below.

We always prefix these messages with an identifying string *"mupdf:"*.
If you prefer to not see recoverable MuPDF errors at all, issue the command ``fitz.TOOLS.mupdf_display_errors(False)``.

MuPDF warnings continue to be stored in an internal buffer and can be viewed using :meth:`Tools.mupdf_warnings`.

Please note that MuPDF errors may or may not lead to Python exceptions. In other words, you may see error messages from which MuPDF can recover and continue processing.

Example output for a **recoverable error**. We are opening a damaged PDF, but MuPDF is able to repair it and gives us a little information on what happened. Then we illustrate how to find out whether the document can later be saved incrementally. Checking the :attr:`Document.is_dirty` attribute at this point also indicates that during ``fitz.open`` the document had to be repaired:

>>> import fitz
>>> doc = fitz.open("damaged-file.pdf")  # leads to a sys.stderr message:
mupdf: cannot find startxref
>>> print(fitz.TOOLS.mupdf_warnings())  # check if there is more info:
cannot find startxref
trying to repair broken xref
repairing PDF document
object missing 'endobj' token
>>> doc.can_save_incrementally()  # this is to be expected:
False
>>> # the following indicates whether there are updates so far
>>> # this is the case because of the repair actions:
>>> doc.is_dirty
True
>>> # the document has nevertheless been created:
>>> doc
fitz.Document('damaged-file.pdf')
>>> # we now know that any save must occur to a new file

Example output for an **unrecoverable error**:

>>> import fitz
>>> doc = fitz.open("does-not-exist.pdf")
mupdf: cannot open does-not-exist.pdf: No such file or directory
Traceback (most recent call last):
  File "<pyshell#1>", line 1, in <module>
    doc = fitz.open("does-not-exist.pdf")
  File "C:\Users\Jorj\AppData\Local\Programs\Python\Python37\lib\site-packages\fitz\fitz.py", line 2200, in __init__
    _fitz.Document_swiginit(self, _fitz.new_Document(filename, stream, filetype, rect, width, height, fontsize))
RuntimeError: cannot open does-not-exist.pdf: No such file or directory
>>>

--------------------------

How to Deal with PDF Encryption
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Starting with version 1.16.0, PDF decryption and encryption (using passwords) are fully supported. You can do the following:

* Check whether a document is password protected / (still) encrypted (:attr:`Document.needs_pass`, :attr:`Document.is_encrypted`).
* Gain access authorization to a document (:meth:`Document.authenticate`).
* Set encryption details for PDF files using :meth:`Document.save` or :meth:`Document.write` and

 - decrypt or encrypt the content
 - set password(s)
 - set the encryption method
 - set permission details

.. note:: A PDF document may have two different passwords:

 * The **owner password** provides full access rights, including changing passwords, encryption method, or permission detail.
 * The **user password** provides access to document content according to the established permission details. If present, opening the PDF in a viewer will require providing it.

 Method :meth:`Document.authenticate` will automatically establish access rights according to the password used.

The following snippet creates a new PDF and encrypts it with separate user and owner passwords. Permissions are granted to print, copy and annotate, but no changes are allowed to someone authenticating with the user password::

 import fitz

 text = "some secret information" # keep this data secret
 perm = int(
 fitz.PDF_PERM_ACCESSIBILITY # always use this
 | fitz.PDF_PERM_PRINT # permit printing
 | fitz.PDF_PERM_COPY # permit copying
 | fitz.PDF_PERM_ANNOTATE # permit annotations
)
 owner_pass = "owner" # owner password
 user_pass = "user" # user password
 encrypt_meth = fitz.PDF_ENCRYPT_AES_256 # strongest algorithm
 doc = fitz.open() # empty pdf
 page = doc.new_page() # empty page
 page.insert_text((50, 72), text) # insert the data
 doc.save(
 "secret.pdf",
 encryption=encrypt_meth, # set the encryption method
 owner_pw=owner_pass, # set the owner password
 user_pw=user_pass, # set the user password
 permissions=perm, # set permissions
)

Opening this document with some viewer (Nitro Reader 5) reflects these settings:

.. image:: images/img-encrypting.*
 :scale: 50

Decrypting will automatically happen on save as before when no encryption parameters are provided.

To **keep the encryption method** of a PDF save it using *encryption=fitz.PDF_ENCRYPT_KEEP*. If *doc.can_save_incrementally() == True*, an incremental save is also possible.

To **change the encryption method** specify the full range of options above (encryption, owner_pw, user_pw, permissions). An incremental save is **not possible** in this case.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/recipes-images.rst

.. include:: header.rst

.. _RecipesImages:

==============================
Recipes: Images
==============================

How to Make Images from Document Pages
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This little script will take a document filename and generate a PNG file from each of its pages.

The document can be any supported type like PDF, XPS, etc.

The script works as a command line tool which expects the filename being supplied as a parameter. The generated image files (1 per page) are stored in the directory of the script::

    import sys, fitz  # import the bindings
    fname = sys.argv[1]  # get filename from command line
    doc = fitz.open(fname)  # open document
    for page in doc:  # iterate through the pages
        pix = page.get_pixmap()  # render page to an image
        pix.save("page-%i.png" % page.number)  # store image as a PNG

The script directory will now contain PNG image files named *page-0.png*, *page-1.png*, etc. Pictures have the dimension of their pages with width and height rounded to integers, e.g. 595 x 842 pixels for an A4 portrait sized page. They will have a resolution of 96 dpi in x and y dimension and have no transparency. You can change all that -- for how to do this, read the next sections.

----------

How to Increase :index:`Image Resolution <pair: image; resolution>`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The image of a document page is represented by a :ref:`Pixmap`, and the simplest way to create a pixmap is via method :meth:`Page.get_pixmap`.

This method has many options to influence the result. The most important among them is the :ref:`Matrix`, which lets you :index:`zoom`, rotate, distort or mirror the outcome.

:meth:`Page.get_pixmap` by default will use the :ref:`Identity` matrix, which does nothing.

In the following, we apply a :index:`zoom factor <pair: resolution;zoom>` of 2 to each dimension, which will generate an image with a four times better resolution for us (and also about 4 times the size)::

 zoom_x = 2.0 # horizontal zoom
 zoom_y = 2.0 # vertical zoom
 mat = fitz.Matrix(zoom_x, zoom_y) # zoom factor 2 in each dimension
 pix = page.get_pixmap(matrix=mat) # use 'mat' instead of the identity matrix

Since version 1.19.2 there is a more direct way to set the resolution: Parameter ``"dpi"`` (dots per inch) can be used in place of ``"matrix"``. To create a 300 dpi image of a page specify ``pix = page.get_pixmap(dpi=300)``. Apart from notation brevity, this approach has the additional advantage that the **dpi value is saved with the image** file -- which does not happen automatically when using the Matrix notation.

How to Create :index:`Partial Pixmaps` (Clips)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You do not always need or want the full image of a page. This is the case e.g. when you display the image in a GUI and would like to fill the respective window with a zoomed part of the page.

Let's assume your GUI window has room to display a full document page, but you now want to fill this room with the bottom right quarter of your page, thus using a four times better resolution.

To achieve this, define a rectangle equal to the area you want to appear in the GUI and call it "clip". One way of constructing rectangles in PyMuPDF is by providing two diagonally opposite corners, which is what we are doing here.

.. image:: images/img-clip.*
   :width: 50%

::

    mat = fitz.Matrix(2, 2)  # zoom factor 2 in each direction
    rect = page.rect  # the page rectangle
    mp = (rect.tl + rect.br) / 2  # its middle point, becomes top-left of clip
    clip = fitz.Rect(mp, rect.br)  # the area we want
    pix = page.get_pixmap(matrix=mat, clip=clip)

In the above we construct *clip* by specifying two diagonally opposite points: the middle point *mp* of the page rectangle, and its bottom right, *rect.br*.

----------

How to Zoom a Clip to a GUI Window
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Please also read the previous section. This time we want to **compute the zoom factor** for a clip, such that its image best fits a given GUI window. This means, that the image's width or height (or both) will equal the window dimension. For the following code snippet you need to provide the WIDTH and HEIGHT of your GUI's window that should receive the page's clip rectangle.

::

 # WIDTH: width of the GUI window
 # HEIGHT: height of the GUI window
 # clip: a subrectangle of the document page
 # compare width/height ratios of image and window

 if clip.width / clip.height < WIDTH / HEIGHT:
 # clip is narrower: zoom to window HEIGHT
 zoom = HEIGHT / clip.height
 else: # clip is broader: zoom to window WIDTH
 zoom = WIDTH / clip.width
 mat = fitz.Matrix(zoom, zoom)
 pix = page.get_pixmap(matrix=mat, clip=clip)

For the other way round, now assume you **have** the zoom factor and need to **compute the fitting clip**.

In this case we have ``zoom = HEIGHT/clip.height = WIDTH/clip.width``, so we must set ``clip.height = HEIGHT/zoom`` and, ``clip.width = WIDTH/zoom``. Choose the top-left point ``tl`` of the clip on the page to compute the right pixmap::

 width = WIDTH / zoom
 height = HEIGHT / zoom
 clip = fitz.Rect(tl, tl.x + width, tl.y + height)
 # ensure we still are inside the page
 clip &= page.rect
 mat = fitz.Matrix(zoom, zoom)
 pix = fitz.Pixmap(matrix=mat, clip=clip)

How to Create or Suppress Annotation Images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Normally, the pixmap of a page also shows the page's annotations. Occasionally, this may not be desirable.

To suppress the annotation images on a rendered page, just specify ``annots=False`` in :meth:`Page.get_pixmap`.

You can also render annotations separately: they have their own :meth:`Annot.get_pixmap` method. The resulting pixmap has the same dimensions as the annotation rectangle.

----------

.. index::
   triple: extract;image;non-PDF
   pair: convert_to_pdf;examples

How to Extract Images: Non-PDF Documents
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In contrast to the previous sections, this section deals with **extracting** images **contained** in documents, so they can be displayed as part of one or more pages.

If you want to recreate the original image in file form or as a memory area, you have basically two options:

1. Convert your document to a PDF, and then use one of the PDF-only extraction methods. This snippet will convert a document to PDF::

 >>> pdfbytes = doc.convert_to_pdf() # this a bytes object
 >>> pdf = fitz.open("pdf", pdfbytes) # open it as a PDF document
 >>> # now use 'pdf' like any PDF document

2. Use :meth:`Page.get_text` with the "dict" parameter. This works for all document types. It will extract all text and images shown on the page, formatted as a Python dictionary. Every image will occur in an image block, containing meta information and **the binary image data**. For details of the dictionary's structure, see :ref:`TextPage`. The method works equally well for PDF files. This creates a list of all images shown on a page::

 >>> d = page.get_text("dict")
 >>> blocks = d["blocks"] # the list of block dictionaries
 >>> imgblocks = [b for b in blocks if b["type"] == 1]
 >>> pprint(imgblocks[0])
 {'bbox': (100.0, 135.8769989013672, 300.0, 364.1230163574219),
 'bpc': 8,
 'colorspace': 3,
 'ext': 'jpeg',
 'height': 501,
 'image': b'\xff\xd8\xff\xe0\x00\x10JFIF\...', # CAUTION: LARGE!
 'size': 80518,
 'transform': (200.0, 0.0, -0.0, 228.2460174560547, 100.0, 135.8769989013672),
 'type': 1,
 'width': 439,
 'xres': 96,
 'yres': 96}

.. index::
 triple: extract;image;PDF
 pair: extract_image;examples

How to Extract Images: PDF Documents
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Like any other "object" in a PDF, images are identified by a cross reference number (:data:`xref`, an integer). If you know this number, you have two ways to access the image's data:

1. **Create** a :ref:`Pixmap` of the image with instruction *pix = fitz.Pixmap(doc, xref)*. This method is **very** fast (single digit micro-seconds). The pixmap's properties (width, height, ...) will reflect the ones of the image. In this case there is no way to tell which image format the embedded original has.

2. **Extract** the image with *img = doc.extract_image(xref)*. This is a dictionary containing the binary image data as *img["image"]*. A number of meta data are also provided -- mostly the same as you would find in the pixmap of the image. The major difference is string *img["ext"]*, which specifies the image format: apart from "png", strings like "jpeg", "bmp", "tiff", etc. can also occur. Use this string as the file extension if you want to store to disk. The execution speed of this method should be compared to the combined speed of the statements *pix = fitz.Pixmap(doc, xref);pix.tobytes()*. If the embedded image is in PNG format, the speed of :meth:`Document.extract_image` is about the same (and the binary image data are identical). Otherwise, this method is **thousands of times faster**, and the **image data is much smaller**.

The question remains: **"How do I know those 'xref' numbers of images?"**. There are two answers to this:

a. **"Inspect the page objects:"** Loop through the items of :meth:`Page.get_images`. It is a list of list, and its items look like *[xref, smask, ...]*, containing the :data:`xref` of an image. This :data:`xref` can then be used with one of the above methods. Use this method for **valid (undamaged)** documents. Be wary however, that the same image may be referenced multiple times (by different pages), so you might want to provide a mechanism avoiding multiple extracts.
b. **"No need to know:"** Loop through the list of **all xrefs** of the document and perform a :meth:`Document.extract_image` for each one. If the returned dictionary is empty, then continue -- this :data:`xref` is no image. Use this method if the PDF is **damaged (unusable pages)**. Note that a PDF often contains "pseudo-images" ("stencil masks") with the special purpose of defining the transparency of some other image. You may want to provide logic to exclude those from extraction. Also have a look at the next section.

For both extraction approaches, there exist ready-to-use general purpose scripts:

`extract-imga.py <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/extract-imga.py>`_ extracts images page by page:

.. image:: images/img-extract-imga.*
   :scale: 80

and `extract-imgb.py <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/extract-imgb.py>`_ extracts images by xref table:

.. image:: images/img-extract-imgb.*
   :scale: 80

----------

How to Handle Image Masks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some images in PDFs are accompanied by **image masks**. In their simplest form, masks represent alpha (transparency) bytes stored as separate images. In order to reconstruct the original of an image, which has a mask, it must be "enriched" with transparency bytes taken from its mask.

Whether an image does have such a mask can be recognized in one of two ways in PyMuPDF:

1. An item of :meth:`Document.get_page_images` has the general format ``(xref, smask, ...)``, where *xref* is the image's :data:`xref` and *smask*, if positive, then it is the :data:`xref` of a mask.
2. The (dictionary) results of :meth:`Document.extract_image` have a key *"smask"*, which also contains any mask's :data:`xref` if positive.

If *smask == 0* then the image encountered via :data:`xref` can be processed as it is.

To recover the original image using PyMuPDF, the procedure depicted as follows must be executed:

.. image:: images/img-stencil.*
 :scale: 60

>>> pix1 = fitz.Pixmap(doc.extract_image(xref)["image"]) # (1) pixmap of image w/o alpha
>>> mask = fitz.Pixmap(doc.extract_image(smask)["image"]) # (2) mask pixmap
>>> pix = fitz.Pixmap(pix1, mask) # (3) copy of pix1, image mask added

Step (1) creates a pixmap of the basic image. Step (2) does the same with the image mask. Step (3) adds an alpha channel and fills it with transparency information.

The scripts `extract-imga.py <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/extract-imga.py>`_, and `extract-imgb.py <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/extract-imgb.py>`_ above also contain this logic.

.. index::
 triple: picture;embed;PDF
 pair: show_pdf_page;examples
 pair: insert_image;examples
 pair: embfile_add;examples
 pair: add_file_annot;examples

How to Make one PDF of all your Pictures (or Files)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We show here **three scripts** that take a list of (image and other) files and put them all in one PDF.

**Method 1: Inserting Images as Pages**

The first one converts each image to a PDF page with the same dimensions. The result will be a PDF with one page per image. It will only work for supported image file formats::

 import os, fitz
 import PySimpleGUI as psg  # for showing a progress bar
 doc = fitz.open()  # PDF with the pictures
 imgdir = "D:/2012_10_05"  # where the pics are
 imglist = os.listdir(imgdir)  # list of them
 imgcount = len(imglist)  # pic count

 for i, f in enumerate(imglist):
     img = fitz.open(os.path.join(imgdir, f))  # open pic as document
     rect = img[0].rect  # pic dimension
     pdfbytes = img.convert_to_pdf()  # make a PDF stream
     img.close()  # no longer needed
     imgPDF = fitz.open("pdf", pdfbytes)  # open stream as PDF
     page = doc.new_page(width = rect.width,  # new page with ...
                        height = rect.height)  # pic dimension
     page.show_pdf_page(rect, imgPDF, 0)  # image fills the page
     psg.EasyProgressMeter("Import Images",  # show our progress
         i+1, imgcount)

 doc.save("all-my-pics.pdf")

This will generate a PDF only marginally larger than the combined pictures' size. Some numbers on performance:

The above script needed about 1 minute on my machine for 149 pictures with a total size of 514 MB (and about the same resulting PDF size).

.. image:: images/img-import-progress.*
   :scale: 80

Look `here <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/all-my-pics-inserted.py>`_ for a more complete source code: it offers a directory selection dialog and skips unsupported files and non-file entries.

.. note:: We might have used :meth:`Page.insert_image` instead of :meth:`Page.show_pdf_page`, and the result would have been a similar looking file. However, depending on the image type, it may store **images uncompressed**. Therefore, the save option *deflate = True* must be used to achieve a reasonable file size, which hugely increases the runtime for large numbers of images. So this alternative **cannot be recommended** here.

**Method 2: Embedding Files**

The second script **embeds** arbitrary files -- not only images. The resulting PDF will have just one (empty) page, required for technical reasons. To later access the embedded files again, you would need a suitable PDF viewer that can display and / or extract embedded files::

 import os, fitz
 import PySimpleGUI as psg  # for showing progress bar
 doc = fitz.open()  # PDF with the pictures
 imgdir = "D:/2012_10_05"  # where my files are

 imglist = os.listdir(imgdir)  # list of pictures
 imgcount = len(imglist)  # pic count
 imglist.sort()  # nicely sort them

 for i, f in enumerate(imglist):
     img = open(os.path.join(imgdir,f), "rb").read()  # make pic stream
     doc.embfile_add(img, f, filename=f,  # and embed it
                         ufilename=f, desc=f)
     psg.EasyProgressMeter("Embedding Files",  # show our progress
         i+1, imgcount)

 page = doc.new_page()  # at least 1 page is needed

 doc.save("all-my-pics-embedded.pdf")

.. image:: images/img-embed-progress.*
   :scale: 80

This is by far the fastest method, and it also produces the smallest possible output file size. The above pictures needed 20 seconds on my machine and yielded a PDF size of 510 MB. Look `here <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/all-my-pics-embedded.py>`_ for a more complete source code: it offers a directory selection dialog and skips non-file entries.

**Method 3: Attaching Files**

A third way to achieve this task is **attaching files** via page annotations see `here <https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/all-my-pics-attached.py>`_ for the complete source code.

This has a similar performance as the previous script and it also produces a similar file size. It will produce PDF pages which show a 'FileAttachment' icon for each attached file.

.. image:: images/img-attach-result.*

.. note:: Both, the **embed** and the **attach** methods can be used for **arbitrary files** -- not just images.

.. note:: We strongly recommend using the awesome package `PySimpleGUI <https://pypi.org/project/PySimpleGUI/>`_ to display a progress meter for tasks that may run for an extended time span. It's pure Python, uses Tkinter (no additional GUI package) and requires just one more line of code!

----------

.. index::
   triple: vector;image;SVG
   pair: show_pdf_page;examples
   pair: insert_image;examples
   pair: embfile_add;examples

How to Create Vector Images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The usual way to create an image from a document page is :meth:`Page.get_pixmap`. A pixmap represents a raster image, so you must decide on its quality (i.e. resolution) at creation time. It cannot be changed later.

PyMuPDF also offers a way to create a **vector image** of a page in SVG format (scalable vector graphics, defined in XML syntax). SVG images remain precise across zooming levels (of course with the exception of any raster graphic elements embedded therein).

Instruction *svg = page.get_svg_image(matrix=fitz.Identity)* delivers a UTF-8 string *svg* which can be stored with extension ".svg".

.. index::
 pair: save;examples
 pair: tobytes;examples
 pair: Photoshop;examples
 pair: Postscript;examples
 pair: JPEG;examples
 pair: PhotoImage;examples

How to Convert Images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Just as a feature among others, PyMuPDF's image conversion is easy. It may avoid using other graphics packages like PIL/Pillow in many cases.

Notwithstanding that interfacing with Pillow is almost trivial.

================= ================== =========================================
**Input Formats** **Output Formats** **Description**
================= ================== =========================================
BMP               .                  Windows Bitmap
JPEG              .                  Joint Photographic Experts Group
JXR               .                  JPEG Extended Range
JPX/JP2           .                  JPEG 2000
GIF               .                  Graphics Interchange Format
TIFF              .                  Tagged Image File Format
PNG               PNG                Portable Network Graphics
PNM               PNM                Portable Anymap
PGM               PGM                Portable Graymap
PBM               PBM                Portable Bitmap
PPM               PPM                Portable Pixmap
PAM               PAM                Portable Arbitrary Map
.                 PSD                Adobe Photoshop Document
.                 PS                 Adobe Postscript
================= ================== =========================================

The general scheme is just the following two lines::

    pix = fitz.Pixmap("input.xxx")  # any supported input format
    pix.save("output.yyy")  # any supported output format

**Remarks**

1. The **input** argument of *fitz.Pixmap(arg)* can be a file or a bytes / io.BytesIO object containing an image.
2. Instead of an output **file**, you can also create a bytes object via *pix.tobytes("yyy")* and pass this around.
3. As a matter of course, input and output formats must be compatible in terms of colorspace and transparency. The *Pixmap* class has batteries included if adjustments are needed.

.. note::
        **Convert JPEG to Photoshop**::

          pix = fitz.Pixmap("myfamily.jpg")
          pix.save("myfamily.psd")


.. note::
        **Save to JPEG** using PIL/Pillow::

          pix = fitz.Pixmap(...)
          pix.pil_save("output.jpg")

.. note::
        Convert **JPEG to Tkinter PhotoImage**. Any **RGB / no-alpha** image works exactly the same. Conversion to one of the **Portable Anymap** formats (PPM, PGM, etc.) does the trick, because they are supported by all Tkinter versions::

          import tkinter as tk
          pix = fitz.Pixmap("input.jpg")  # or any RGB / no-alpha image
          tkimg = tk.PhotoImage(data=pix.tobytes("ppm"))

.. note::
        Convert **PNG with alpha** to Tkinter PhotoImage. This requires **removing the alpha bytes**, before we can do the PPM conversion::

          import tkinter as tk
          pix = fitz.Pixmap("input.png")  # may have an alpha channel
          if pix.alpha:  # we have an alpha channel!
              pix = fitz.Pixmap(pix, 0)  # remove it
          tkimg = tk.PhotoImage(data=pix.tobytes("ppm"))

----------

.. index::
   pair: copy;examples

How to Use Pixmaps: Glueing Images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This shows how pixmaps can be used for purely graphical, non-document purposes. The script reads an image file and creates a new image which consist of 3 * 4 tiles of the original::

 import fitz
 src = fitz.Pixmap("img-7edges.png") # create pixmap from a picture
 col = 3 # tiles per row
 lin = 4 # tiles per column
 tar_w = src.width * col # width of target
 tar_h = src.height * lin # height of target

 # create target pixmap
 tar_pix = fitz.Pixmap(src.colorspace, (0, 0, tar_w, tar_h), src.alpha)

 # now fill target with the tiles
 for i in range(col):
 for j in range(lin):
 src.set_origin(src.width * i, src.height * j)
 tar_pix.copy(src, src.irect) # copy input to new loc

 tar_pix.save("tar.png")

This is the input picture:

.. image:: images/img-7edges.png
 :scale: 33

Here is the output:

.. image:: images/img-target.png
 :scale: 33

.. index::
 pair: set_rect;examples
 pair: invert_irect;examples
 pair: copy;examples
 pair: save;examples

How to Use Pixmaps: Making a Fractal
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Here is another Pixmap example that creates **Sierpinski's Carpet** -- a fractal generalizing the **Cantor Set** to two dimensions. Given a square carpet, mark its 9 sub-suqares (3 times 3) and cut out the one in the center. Treat each of the remaining eight sub-squares in the same way, and continue *ad infinitum*. The end result is a set with area zero and fractal dimension 1.8928...

This script creates an approximate image of it as a PNG, by going down to one-pixel granularity. To increase the image precision, change the value of n (precision)::

    import fitz, time
    if not list(map(int, fitz.VersionBind.split("."))) >= [1, 14, 8]:
        raise SystemExit("need PyMuPDF v1.14.8 for this script")
    n = 6                             # depth (precision)
    d = 3**n                          # edge length

    t0 = time.perf_counter()
    ir = (0, 0, d, d)                 # the pixmap rectangle

    pm = fitz.Pixmap(fitz.csRGB, ir, False)
    pm.set_rect(pm.irect, (255,255,0)) # fill it with some background color

    color = (0, 0, 255)               # color to fill the punch holes

    # alternatively, define a 'fill' pixmap for the punch holes
    # this could be anything, e.g. some photo image ...
    fill = fitz.Pixmap(fitz.csRGB, ir, False) # same size as 'pm'
    fill.set_rect(fill.irect, (0, 255, 255))   # put some color in

    def punch(x, y, step):
        """Recursively "punch a hole" in the central square of a pixmap.

        Arguments are top-left coords and the step width.

        Some alternative punching methods are commented out.
        """
        s = step // 3                 # the new step
        # iterate through the 9 sub-squares
        # the central one will be filled with the color
        for i in range(3):
            for j in range(3):
                if i != j or i != 1:  # this is not the central cube
                    if s >= 3:        # recursing needed?
                        punch(x+i*s, y+j*s, s)       # recurse
                else:                 # punching alternatives are:
                    pm.set_rect((x+s, y+s, x+2*s, y+2*s), color)     # fill with a color
                    #pm.copy(fill, (x+s, y+s, x+2*s, y+2*s))  # copy from fill
                    #pm.invert_irect((x+s, y+s, x+2*s, y+2*s))       # invert colors

        return

    #==============================================================================
    # main program
    #==============================================================================
    # now start punching holes into the pixmap
    punch(0, 0, d)
    t1 = time.perf_counter()
    pm.save("sierpinski-punch.png")
    t2 = time.perf_counter()
    print ("%g sec to create / fill the pixmap" % round(t1-t0,3))
    print ("%g sec to save the image" % round(t2-t1,3))

The result should look something like this:

.. image:: images/img-sierpinski.png
   :scale: 33

----------

How to Interface with NumPy
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This shows how to create a PNG file from a numpy array (several times faster than most other methods)::

 import numpy as np
 import fitz
 #==
 # create a fun-colored width * height PNG with fitz and numpy
 #==
 height = 150
 width = 100
 bild = np.ndarray((height, width, 3), dtype=np.uint8)

 for i in range(height):
 for j in range(width):
 # one pixel (some fun coloring)
 bild[i, j] = [(i+j)%256, i%256, j%256]

 samples = bytearray(bild.tostring()) # get plain pixel data from numpy array
 pix = fitz.Pixmap(fitz.csRGB, width, height, samples, alpha=False)
 pix.save("test.png")

How to Add Images to a PDF Page
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two methods to add images to a PDF page: :meth:`Page.insert_image` and :meth:`Page.show_pdf_page`. Both methods have things in common, but there are also differences.

============================== ===================================== =========================================
**Criterion**                  :meth:`Page.insert_image`              :meth:`Page.show_pdf_page`
============================== ===================================== =========================================
displayable content            image file, image in memory, pixmap   PDF page
display resolution             image resolution                      vectorized (except raster page content)
rotation                       0, 90, 180 or 270 degrees             any angle
clipping                       no (full image only)                  yes
keep aspect ratio              yes (default option)                  yes (default option)
transparency (water marking)   depends on the image                  depends on the page
location / placement           scaled to fit target rectangle        scaled to fit target rectangle
performance                    automatic prevention of duplicates;   automatic prevention of duplicates;
multi-page image support       no                                    yes
ease of use                    simple, intuitive;                    simple, intuitive;
                                                                     **usable for all document types**
                                                                     (including images!) after conversion to
                                                                     PDF via :meth:`Document.convert_to_pdf`
============================== ===================================== =========================================

Basic code pattern for :meth:`Page.insert_image`. **Exactly one** of the parameters **filename / stream / pixmap** must be given, if not re-inserting an existing image::

    page.insert_image(
        rect,                  # where to place the image (rect-like)
        filename=None,         # image in a file
        stream=None,           # image in memory (bytes)
        pixmap=None,           # image from pixmap
        mask=None,             # specify alpha channel separately
        rotate=0,              # rotate (int, multiple of 90)
        xref=0,                # re-use existing image
        oc=0,                  # control visibility via OCG / OCMD
        keep_proportion=True,  # keep aspect ratio
        overlay=True,          # put in foreground
    )

Basic code pattern for :meth:`Page.show_pdf_page`. Source and target PDF must be different :ref:`Document` objects (but may be opened from the same file)::

    page.show_pdf_page(
        rect,                  # where to place the image (rect-like)
        src,                   # source PDF
        pno=0,                 # page number in source PDF
        clip=None,             # only display this area (rect-like)
        rotate=0,              # rotate (float, any value)
        oc=0,                  # control visibility via OCG / OCMD
        keep_proportion=True,  # keep aspect ratio
        overlay=True,          # put in foreground
    )

.. include:: footer.rst







PyMuPDF-1.21.1/docs/recipes-journalling.rst

.. include:: header.rst

.. _RecipesJournalling:

=========================================
Recipes: Journalling
=========================================


Starting with version 1.19.0, journalling is possible when updating PDF documents.

Journalling is a logging mechanism which permits either **reverting** or **re-applying** changes to a PDF. Similar to LUWs "Logical Units of Work" in modern database systems, one can group a set of updates into an "operation". In MuPDF journalling, an operation plays the role of a LUW.

.. note:: In contrast to LUW implementations found in database systems, MuPDF journalling happens on a **per document level**. There is no support for simultaneous updates across multiple PDFs: one would have to establish one's own logic here.

* Journalling must be *enabled* via a document method. Journalling is possible for existing or new documents. Journalling **can be disabled only** by closing the file.
* Once enabled, every change must happen inside an *operation* -- otherwise an exception is raised. An operation is started and stopped via document methods. Updates happening between these two calls form an LUW and can thus collectively be rolled back or re-applied, or, in MuPDF terminology "undone" resp. "redone".
* At any point, the journalling status can be queried: whether journalling is active, how many operations have been recorded, whether "undo" or "redo" is possible, the current position inside the journal, etc.
* The journal can be **saved to** or **loaded from** a file. These are document methods.
* When loading a journal file, compatibility with the document is checked and journalling is automatically enabled upon success.
* For an **exising** PDF being journalled, a special new save method is available: :meth:`Document.save_snapshot`. This performs a special incremental save that includes all journalled updates so far. If its journal is saved at the same time (immediately after the document snapshot), then document and journal are in sync and can later on be used together to undo or redo operations or to continue journalled updates -- just as if there had been no interruption.
* The snapshot PDF is a valid PDF in every aspect and fully usable. If the document is however changed in any way without using its journal file, then a desynchronization will take place and the journal is rendered unusable.
* Snapshot files are structured like incremental updates. Nevertheless, the internal journalling logic requires, that saving **must happen to a new file**. So the user should develop a file naming convention to support recognizable relationships between an original PDF, like ``original.pdf`` and its snapshot sets, like ``original-snap1.pdf`` / ``original-snap1.log``, ``original-snap2.pdf`` / ``original-snap2.log``, etc.

Example Session 1
~~~~~~~~~~~~~~~~~~
Description:

* Make a new PDF and enable journalling. Then add a page and some text lines -- each as a separate operation.
* Navigate within the journal, undoing and redoing these updates and displaying status and file results::

 >>> import fitz
 >>> doc=fitz.open()
 >>> doc.journal_enable()

 >>> # try update without an operation:
 >>> page = doc.new_page()
 mupdf: No journalling operation started
 ... omitted lines
 RuntimeError: No journalling operation started

 >>> doc.journal_start_op("op1")
 >>> page = doc.new_page()
 >>> doc.journal_stop_op()

 >>> doc.journal_start_op("op2")
 >>> page.insert_text((100,100), "Line 1")
 >>> doc.journal_stop_op()

 >>> doc.journal_start_op("op3")
 >>> page.insert_text((100,120), "Line 2")
 >>> doc.journal_stop_op()

 >>> doc.journal_start_op("op4")
 >>> page.insert_text((100,140), "Line 3")
 >>> doc.journal_stop_op()

 >>> # show position in journal
 >>> doc.journal_position()
 (4, 4)
 >>> # 4 operations recorded - positioned at bottom
 >>> # what can we do?
 >>> doc.journal_can_do()
 {'undo': True, 'redo': False}
 >>> # currently only undos are possible. Print page content:
 >>> print(page.get_text())
 Line 1
 Line 2
 Line 3

 >>> # undo last insert:
 >>> doc.journal_undo()
 >>> # show combined status again:
 >>> doc.journal_position();doc.journal_can_do()
 (3, 4)
 {'undo': True, 'redo': True}
 >>> print(page.get_text())
 Line 1
 Line 2

 >>> # our position is now second to last
 >>> # last text insertion was reverted
 >>> # but we can redo / move forward as well:
 >>> doc.journal_redo()
 >>> # our combined status:
 >>> doc.journal_position();doc.journal_can_do()
 (4, 4)
 {'undo': True, 'redo': False}
 >>> print(page.get_text())
 Line 1
 Line 2
 Line 3
 >>> # line 3 has appeared again!

Example Session 2
~~~~~~~~~~~~~~~~~~
Description:

* Similar to previous, but after undoing some operations, we now add a different update. This will cause:

    - permanent removal of the undone journal entries
    - the new update operation will become the new last entry.


    >>> doc=fitz.open()
    >>> doc.journal_enable()
    >>> doc.journal_start_op("Page insert")
    >>> page=doc.new_page()
    >>> doc.journal_stop_op()
    >>> for i in range(5):
            doc.journal_start_op("insert-%i" % i)
            page.insert_text((100, 100 + 20*i), "text line %i" %i)
            doc.journal_stop_op()

    >>> # combined status info:
    >>> doc.journal_position();doc.journal_can_do()
    (6, 6)
    {'undo': True, 'redo': False}

    >>> for i in range(3):  # revert last three operations
            doc.journal_undo()
    >>> doc.journal_position();doc.journal_can_do()
    (3, 6)
    {'undo': True, 'redo': True}

    >>> # now do a different update:
    >>> doc.journal_start_op("Draw some line")
    >>> page.draw_line((100,150), (300,150))
    Point(300.0, 150.0)
    >>> doc.journal_stop_op()
    >>> doc.journal_position();doc.journal_can_do()
    (4, 4)
    {'undo': True, 'redo': False}

    >>> # this has changed the journal:
    >>> # previous last 3 text line operations were removed, and
    >>> # we have only 4 operations: drawing the line is the new last one

.. include:: footer.rst







PyMuPDF-1.21.1/docs/recipes-low-level-interfaces.rst

.. include:: header.rst

.. _RecipesLowLevelInterfaces:

=========================================
Recipes: Low-Level Interfaces
=========================================


Numerous methods are available to access and manipulate PDF files on a fairly low level. Admittedly, a clear distinction between "low level" and "normal" functionality is not always possible or subject to personal taste.

It also may happen, that functionality previously deemed low-level is later on assessed as being part of the normal interface. This has happened in v1.14.0 for the class :ref:`Tools` - you now find it as an item in the Classes chapter.

It is a matter of documentation only in which chapter of the documentation you find what you are looking for. Everything is available and always via the same interface.

----------------------------------

How to Iterate through the :data:`xref` Table
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A PDF's :data:`xref` table is a list of all objects defined in the file. This table may easily contain many thousands of entries -- the manual :ref:`AdobeManual` for example has 127,000 objects. Table entry "0" is reserved and must not be touched.
The following script loops through the :data:`xref` table and prints each object's definition::

 >>> xreflen = doc.xref_length() # length of objects table
 >>> for xref in range(1, xreflen): # skip item 0!
 print("")
 print("object %i (stream: %s)" % (xref, doc.xref_is_stream(xref)))
 print(doc.xref_object(xref, compressed=False))

.. highlight:: text

This produces the following output::

 object 1 (stream: False)
 <<
 /ModDate (D:20170314122233-04'00')
 /PXCViewerInfo (PDF-XChange Viewer;2.5.312.1;Feb 9 2015;12:00:06;D:20170314122233-04'00')
 >>

 object 2 (stream: False)
 <<
 /Type /Catalog
 /Pages 3 0 R
 >>

 object 3 (stream: False)
 <<
 /Kids [4 0 R 5 0 R]
 /Type /Pages
 /Count 2
 >>

 object 4 (stream: False)
 <<
 /Type /Page
 /Annots [6 0 R]
 /Parent 3 0 R
 /Contents 7 0 R
 /MediaBox [0 0 595 842]
 /Resources 8 0 R
 >>
 ...
 object 7 (stream: True)
 <<
 /Length 494
 /Filter /FlateDecode
 >>
 ...

.. highlight:: python

A PDF object definition is an ordinary ASCII string.

How to Handle Object Streams
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some object types contain additional data apart from their object definition. Examples are images, fonts, embedded files or commands describing the appearance of a page.

Objects of these types are called "stream objects". PyMuPDF allows reading an object's stream via method :meth:`Document.xref_stream` with the object's :data:`xref` as an argument. It is also possible to write back a modified version of a stream using :meth:`Document.update_stream`.

Assume that the following snippet wants to read all streams of a PDF for whatever reason::

    >>> xreflen = doc.xref_length() # number of objects in file
    >>> for xref in range(1, xreflen): # skip item 0!
            if stream := doc.xref_stream(xref):
                # do something with it (it is a bytes object or None)
                # e.g. just write it back:
                doc.update_stream(xref, stream)

:meth:`Document.xref_stream` automatically returns a stream decompressed as a bytes object -- and :meth:`Document.update_stream` automatically compresses it if beneficial.

----------------------------------

How to Handle Page Contents
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A PDF page can have zero or multiple :data:`contents` objects. These are stream objects describing **what** appears **where** and **how** on a page (like text and images). They are written in a special mini-language described e.g. in chapter "APPENDIX A - Operator Summary" on page 643 of the :ref:`AdobeManual`.

Every PDF reader application must be able to interpret the contents syntax to reproduce the intended appearance of the page.

If multiple :data:`contents` objects are provided, they must be interpreted in the specified sequence in exactly the same way as if they were provided as a concatenation of the several.

There are good technical arguments for having multiple :data:`contents` objects:

* It is a lot easier and faster to just add new :data:`contents` objects than maintaining a single big one (which entails reading, decompressing, modifying, recompressing, and rewriting it for each change).
* When working with incremental updates, a modified big :data:`contents` object will bloat the update delta and can thus easily negate the efficiency of incremental saves.

For example, PyMuPDF adds new, small :data:`contents` objects in methods :meth:`Page.insert_image`, :meth:`Page.show_pdf_page` and the :ref:`Shape` methods.

However, there are also situations when a **single** :data:`contents` object is beneficial: it is easier to interpret and more compressible than multiple smaller ones.

Here are two ways of combining multiple contents of a page::

 >>> # method 1: use the MuPDF clean function
 >>> page.clean_contents() # cleans and combines multiple Contents
 >>> xref = page.get_contents()[0] # only one /Contents now!
 >>> cont = doc.xref_stream(xref)
 >>> # this has also reformatted the PDF commands

 >>> # method 2: extract concatenated contents
 >>> cont = page.read_contents()
 >>> # the /Contents source itself is unmodified

The clean function :meth:`Page.clean_contents` does a lot more than just glueing :data:`contents` objects: it also corrects and optimizes the PDF operator syntax of the page and removes any inconsistencies with the page's object definition.

How to Access the PDF Catalog
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is a central ("root") object of a PDF. It serves as a starting point to reach important other objects and it also contains some global options for the PDF::

    >>> import fitz
    >>> doc=fitz.open("PyMuPDF.pdf")
    >>> cat = doc.pdf_catalog()  # get xref of the /Catalog
    >>> print(doc.xref_object(cat))  # print object definition
    <<
        /Type/Catalog                 % object type
        /Pages 3593 0 R               % points to page tree
        /OpenAction 225 0 R           % action to perform on open
        /Names 3832 0 R               % points to global names tree
        /PageMode /UseOutlines        % initially show the TOC
        /PageLabels<</Nums[0<</S/D>>2<</S/r>>8<</S/D>>]>> % labels given to pages
        /Outlines 3835 0 R            % points to outline tree
    >>

.. note:: Indentation, line breaks and comments are inserted here for clarification purposes only and will not normally appear. For more information on the PDF catalog see section 7.7.2 on page 71 of the :ref:`AdobeManual`.

----------------------------------

How to Access the PDF File Trailer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The trailer of a PDF file is a :data:`dictionary` located towards the end of the file. It contains special objects, and pointers to important other information. See :ref:`AdobeManual` p. 42. Here is an overview:

======= =========== ===
Key **Type** **Value**
======= =========== ===
Size int Number of entries in the cross-reference table + 1.
Prev int Offset to previous :data:`xref` section (indicates incremental updates).
Root dictionary (indirect) Pointer to the catalog. See previous section.
Encrypt dictionary Pointer to encryption object (encrypted files only).
Info dictionary (indirect) Pointer to information (metadata).
ID array File identifier consisting of two byte strings.
XRefStm int Offset of a cross-reference stream. See :ref:`AdobeManual` p. 49.
======= =========== ===

Access this information via PyMuPDF with :meth:`Document.pdf_trailer` or, equivalently, via :meth:`Document.xref_object` using -1 instead of a valid :data:`xref` number.

 >>> import fitz
 >>> doc=fitz.open("PyMuPDF.pdf")
 >>> print(doc.xref_object(-1)) # or: print(doc.pdf_trailer())
 <<
 /Type /XRef
 /Index [0 8263]
 /Size 8263
 /W [1 3 1]
 /Root 8260 0 R
 /Info 8261 0 R
 /ID [<4339B9CEE46C2CD28A79EBDDD67CC9B3> <4339B9CEE46C2CD28A79EBDDD67CC9B3>]
 /Length 19883
 /Filter /FlateDecode
 >>
 >>>

How to Access XML Metadata
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A PDF may contain XML metadata in addition to the standard metadata format. In fact, most PDF viewer or modification software adds this type of information when saving the PDF (Adobe, Nitro PDF, PDF-XChange, etc.).

PyMuPDF has no way to **interpret or change** this information directly, because it contains no XML features. XML metadata is however stored as a :data:`stream` object, so it can be read, modified with appropriate software and written back.

    >>> xmlmetadata = doc.get_xml_metadata()
    >>> print(xmlmetadata)
    <?xpacket begin="\ufeff" id="W5M0MpCehiHzreSzNTczkc9d"?>
    <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="3.1-702">
    <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
    ...
    omitted data
    ...
    <?xpacket end="w"?>

Using some XML package, the XML data can be interpreted and / or modified and then stored back. The following also works, if the PDF previously had no XML metadata::

    >>> # write back modified XML metadata:
    >>> doc.set_xml_metadata(xmlmetadata)
    >>>
    >>> # XML metadata can be deleted like this:
    >>> doc.del_xml_metadata()

----------------------------------

How to Extend PDF Metadata
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Attribute :attr:`Document.metadata` is designed so it works for all supported document types in the same way: it is a Python dictionary with a **fixed set of key-value pairs**. Correspondingly, :meth:`Document.set_metadata` only accepts standard keys.

However, PDFs may contain items not accessible like this. Also, there may be reasons to store additional information, like copyrights. Here is a way to handle **arbitrary metadata items** by using PyMuPDF low-level functions.

As an example, look at this standard metadata output of some PDF::

 # ---------------------
 # standard metadata
 # ---------------------
 pprint(doc.metadata)
 {'author': 'PRINCE',
 'creationDate': "D:2010102417034406'-30'",
 'creator': 'PrimoPDF http://www.primopdf.com/',
 'encryption': None,
 'format': 'PDF 1.4',
 'keywords': '',
 'modDate': "D:20200725062431-04'00'",
 'producer': 'macOS Version 10.15.6 (Build 19G71a) Quartz PDFContext, '
 'AppendMode 1.1',
 'subject': '',
 'title': 'Full page fax print',
 'trapped': ''}

Use the following code to see **all items** stored in the metadata object::

 # ----------------------------------
 # metadata including private items
 # ----------------------------------
 metadata = {} # make my own metadata dict
 what, value = doc.xref_get_key(-1, "Info") # /Info key in the trailer
 if what != "xref":
 pass # PDF has no metadata
 else:
 xref = int(value.replace("0 R", "")) # extract the metadata xref
 for key in doc.xref_get_keys(xref):
 metadata[key] = doc.xref_get_key(xref, key)[1]
 pprint(metadata)
 {'Author': 'PRINCE',
 'CreationDate': "D:2010102417034406'-30'",
 'Creator': 'PrimoPDF http://www.primopdf.com/',
 'ModDate': "D:20200725062431-04'00'",
 'PXCViewerInfo': 'PDF-XChange Viewer;2.5.312.1;Feb 9 '
 "2015;12:00:06;D:20200725062431-04'00'",
 'Producer': 'macOS Version 10.15.6 (Build 19G71a) Quartz PDFContext, '
 'AppendMode 1.1',
 'Title': 'Full page fax print'}
 # ---
 # note the additional 'PXCViewerInfo' key - ignored in standard!
 # ---

Vice versa, you can also **store private metadata items** in a PDF. It is your responsibility to make sure that these items conform to PDF specifications - especially they must be (unicode) strings. Consult section 14.3 (p. 548) of the :ref:`AdobeManual` for details and caveats::

 what, value = doc.xref_get_key(-1, "Info") # /Info key in the trailer
 if what != "xref":
 raise ValueError("PDF has no metadata")
 xref = int(value.replace("0 R", "")) # extract the metadata xref
 # add some private information
 doc.xref_set_key(xref, "mykey", fitz.get_pdf_str("北京 is Beijing"))
 #
 # after executing the previous code snippet, we will see this:
 pprint(metadata)
 {'Author': 'PRINCE',
 'CreationDate': "D:2010102417034406'-30'",
 'Creator': 'PrimoPDF http://www.primopdf.com/',
 'ModDate': "D:20200725062431-04'00'",
 'PXCViewerInfo': 'PDF-XChange Viewer;2.5.312.1;Feb 9 '
 "2015;12:00:06;D:20200725062431-04'00'",
 'Producer': 'macOS Version 10.15.6 (Build 19G71a) Quartz PDFContext, '
 'AppendMode 1.1',
 'Title': 'Full page fax print',
 'mykey': '北京 is Beijing'}

To delete selected keys, use ``doc.xref_set_key(xref, "mykey", "null")``. As explained in the next section, string "null" is the PDF equivalent to Python's ``None``. A key with that value will be treated as not being specified -- and physically removed in garbage collections.

How to Read and Update PDF Objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. highlight:: python


There also exist granular, elegant ways to access and manipulate selected PDF :data:`dictionary` keys.

* :meth:`Document.xref_get_keys` returns the PDF keys of the object at :data:`xref`::

    In [1]: import fitz
    In [2]: doc = fitz.open("pymupdf.pdf")
    In [3]: page = doc[0]
    In [4]: from pprint import pprint
    In [5]: pprint(doc.xref_get_keys(page.xref))
    ('Type', 'Contents', 'Resources', 'MediaBox', 'Parent')

* Compare with the full object definition::

    In [6]: print(doc.xref_object(page.xref))
    <<
      /Type /Page
      /Contents 1297 0 R
      /Resources 1296 0 R
      /MediaBox [ 0 0 612 792 ]
      /Parent 1301 0 R
    >>

* Single keys can also be accessed directly via :meth:`Document.xref_get_key`. The value **always is a string** together with type information, that helps with interpreting it::

    In [7]: doc.xref_get_key(page.xref, "MediaBox")
    Out[7]: ('array', '[0 0 612 792]')

* Here is a full listing of the above page keys::

    In [9]: for key in doc.xref_get_keys(page.xref):
    ...:        print("%s = %s" % (key, doc.xref_get_key(page.xref, key)))
    ...:
    Type = ('name', '/Page')
    Contents = ('xref', '1297 0 R')
    Resources = ('xref', '1296 0 R')
    MediaBox = ('array', '[0 0 612 792]')
    Parent = ('xref', '1301 0 R')

* An undefined key inquiry returns ``('null', 'null')`` -- PDF object type ``null`` corresponds to ``None`` in Python. Similar for the booleans ``true`` and ``false``.
* Let us add a new key to the page definition that sets its rotation to 90 degrees (you are aware that there actually exists :meth:`Page.set_rotation` for this?)::

    In [11]: doc.xref_get_key(page.xref, "Rotate")  # no rotation set:
    Out[11]: ('null', 'null')
    In [12]: doc.xref_set_key(page.xref, "Rotate", "90")  # insert a new key
    In [13]: print(doc.xref_object(page.xref))  # confirm success
    <<
      /Type /Page
      /Contents 1297 0 R
      /Resources 1296 0 R
      /MediaBox [ 0 0 612 792 ]
      /Parent 1301 0 R
      /Rotate 90
    >>

* This method can also be used to remove a key from the :data:`xref` dictionary by setting its value to ``null``: The following will remove the rotation specification from the page: ``doc.xref_set_key(page.xref, "Rotate", "null")``. Similarly, to remove all links, annotations and fields from a page, use ``doc.xref_set_key(page.xref, "Annots", "null")``. Because ``Annots`` by definition is an array, setting en empty array with the statement ``doc.xref_set_key(page.xref, "Annots", "[]")`` would do the same job in this case.

* PDF dictionaries can be hierarchically nested. In the following page object definition both, ``Font`` and ``XObject`` are subdictionaries of ``Resources``::

    In [15]: print(doc.xref_object(page.xref))
    <<
      /Type /Page
      /Contents 1297 0 R
      /Resources <<
        /XObject <<
          /Im1 1291 0 R
        >>
        /Font <<
          /F39 1299 0 R
          /F40 1300 0 R
        >>
      >>
      /MediaBox [ 0 0 612 792 ]
      /Parent 1301 0 R
      /Rotate 90
    >>

* The above situation **is supported** by methods :meth:`Document.xref_set_key` and :meth:`Document.xref_get_key`: use a path-like notation to point at the required key. For example, to retrieve the value of key ``Im1`` above, specify the complete chain of dictionaries "above" it in the key argument: ``"Resources/XObject/Im1"``::

    In [16]: doc.xref_get_key(page.xref, "Resources/XObject/Im1")
    Out[16]: ('xref', '1291 0 R')

* The path notation can also be used to **directly set a value**: use the following to let ``Im1`` point to a different object::

    In [17]: doc.xref_set_key(page.xref, "Resources/XObject/Im1", "9999 0 R")
    In [18]: print(doc.xref_object(page.xref))  # confirm success:
    <<
      /Type /Page
      /Contents 1297 0 R
      /Resources <<
        /XObject <<
          /Im1 9999 0 R
        >>
        /Font <<
          /F39 1299 0 R
          /F40 1300 0 R
        >>
      >>
      /MediaBox [ 0 0 612 792 ]
      /Parent 1301 0 R
      /Rotate 90
    >>

  Be aware, that **no semantic checks** whatsoever will take place here: if the PDF has no xref 9999, it won't be detected at this point.

* If a key does not exist, it will be created by setting its value. Moreover, if any intermediate keys do not exist either, they will also be created as necessary. The following creates an array ``D`` several levels below the existing dictionary ``A``. Intermediate dictionaries ``B`` and ``C`` are automatically created::

    In [5]: print(doc.xref_object(xref))  # some existing PDF object:
    <<
      /A <<
      >>
    >>
    In [6]: # the following will create 'B', 'C' and 'D'
    In [7]: doc.xref_set_key(xref, "A/B/C/D", "[1 2 3 4]")
    In [8]: print(doc.xref_object(xref))  # check out what happened:
    <<
      /A <<
        /B <<
          /C <<
            /D [ 1 2 3 4 ]
          >>
        >>
      >>
    >>

* When setting key values, basic **PDF syntax checking** will be done by MuPDF. For example, new keys can only be created **below a dictionary**. The following tries to create some new string item ``E`` below the previously created array ``D``::

    In [9]: # 'D' is an array, no dictionary!
    In [10]: doc.xref_set_key(xref, "A/B/C/D/E", "(hello)")
    mupdf: not a dict (array)
    --- ... ---
    RuntimeError: not a dict (array)

* It is also **not possible**, to create a key if some higher level key is an **"indirect"** object, i.e. an xref. In other words, xrefs can only be modified directly and not implicitely via other objects referencing them::

    In [13]: # the following object points to an xref
    In [14]: print(doc.xref_object(4))
    <<
      /E 3 0 R
    >>
    In [15]: # 'E' is an indirect object and cannot be modified here!
    In [16]: doc.xref_set_key(4, "E/F", "90")
    mupdf: path to 'F' has indirects
    --- ... ---
    RuntimeError: path to 'F' has indirects

.. caution:: These are expert functions! There are no validations as to whether valid PDF objects, xrefs, etc. are specified. As with other low-level methods there is the risk to render the PDF, or parts of it unusable.

.. include:: footer.rst







PyMuPDF-1.21.1/docs/recipes-multiprocessing.rst

.. include:: header.rst

.. _RecipesMultiprocessing:

==============================
Recipes: Multiprocessing
==============================

MuPDF has no integrated support for threading - they call themselves "threading-agnostic". While there do exist tricky possibilities to still use threading with MuPDF, the baseline consequence for **PyMuPDF** is:

**No Python threading support**.

Using PyMuPDF in a Python threading environment will lead to blocking effects for the main thread.

However, there is the option to use Python's *multiprocessing* module in a variety of ways.

If you are looking to speed up page-oriented processing for a large document, use this script as a starting point. It should be at least twice as fast as the corresponding sequential processing.

.. literalinclude:: samples/multiprocess-render.py
   :language: python

Here is a more complex example involving inter-process communication between a main process (showing a GUI) and a child process doing PyMuPDF access to a document.

.. literalinclude:: samples/multiprocess-gui.py
   :language: python

.. include:: footer.rst







PyMuPDF-1.21.1/docs/recipes-stories.rst

.. include:: header.rst

.. _RecipesStories:


.. |toggleStart| raw:: html

   <details>
   <summary><a>See recipe</a></summary>

.. |toggleEnd| raw:: html

   </details>

==============================
Recipes: Stories
==============================

This document showcases some typical use cases for :ref:`Stories<WorkingWithStories>`.

As mentioned in the :ref:`tutorial<WorkingWithStories>`, stories may be created using up to three input sources: HTML, CSS and Archives -- all of which are optional and which, respectively, can be provided programmatically.

The following examples will showcase combinations for using these inputs.

.. note::

        Many of these recipe's source code are included as examples in the ``docs`` folder.

How to add a line of text with some formatting
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Here is the inevitable "Hello World" example. We will show two variants:

1. Create using existing HTML source [#f1]_, that may come from anywhere.
2. Create using the Python API.

Variant using an existing HTML source [#f1]_ -- which in this case is defined as a constant in the script::

 import fitz

 HTML = """
 <p style="font-family: sans-serif;color: blue">Hello World!</p>
 """

 MEDIABOX = fitz.paper_rect("letter") # output page format: Letter
 WHERE = MEDIABOX + (36, 36, -36, -36) # leave borders of 0.5 inches

 story = fitz.Story(html=HTML) # create story from HTML
 writer = fitz.DocumentWriter("output.pdf") # create the writer

 more = 1 # will indicate end of input once it is set to 0

 while more: # loop outputting the story
 device = writer.begin_page(MEDIABOX) # make new page
 more, _ = story.place(WHERE) # layout into allowed rectangle
 story.draw(device) # write on page
 writer.end_page() # finish page

 writer.close() # close output file

.. note::

 The above effect (sans-serif and blue text) could have been achieved by using a separate CSS source like so::

 import fitz

 CSS = """
 body {
 font-family: sans-serif;
 color: blue;
 }
 """

 HTML = """
 <p>Hello World!</p>
 """

 # the story would then be created like this:
 story = fitz.Story(html=HTML, user_css=CSS)

The Python API variant -- everything is created programmatically::

 import fitz

 MEDIABOX = fitz.paper_rect("letter")
 WHERE = MEDIABOX + (36, 36, -36, -36)

 story = fitz.Story() # create an empty story
 body = story.body # access the body of its DOM
 with body.add_paragraph() as para: # store desired content
 para.set_font("sans-serif").set_color("blue").add_text("Hello World!")

 writer = fitz.DocumentWriter("output.pdf")

 more = 1

 while more:
 device = writer.begin_page(MEDIABOX)
 more, _ = story.place(WHERE)
 story.draw(device)
 writer.end_page()

 writer.close()

Both variants will produce the same output PDF.

How to use images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Images can be referenced in the provided HTML source, or the reference to a desired image can also be stored via the Python API. In any case, this requires using an :ref:`Archive`, which refers to the place where the image can be found.

.. note:: Images with the binary content embedded in the HTML source are **not supported** by stories.

We extend our "Hello World" example from above and display an image of our planet right after the text. Assuming the image has the name "world.jpg" and is present in the script's folder, then this is the modified version of the above Python API variant::

    import fitz

    MEDIABOX = fitz.paper_rect("letter")
    WHERE = MEDIABOX + (36, 36, -36, -36)

    # create story, let it look at script folder for resources
    story = fitz.Story(archive=".")
    body = story.body  # access the body of its DOM

    with body.add_paragraph() as para:
        # store desired content
        para.set_font("sans-serif").set_color("blue").add_text("Hello World!")

    # another paragraph for our image:
    with body.add_paragraph() as para:
        # store image in another paragraph
        para.add_image("world.jpg")

    writer = fitz.DocumentWriter("output.pdf")

    more = 1

    while more:
        device = writer.begin_page(MEDIABOX)
        more, _ = story.place(WHERE)
        story.draw(device)
        writer.end_page()

    writer.close()


-----


Reading external HTML and CSS for a Story
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

These cases are fairly straightforward.

As a general recommendation, HTML and CSS sources should be **read as binary files** and decoded before using them in a story. The Python ``pathlib.Path`` provides convenient ways to do this::

 import pathlib
 import fitz

 htmlpath = pathlib.Path("myhtml.html")
 csspath = pathlib.Path("mycss.css")

 HTML = htmlpath.read_bytes().decode()
 CSS = csspath.read_bytes().decode()

 story = fitz.Story(html=HTML, user_css=CSS)

How to output database content with Story templates
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This script demonstrates how to report SQL database content using an **HTML template**.



The example SQL database contains two tables:

1. Table "films" contains one row per film with the fields **"title"**, **"director"** and (release) **"year"**.
2. Table "actors" contains one row per actor and film title (fields (actor) **"name"** and (film) **"title"**).

The story DOM consists of a template for one film, which reports film data together with a list of casted actors.

**Files:**

* ``docs/samples/filmfestival-sql.py``
* ``docs/samples/filmfestival-sql.db``


|toggleStart|

.. literalinclude:: samples/filmfestival-sql.py

|toggleEnd|


-----


How to integrate with existing PDFs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Because a :ref:`DocumentWriter` can only write to a new file, stories cannot be placed on existing pages. This script demonstrates a circumvention of this restriction.

The basic idea is letting :ref:`DocumentWriter` output to a PDF in memory. Once the story has finished, we re-open this memory PDF and put its pages to desired locations on **existing** pages via method :meth:`Page.show_pdf_page`.

Files:

* ``docs/samples/showpdf-page.py``

|toggleStart|

.. literalinclude:: samples/showpdf-page.py

|toggleEnd|

How to make multi-columned layouts and access fonts from package `pymupdf-fonts`_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This script outputs an article (taken from Wikipedia) that contains text and multiple images and uses a 2-column page layout.

In addition, two "Ubuntu" font families from package `pymupdf-fonts`_ are used instead of defaulting to Base-14 fonts.

Yet another feature used here is that all data -- the images and the article HTML -- are jointly stored in a ZIP file.


**Files:**

* ``docs/samples/quickfox.py``
* ``docs/samples/quickfox.zip``


|toggleStart|

.. literalinclude:: samples/quickfox.py

|toggleEnd|


-----



How make a layout which wraps around a predefined "no go area" layout
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


This is a demo script using PyMuPDF's Story class to output text as a PDF with
a two-column page layout.

The script demonstrates the following features:

* Layout text around images of an existing ("target") PDF.
* Based on a few global parameters, areas on each page are identified, that
 can be used to receive text layouted by a Story.
* These global parameters are not stored anywhere in the target PDF and
 must therefore be provided in some way:

 - The width of the border(s) on each page.
 - The fontsize to use for text. This value determines whether the provided
 text will fit in the empty spaces of the (fixed) pages of target PDF. It
 cannot be predicted in any way. The script ends with an exception if
 target PDF has not enough pages, and prints a warning message if not all
 pages receive at least some text. In both cases, the FONTSIZE value
 can be changed (a float value).
 - Use of a 2-column page layout for the text.
* The layout creates a temporary (memory) PDF. Its produced page content
 (the text) is used to overlay the corresponding target page. If text
 requires more pages than are available in target PDF, an exception is raised.
 If not all target pages receive at least some text, a warning is printed.
* The script reads "image-no-go.pdf" in its own folder. This is the "target" PDF.
 It contains 2 pages with each 2 images (from the original article), which are
 positioned at places that create a broad overall test coverage. Otherwise the
 pages are empty.
* The script produces "quickfox-image-no-go.pdf" which contains the original pages
 and image positions, but with the original article text laid out around them.

Files:

* ``docs/samples/quickfox-image-no-go.py``
* ``docs/samples/quickfox-image-no-go.pdf``
* ``docs/samples/quickfox.zip``

|toggleStart|

.. literalinclude:: samples/quickfox-image-no-go.py

|toggleEnd|

How to output a table
~~~~~~~~~~~~~~~~~~~~~~~~

Support for HTML tables is yet not complete in MuPDF. It is however possible to output tables with equal column widths that do not cross page boundaries.

This script reflects existing features.

**Files:**

* ``docs/samples/table01.py``

|toggleStart|

.. literalinclude:: samples/table01.py

|toggleEnd|


-----


How to create a simple grid layout
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

By creating a sequence of :ref:`Story` objects within a grid created via the :ref:`make_table<Functions_make_table>` function a developer can create grid layouts as required.

Files:

* ``docs/samples/simple-grid.py``

|toggleStart|

.. literalinclude:: samples/simple-grid.py

|toggleEnd|

How to generate a Table of Contents
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This script lists the source code of all Python scripts that live in the script's directory.

**Files:**

* ``docs/samples/code-printer.py``

|toggleStart|

.. literalinclude:: samples/code-printer.py

|toggleEnd|


It features the following capabilities:

* Automatic generation of a Table of Contents (TOC) on separately numbered pages at the start of the document - using a specialized :ref:`Story`.

* Use of 3 separate :ref:`Story` objects per page: header story, footer story and the story for printing the Python sources.

    - The page **footer is automatically changed** to show the name of the current Python file.

* Use of :meth:`Story.element_positions` to collect the data for the TOC and for the dynamic adjustment of page footers. This is an example of a **bidirectional communication** between the story output process and the script.

* The main PDF with the Python sources is being written to memory by its :ref:`DocumentWriter`. Another :ref:`Story` / :ref:`DocumentWriter` pair is then used to create a (memory) PDF for the TOC pages. Finally, both these PDFs are joined and the result stored to disk.


-----


How to display a list from JSON data
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This example takes some JSON data input which it uses to populate a :ref:`Story`. It also contains some visual text formatting and shows how to add links.

Files:

* ``docs/samples/json-example.py``

|toggleStart|

.. literalinclude:: samples/json-example.py

|toggleEnd|

Using the alternative :meth:`Story.write*()` functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The :meth:`Story.write*()` functions provide a different way to use the
:ref:`Story` functionality, removing the need for calling code to implement
a loop that calls :meth:`Story.place()` and :meth:`Story.draw()` etc, at the
expense of having to provide at least a ``rectfn()`` callback.


How to do basic layout with :meth:`Story.write()`
-------------------------------------------------

This script lays out multiple copies of its own source code, into four
rectangles per page.

**Files:**

* ``docs/samples/story-write.py``

|toggleStart|

.. literalinclude:: samples/story-write.py

|toggleEnd|


-----

How to do iterative layout for a table of contents with :meth:`Story.write_stabilized()`
----------------------------------------------------------------------------------------

This script creates html content dynamically, adding a contents section based
on :ref:`ElementPosition` items that have non-zero ``.heading`` values.

The contents section is at the start of the document, so modifications to the
contents can change page numbers in the rest of the document, which in turn can
cause page numbers in the contents section to be incorrect.

So the script uses :meth:`Story.write_stabilized()` to repeatedly lay things
out until things are stable.


**Files:**

* ``docs/samples/story-write-stabilized.py``

|toggleStart|

.. literalinclude:: samples/story-write-stabilized.py

|toggleEnd|



-----


How to do iterative layout and create PDF links with :meth:`Story.write_stabilized_links()`
-------------------------------------------------------------------------------------------

This script is similar to the one described in "How to use
:meth:`Story.write_stabilized()`" above, except that the generated PDF also
contains links that correspond to the internal links in the original html.

This is done by using :meth:`Story.write_stabilized_links()`; this is slightly
different from :meth:`Story.write_stabilized()`:

* It does not take a :ref:`DocumentWriter` ``writer`` arg.
* It returns a PDF :ref:`Document` instance.

[The reasons for this are a little involved; for example a
:ref:`DocumentWriter` is not necessarily a PDF writer, so doesn't really work
in a PDF-specific API.]


**Files:**

* ``docs/samples/story-write-stabilized-links.py``

|toggleStart|

.. literalinclude:: samples/story-write-stabilized-links.py

|toggleEnd|



-----


.. rubric:: Footnotes

.. [#f1] HTML & CSS support

    .. note::

        At the time of writing the HTML engine for Stories is fairly basic and supports a subset of CSS2 attributes.

    Some important CSS support to consider:

    - The only available layout is relative layout.
    - ``background`` is unavalable, use ``background-color`` instead.
    - ``float`` is unavailable.


.. include:: footer.rst

.. External Links:

.. _pymupdf-fonts: https://github.com/pymupdf/pymupdf-fonts










PyMuPDF-1.21.1/docs/recipes-text.rst

.. include:: header.rst

.. _RecipesText:

==============================
Recipes: Text
==============================


How to Extract all Document Text
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This script will take a document filename and generate a text file from all of its text.

The document can be any supported type like PDF, XPS, etc.

The script works as a command line tool which expects the document filename supplied as a parameter. It generates one text file named "filename.txt" in the script directory. Text of pages is separated by a form feed character::

 import sys, fitz
 fname = sys.argv[1] # get document filename
 doc = fitz.open(fname) # open document
 out = open(fname + ".txt", "wb") # open text output
 for page in doc: # iterate the document pages
 text = page.get_text().encode("utf8") # get plain text (is in UTF-8)
 out.write(text) # write text of page
 out.write(bytes((12,))) # write page delimiter (form feed 0x0C)
 out.close()

The output will be plain text as it is coded in the document. No effort is made to prettify in any way. Specifically for PDF, this may mean output not in usual reading order, unexpected line breaks and so forth.

You have many options to rectify this -- see chapter :ref:`Appendix2`. Among them are:

1. Extract text in HTML format and store it as a HTML document, so it can be viewed in any browser.
2. Extract text as a list of text blocks via *Page.get_text("blocks")*. Each item of this list contains position information for its text, which can be used to establish a convenient reading order.
3. Extract a list of single words via *Page.get_text("words")*. Its items are words with position information. Use it to determine text contained in a given rectangle -- see next section.

See the following two sections for examples and further explanations.

.. index::
 triple: extract;text;rectangle

How to Extract Text from within a Rectangle
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is now (v1.18.0) more than one way to achieve this. We therefore have created a `folder <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/textbox-extraction>`_ in the PyMuPDF-Utilities repository specifically dealing with this topic.

----------

.. index::
    pair: text;reading order

How to Extract Text in Natural Reading Order
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

One of the common issues with PDF text extraction is, that text may not appear in any particular reading order.

This is the responsibility of the PDF creator (software or a human). For example, page headers may have been inserted in a separate step -- after the document had been produced. In such a case, the header text will appear at the end of a page text extraction (although it will be correctly shown by PDF viewer software). For example, the following snippet will add some header and footer lines to an existing PDF::

 doc = fitz.open("some.pdf")
 header = "Header" # text in header
 footer = "Page %i of %i" # text in footer
 for page in doc:
 page.insert_text((50, 50), header) # insert header
 page.insert_text(# insert footer 50 points above page bottom
 (50, page.rect.height - 50),
 footer % (page.number + 1, doc.page_count),
)

The text sequence extracted from a page modified in this way will look like this:

1. original text
2. header line
3. footer line

PyMuPDF has several means to re-establish some reading sequence or even to re-generate a layout close to the original:

1. Use ``sort`` parameter of :meth:`Page.get_text`. It will sort the output from top-left to bottom-right (ignored for XHTML, HTML and XML output).
2. Use the ``fitz`` module in CLI: ``python -m fitz gettext ...``, which produces a text file where text has been re-arranged in layout-preserving mode. Many options are available to control the output.

You can also use the above mentioned `script <https://github.com/pymupdf/PyMuPDF/wiki/How-to-extract-text-from-a-rectangle>`_ with your modifications.

How to :index:`Extract Tables <pair: extract; table>` from Documents
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you see a table in a document, you are not normally looking at something like an embedded Excel or other identifiable object. It usually is just text, formatted to appear as appropriate.

Extracting a tabular data from such a page area therefore means that you must find a way to **(1)** graphically indicate table and column borders, and **(2)** then extract text based on this information.

The wxPython GUI script `wxTableExtract.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/wxTableExtract.py>`_ strives to exactly do that. You may want to have a look at it and adjust it to your liking.

----------

How to Mark Extracted Text
~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a standard search function to search for arbitrary text on a page: :meth:`Page.search_for`. It returns a list of :ref:`Rect` objects which surround a found occurrence. These rectangles can for example be used to automatically insert annotations which visibly mark the found text.

This method has advantages and drawbacks. Pros are:

* The search string can contain blanks and wrap across lines
* Upper or lower case characters are treated equal
* Word hyphenation at line ends is detected and resolved
* Return may also be a list of :ref:`Quad` objects to precisely locate text that is **not parallel** to either axis -- using :ref:`Quad` output is also recommend, when page rotation is not zero

But you also have other options::

 import sys
 import fitz

 def mark_word(page, text):
 """Underline each word that contains 'text'.
 """
 found = 0
 wlist = page.get_text("words") # make the word list
 for w in wlist: # scan through all words on page
 if text in w[4]: # w[4] is the word's string
 found += 1 # count
 r = fitz.Rect(w[:4]) # make rect from word bbox
 page.add_underline_annot(r) # underline
 return found

 fname = sys.argv[1] # filename
 text = sys.argv[2] # search string
 doc = fitz.open(fname)

 print("underlining words containing '%s' in document '%s'" % (word, doc.name))

 new_doc = False # indicator if anything found at all

 for page in doc: # scan through the pages
 found = mark_word(page, text) # mark the page's words
 if found: # if anything found ...
 new_doc = True
 print("found '%s' %i times on page %i" % (text, found, page.number + 1))

 if new_doc:
 doc.save("marked-" + doc.name)

This script uses ``Page.get_text("words")`` to look for a string, handed in via cli parameter. This method separates a page's text into "words" using spaces and line breaks as delimiters. Further remarks:

* If found, the **complete word containing the string** is marked (underlined) -- not only the search string.
* The search string may **not contain spaces** or other white space.
* As shown here, upper / lower cases are **respected**. But this can be changed by using the string method *lower()* (or even regular expressions) in function *mark_word*.
* There is **no upper limit**: all occurrences will be detected.
* You can use **anything** to mark the word: 'Underline', 'Highlight', 'StrikeThrough' or 'Square' annotations, etc.
* Here is an example snippet of a page of this manual, where "MuPDF" has been used as the search string. Note that all strings **containing "MuPDF"** have been completely underlined (not just the search string).

.. image:: images/img-markedpdf.*
 :scale: 60

--

How to Mark Searched Text
~~~~~~~~~~~~~~~~~~~~~~~~~~
This script searches for text and marks it::

    # -*- coding: utf-8 -*-
    import fitz

    # the document to annotate
    doc = fitz.open("tilted-text.pdf")

    # the text to be marked
    t = "¡La práctica hace el campeón!"

    # work with first page only
    page = doc[0]

    # get list of text locations
    # we use "quads", not rectangles because text may be tilted!
    rl = page.search_for(t, quads = True)

    # mark all found quads with one annotation
    page.add_squiggly_annot(rl)

    # save to a new PDF
    doc.save("a-squiggly.pdf")

The result looks like this:

.. image:: images/img-textmarker.*
   :scale: 80

----------------------------------------------

How to Mark Non-horizontal Text
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The previous section already shows an example for marking non-horizontal text, that was detected by text **searching**.

But text **extraction** with the "dict" / "rawdict" options of :meth:`Page.get_text` may also return text with a non-zero angle to the x-axis. This is indicated by the value of the line dictionary's ``"dir"`` key: it is the tuple ``(cosine, sine)`` for that angle. If ``line["dir"] != (1, 0)``, then the text of all its spans is rotated by (the same) angle != 0.

The "bboxes" returned by the method however are rectangles only -- not quads. So, to mark span text correctly, its quad must be recovered from the data contained in the line and span dictionary. Do this with the following utility function (new in v1.18.9)::

 span_quad = fitz.recover_quad(line["dir"], span)
 annot = page.add_highlight_annot(span_quad) # this will mark the complete span text

If you want to **mark the complete line** or a subset of its spans in one go, use the following snippet (works for v1.18.10 or later)::

 line_quad = fitz.recover_line_quad(line, spans=line["spans"][1:-1])
 page.add_highlight_annot(line_quad)

.. image:: images/img-linequad.*

The ``spans`` argument above may specify any sub-list of ``line["spans"]``. In the example above, the second to second-to-last span are marked. If omitted, the complete line is taken.

How to Analyze Font Characteristics
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To analyze the characteristics of text in a PDF use this elementary script as a starting point:

.. literalinclude:: samples/text-lister.py
   :language: python

Here is the PDF page and the script output:

.. image:: images/img-pdftext.*
   :scale: 80

-----------------------------------------

How to Insert Text
~~~~~~~~~~~~~~~~~~~~
PyMuPDF provides ways to insert text on new or existing PDF pages with the following features:

* choose the font, including built-in fonts and fonts that are available as files
* choose text characteristics like bold, italic, font size, font color, etc.
* position the text in multiple ways:

 - either as simple line-oriented output starting at a certain point,
 - or fitting text in a box provided as a rectangle, in which case text alignment choices are also available,
 - choose whether text should be put in foreground (overlay existing content),
 - all text can be arbitrarily "morphed", i.e. its appearance can be changed via a :ref:`Matrix`, to achieve effects like scaling, shearing or mirroring,
 - independently from morphing and in addition to that, text can be rotated by integer multiples of 90 degrees.

All of the above is provided by three basic :ref:`Page`, resp. :ref:`Shape` methods:

* :meth:`Page.insert_font` -- install a font for the page for later reference. The result is reflected in the output of :meth:`Document.get_page_fonts`. The font can be:

 - provided as a file,
 - via :ref:`Font` (then use :attr:`Font.buffer`)
 - already present somewhere in **this or another** PDF, or
 - be a **built-in** font.

* :meth:`Page.insert_text` -- write some lines of text. Internally, this uses :meth:`Shape.insert_text`.

* :meth:`Page.insert_textbox` -- fit text in a given rectangle. Here you can choose text alignment features (left, right, centered, justified) and you keep control as to whether text actually fits. Internally, this uses :meth:`Shape.insert_textbox`.

.. note:: Both text insertion methods automatically install the font as necessary.

How to Write Text Lines
^^^^^^^^^^^^^^^^^^^^^^^^^^
Output some text lines on a page::

 import fitz
 doc = fitz.open(...) # new or existing PDF
 page = doc.new_page() # new or existing page via doc[n]
 p = fitz.Point(50, 72) # start point of 1st line

 text = "Some text,\nspread across\nseveral lines."
 # the same result is achievable by
 # text = ["Some text", "spread across", "several lines."]

 rc = page.insert_text(p, # bottom-left of 1st char
 text, # the text (honors '\n')
 fontname = "helv", # the default font
 fontsize = 11, # the default font size
 rotate = 0, # also available: 90, 180, 270
)
 print("%i lines printed on page %i." % (rc, page.number))

 doc.save("text.pdf")

With this method, only the **number of lines** will be controlled to not go beyond page height. Surplus lines will not be written and the number of actual lines will be returned. The calculation uses a line height calculated from the fontsize and 36 points (0.5 inches) as bottom margin.

Line **width is ignored**. The surplus part of a line will simply be invisible.

However, for built-in fonts there are ways to calculate the line width beforehand - see :meth:`get_text_length`.

Here is another example. It inserts 4 text strings using the four different rotation options, and thereby explains, how the text insertion point must be chosen to achieve the desired result::

 import fitz
 doc = fitz.open()
 page = doc.new_page()
 # the text strings, each having 3 lines
 text1 = "rotate=0\nLine 2\nLine 3"
 text2 = "rotate=90\nLine 2\nLine 3"
 text3 = "rotate=-90\nLine 2\nLine 3"
 text4 = "rotate=180\nLine 2\nLine 3"
 red = (1, 0, 0) # the color for the red dots
 # the insertion points, each with a 25 pix distance from the corners
 p1 = fitz.Point(25, 25)
 p2 = fitz.Point(page.rect.width - 25, 25)
 p3 = fitz.Point(25, page.rect.height - 25)
 p4 = fitz.Point(page.rect.width - 25, page.rect.height - 25)
 # create a Shape to draw on
 shape = page.new_shape()

 # draw the insertion points as red, filled dots
 shape.draw_circle(p1,1)
 shape.draw_circle(p2,1)
 shape.draw_circle(p3,1)
 shape.draw_circle(p4,1)
 shape.finish(width=0.3, color=red, fill=red)

 # insert the text strings
 shape.insert_text(p1, text1)
 shape.insert_text(p3, text2, rotate=90)
 shape.insert_text(p2, text3, rotate=-90)
 shape.insert_text(p4, text4, rotate=180)

 # store our work to the page
 shape.commit()
 doc.save(...)

This is the result:

.. image:: images/img-inserttext.*
 :scale: 33

--

How to Fill a Text Box
^^^^^^^^^^^^^^^^^^^^^^^^^^
This script fills 4 different rectangles with text, each time choosing a different rotation value::

 import fitz
 doc = fitz.open(...) # new or existing PDF
 page = doc.new_page() # new page, or choose doc[n]
 r1 = fitz.Rect(50,100,100,150) # a 50x50 rectangle
 disp = fitz.Rect(55, 0, 55, 0) # add this to get more rects
 r2 = r1 + disp # 2nd rect
 r3 = r1 + disp * 2 # 3rd rect
 r4 = r1 + disp * 3 # 4th rect
 t1 = "text with rotate = 0." # the texts we will put in
 t2 = "text with rotate = 90."
 t3 = "text with rotate = -90."
 t4 = "text with rotate = 180."
 red = (1,0,0) # some colors
 gold = (1,1,0)
 blue = (0,0,1)
 """We use a Shape object (something like a canvas) to output the text and
 the rectangles surrounding it for demonstration.
 """
 shape = page.new_shape() # create Shape
 shape.draw_rect(r1) # draw rectangles
 shape.draw_rect(r2) # giving them
 shape.draw_rect(r3) # a yellow background
 shape.draw_rect(r4) # and a red border
 shape.finish(width = 0.3, color = red, fill = gold)
 # Now insert text in the rectangles. Font "Helvetica" will be used
 # by default. A return code rc < 0 indicates insufficient space (not checked here).
 rc = shape.insert_textbox(r1, t1, color = blue)
 rc = shape.insert_textbox(r2, t2, color = blue, rotate = 90)
 rc = shape.insert_textbox(r3, t3, color = blue, rotate = -90)
 rc = shape.insert_textbox(r4, t4, color = blue, rotate = 180)
 shape.commit() # write all stuff to page /Contents
 doc.save("...")

Several default values were used above: font "Helvetica", font size 11 and text alignment "left". The result will look like this:

.. image:: images/img-textbox.*
 :scale: 50

--

How to Use Non-Standard Encoding
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Since v1.14, MuPDF allows Greek and Russian encoding variants for the :data:`Base14_Fonts`. In PyMuPDF this is supported via an additional *encoding* argument. Effectively, this is relevant for Helvetica, Times-Roman and Courier (and their bold / italic forms) and characters outside the ASCII code range only. Elsewhere, the argument is ignored. Here is how to request Russian encoding with the standard font Helvetica::

 page.insert_text(point, russian_text, encoding=fitz.TEXT_ENCODING_CYRILLIC)

The valid encoding values are TEXT_ENCODING_LATIN (0), TEXT_ENCODING_GREEK (1), and TEXT_ENCODING_CYRILLIC (2, Russian) with Latin being the default. Encoding can be specified by all relevant font and text insertion methods.

By the above statement, the fontname *helv* is automatically connected to the Russian font variant of Helvetica. Any subsequent text insertion with **this fontname** will use the Russian Helvetica encoding.

If you change the fontname just slightly, you can also achieve an **encoding "mixture"** for the **same base font** on the same page::

 import fitz
 doc=fitz.open()
 page = doc.new_page()
 shape = page.new_shape()
 t="Sômé tèxt wìth nöñ-Lâtîn characterß."
 shape.insert_text((50,70), t, fontname="helv", encoding=fitz.TEXT_ENCODING_LATIN)
 shape.insert_text((50,90), t, fontname="HElv", encoding=fitz.TEXT_ENCODING_GREEK)
 shape.insert_text((50,110), t, fontname="HELV", encoding=fitz.TEXT_ENCODING_CYRILLIC)
 shape.commit()
 doc.save("t.pdf")

The result:

.. image:: images/img-encoding.*
 :scale: 50

The snippet above indeed leads to three different copies of the Helvetica font in the PDF. Each copy is uniquely identified (and referenceable) by using the correct upper-lower case spelling of the reserved word "helv"::

 for f in doc.get_page_fonts(0): print(f)

 [6, 'n/a', 'Type1', 'Helvetica', 'helv', 'WinAnsiEncoding']
 [7, 'n/a', 'Type1', 'Helvetica', 'HElv', 'WinAnsiEncoding']
 [8, 'n/a', 'Type1', 'Helvetica', 'HELV', 'WinAnsiEncoding']

.. include:: footer.rst

PyMuPDF-1.21.1/docs/recipes.rst

.. include:: header.rst

.. _RecipesTOC:

==============================
Recipes
==============================

.. toctree::

 recipes-images.rst

.. toctree::

 recipes-text.rst

.. toctree::

 recipes-annotations.rst

.. toctree::

 recipes-drawing-and-graphics.rst

.. toctree::

 recipes-multiprocessing.rst

.. toctree::

 recipes-general.rst

.. toctree::

 recipes-common-issues-and-their-solutions.rst

.. toctree::

 recipes-low-level-interfaces.rst

.. toctree::

 recipes-journalling.rst

.. toctree::

 recipes-stories.rst

.. include:: footer.rst

PyMuPDF-1.21.1/docs/rect.rst

.. include:: header.rst

.. _Rect:

==========
Rect
==========

Rect represents a rectangle defined by four floating point numbers x0, y0, x1, y1. They are treated as being coordinates of two diagonally opposite points. The first two numbers are regarded as the "top left" corner P\ :sub:`(x0,y0)` and P\ :sub:`(x1,y1)` as the "bottom right" one. However, these two properties need not coincide with their intuitive meanings -- read on.

The following remarks are also valid for :ref:`IRect` objects:

* A rectangle in the sense of (Py-) MuPDF **(and PDF)** always has **borders parallel to the x- resp. y-axis**. A general orthogonal tetragon **is not a rectangle** -- in contrast to the mathematical definition.
* The constructing points can be (almost! -- see below) anywhere in the plane -- they need not even be different, and e.g. "top left" need not be the geometrical "north-western" point.
* For any given quadruple of numbers, the geometrically "same" rectangle can be defined in four different ways:
 1. Rect(P\ :sub:`(x0,y0)`, P\ :sub:`(x1,y1)`\)
 2. Rect(P\ :sub:`(x1,y1)`, P\ :sub:`(x0,y0)`\)
 3. Rect(P\ :sub:`(x0,y1)`, P\ :sub:`(x1,y0)`\)
 4. Rect(P\ :sub:`(x1,y0)`, P\ :sub:`(x0,y1)`\)

(Changed in v1.19.0) Hence some classification:

* A rectangle is called **valid** if ``x0 <= x1`` and ``y0 <= y1`` (i.e. the bottom right point is "south-eastern" to the top left one), otherwise **invalid**. Of the four alternatives above, **only the first** is valid. Please take into account, that in MuPDF's coordinate system, the y-axis is oriented from **top to bottom**. Invalid rectangles have been called infinite in earlier versions.

* A rectangle is called **empty** if ``x0 >= x1`` or ``y0 >= y1``. This implies, that **invalid rectangles are also always empty.** And ``width`` (resp. ``height``) is **set to zero** if ``x0 > x1`` (resp. ``y0 > y1``). In previous versions, a rectangle was empty only if one of width or height was zero.

* Rectangle coordinates **cannot be outside** the number range from ``FZ_MIN_INF_RECT = -2147483648`` to ``FZ_MAX_INF_RECT = 2147483520``. Both values have been chosen, because they are the smallest / largest 32bit integers that survive C float conversion roundtrips. In previous versions there was no limit for coordinate values.

* There is **exactly one "infinite" rectangle**, defined by ``x0 = y0 = FZ_MIN_INF_RECT`` and ``x1 = y1 = FZ_MAX_INF_RECT``. It contains every other rectangle. It is mainly used for technical purposes -- e.g. when a function call should ignore a formally required rectangle argument. This rectangle is not empty.

* **Rectangles are (semi-) open:** The right and the bottom edges (including the resp. corners) are not considered part of the rectangle. This implies, that only the top-left corner ``(x0, y0)`` can ever belong to the rectangle - the other three corners never do. An empty rectangle contains no corners at all.

 .. image:: images/img-rect-contains.*
 :scale: 30
 :align: center

* Here is an overview of the changes.

 ================= =================================== ==
 Notion Versions < 1.19.0 Versions 1.19.*
 ================= =================================== ==
 empty x0 = x1 or y0 = y1 x0 >= x1 or y0 >= y1 -- includes invalid rects
 valid n/a x0 <= x1 and y0 <= y1
 infinite all rects where x0 > x1 or y1 > y0 **exactly one infinite rect / irect!**
 coordinate values all numbers ``FZ_MIN_INF_RECT <= number <= FZ_MAX_INF_RECT``
 borders, corners are parts of the rectangle right and bottom corners and edges **are outside**
 ================= =================================== ==

* There are new top level functions defining infinite and standard empty rectangles and quads, see :meth:`INFINITE_RECT` and friends.

============================= ===
Methods / Attributes **Short Description**
============================= ===
:meth:`Rect.contains` checks containment of point_likes and rect_likes
:meth:`Rect.get_area` calculate rectangle area
:meth:`Rect.include_point` enlarge rectangle to also contain a point
:meth:`Rect.include_rect` enlarge rectangle to also contain another one
:meth:`Rect.intersect` common part with another rectangle
:meth:`Rect.intersects` checks for non-empty intersections
:meth:`Rect.morph` transform with a point and a matrix
:meth:`Rect.torect` the matrix that transforms to another rectangle
:meth:`Rect.norm` the Euclidean norm
:meth:`Rect.normalize` makes a rectangle valid
:meth:`Rect.round` create smallest :ref:`Irect` containing rectangle
:meth:`Rect.transform` transform rectangle with a matrix
:attr:`Rect.bottom_left` bottom left point, synonym *bl*
:attr:`Rect.bottom_right` bottom right point, synonym *br*
:attr:`Rect.height` rectangle height
:attr:`Rect.irect` equals result of method *round()*
:attr:`Rect.is_empty` whether rectangle is empty
:attr:`Rect.is_valid` whether rectangle is valid
:attr:`Rect.is_infinite` whether rectangle is infinite
:attr:`Rect.top_left` top left point, synonym *tl*
:attr:`Rect.top_right` top_right point, synonym *tr*
:attr:`Rect.quad` :ref:`Quad` made from rectangle corners
:attr:`Rect.width` rectangle width
:attr:`Rect.x0` left corners' x coordinate
:attr:`Rect.x1` right corners' x -coordinate
:attr:`Rect.y0` top corners' y coordinate
:attr:`Rect.y1` bottom corners' y coordinate
============================= ===

Class API

.. class:: Rect

 .. method:: __init__(self)

 .. method:: __init__(self, x0, y0, x1, y1)

 .. method:: __init__(self, top_left, bottom_right)

 .. method:: __init__(self, top_left, x1, y1)

 .. method:: __init__(self, x0, y0, bottom_right)

 .. method:: __init__(self, rect)

 .. method:: __init__(self, sequence)

 Overloaded constructors: *top_left*, *bottom_right* stand for :data:`point_like` objects, "sequence" is a Python sequence type of 4 numbers (see :ref:`SequenceTypes`), "rect" means another :data:`rect_like`, while the other parameters mean coordinates.

 If "rect" is specified, the constructor creates a **new copy** of it.

 Without parameters, the empty rectangle *Rect(0.0, 0.0, 0.0, 0.0)* is created.

 .. method:: round()

 Creates the smallest containing :ref:`IRect`. This is **not** the same as simply rounding the rectangle's edges: The top left corner is rounded upwards and to the left while the bottom right corner is rounded downwards and to the right.

 >>> fitz.Rect(0.5, -0.01, 123.88, 455.123456).round()
 IRect(0, -1, 124, 456)

 1. If the rectangle is **empty**, the result is also empty.
 2. **Possible paradox:** The result may be empty, **even if** the rectangle is **not** empty! In such cases, the result obviously does **not** contain the rectangle. This is because MuPDF's algorithm allows for a small tolerance (1e-3). Example:

 >>> r = fitz.Rect(100, 100, 200, 100.001)
 >>> r.is_empty # rect is NOT empty
 False
 >>> r.round() # but its irect IS empty!
 fitz.IRect(100, 100, 200, 100)
 >>> r.round().is_empty
 True

 :rtype: :ref:`IRect`

 .. method:: transform(m)

 Transforms the rectangle with a matrix and **replaces the original**. If the rectangle is empty or infinite, this is a no-operation.

 :arg m: The matrix for the transformation.
 :type m: :ref:`Matrix`

 :rtype: *Rect*
 :returns: the smallest rectangle that contains the transformed original.

 .. method:: intersect(r)

 The intersection (common rectangular area, largest rectangle contained in both) of the current rectangle and *r* is calculated and **replaces the current** rectangle. If either rectangle is empty, the result is also empty. If *r* is infinite, this is a no-operation. If the rectangles are (mathematically) disjoint sets, then the result is invalid. If the result is valid but empty, then the rectangles touch each other in a corner or (part of) a side.

 :arg r: Second rectangle
 :type r: :ref:`Rect`

 .. method:: include_rect(r)

 The smallest rectangle containing the current one and *r* is calculated and **replaces the current** one. If either rectangle is infinite, the result is also infinite. If one is empty, the other one will be taken as the result.

 :arg r: Second rectangle
 :type r: :ref:`Rect`

 .. method:: include_point(p)

 The smallest rectangle containing the current one and point *p* is calculated and **replaces the current** one. **The infinite rectangle remains unchanged.** To create a rectangle containing a series of points, start with (the empty) *fitz.Rect(p1, p1)* and successively include the remaining points.

 :arg p: Point to include.
 :type p: :ref:`Point`

 .. method:: get_area([unit])

 Calculate the area of the rectangle and, with no parameter, equals *abs(rect)*. Like an empty rectangle, the area of an infinite rectangle is also zero. So, at least one of *fitz.Rect(p1, p2)* and *fitz.Rect(p2, p1)* has a zero area.

 :arg str unit: Specify required unit: respective squares of *px* (pixels, default), *in* (inches), *cm* (centimeters), or *mm* (millimeters).
 :rtype: float

 .. method:: contains(x)

 Checks whether *x* is contained in the rectangle. It may be an *IRect*, *Rect*, *Point* or number. If *x* is an empty rectangle, this is always true. If the rectangle is empty this is always *False* for all non-empty rectangles and for all points. ``x in rect`` and ``rect.contains(x)`` are equivalent.

 :arg x: the object to check.
 :type x: :data:`rect_like` or :data:`point_like`.

 :rtype: bool

 .. method:: intersects(r)

 Checks whether the rectangle and a :data:`rect_like` "r" contain a common non-empty :ref:`Rect`. This will always be *False* if either is infinite or empty.

 :arg rect_like r: the rectangle to check.

 :rtype: bool

 .. method:: torect(rect)

 * New in version 1.19.3

 Compute the matrix which transforms this rectangle to a given one.

 :arg rect_like rect: the target rectangle. Must not be empty or infinite.
 :rtype: :ref:`Matrix`
 :returns: a matrix ``mat`` such that ``self * mat = rect``. Can for example be used to transform between the page and the pixmap coordinates.

 .. note:: Suppose you want to check whether any of the words "pixmap" is invisible, because the text color equals the ambient color -- e.g. white on white. We make a pixmap and check the "color environment" of each word:

 >>> # make a pixmap of the page
 >>> pix = page.get_pixmap(dpi=150)
 >>> # make a matrix that transforms to pixmap coordinates
 >>> mat = page.rect.torect(pix.irect)
 >>> # search for text locations
 >>> rlist = page.search_for("pixmap")
 >>> # check color environment of each occurrence
 >>> # we will check for "almost unicolor"
 >>> for r in rlist:
 if pix.color_topusage(clip=r * mat)[0] > 0.95:
 print("'pixmap' invisible here:", r)
 >>>

 Method :meth:`Pixmap.color_topusage` computes the percentage of pixels showing the same color.

 .. method:: morph(fixpoint, matrix)

 * New in version 1.17.0

 Return a new quad after applying a matrix to the rectangle using the fixed point ``fixpoint``.

 :arg point_like fixpoint: the fixed point.
 :arg matrix_like matrix: the matrix.
 :returns: a new :ref:`Quad`. This a wrapper for the same-named quad method. If infinite, the infinite quad is returned.

 .. method:: norm()

 * New in version 1.16.0

 Return the Euclidean norm of the rectangle treated as a vector of four numbers.

 .. method:: normalize()

 Replace the rectangle with its valid version. This is done by shuffling the rectangle corners. After completion of this method, the bottom right corner will indeed be south-eastern to the top left one (but may still be empty).

 .. attribute:: irect

 Equals result of method *round()*.

 .. attribute:: top_left

 .. attribute:: tl

 Equals *Point(x0, y0)*.

 :type: :ref:`Point`

 .. attribute:: top_right

 .. attribute:: tr

 Equals ``Point(x1, y0)``.

 :type: :ref:`Point`

 .. attribute:: bottom_left

 .. attribute:: bl

 Equals ``Point(x0, y1)``.

 :type: :ref:`Point`

 .. attribute:: bottom_right

 .. attribute:: br

 Equals ``Point(x1, y1)``.

 :type: :ref:`Point`

 .. attribute:: quad

 The quadrilateral ``Quad(rect.tl, rect.tr, rect.bl, rect.br)``.

 :type: :ref:`Quad`

 .. attribute:: width

 Width of the rectangle. Equals ``max(x1 - x0, 0)``.

 :rtype: float

 .. attribute:: height

 Height of the rectangle. Equals ``max(y1 - y0, 0)``.

 :rtype: float

 .. attribute:: x0

 X-coordinate of the left corners.

 :type: float

 .. attribute:: y0

 Y-coordinate of the top corners.

 :type: float

 .. attribute:: x1

 X-coordinate of the right corners.

 :type: float

 .. attribute:: y1

 Y-coordinate of the bottom corners.

 :type: float

 .. attribute:: is_infinite

 ``True`` if this is the infinite rectangle.

 :type: bool

 .. attribute:: is_empty

 ``True`` if rectangle is empty.

 :type: bool

 .. attribute:: is_valid

 ``True`` if rectangle is valid.

 :type: bool

.. note::

 * This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also refer to :ref:`SequenceTypes`.
 * Rectangles can be used with arithmetic operators -- see chapter :ref:`Algebra`.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/requirements.txt

docutils<0.16
rst2pdf

PyMuPDF-1.21.1/docs/samples/code-printer.py

"""
Demo script PyMuPDF Story class

Read the Python sources in the script directory and create a PDF of all their
source codes.

The following features are included as a specialty:
1. HTML source for fitz.Story created via Python API exclusively
2. Separate Story objects for page headers and footers
3. Use of HTML "id" elements for identifying source start pages
4. Generate a Table of Contents pointing to source file starts. This
 - uses the new Stoy callback feature
 - uses Story also for making the TOC page(s)

"""
import io
import os
import time

import fitz

THISDIR = os.path.dirname(os.path.abspath(__file__))
TOC = [] # this will contain the TOC list items
CURRENT_ID = "" # currently processed filename - stored by recorder func
MEDIABOX = fitz.paper_rect("a4-l") # chosen page size
WHERE = MEDIABOX + (36, 50, -36, -36) # sub rectangle for source content
location of the header rectangle
HDR_WHERE = (36, 5, MEDIABOX.width - 36, 40)
location of the footer rectangle
FTR_WHERE = (36, MEDIABOX.height - 36, MEDIABOX.width - 36, MEDIABOX.height)

def recorder(elpos):
 """Callback function invoked during story.place().
 This function generates / collects all TOC items and updates the value of
 CURRENT_ID - which is used to update the footer line of each page.
 """
 global TOC, CURRENT_ID
 if not elpos.open_close & 1: # only consider "open" items
 return
 level = elpos.heading
 y0 = elpos.rect[1] # top of written rectangle (use for TOC)
 if level > 0: # this is a header (h1 - h6)
 pno = elpos.page + 1 # the page number
 TOC.append(
 (
 level,
 elpos.text,
 elpos.page + 1,
 y0,
)
)
 return

 CURRENT_ID = elpos.id if elpos.id else "" # update for footer line
 return

def header_story(text):
 """Make the page header"""
 header = fitz.Story()
 hdr_body = header.body
 hdr_body.add_paragraph().set_properties(
 align=fitz.fitz.TEXT_ALIGN_CENTER,
 bgcolor="#eee",
 font="sans-serif",
 bold=True,
 fontsize=12,
 color="green",
).add_text(text)
 return header

def footer_story(text):
 """Make the page footer"""
 footer = fitz.Story()
 ftr_body = footer.body
 ftr_body.add_paragraph().set_properties(
 bgcolor="#eee",
 align=fitz.TEXT_ALIGN_CENTER,
 color="blue",
 fontsize=10,
 font="sans-serif",
).add_text(text)
 return footer

def code_printer(outfile):
 """Output the generated PDF to outfile."""
 global MAX_TITLE_LEN
 where = +WHERE
 writer = fitz.DocumentWriter(outfile, "")
 print_time = time.strftime("%Y-%m-%d %H:%M:%S (%z)")
 thispath = os.path.abspath(os.curdir)
 basename = os.path.basename(thispath)

 story = fitz.Story()
 body = story.body
 body.set_properties(font="sans-serif")

 text = f"Python sources in folder '{THISDIR}'"

 body.add_header(1).add_text(text) # the only h1 item in the story

 files = os.listdir(THISDIR) # list / select Python files in our directory
 i = 1
 for code_file in files:
 if not code_file.endswith(".py"):
 continue

 # read Python file source
 fileinput = open(os.path.join(THISDIR, code_file), "rb")
 text = fileinput.read().decode()
 fileinput.close()

 # make level 2 header
 hdr = body.add_header(2)
 if i > 1:
 hdr.set_pagebreak_before()
 hdr.add_text(f"{i}. Listing of file '{code_file}'")

 # Write the file code
 body.add_codeblock().set_bgcolor((240, 255, 210)).set_color("blue").set_id(
 code_file
).set_fontsize(10).add_text(text)

 # Indicate end of a source file
 body.add_paragraph().set_align(fitz.TEXT_ALIGN_CENTER).add_text(
 f"---------- End of File '{code_file}' ----------"
)
 i += 1 # update file counter

 i = 0
 while True:
 i += 1
 device = writer.begin_page(MEDIABOX)
 # create Story objects for header, footer and the rest.
 header = header_story(f"Python Files in '{THISDIR}'")
 hdr_ok, _ = header.place(HDR_WHERE)
 if hdr_ok != 0:
 raise ValueError("header does not fit")
 header.draw(device, None)

 # --
 # Write the file content.
 # --
 more, filled = story.place(where)
 # Inform the callback function
 # Args:
 # recorder: the Python function to call
 # {}: dictionary containing anything - we pass the page number
 story.element_positions(recorder, {"page": i - 1})
 story.draw(device, None)

 # --
 # Make / write page footer.
 # We MUST have a paragraph b/o background color / alignment
 # --
 if CURRENT_ID:
 text = f"File '{CURRENT_ID}' printed at {print_time}{chr(160)*5}{'-'*10}{chr(160)*5}Page {i}"
 else:
 text = f"Printed at {print_time}{chr(160)*5}{'-'*10}{chr(160)*5}Page {i}"
 footer = footer_story(text)
 # write the page footer
 ftr_ok, _ = footer.place(FTR_WHERE)
 if ftr_ok != 0:
 raise ValueError("footer does not fit")
 footer.draw(device, None)

 writer.end_page()
 if more == 0:
 break
 writer.close()

if __name__ == "__main__" or os.environ.get('PYTEST_CURRENT_TEST'):
 fileptr1 = io.BytesIO()
 t0 = time.perf_counter()
 code_printer(fileptr1) # make the PDF
 t1 = time.perf_counter()
 doc = fitz.open("pdf", fileptr1)
 old_count = doc.page_count
 # ---
 # Post-processing step to make / insert the toc
 # This also works using fitz.Story:
 # - make a new PDF in memory which contains pages with the TOC text
 # - add these TOC pages to the end of the original file
 # - search item text on the inserted pages and cover each with a PDF link
 # - move the TOC pages to the front of the document
 # ---
 story = fitz.Story()
 body = story.body
 body.add_header(1).set_font("sans-serif").add_text("Table of Contents")
 # prefix TOC with an entry pointing to this page
 TOC.insert(0, [1, "Table of Contents", old_count + 1, 36])

 for item in TOC[1:]: # write the file name headers as TOC lines
 body.add_paragraph().set_font("sans-serif").add_text(
 item[1] + f" - ({item[2]})"
)
 fileptr2 = io.BytesIO() # put TOC pages to a separate PDF initially
 writer = fitz.DocumentWriter(fileptr2)
 i = 1
 more = 1
 while more:
 device = writer.begin_page(MEDIABOX)
 header = header_story(f"Python Files in '{THISDIR}'")
 # write the page header
 hdr_ok, _ = header.place(HDR_WHERE)
 header.draw(device, None)

 more, filled = story.place(WHERE)
 story.draw(device, None)

 footer = footer_story(f"TOC-{i}") # separate page numbering scheme
 # write the page footer
 ftr_ok, _ = footer.place(FTR_WHERE)
 footer.draw(device, None)
 writer.end_page()
 i += 1

 writer.close()
 doc2 = fitz.open("pdf", fileptr2) # open TOC pages as another PDF
 doc.insert_pdf(doc2) # and append to the main PDF
 new_range = range(old_count, doc.page_count) # the TOC page numbers
 pages = [doc[i] for i in new_range] # these are the TOC pages within main PDF
 for item in TOC: # search for TOC item text to get its rectangle
 for page in pages:
 rl = page.search_for(item[1], flags=~fitz.TEXT_PRESERVE_LIGATURES)
 if rl != []: # this text must be on next page
 break
 rect = rl[0] # rectangle of TOC item text
 link = { # make a link from it
 "kind": fitz.LINK_GOTO,
 "from": rect,
 "to": fitz.Point(0, item[3]),
 "page": item[2] - 1,
 }
 page.insert_link(link)

 # insert the TOC in the main PDF
 doc.set_toc(TOC)
 # move all the TOC pages to the desired place (1st page here)
 for i in new_range:
 doc.move_page(doc.page_count - 1, 0)
 doc.ez_save(__file__.replace(".py", ".pdf"))

PyMuPDF-1.21.1/docs/samples/filmfestival-sql.db

PyMuPDF-1.21.1/docs/samples/filmfestival-sql.py

"""
This is a demo script for using PyMuPDF with its "Story" feature.

The following aspects are being covered here:

* The script produces a report of films that are stored in an SQL database
* The report format is provided as a HTML template

The SQL database contains two tables:
1. Table "films" which has the columns "title" (film title, str), "director"
 (str) and "year" (year of release, int).
2. Table "actors" which has the columns "name" (actor name, str) and "title"
 (the film title where the actor had been casted, str).

The script reads all content of the "films" table. For each film title it
reads all rows from table "actors" which took part in that film.

Comment 1

To keep things easy and free from pesky technical detail, the relevant file
names inherit the name of this script:
- the database's filename is the script name with ".py" extension replaced
 by ".db".
- the output PDF similarly has script file name with extension ".pdf".

Comment 2

The SQLITE database has been created using https://sqlitebrowser.org/, a free
multi-platform tool to maintain or manipulate SQLITE databases.
"""
import os
import sqlite3

import fitz

--
HTML template for the film report
There are four placeholders coded as "id" attributes.
One "id" allows locating the template part itself, the other three
indicate where database text should be inserted.
--
festival_template = (
 ""
 'Hook Norton Film Festival

'
 "

"
 '			'
 ''
 "

"
 '			Director

			'
 '

			Release Year

			'
 '

			Cast

			'
 "

"
 "

"
 ""
 "

PyMuPDF-1.21.1/docs/samples/image-no-go.pdf

PyMuPDF-1.21.1/docs/samples/json-example.py

import fitz
import json

my_json = """
[
 {
 "name" : "Five-storied Pagoda",
 "temple" : "Rurikō-ji",
 "founded" : "middle Muromachi period, 1442",
 "region" : "Yamaguchi, Yamaguchi",
 "position" : "34.190181,131.472917"
 },
 {
 "name" : "Founder's Hall",
 "temple" : "Eihō-ji",
 "founded" : "early Muromachi period",
 "region" : "Tajimi, Gifu",
 "position" : "35.346144,137.129189"
 },
 {
 "name" : "Fudōdō",
 "temple" : "Kongōbu-ji",
 "founded" : "early Kamakura period",
 "region" : "Kōya, Wakayama",
 "position" : "34.213103,135.580397"
 },
 {
 "name" : "Goeidō",
 "temple" : "Nishi Honganji",
 "founded" : "Edo period, 1636",
 "region" : "Kyoto",
 "position" : "34.991394,135.751689"
 },
 {
 "name" : "Golden Hall",
 "temple" : "Murō-ji",
 "founded" : "early Heian period",
 "region" : "Uda, Nara",
 "position" : "34.536586819357986,136.0395548452301"
 },
 {
 "name" : "Golden Hall",
 "temple" : "Fudō-in",
 "founded" : "late Muromachi period, 1540",
 "region" : "Hiroshima",
 "position" : "34.427014,132.471117"
 },
 {
 "name" : "Golden Hall",
 "temple" : "Ninna-ji",
 "founded" : "Momoyama period, 1613",
 "region" : "Kyoto",
 "position" : "35.031078,135.713811"
 },
 {
 "name" : "Golden Hall",
 "temple" : "Mii-dera",
 "founded" : "Momoyama period, 1599",
 "region" : "Ōtsu, Shiga",
 "position" : "35.013403,135.852861"
 },
 {
 "name" : "Golden Hall",
 "temple" : "Tōshōdai-ji",
 "founded" : "Nara period, 8th century",
 "region" : "Nara, Nara",
 "position" : "34.675619,135.784842"
 },
 {
 "name" : "Golden Hall",
 "temple" : "Tō-ji",
 "founded" : "Momoyama period, 1603",
 "region" : "Kyoto",
 "position" : "34.980367,135.747686"
 },
 {
 "name" : "Golden Hall",
 "temple" : "Tōdai-ji",
 "founded" : "middle Edo period, 1705",
 "region" : "Nara, Nara",
 "position" : "34.688992,135.839822"
 },
 {
 "name" : "Golden Hall",
 "temple" : "Hōryū-ji",
 "founded" : "Asuka period, by 693",
 "region" : "Ikaruga, Nara",
 "position" : "34.614317,135.734458"
 },
 {
 "name" : "Golden Hall",
 "temple" : "Daigo-ji",
 "founded" : "late Heian period",
 "region" : "Kyoto",
 "position" : "34.951481,135.821747"
 },
 {
 "name" : "Keigū-in Main Hall",
 "temple" : "Kōryū-ji",
 "founded" : "early Kamakura period, before 1251",
 "region" : "Kyoto",
 "position" : "35.015028,135.705425"
 },
 {
 "name" : "Konpon-chūdō",
 "temple" : "Enryaku-ji",
 "founded" : "early Edo period, 1640",
 "region" : "Ōtsu, Shiga",
 "position" : "35.070456,135.840942"
 },
 {
 "name" : "Korō",
 "temple" : "Tōshōdai-ji",
 "founded" : "early Kamakura period, 1240",
 "region" : "Nara, Nara",
 "position" : "34.675847,135.785069"
 },
 {
 "name" : "Kōfūzō",
 "temple" : "Hōryū-ji",
 "founded" : "early Heian period",
 "region" : "Ikaruga, Nara",
 "position" : "34.614439,135.735428"
 },
 {
 "name" : "Large Lecture Hall",
 "temple" : "Hōryū-ji",
 "founded" : "middle Heian period, 990",
 "region" : "Ikaruga, Nara",
 "position" : "34.614783,135.734175"
 },
 {
 "name" : "Lecture Hall",
 "temple" : "Zuiryū-ji",
 "founded" : "early Edo period, 1655",
 "region" : "Takaoka, Toyama",
 "position" : "36.735689,137.010019"
 },
 {
 "name" : "Lecture Hall",
 "temple" : "Tōshōdai-ji",
 "founded" : "Nara period, 763",
 "region" : "Nara, Nara",
 "position" : "34.675933,135.784842"
 },
 {
 "name" : "Lotus Flower Gate",
 "temple" : "Tō-ji",
 "founded" : "early Kamakura period",
 "region" : "Kyoto",
 "position" : "34.980678,135.746314"
 },
 {
 "name" : "Main Hall",
 "temple" : "Akishinodera",
 "founded" : "early Kamakura period",
 "region" : "Nara, Nara",
 "position" : "34.703769,135.776189"
 }
]

"""

the result is a Python dictionary:
my_dict = json.loads(my_json)

MEDIABOX = fitz.paper_rect("letter") # output page format: Letter
WHERE = MEDIABOX + (36, 36, -36, -36)
writer = fitz.DocumentWriter("json-example.pdf") # create the writer

story = fitz.Story()
body = story.body

for i, entry in enumerate(my_dict):

 for attribute, value in entry.items():
 para = body.add_paragraph()

 if attribute == "position":
 para.set_fontsize(10)
 para.add_link(f"www.google.com/maps/@{value},14z")
 else:
 para.add_span()
 para.set_color("#990000")
 para.set_fontsize(14)
 para.set_bold()
 para.add_text(f"{attribute} ")
 para.add_span()
 para.set_fontsize(18)
 para.add_text(f"{value}")

 body.add_horizontal_line()

This while condition will check a value from the Story `place` method
for whether all content for the story has been written (0), otherwise
more content is waiting to be written (1)
more = 1
while more:
 device = writer.begin_page(MEDIABOX) # make new page
 more, _ = story.place(WHERE)
 story.draw(device)
 writer.end_page() # finish page

writer.close() # close output file

del story

PyMuPDF-1.21.1/docs/samples/make-bold.py

"""
Problem: Since MuPDF v1.16 a 'Freetext' annotation font is restricted to the
"normal" versions (no bold, no italics) of Times-Roman, Helvetica, Courier.
It is impossible to use PyMuPDF to modify this.

Solution: Using Adobe's JavaScript API, it is possible to manipulate properties
of Freetext annotations. Check out these references:
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/js_api_reference.pdf,
or https://www.adobe.com/devnet/acrobat/documentation.html.

Function 'this.getAnnots()' will return all annotations as an array. We loop
over this array to set the properties of the text through the 'richContents'
attribute.
There is no explicit property to set text to bold, but it is possible to set
fontWeight=800 (400 is the normal size) of richContents.
Other attributes, like color, italics, etc. can also be set via richContents.

If we have 'FreeText' annotations created with PyMuPDF, we can make use of this
JavaScript feature to modify the font - thus circumventing the above restriction.

Use PyMuPDF v1.16.12 to create a push button that executes a Javascript
containing the desired code. This is what this program does.
Then open the resulting file with Adobe reader (!).
After clicking on the button, all Freetext annotations will be bold, and the
file can be saved.
If desired, the button can be removed again, using free tools like PyMuPDF or
PDF XChange editor.

Note / Caution:

The JavaScript will **only** work if the file is opened with Adobe Acrobat reader!
When using other PDF viewers, the reaction is unforeseeable.
"""
import sys

import fitz

this JavaScript will execute when the button is clicked:
jscript = """
var annt = this.getAnnots();
annt.forEach(function (item, index) {
 try {
 var span = item.richContents;
 span.forEach(function (it, dx) {
 it.fontWeight = 800;
 })
 item.richContents = span;
 } catch (err) {}
});
app.alert('Done');
"""
i_fn = sys.argv[1] # input file name
o_fn = "bold-" + i_fn # output filename
doc = fitz.open(i_fn) # open input
page = doc[0] # get desired page

--
make a push button for invoking the JavaScript
--

widget = fitz.Widget() # create widget

make it a 'PushButton'
widget.field_type = fitz.PDF_WIDGET_TYPE_BUTTON
widget.field_flags = fitz.PDF_BTN_FIELD_IS_PUSHBUTTON

widget.rect = fitz.Rect(5, 5, 20, 20) # button position

widget.script = jscript # fill in JavaScript source text
widget.field_name = "Make bold" # arbitrary name
widget.field_value = "Off" # arbitrary value
widget.fill_color = (0, 0, 1) # make button visible

annot = page.add_widget(widget) # add the widget to the page
doc.save(o_fn) # output the file

PyMuPDF-1.21.1/docs/samples/multiprocess-gui.py

"""
Created on 2019-05-01

@author: yinkaisheng@live.com
@copyright: 2019 yinkaisheng@live.com
@license: GNU AFFERO GPL 3.0

Demonstrate the use of multiprocessing with PyMuPDF

This example shows some more advanced use of multiprocessing.
The main process show a Qt GUI and establishes a 2-way communication with
another process, which accesses a supported document.
"""
import os
import sys
import time
import multiprocessing as mp
import queue
import fitz

''' PyQt and PySide namespace unifier shim
 https://www.pythonguis.com/faq/pyqt6-vs-pyside6/
 simple "if 'PyQt6' in sys.modules:" test fails for me, so the more complex pkgutil use
 overkill for most people who might have one or the other, why both?
'''

from pkgutil import iter_modules

def module_exists(module_name):
 return module_name in (name for loader, name, ispkg in iter_modules())

if module_exists("PyQt6"):
 # PyQt6
 from PyQt6 import QtGui, QtWidgets, QtCore
 from PyQt6.QtCore import pyqtSignal as Signal, pyqtSlot as Slot
 wrapper = "PyQt6"

elif module_exists("PySide6"):
 # PySide6
 from PySide6 import QtGui, QtWidgets, QtCore
 from PySide6.QtCore import Signal, Slot
 wrapper = "PySide6"

my_timer = time.clock if str is bytes else time.perf_counter

class DocForm(QtWidgets.QWidget):
 def __init__(self):
 super().__init__()
 self.process = None
 self.queNum = mp.Queue()
 self.queDoc = mp.Queue()
 self.page_count = 0
 self.curPageNum = 0
 self.lastDir = ""
 self.timerSend = QtCore.QTimer(self)
 self.timerSend.timeout.connect(self.onTimerSendPageNum)
 self.timerGet = QtCore.QTimer(self)
 self.timerGet.timeout.connect(self.onTimerGetPage)
 self.timerWaiting = QtCore.QTimer(self)
 self.timerWaiting.timeout.connect(self.onTimerWaiting)
 self.initUI()

 def initUI(self):
 vbox = QtWidgets.QVBoxLayout()
 self.setLayout(vbox)

 hbox = QtWidgets.QHBoxLayout()
 self.btnOpen = QtWidgets.QPushButton("OpenDocument", self)
 self.btnOpen.clicked.connect(self.openDoc)
 hbox.addWidget(self.btnOpen)

 self.btnPlay = QtWidgets.QPushButton("PlayDocument", self)
 self.btnPlay.clicked.connect(self.playDoc)
 hbox.addWidget(self.btnPlay)

 self.btnStop = QtWidgets.QPushButton("Stop", self)
 self.btnStop.clicked.connect(self.stopPlay)
 hbox.addWidget(self.btnStop)

 self.label = QtWidgets.QLabel("0/0", self)
 self.label.setFont(QtGui.QFont("Verdana", 20))
 hbox.addWidget(self.label)

 vbox.addLayout(hbox)

 self.labelImg = QtWidgets.QLabel("Document", self)
 sizePolicy = QtWidgets.QSizePolicy(
 QtWidgets.QSizePolicy.Policy.Preferred, QtWidgets.QSizePolicy.Policy.Expanding
)
 self.labelImg.setSizePolicy(sizePolicy)
 vbox.addWidget(self.labelImg)

 self.setGeometry(100, 100, 400, 600)
 self.setWindowTitle("PyMuPDF Document Player")
 self.show()

 def openDoc(self):
 path, _ = QtWidgets.QFileDialog.getOpenFileName(
 self,
 "Open Document",
 self.lastDir,
 "All Supported Files (*.pdf;*.epub;*.xps;*.oxps;*.cbz;*.fb2);;PDF Files (*.pdf);;EPUB Files (*.epub);;XPS Files (*.xps);;OpenXPS Files (*.oxps);;CBZ Files (*.cbz);;FB2 Files (*.fb2)",
 #options=QtWidgets.QFileDialog.Options(),
)
 if path:
 self.lastDir, self.file = os.path.split(path)
 if self.process:
 self.queNum.put(-1) # use -1 to notify the process to exit
 self.timerSend.stop()
 self.curPageNum = 0
 self.page_count = 0
 self.process = mp.Process(
 target=openDocInProcess, args=(path, self.queNum, self.queDoc)
)
 self.process.start()
 self.timerGet.start(40)
 self.label.setText("0/0")
 self.queNum.put(0)
 self.startTime = time.perf_counter()
 self.timerWaiting.start(40)

 def playDoc(self):
 self.timerSend.start(500)

 def stopPlay(self):
 self.timerSend.stop()

 def onTimerSendPageNum(self):
 if self.curPageNum < self.page_count - 1:
 self.queNum.put(self.curPageNum + 1)
 else:
 self.timerSend.stop()

 def onTimerGetPage(self):
 try:
 ret = self.queDoc.get(False)
 if isinstance(ret, int):
 self.timerWaiting.stop()
 self.page_count = ret
 self.label.setText("{}/{}".format(self.curPageNum + 1, self.page_count))
 else: # tuple, pixmap info
 num, samples, width, height, stride, alpha = ret
 self.curPageNum = num
 self.label.setText("{}/{}".format(self.curPageNum + 1, self.page_count))
 fmt = (
 QtGui.QImage.Format.Format_RGBA8888
 if alpha
 else QtGui.QImage.Format.Format_RGB888
)
 qimg = QtGui.QImage(samples, width, height, stride, fmt)
 self.labelImg.setPixmap(QtGui.QPixmap.fromImage(qimg))
 except queue.Empty as ex:
 pass

 def onTimerWaiting(self):
 self.labelImg.setText(
 'Loading "{}", {:.2f}s'.format(
 self.file, time.perf_counter() - self.startTime
)
)

 def closeEvent(self, event):
 self.queNum.put(-1)
 event.accept()

def openDocInProcess(path, queNum, quePageInfo):
 start = my_timer()
 doc = fitz.open(path)
 end = my_timer()
 quePageInfo.put(doc.page_count)
 while True:
 num = queNum.get()
 if num < 0:
 break
 page = doc.load_page(num)
 pix = page.get_pixmap()
 quePageInfo.put(
 (num, pix.samples, pix.width, pix.height, pix.stride, pix.alpha)
)
 doc.close()
 print("process exit")

if __name__ == "__main__":
 app = QtWidgets.QApplication(sys.argv)
 form = DocForm()
 sys.exit(app.exec())

PyMuPDF-1.21.1/docs/samples/multiprocess-render.py

"""
Demonstrate the use of multiprocessing with PyMuPDF.

Depending on the number of CPUs, the document is divided in page ranges.
Each range is then worked on by one process.
The type of work would typically be text extraction or page rendering. Each
process must know where to put its results, because this processing pattern
does not include inter-process communication or data sharing.

Compared to sequential processing, speed improvements in range of 100% (ie.
twice as fast) or better can be expected.
"""
from __future__ import print_function, division
import sys
import os
import time
from multiprocessing import Pool, cpu_count
import fitz

choose a version specific timer function (bytes == str in Python 2)
mytime = time.clock if str is bytes else time.perf_counter

def render_page(vector):
 """Render a page range of a document.

 Notes:
 The PyMuPDF document cannot be part of the argument, because that
 cannot be pickled. So we are being passed in just its filename.
 This is no performance issue, because we are a separate process and
 need to open the document anyway.
 Any page-specific function can be processed here - rendering is just
 an example - text extraction might be another.
 The work must however be self-contained: no inter-process communication
 or synchronization is possible with this design.
 Care must also be taken with which parameters are contained in the
 argument, because it will be passed in via pickling by the Pool class.
 So any large objects will increase the overall duration.
 Args:
 vector: a list containing required parameters.
 """
 # recreate the arguments
 idx = vector[0] # this is the segment number we have to process
 cpu = vector[1] # number of CPUs
 filename = vector[2] # document filename
 mat = vector[3] # the matrix for rendering
 doc = fitz.open(filename) # open the document
 num_pages = doc.page_count # get number of pages

 # pages per segment: make sure that cpu * seg_size >= num_pages!
 seg_size = int(num_pages / cpu + 1)
 seg_from = idx * seg_size # our first page number
 seg_to = min(seg_from + seg_size, num_pages) # last page number

 for i in range(seg_from, seg_to): # work through our page segment
 page = doc[i]
 # page.get_text("rawdict") # use any page-related type of work here, eg
 pix = page.get_pixmap(alpha=False, matrix=mat)
 # store away the result somewhere ...
 # pix.save("p-%i.png" % i)
 print("Processed page numbers %i through %i" % (seg_from, seg_to - 1))

if __name__ == "__main__":
 t0 = mytime() # start a timer
 filename = sys.argv[1]
 mat = fitz.Matrix(0.2, 0.2) # the rendering matrix: scale down to 20%
 cpu = cpu_count()

 # make vectors of arguments for the processes
 vectors = [(i, cpu, filename, mat) for i in range(cpu)]
 print("Starting %i processes for '%s'." % (cpu, filename))

 pool = Pool() # make pool of 'cpu_count()' processes
 pool.map(render_page, vectors, 1) # start processes passing each a vector

 t1 = mytime() # stop the timer
 print("Total time %g seconds" % round(t1 - t0, 2))

PyMuPDF-1.21.1/docs/samples/mupdf-title.pdf

PyMuPDF Documentation
Release 1.20.1

Artifex

Jul 18, 2022

PyMuPDF-1.21.1/docs/samples/new-annots.py

-*- coding: utf-8 -*-
"""

Demo script showing how annotations can be added to a PDF using PyMuPDF.

It contains the following annotation types:
Caret, Text, FreeText, text markers (underline, strike-out, highlight,
squiggle), Circle, Square, Line, PolyLine, Polygon, FileAttachment, Stamp
and Redaction.
There is some effort to vary appearances by adding colors, line ends,
opacity, rotation, dashed lines, etc.

Dependencies

PyMuPDF v1.17.0

"""
from __future__ import print_function

import gc
import sys

import fitz

print(fitz.__doc__)
if fitz.VersionBind.split(".") < ["1", "17", "0"]:
 sys.exit("PyMuPDF v1.17.0+ is needed.")

gc.set_debug(gc.DEBUG_UNCOLLECTABLE)

highlight = "this text is highlighted"
underline = "this text is underlined"
strikeout = "this text is striked out"
squiggled = "this text is zigzag-underlined"
red = (1, 0, 0)
blue = (0, 0, 1)
gold = (1, 1, 0)
green = (0, 1, 0)

displ = fitz.Rect(0, 50, 0, 50)
r = fitz.Rect(72, 72, 220, 100)
t1 = u"têxt üsès Lätiñ charß,\nEUR: €, mu: µ, super scripts: ²³!"

def print_descr(annot):
 """Print a short description to the right of each annot rect."""
 annot.parent.insert_text(
 annot.rect.br + (10, -5), "%s annotation" % annot.type[1], color=red
)

doc = fitz.open()
page = doc.new_page()

page.set_rotation(0)

annot = page.add_caret_annot(r.tl)
print_descr(annot)

r = r + displ
annot = page.add_freetext_annot(
 r,
 t1,
 fontsize=10,
 rotate=90,
 text_color=blue,
 fill_color=gold,
 align=fitz.TEXT_ALIGN_CENTER,
)
annot.set_border(width=0.3, dashes=[2])
annot.update(text_color=blue, fill_color=gold)
print_descr(annot)

r = annot.rect + displ
annot = page.add_text_annot(r.tl, t1)
print_descr(annot)

Adding text marker annotations:
first insert a unique text, then search for it, then mark it
pos = annot.rect.tl + displ.tl
page.insert_text(
 pos, # insertion point
 highlight, # inserted text
 morph=(pos, fitz.Matrix(-5)), # rotate around insertion point
)
rl = page.search_for(highlight, quads=True) # need a quad b/o tilted text
annot = page.add_highlight_annot(rl[0])
print_descr(annot)

pos = annot.rect.bl # next insertion point
page.insert_text(pos, underline, morph=(pos, fitz.Matrix(-10)))
rl = page.search_for(underline, quads=True)
annot = page.add_underline_annot(rl[0])
print_descr(annot)

pos = annot.rect.bl
page.insert_text(pos, strikeout, morph=(pos, fitz.Matrix(-15)))
rl = page.search_for(strikeout, quads=True)
annot = page.add_strikeout_annot(rl[0])
print_descr(annot)

pos = annot.rect.bl
page.insert_text(pos, squiggled, morph=(pos, fitz.Matrix(-20)))
rl = page.search_for(squiggled, quads=True)
annot = page.add_squiggly_annot(rl[0])
print_descr(annot)

pos = annot.rect.bl
r = fitz.Rect(pos, pos.x + 75, pos.y + 35) + (0, 20, 0, 20)
annot = page.add_polyline_annot([r.bl, r.tr, r.br, r.tl]) # 'Polyline'
annot.set_border(width=0.3, dashes=[2])
annot.set_colors(stroke=blue, fill=green)
annot.set_line_ends(fitz.PDF_ANNOT_LE_CLOSED_ARROW, fitz.PDF_ANNOT_LE_R_CLOSED_ARROW)
annot.update(fill_color=(1, 1, 0))
print_descr(annot)

r += displ
annot = page.add_polygon_annot([r.bl, r.tr, r.br, r.tl]) # 'Polygon'
annot.set_border(width=0.3, dashes=[2])
annot.set_colors(stroke=blue, fill=gold)
annot.set_line_ends(fitz.PDF_ANNOT_LE_DIAMOND, fitz.PDF_ANNOT_LE_CIRCLE)
annot.update()
print_descr(annot)

r += displ
annot = page.add_line_annot(r.tr, r.bl) # 'Line'
annot.set_border(width=0.3, dashes=[2])
annot.set_colors(stroke=blue, fill=gold)
annot.set_line_ends(fitz.PDF_ANNOT_LE_DIAMOND, fitz.PDF_ANNOT_LE_CIRCLE)
annot.update()
print_descr(annot)

r += displ
annot = page.add_rect_annot(r) # 'Square'
annot.set_border(width=1, dashes=[1, 2])
annot.set_colors(stroke=blue, fill=gold)
annot.update(opacity=0.5)
print_descr(annot)

r += displ
annot = page.add_circle_annot(r) # 'Circle'
annot.set_border(width=0.3, dashes=[2])
annot.set_colors(stroke=blue, fill=gold)
annot.update()
print_descr(annot)

r += displ
annot = page.add_file_annot(
 r.tl, b"just anything for testing", "testdata.txt" # 'FileAttachment'
)
print_descr(annot) # annot.rect

r += displ
annot = page.add_stamp_annot(r, stamp=10) # 'Stamp'
annot.set_colors(stroke=green)
annot.update()
print_descr(annot)

r += displ + (0, 0, 50, 10)
rc = page.insert_textbox(
 r,
 "This content will be removed upon applying the redaction.",
 color=blue,
 align=fitz.TEXT_ALIGN_CENTER,
)
annot = page.add_redact_annot(r)
print_descr(annot)

doc.save(__file__.replace(".py", "-%i.pdf" % page.rotation), deflate=True)

PyMuPDF-1.21.1/docs/samples/quickfox-image-no-go.py

"""
This is a demo script using PyMuPDF's Story class to output text as a PDF with
a two-column page layout.

The script demonstrates the following features:
* Layout text around images of an existing ("target") PDF.
* Based on a few global parameters, areas on each page are identified, that
 can be used to receive text layouted by a Story.
* These global parameters are not stored anywhere in the target PDF and
 must therefore be provided in some way.
 - The width of the border(s) on each page.
 - The fontsize to use for text. This value determines whether the provided
 text will fit in the empty spaces of the (fixed) pages of target PDF. It
 cannot be predicted in any way. The script ends with an exception if
 target PDF has not enough pages, and prints a warning message if not all
 pages receive at least some text. In both cases, the FONTSIZE value
 can be changed (a float value).
 - Use of a 2-column page layout for the text.
* The layout creates a temporary (memory) PDF. Its produced page content
 (the text) is used to overlay the corresponding target page. If text
 requires more pages than are available in target PDF, an exception is raised.
 If not all target pages receive at least some text, a warning is printed.
* The script reads "image-no-go.pdf" in its own folder. This is the "target" PDF.
 It contains 2 pages with each 2 images (from the original article), which are
 positioned at places that create a broad overall test coverage. Otherwise the
 pages are empty.
* The script produces "quickfox-image-no-go.pdf" which contains the original pages
 and image positions, but with the original article text laid out around them.

Note:

This script version uses just image positions to derive "No-Go areas" for
layouting the text. Other PDF objects types are detectable by PyMuPDF and may
be taken instead or in addition, without influencing the layouting.
The following are candidates for other such "No-Go areas". Each can be detected
and located by PyMuPDF:
* Annotations
* Drawings
* Existing text

The text and images are taken from the somewhat modified Wikipedia article
https://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog.

"""

import io
import os
import zipfile
import fitz

thisdir = os.path.dirname(os.path.abspath(__file__))
myzip = zipfile.ZipFile(os.path.join(thisdir, "quickfox.zip"))

docname = os.path.join(thisdir, "image-no-go.pdf") # "no go" input PDF file name
outname = os.path.join(thisdir, "quickfox-image-no-go.pdf") # output PDF file name
BORDER = 36 # global parameter
FONTSIZE = 12.5 # global parameter
COLS = 2 # number of text columns, global parameter

def analyze_page(page):
 """Compute MediaBox and rectangles on page that are free to receive text.

 Notes:
 Assume a BORDER around the page, make 2 columns of the resulting
 sub-rectangle and extract the rectangles of all images on page.
 For demo purposes, the image rectangles are taken as "NO-GO areas"
 on the page when writing text with the Story.
 The function returns free areas for each of the columns.

 Returns:
 (page.number, mediabox, CELLS), where CELLS is a list of free cells.
 """
 prect = page.rect # page rectangle - will be our MEDIABOX later
 where = prect + (BORDER, BORDER, -BORDER, -BORDER)
 TABLE = fitz.make_table(where, rows=1, cols=COLS)

 # extract rectangles covered by images on this page
 IMG_RECTS = sorted(# image rects on page (sort top-left to bottom-right)
 [fitz.Rect(item["bbox"]) for item in page.get_image_info()],
 key=lambda b: (b.y1, b.x0),
)

 def free_cells(column):
 """Return free areas in this colum."""
 free_stripes = [] # y-value pairs wrapping a free area stripe
 # intersecting images: block complete intersecting column stripe
 col_imgs = [(b.y0, b.y1) for b in IMG_RECTS if abs(b & column) > 0]
 s_y0 = column.y0 # top y-value of column
 for y0, y1 in col_imgs: # an image stripe
 if y0 > s_y0 + FONTSIZE: # image starts below last free btm value
 free_stripes.append((s_y0, y0)) # store as free stripe
 s_y0 = y1 # start of next free stripe

 if s_y0 + FONTSIZE < column.y1: # enough room to column bottom
 free_stripes.append((s_y0, column.y1))

 if free_stripes == []: # covers "no image in this column"
 free_stripes.append((column.y0, column.y1))

 # make available cells of this column
 CELLS = [fitz.Rect(column.x0, y0, column.x1, y1) for (y0, y1) in free_stripes]
 return CELLS

 # collection of available Story rectangles on page
 CELLS = []
 for i in range(COLS):
 CELLS.extend(free_cells(TABLE[0][i]))

 return page.number, prect, CELLS

HTML = myzip.read("quickfox.html").decode()

--
Make the Story object
--
story = fitz.Story(HTML)

modify the DOM somewhat
body = story.body # access HTML body
body.set_properties(font="sans-serif") # and give it our font globally

modify certain nodes
para = body.find("p", None, None) # find relevant nodes (here: paragraphs)
while para != None:
 para.set_properties(# method MUST be used for existing nodes
 indent=15,
 fontsize=FONTSIZE,
)
 para = para.find_next("p", None, None)

we remove all image references, because the target PDF already has them
img = body.find("img", None, None)
while img != None:
 next_img = img.find_next("img", None, None)
 img.remove()
 img = next_img

page_info = {} # contains MEDIABOX and free CELLS per page
doc = fitz.open(docname)
for page in doc:
 pno, mediabox, cells = analyze_page(page)
 page_info[pno] = (mediabox, cells)
doc.close() # close target PDF for now - re-open later

fileobject = io.BytesIO() # let DocumentWriter write to memory
writer = fitz.DocumentWriter(fileobject) # define output writer

more = 1 # stop if this ever becomes zero
pno = 0 # count output pages
while more: # loop until all HTML text has been written
 try:
 MEDIABOX, CELLS = page_info[pno]
 except KeyError: # too much text space required: reduce fontsize?
 raise ValueError("text does not fit on target PDF")
 dev = writer.begin_page(MEDIABOX) # prepare a new output page
 for cell in CELLS: # iterate over free cells on this page
 if not more: # need to check this for every cell
 continue
 more, _ = story.place(cell)
 story.draw(dev)
 writer.end_page() # finish the PDF page
 pno += 1

writer.close() # close DocumentWriter output

Re-open writer output, read its pages and overlay target pages with them.
The generated pages have same dimension as their targets.
src = fitz.open("pdf", fileobject)
doc = fitz.open(doc.name)
for page in doc: # overlay every target page with the prepared text
 if page.number >= src.page_count:
 print(f"Text only uses {src.page_count} target pages!")
 continue # story did not need all target pages?

 # overlay target page
 page.show_pdf_page(page.rect, src, page.number)

 # DEBUG start --- draw the text rectangles
 # mb, cells = page_info[page.number]
 # for cell in cells:
 # page.draw_rect(cell, color=(1, 0, 0))
 # DEBUG stop ---

doc.ez_save(outname)

PyMuPDF-1.21.1/docs/samples/quickfox.py

"""
This is a demo script using PyMuPDF's Story class to output text as a PDF with
a two-column page layout.

The script demonstrates the following features:
* How to fill columns or table cells of complex page layouts
* How to embed images
* How to modify existing, given HTML sources for output (text indent, font size)
* How to use fonts defined in package "pymupdf-fonts"
* How to use ZIP files as Archive

The example is taken from the somewhat modified Wikipedia article
https://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog.

"""

import io
import os
import zipfile
import fitz

thisdir = os.path.dirname(os.path.abspath(__file__))
myzip = zipfile.ZipFile(os.path.join(thisdir, "quickfox.zip"))
arch = fitz.Archive(myzip)

if fitz.fitz_fontdescriptors:
 # we want to use the Ubuntu fonts for sans-serif and for monospace
 CSS = fitz.css_for_pymupdf_font("ubuntu", archive=arch, name="sans-serif")
 CSS = fitz.css_for_pymupdf_font("ubuntm", CSS=CSS, archive=arch, name="monospace")
else:
 # No pymupdf-fonts available.
 CSS=""

docname = __file__.replace(".py", ".pdf") # output PDF file name

HTML = myzip.read("quickfox.html").decode()

make the Story object
story = fitz.Story(HTML, user_css=CSS, archive=arch)

--
modify the DOM somewhat
--
body = story.body # access HTML body
body.set_properties(font="sans-serif") # and give it our font globally

modify certain nodes
para = body.find("p", None, None) # find relevant nodes (here: paragraphs)
while para != None:
 para.set_properties(# method MUST be used for existing nodes
 indent=15,
 fontsize=13,
)
 para = para.find_next("p", None, None)

choose PDF page size
MEDIABOX = fitz.paper_rect("letter")
text appears only within this subrectangle
WHERE = MEDIABOX + (36, 36, -36, -36)

--
define page layout within the WHERE rectangle
--
COLS = 2 # layout: 2 cols 1 row
ROWS = 1
TABLE = fitz.make_table(WHERE, cols=COLS, rows=ROWS)
fill the cells of each page in this sequence:
CELLS = [TABLE[i][j] for i in range(ROWS) for j in range(COLS)]

fileobject = io.BytesIO() # let DocumentWriter write to memory
writer = fitz.DocumentWriter(fileobject) # define the writer

more = 1
while more: # loop until all input text has been written out
 dev = writer.begin_page(MEDIABOX) # prepare a new output page
 for cell in CELLS:
 # content may be complete after any cell, ...
 if more: # so check this status first
 more, _ = story.place(cell)
 story.draw(dev)
 writer.end_page() # finish the PDF page

writer.close() # close DocumentWriter output

for housekeeping work re-open from memory
doc = fitz.open("pdf", fileobject)
doc.ez_save(docname)

PyMuPDF-1.21.1/docs/samples/quickfox.zip

image1.jpg

image2.jpg

image3.jpg

image4.jpg

quickfox.html

 The quick brown fox jumps over the lazy dog

 From Wikipedia, the free encyclopedia

 "The quick brown fox jumps over the lazy dog" is an English-language pangram—a sentence that contains all the letters of the alphabet. The phrase is commonly used for touch-typing practice, testing typewriters and computer keyboards, displaying examples of fonts, and other applications involving text where the use of all letters in the alphabet is desired.

History

 The earliest known appearance of the phrase was in The Boston Journal. In an article titled "Current Notes" in the February 9, 1885, edition, the phrase is mentioned as a good practice sentence for writing students: "A favorite copy set by writing teachers for their pupils is the following, because it contains every letter of the alphabet: 'A quick brown fox jumps over the lazy dog.'"Dozens of other newspapers published the phrase over the next few months, all using the version of the sentence starting with "A" rather than "The". The earliest known use of the phrase starting with "The" is from the 1888 book Illustrative Shorthand by Linda Bronson. The modern form (starting with "The") became more common even though it is slightly longer than the original (starting with "A").

 A 1908 edition of the Los Angeles Herald Sunday Magazine records that when the New York Herald was equipping an office with typewriters "a few years ago", staff found that the common practice sentence of "now is the time for all good men to come to the aid of the party" did not familiarize typists with the entire alphabet, and ran onto two lines in a newspaper column. They write that a staff member named Arthur F. Curtis invented the "quick brown fox" pangram to address this.

 As the use of typewriters grew in the late 19th century, the phrase began appearing in typing lesson books as a practice sentence. Early examples include How to Become Expert in Typewriting: A Complete Instructor Designed Especially for the Remington Typewriter (1890), and Typewriting Instructor and Stenographer's Hand-book (1892). By the turn of the 20th century, the phrase had become widely known. In the January 10, 1903, issue of Pitman's Phonetic Journal, it is referred to as "the well known memorized typing line embracing all the letters of the alphabet". Robert Baden-Powell's book Scouting for Boys (1908) uses the phrase as a practice sentence for signaling.

 The first message sent on the Moscow–Washington hotline on August 30, 1963, was the test phrase "THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK 1234567890". Later, during testing, the Russian translators sent a message asking their American counterparts, "What does it mean when your people say 'The quick brown fox jumped over the lazy dog'?"

 During the 20th century, technicians tested typewriters and teleprinters by typing the sentence.

Computer Usage

 During the 20th century, technicians tested typewriters and teleprinters by typing the sentence.

 Microsoft Word has a command to auto-type the sentence, in versions up to Word 2003, using the command "=rand()", and in Microsoft Office Word 2007 and later using the command "=rand.old()".

Cultural references

 Numerous references to the phrase have occurred in movies, television, books, video games, advertising, websites, and graphic arts.

 The lipogrammatic novel Ella Minnow Pea by Mark Dunn is built entirely around the "quick brown fox" pangram and its inventor. It depicts a fictional island off the South Carolina coast that idealizes the pangram, chronicling the effects on literature and social structure as various letters are banned from daily use by government dictum.

PyMuPDF-1.21.1/docs/samples/showpdf-page.py

"""
Demo of Story class in PyMuPDF

This script demonstrates how to the results of a fitz.Story output can be
placed in a rectangle of an existing (!) PDF page.

"""
import io
import os

import fitz

def make_pdf(fileptr, text, rect, font="sans-serif", archive=None):
 """Make a memory DocumentWriter from HTML text and a rect.

 Args:
 fileptr: a Python file object. For example an io.BytesIO().
 text: the text to output (HTML format)
 rect: the target rectangle. Will use its width / height as mediabox
 font: (str) font family name, default sans-serif
 archive: fitz.Archive parameter. To be used if e.g. images or special
 fonts should be used.
 Returns:
 The matrix to convert page rectangles of the created PDF back
 to rectangle coordinates in the parameter "rect".
 Normal use will expect to fit all the text in the given rect.
 However, if an overflow occurs, this function will output multiple
 pages, and the caller may decide to either accept or retry with
 changed parameters.
 """
 # use input rectangle as the page dimension
 mediabox = fitz.Rect(0, 0, rect.width, rect.height)
 # this matrix converts mediabox back to input rect
 matrix = mediabox.torect(rect)

 story = fitz.Story(text, archive=archive)
 body = story.body
 body.set_properties(font=font)
 writer = fitz.DocumentWriter(fileptr)
 while True:
 device = writer.begin_page(mediabox)
 more, _ = story.place(mediabox)
 story.draw(device)
 writer.end_page()
 if not more:
 break
 writer.close()
 return matrix

We want to put this in a given rectangle of an existing page

HTML = """
<p>PyMuPDF is a great package! And it still improves significantly from one version to the next one!</p>
<p>It is a Python binding for MuPDF, a lightweight PDF, XPS, and E-book viewer, renderer, and toolkit.
 Both are maintained and developed by Artifex Software, Inc.</p>
<p>Via MuPDF it can access files in PDF, XPS, OpenXPS, CBZ, EPUB, MOBI and FB2 (e-books) formats,
 and it is known for its top
<i>performance</i> and <i>rendering quality.</p>"""

Make a PDF page for demo purposes
root = os.path.abspath(f"{__file__}/..")
doc = fitz.open(f"{root}/mupdf-title.pdf")
page = doc[0]

WHERE = fitz.Rect(50, 100, 250, 500) # target rectangle on existing page

fileptr = io.BytesIO() # let DocumentWriter use this as its file

call DocumentWriter and Story to fill our rectangle
matrix = make_pdf(fileptr, HTML, WHERE)

src = fitz.open("pdf", fileptr) # open DocumentWriter output PDF
if src.page_count > 1: # target rect was too small
 raise ValueError("target WHERE too small")

its page 0 contains our result
page.show_pdf_page(WHERE, src, 0)

doc.ez_save(f"{root}/mupdf-title-after.pdf")

PyMuPDF-1.21.1/docs/samples/simple-grid.py

import fitz

MEDIABOX = fitz.paper_rect("letter") # output page format: Letter
GRIDSPACE = fitz.Rect(100, 100, 400, 400)
GRID = fitz.make_table(GRIDSPACE, rows=2, cols=2)
CELLS = [GRID[i][j] for i in range(2) for j in range(2)]
text_table = ("A", "B", "C", "D")
writer = fitz.DocumentWriter(__file__.replace(".py", ".pdf")) # create the writer

device = writer.begin_page(MEDIABOX) # make new page
for i, text in enumerate(text_table):
 story = fitz.Story(em=1)
 body = story.body
 with body.add_paragraph() as para:
 para.set_bgcolor("#ecc")
 para.set_pagebreak_after() # fills whole cell with bgcolor
 para.set_align("center")
 para.set_fontsize(16)
 para.add_text(f"\n\n\n{text}")
 story.place(CELLS[i])
 story.draw(device)
 del story

writer.end_page() # finish page

writer.close() # close output file

PyMuPDF-1.21.1/docs/samples/story-write-stabilized-links.py

"""
Demo script for PyMuPDF's `fitz.Story.write_stabilized_with_links()`.

`fitz.Story.write_stabilized_links()` is similar to
`fitz.Story.write_stabilized()` except that it creates a PDF `fitz.Document`
that contains PDF links generated from all internal links in the original html.
"""

import textwrap

import fitz

def rectfn(rect_num, filled):
 '''
 We return one rect per page.
 '''
 rect = fitz.Rect(10, 20, 290, 380)
 mediabox = fitz.Rect(0, 0, 300, 400)
 #print(f'rectfn(): rect_num={rect_num} filled={filled}')
 return mediabox, rect, None

def contentfn(positions):
 '''
 Returns html content, with a table of contents derived from `positions`.
 '''
 ret = ''
 ret += textwrap.dedent('''
 <!DOCTYPE html>
 <body>
 <h2>Contents</h2>

 ''')

 # Create table of contents with links to all <h1..6> sections in the
 # document.
 for position in positions:
 if position.heading and (position.open_close & 1):
 text = position.text if position.text else ''
 if position.id:
 ret += f" {text}\n"
 else:
 ret += f" {text}\n"
 ret += f" \n"
 ret += f" page={position.page_num}\n"
 ret += f" depth={position.depth}\n"
 ret += f" heading={position.heading}\n"
 ret += f" id={position.id!r}\n"
 ret += f" href={position.href!r}\n"
 ret += f" rect={position.rect}\n"
 ret += f" text={text!r}\n"
 ret += f" open_close={position.open_close}\n"
 ret += f" \n"

 ret += '\n'

 # Main content.
 ret += textwrap.dedent(f'''

 <h1>First section</h1>
 <p>Contents of first section.

 Link to IDTEST.
 Link to NAMETEST.

 <h1>Second section</h1>
 <p>Contents of second section.
 <h2>Second section first subsection</h2>

 <p>Contents of second section first subsection.
 <p id="idtest">IDTEST

 <h1>Third section</h1>
 <p>Contents of third section.
 <p>NAMETEST.

 </body>
 ''')
 ret = ret.strip()
 with open(__file__.replace('.py', '.html'), 'w') as f:
 f.write(ret)
 return ret;

out_path = __file__.replace('.py', '.pdf')
document = fitz.Story.write_stabilized_with_links(contentfn, rectfn)
document.save(out_path)

PyMuPDF-1.21.1/docs/samples/story-write-stabilized.py

"""
Demo script for PyMuPDF's `fitz.Story.write_stabilized()`.

`fitz.Story.write_stabilized()` is similar to `fitz.Story.write()`,
except instead of taking a fixed html document, it does iterative layout
of dynamically-generated html content (provided by a callback) to a
`fitz.DocumentWriter`.

For example this allows one to add a dynamically-generated table of contents
section while ensuring that page numbers are patched up until stable.
"""

import textwrap

import fitz

def rectfn(rect_num, filled):
 '''
 We return one rect per page.
 '''
 rect = fitz.Rect(10, 20, 290, 380)
 mediabox = fitz.Rect(0, 0, 300, 400)
 #print(f'rectfn(): rect_num={rect_num} filled={filled}')
 return mediabox, rect, None

def contentfn(positions):
 '''
 Returns html content, with a table of contents derived from `positions`.
 '''
 ret = ''
 ret += textwrap.dedent('''
 <!DOCTYPE html>
 <body>
 <h2>Contents</h2>

 ''')

 # Create table of contents with links to all <h1..6> sections in the
 # document.
 for position in positions:
 if position.heading and (position.open_close & 1):
 text = position.text if position.text else ''
 if position.id:
 ret += f" {text}\n"
 else:
 ret += f" {text}\n"
 ret += f" \n"
 ret += f" page={position.page_num}\n"
 ret += f" depth={position.depth}\n"
 ret += f" heading={position.heading}\n"
 ret += f" id={position.id!r}\n"
 ret += f" href={position.href!r}\n"
 ret += f" rect={position.rect}\n"
 ret += f" text={text!r}\n"
 ret += f" open_close={position.open_close}\n"
 ret += f" \n"

 ret += '\n'

 # Main content.
 ret += textwrap.dedent(f'''

 <h1>First section</h1>
 <p>Contents of first section.

 <h1>Second section</h1>
 <p>Contents of second section.
 <h2>Second section first subsection</h2>

 <p>Contents of second section first subsection.

 <h1>Third section</h1>
 <p>Contents of third section.

 </body>
 ''')
 ret = ret.strip()
 with open(__file__.replace('.py', '.html'), 'w') as f:
 f.write(ret)
 return ret;

out_path = __file__.replace('.py', '.pdf')
writer = fitz.DocumentWriter(out_path)
fitz.Story.write_stabilized(writer, contentfn, rectfn)
writer.close()

PyMuPDF-1.21.1/docs/samples/story-write.py

"""
Demo script for PyMuPDF's `Story.write()` method.

This is a way of laying out a story into a PDF document, that avoids the need
to write a loop that calls `story.place()` and `story.draw()`.

Instead just a single function call is required, albeit with a `rectfn()`
callback that returns the rectangles into which the story is placed.
"""

import html

import fitz

Create html containing multiple copies of our own source code.
#
with open(__file__) as f:
 text = f.read()
text = html.escape(text)
html = f'''
<!DOCTYPE html>
<body>

<h1>Contents of {__file__}</h1>

<h2>Normal</h2>
<pre>
{text}
</pre>

<h2>Strong</h2>

<pre>
{text}
</pre>

<h2>Em</h2>

<pre>
{text}
</pre>

</body>
'''

def rectfn(rect_num, filled):
 '''
 We return four rectangles per page in this order:

 1 3
 2 4
 '''
 page_w = 800
 page_h = 600
 margin = 50
 rect_w = (page_w - 3*margin) / 2
 rect_h = (page_h - 3*margin) / 2

 if rect_num % 4 == 0:
 # New page.
 mediabox = fitz.Rect(0, 0, page_w, page_h)
 else:
 mediabox = None
 # Return one of four rects in turn.
 rect_x = margin + (rect_w+margin) * ((rect_num // 2) % 2)
 rect_y = margin + (rect_h+margin) * (rect_num % 2)
 rect = fitz.Rect(rect_x, rect_y, rect_x + rect_w, rect_y + rect_h)
 #print(f'rectfn(): rect_num={rect_num} filled={filled}. Returning: rect={rect}')
 return mediabox, rect, None

story = fitz.Story(html, em=8)

out_path = __file__.replace('.py', '.pdf')
writer = fitz.DocumentWriter(out_path)

story.write(writer, rectfn)
writer.close()

PyMuPDF-1.21.1/docs/samples/table01.py

import fitz

table_text = (
 (
 "Length",
 "integer",
 """(Required) The number of bytes from the beginning of the line following the keyword stream to the last byte just before the keyword endstream. (There may be an additional EOL marker, preceding endstream, that is not included in the count and is not logically part of the stream data.) See “Stream Extent,” above, for further discussion.""",
),
 (
 "Filter",
 "name or array",
 """(Optional) The name of a filter to be applied in processing the stream data found between the keywords stream and endstream, or an array of such names. Multiple filters should be specified in the order in which they are to be applied.""",
),
 (
 "FFilter",
 "name or array",
 """(Optional; PDF 1.2) The name of a filter to be applied in processing the data found in the stream's external file, or an array of such names. The same rules apply as for Filter.""",
),
)

HTML = """
TABLE 3.4 Entries common to all stream dictionaries

			KEY
 			TYPE
 			VALUE

									

"""
CSS = """
body {font-family: sans-serif;}
th {text-align: left;}
td {font-size: 8px;}
.w25 {width: 50px;}
.w50 {width: 300px;}
"""

story = fitz.Story(HTML, user_css=CSS)
body = story.body
template = body.find(None, "id", "rowtemplate")
parent = template.parent

for col0, col1, col2 in table_text:
 row = template.clone()
 row.find(None, "id", "col0").add_text("\n" + col0)
 row.find(None, "id", "col1").add_text("\n" + col1)
 row.find(None, "id", "col2").add_text("\n" + col2)
 parent.append_child(row)
template.remove()

writer = fitz.DocumentWriter(__file__.replace(".py", ".pdf"), "compress")
mediabox = fitz.paper_rect("letter")
where = mediabox + (36, 36, -36, -36)

more = 1
while more:
 dev = writer.begin_page(mediabox)
 more, filled = story.place(where)
 story.draw(dev, None)
 writer.end_page()
writer.close()

PyMuPDF-1.21.1/docs/samples/text-lister.py

import sys

import fitz

def flags_decomposer(flags):
 """Make font flags human readable."""
 l = []
 if flags & 2 ** 0:
 l.append("superscript")
 if flags & 2 ** 1:
 l.append("italic")
 if flags & 2 ** 2:
 l.append("serifed")
 else:
 l.append("sans")
 if flags & 2 ** 3:
 l.append("monospaced")
 else:
 l.append("proportional")
 if flags & 2 ** 4:
 l.append("bold")
 return ", ".join(l)

doc = fitz.open(sys.argv[1])
page = doc[0]

read page text as a dictionary, suppressing extra spaces in CJK fonts
blocks = page.get_text("dict", flags=11)["blocks"]
for b in blocks: # iterate through the text blocks
 for l in b["lines"]: # iterate through the text lines
 for s in l["spans"]: # iterate through the text spans
 print("")
 font_properties = "Font: '%s' (%s), size %g, color #%06x" % (
 s["font"], # font name
 flags_decomposer(s["flags"]), # readable font flags
 s["size"], # font size
 s["color"], # font color
)
 print("Text: '%s'" % s["text"]) # simple print of text
 print(font_properties)

PyMuPDF-1.21.1/docs/shape.rst

.. include:: header.rst

.. _Shape:

Shape
================

This class allows creating interconnected graphical elements on a PDF page. Its methods have the same meaning and name as the corresponding :ref:`Page` methods.

In fact, each :ref:`Page` draw method is just a convenience wrapper for (1) one shape draw method, (2) the :meth:`Shape.finish` method, and (3) the :meth:`Shape.commit` method. For page text insertion, only the :meth:`Shape.commit` method is invoked. If many draw and text operations are executed for a page, you should always consider using a Shape object.

Several draw methods can be executed in a row and each one of them will contribute to one drawing. Once the drawing is complete, the :meth:`Shape.finish` method must be invoked to apply color, dashing, width, morphing and other attributes.

Draw methods of this class (and :meth:`Shape.insert_textbox`) are logging the area they are covering in a rectangle (:attr:`Shape.rect`). This property can for instance be used to set :attr:`Page.cropbox_position`.

Text insertions :meth:`Shape.insert_text` and :meth:`Shape.insert_textbox` implicitely execute a "finish" and therefore only require :meth:`Shape.commit` to become effective. As a consequence, both include parameters for controlling prperties like colors, etc.

================================ ===
Method / Attribute **Description**
================================ ===
:meth:`Shape.commit` update the page's contents
:meth:`Shape.draw_bezier` draw a cubic Bezier curve
:meth:`Shape.draw_circle` draw a circle around a point
:meth:`Shape.draw_curve` draw a cubic Bezier using one helper point
:meth:`Shape.draw_line` draw a line
:meth:`Shape.draw_oval` draw an ellipse
:meth:`Shape.draw_polyline` connect a sequence of points
:meth:`Shape.draw_quad` draw a quadrilateral
:meth:`Shape.draw_rect` draw a rectangle
:meth:`Shape.draw_sector` draw a circular sector or piece of pie
:meth:`Shape.draw_squiggle` draw a squiggly line
:meth:`Shape.draw_zigzag` draw a zigzag line
:meth:`Shape.finish` finish a set of draw commands
:meth:`Shape.insert_text` insert text lines
:meth:`Shape.insert_textbox` fit text into a rectangle
:attr:`Shape.doc` stores the page's document
:attr:`Shape.draw_cont` draw commands since last :meth:`Shape.finish`
:attr:`Shape.height` stores the page's height
:attr:`Shape.lastPoint` stores the current point
:attr:`Shape.page` stores the owning page
:attr:`Shape.rect` rectangle surrounding drawings
:attr:`Shape.text_cont` accumulated text insertions
:attr:`Shape.totalcont` accumulated string to be stored in :data:`contents`
:attr:`Shape.width` stores the page's width
================================ ===

Class API

.. class:: Shape

 .. method:: __init__(self, page)

 Create a new drawing. During importing PyMuPDF, the *fitz.Page* object is being given the convenience method *new_shape()* to construct a *Shape* object. During instantiation, a check will be made whether we do have a PDF page. An exception is otherwise raised.

 :arg page: an existing page of a PDF document.
 :type page: :ref:`Page`

 .. method:: draw_line(p1, p2)

 Draw a line from :data:`point_like` objects *p1* to *p2*.

 :arg point_like p1: starting point

 :arg point_like p2: end point

 :rtype: :ref:`Point`
 :returns: the end point, *p2*.

 .. index::
 pair: breadth; draw_squiggle

 .. method:: draw_squiggle(p1, p2, breadth=2)

 Draw a squiggly (wavy, undulated) line from :data:`point_like` objects *p1* to *p2*. An integer number of full wave periods will always be drawn, one period having a length of *4 * breadth*. The breadth parameter will be adjusted as necessary to meet this condition. The drawn line will always turn "left" when leaving *p1* and always join *p2* from the "right".

 :arg point_like p1: starting point

 :arg point_like p2: end point

 :arg float breadth: the amplitude of each wave. The condition *2 * breadth < abs(p2 - p1)* must be true to fit in at least one wave. See the following picture, which shows two points connected by one full period.

 :rtype: :ref:`Point`
 :returns: the end point, *p2*.

 .. image:: images/img-breadth.*

 Here is an example of three connected lines, forming a closed, filled triangle. Little arrows indicate the stroking direction.

 >>> import fitz
 >>> doc=fitz.open()
 >>> page=doc.new_page()
 >>> r = fitz.Rect(100, 100, 300, 200)
 >>> shape=page.new_shape()
 >>> shape.draw_squiggle(r.tl, r.tr)
 >>> shape.draw_squiggle(r.tr, r.br)
 >>> shape.draw_squiggle(r.br, r.tl)
 >>> shape.finish(color=(0, 0, 1), fill=(1, 1, 0))
 >>> shape.commit()
 >>> doc.save("x.pdf")

 .. image:: images/img-squiggly.*

 .. note:: Waves drawn are **not** trigonometric (sine / cosine). If you need that, have a look at `draw-sines.py <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/draw-sines.py>`_.

 .. index::
 pair: breadth; draw_zigzag

 .. method:: draw_zigzag(p1, p2, breadth=2)

 Draw a zigzag line from :data:`point_like` objects *p1* to *p2*. Otherwise works exactly like :meth:`Shape.draw_squiggle`.

 :arg point_like p1: starting point

 :arg point_like p2: end point

 :arg float breadth: the amplitude of the movement. The condition *2 * breadth < abs(p2 - p1)* must be true to fit in at least one period.

 :rtype: :ref:`Point`
 :returns: the end point, *p2*.

 .. method:: draw_polyline(points)

 Draw several connected lines between points contained in the sequence *points*. This can be used for creating arbitrary polygons by setting the last item equal to the first one.

 :arg sequence points: a sequence of :data:`point_like` objects. Its length must at least be 2 (in which case it is equivalent to *draw_line()*).

 :rtype: :ref:`Point`
 :returns: *points[-1]* -- the last point in the argument sequence.

 .. method:: draw_bezier(p1, p2, p3, p4)

 Draw a standard cubic Bézier curve from *p1* to *p4*, using *p2* and *p3* as control points.

 All arguments are :data:`point_like` \s.

 :rtype: :ref:`Point`
 :returns: the end point, *p4*.

 .. note:: The points do not need to be different -- experiment a bit with some of them being equal!

 Example:

 .. image:: images/img-drawBezier.*

 .. method:: draw_oval(tetra)

 Draw an "ellipse" inside the given tetragon (quadrilateral). If it is a square, a regular circle is drawn, a general rectangle will result in an ellipse. If a quadrilateral is used instead, a plethora of shapes can be the result.

 The drawing starts and ends at the middle point of the line ``bottom-left -> top-left`` corners in an anti-clockwise movement.

 :arg rect_like,quad_like tetra: :data:`rect_like` or :data:`quad_like`.

 Changed in version 1.14.5: Quads are now also supported.

 :rtype: :ref:`Point`
 :returns: the middle point of line ``rect.bl -> rect.tl``, or resp. ``quad.ll -> quad.ul``. Look at just a few examples here, or at the *quad-show?.py* scripts in the PyMuPDF-Utilities repository.

 .. image:: images/img-drawquad.*
 :scale: 50

 .. method:: draw_circle(center, radius)

 Draw a circle given its center and radius. The drawing starts and ends at point ``center - (radius, 0)`` in an **anti-clockwise** movement. This point is the middle of the enclosing square's left side.

 This is a shortcut for ``draw_sector(center, start, 360, fullSector=False)``. To draw the same circle in a **clockwise** movement, use ``-360`` as degrees.

 :arg point_like center: the center of the circle.

 :arg float radius: the radius of the circle. Must be positive.

 :rtype: :ref:`Point`
 :returns: ``Point(center.x - radius, center.y)``.

 .. image:: images/img-drawcircle.*
 :scale: 60

 .. method:: draw_curve(p1, p2, p3)

 A special case of *draw_bezier()*: Draw a cubic Bezier curve from *p1* to *p3*. On each of the two lines ``p1 -> p2`` and ``p3 -> p2`` one control point is generated. Both control points will therefore be on the same side of the line ``p1 -> p3``. This guaranties that the curve's curvature does not change its sign. If the lines to p2 intersect with an angle of 90 degrees, then the resulting curve is a quarter ellipse (resp. quarter circle, if of same length).

 All arguments are :data:`point_like`.

 :rtype: :ref:`Point`
 :returns: the end point, *p3*. The following is a filled quarter ellipse segment. The yellow area is oriented **clockwise:**

 .. image:: images/img-drawCurve.png
 :align: center

 .. index::
 pair: fullSector; draw_sector

 .. method:: draw_sector(center, point, angle, fullSector=True)

 Draw a circular sector, optionally connecting the arc to the circle's center (like a piece of pie).

 :arg point_like center: the center of the circle.

 :arg point_like point: one of the two end points of the pie's arc segment. The other one is calculated from the *angle*.

 :arg float angle: the angle of the sector in degrees. Used to calculate the other end point of the arc. Depending on its sign, the arc is drawn anti-clockwise (postive) or clockwise.

 :arg bool fullSector: whether to draw connecting lines from the ends of the arc to the circle center. If a fill color is specified, the full "pie" is colored, otherwise just the sector.

 :rtype: :ref:`Point`
 :returns: the other end point of the arc. Can be used as starting point for a following invocation to create logically connected pies charts. Examples:

 .. image:: images/img-drawSector1.*

 .. image:: images/img-drawSector2.*

 .. method:: draw_rect(rect)

 Draw a rectangle. The drawing starts and ends at the top-left corner in an anti-clockwise movement.

 :arg rect_like rect: where to put the rectangle on the page.

 :rtype: :ref:`Point`
 :returns: top-left corner of the rectangle.

 .. method:: draw_quad(quad)

 Draw a quadrilateral. The drawing starts and ends at the top-left corner (:attr:`Quad.ul`) in an anti-clockwise movement. It is a shortcut of :meth:`Shape.draw_polyline` with the argument ``(ul, ll, lr, ur, ul)``.

 :arg quad_like quad: where to put the tetragon on the page.

 :rtype: :ref:`Point`
 :returns: :attr:`Quad.ul`.

 .. index::
 pair: border_width; insert_text
 pair: color; insert_text
 pair: encoding; insert_text
 pair: fill; insert_text
 pair: fontfile; insert_text
 pair: fontname; insert_text
 pair: fontsize; insert_text
 pair: morph; insert_text
 pair: render_mode; insert_text
 pair: rotate; insert_text
 pair: stroke_opacity; insert_text
 pair: fill_opacity; insert_text
 pair: oc; insert_text

 .. index::
 pair: closePath; finish
 pair: color; finish
 pair: dashes; finish
 pair: even_odd; finish
 pair: fill; finish
 pair: lineCap; finish
 pair: lineJoin; finish
 pair: morph; finish
 pair: width; finish
 pair: stroke_opacity; finish
 pair: fill_opacity; finish
 pair: oc; finish

 .. method:: finish(width=1, color=None, fill=None, lineCap=0, lineJoin=0, dashes=None, closePath=True, even_odd=False, morph=(fixpoint, matrix), stroke_opacity=1, fill_opacity=1, oc=0)

 Finish a set of *draw*()* methods by applying :ref:`CommonParms` to all of them.

 It has **no effect on** :meth:`Shape.insert_text` and :meth:`Shape.insert_textbox`.

 The method also supports **morphing the compound drawing** using :ref:`Point` *fixpoint* and :ref:`matrix` *matrix*.

 :arg sequence morph: morph the text or the compound drawing around some arbitrary :ref:`Point` *fixpoint* by applying :ref:`Matrix` *matrix* to it. This implies that *fixpoint* is a **fixed point** of this operation: it will not change its position. Default is no morphing (*None*). The matrix can contain any values in its first 4 components, *matrix.e == matrix.f == 0* must be true, however. This means that any combination of scaling, shearing, rotating, flipping, etc. is possible, but translations are not.

 :arg float stroke_opacity: *(new in v1.18.1)* set transparency for stroke colors. Value < 0 or > 1 will be ignored. Default is 1 (intransparent).
 :arg float fill_opacity: *(new in v1.18.1)* set transparency for fill colors. Default is 1 (intransparent).

 :arg bool even_odd: request the **"even-odd rule"** for filling operations. Default is *False*, so that the **"nonzero winding number rule"** is used. These rules are alternative methods to apply the fill color where areas overlap. Only with fairly complex shapes a different behavior is to be expected with these rules. For an in-depth explanation, see :ref:`AdobeManual`, pp. 137 ff. Here is an example to demonstrate the difference.

 :arg int oc: *(new in v1.18.4)* the :data:`xref` number of an :data:`OCG` or :data:`OCMD` to make this drawing conditionally displayable.

 .. image:: images/img-even-odd.*

 .. note:: For each pixel in a shape, the following will happen:

 1. Rule **"even-odd"** counts, how many areas contain the pixel. If this count is **odd,** the pixel is regarded **inside** the shape, if it is **even**, the pixel is **outside**.

 2. The default rule **"nonzero winding"** in addition looks at the *"orientation"* of each area containing the pixel: it **adds 1** if an area is drawn anti-clockwise and it **subtracts 1** for clockwise areas. If the result is zero, the pixel is regarded **outside,** pixels with a non-zero count are **inside** the shape.

 Of the four shapes in above image, the top two each show three circles drawn in standard manner (anti-clockwise, look at the arrows). The lower two shapes contain one (the top-left) circle drawn clockwise. As can be seen, area orientation is irrelevant for the right column (even-odd rule).

 .. method:: insert_text(point, text, fontsize=11, fontname="helv", fontfile=None, set_simple=False, encoding=TEXT_ENCODING_LATIN, color=None, lineheight=None, fill=None, render_mode=0, border_width=1, rotate=0, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

 Insert text lines start at *point*.

 :arg point_like point: the bottom-left position of the first character of *text* in pixels. It is important to understand, how this works in conjunction with the *rotate* parameter. Please have a look at the following picture. The small red dots indicate the positions of *point* in each of the four possible cases.

 .. image:: images/img-inserttext.*
 :scale: 33

 :arg str/sequence text: the text to be inserted. May be specified as either a string type or as a sequence type. For sequences, or strings containing line breaks *\n*, several lines will be inserted. No care will be taken if lines are too wide, but the number of inserted lines will be limited by "vertical" space on the page (in the sense of reading direction as established by the *rotate* parameter). Any rest of *text* is discarded -- the return code however contains the number of inserted lines.

 :arg float lineheight: a factor to override the line height calculated from font properties. If not *None*, a line height of ``fontsize * lineheight`` will be used.
 :arg float stroke_opacity: *(new in v1.18.1)* set transparency for stroke colors. Negative values and values > 1 will be ignored. Default is 1 (intransparent).
 :arg float fill_opacity: *(new in v1.18.1)* set transparency for fill colors. Default is 1 (intransparent). Use this value to control transparency of the text color. Stroke opacity **only** affects the border line of characters.

 :arg int rotate: determines whether to rotate the text. Acceptable values are multiples of 90 degrees. Default is 0 (no rotation), meaning horizontal text lines oriented from left to right. 180 means text is shown upside down from **right to left**. 90 means anti-clockwise rotation, text running **upwards**. 270 (or -90) means clockwise rotation, text running **downwards**. In any case, *point* specifies the bottom-left coordinates of the first character's rectangle. Multiple lines, if present, always follow the reading direction established by this parameter. So line 2 is located **above** line 1 in case of *rotate = 180*, etc.

 :arg int oc: *(new in v1.18.4)* the :data:`xref` number of an :data:`OCG` or :data:`OCMD` to make this text conditionally displayable.

 :rtype: int
 :returns: number of lines inserted.

 For a description of the other parameters see :ref:`CommonParms`.

 .. index::
 pair: align; insert_textbox
 pair: border_width; insert_textbox
 pair: color; insert_textbox
 pair: encoding; insert_textbox
 pair: expandtabs; insert_textbox
 pair: fill; insert_textbox
 pair: fontfile; insert_textbox
 pair: fontname; insert_textbox
 pair: fontsize; insert_textbox
 pair: morph; insert_textbox
 pair: render_mode; insert_textbox
 pair: rotate; insert_textbox
 pair: oc; insert_textbox

 .. method:: insert_textbox(rect, buffer, fontsize=11, fontname="helv", fontfile=None, set_simple=False, encoding=TEXT_ENCODING_LATIN, color=None, fill=None, render_mode=0, border_width=1, expandtabs=8, align=TEXT_ALIGN_LEFT, rotate=0, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

 PDF only: Insert text into the specified rectangle. The text will be split into lines and words and then filled into the available space, starting from one of the four rectangle corners, which depends on *rotate*. Line feeds and multiple space will be respected.

 :arg rect_like rect: the area to use. It must be finite and not empty.

 :arg str/sequence buffer: the text to be inserted. Must be specified as a string or a sequence of strings. Line breaks are respected also when occurring in a sequence entry.

 :arg int align: align each text line. Default is 0 (left). Centered, right and justified are the other supported options, see :ref:`TextAlign`. Please note that the effect of parameter value *TEXT_ALIGN_JUSTIFY* is only achievable with "simple" (single-byte) fonts (including the :ref:`Base-14-Fonts`).

 :arg int expandtabs: controls handling of tab characters *\t* using the *string.expandtabs()* method **per each line**.

 :arg float stroke_opacity: *(new in v1.18.1)* set transparency for stroke colors. Negative values and values > 1 will be ignored. Default is 1 (intransparent).
 :arg float fill_opacity: *(new in v1.18.1)* set transparency for fill colors. Default is 1 (intransparent). Use this value to control transparency of the text color. Stroke opacity **only** affects the border line of characters.

 :arg int rotate: requests text to be rotated in the rectangle. This value must be a multiple of 90 degrees. Default is 0 (no rotation). Effectively, four different values are processed: 0, 90, 180 and 270 (= -90), each causing the text to start in a different rectangle corner. Bottom-left is 90, bottom-right is 180, and -90 / 270 is top-right. See the example how text is filled in a rectangle. This argument takes precedence over morphing. See the second example, which shows text first rotated left by 90 degrees and then the whole rectangle rotated clockwise around is lower left corner.

 :arg int oc: *(new in v1.18.4)* the :data:`xref` number of an :data:`OCG` or :data:`OCMD` to make this text conditionally displayable.

 :rtype: float
 :returns:
 If positive or zero: successful execution. The value returned is the unused rectangle line space in pixels. This may safely be ignored -- or be used to optimize the rectangle, position subsequent items, etc.

 If negative: no execution. The value returned is the space deficit to store text lines. Enlarge rectangle, decrease *fontsize*, decrease text amount, etc.

 .. image:: images/img-rotate.*

 .. image:: images/img-rot+morph.*

 For a description of the other parameters see :ref:`CommonParms`.

 .. index::
 pair: overlay; commit

 .. method:: commit(overlay=True)

 Update the page's :data:`contents` with the accumulated drawings, followed by any text insertions. If text overlaps drawings, it will be written on top of the drawings.

 .. warning:: **Do not forget to execute this method:**

 If a shape is **not committed, it will be ignored and the page will not be changed!**

 The method will reset attributes :attr:`Shape.rect`, :attr:`lastPoint`, :attr:`draw_cont`, :attr:`text_cont` and :attr:`totalcont`. Afterwards, the shape object can be reused for the **same page**.

 :arg bool overlay: determine whether to put content in foreground (default) or background. Relevant only, if the page already has a non-empty :data:`contents` object.

 ---------- Attributes ----------

 .. attribute:: doc

 For reference only: the page's document.

 :type: :ref:`Document`

 .. attribute:: page

 For reference only: the owning page.

 :type: :ref:`Page`

 .. attribute:: height

 Copy of the page's height

 :type: float

 .. attribute:: width

 Copy of the page's width.

 :type: float

 .. attribute:: draw_cont

 Accumulated command buffer for **draw methods** since last finish. Every finish method will append its commands to :attr:`Shape.totalcont`.

 :type: str

 .. attribute:: text_cont

 Accumulated text buffer. All **text insertions** go here. This buffer will be appended to :attr:`totalcont` :meth:`Shape.commit`, so that text will never be covered by drawings in the same Shape.

 :type: str

 .. attribute:: rect

 Rectangle surrounding drawings. This attribute is at your disposal and may be changed at any time. Its value is set to *None* when a shape is created or committed. Every *draw** method, and :meth:`Shape.insert_textbox` update this property (i.e. **enlarge** the rectangle as needed). **Morphing** operations, however (:meth:`Shape.finish`, :meth:`Shape.insert_textbox`) are ignored.

 A typical use of this attribute would be setting :attr:`Page.cropbox_position` to this value, when you are creating shapes for later or external use. If you have not manipulated the attribute yourself, it should reflect a rectangle that contains all drawings so far.

 If you have used morphing and need a rectangle containing the morphed objects, use the following code::

 >>> # assuming ...
 >>> morph = (point, matrix)
 >>> # ... recalculate the shape rectangle like so:
 >>> shape.rect = (shape.rect - fitz.Rect(point, point)) * ~matrix + fitz.Rect(point, point)

 :type: :ref:`Rect`

 .. attribute:: totalcont

 Total accumulated command buffer for draws and text insertions. This will be used by :meth:`Shape.commit`.

 :type: str

 .. attribute:: lastPoint

 For reference only: the current point of the drawing path. It is *None* at *Shape* creation and after each *finish()* and *commit()*.

 :type: :ref:`Point`

Usage

A drawing object is constructed by *shape = page.new_shape()*. After this, as many draw, finish and text insertions methods as required may follow. Each sequence of draws must be finished before the drawing is committed. The overall coding pattern looks like this::

 >>> shape = page.new_shape()
 >>> shape.draw1(...)
 >>> shape.draw2(...)
 >>> ...
 >>> shape.finish(width=..., color=..., fill=..., morph=...)
 >>> shape.draw3(...)
 >>> shape.draw4(...)
 >>> ...
 >>> shape.finish(width=..., color=..., fill=..., morph=...)
 >>> ...
 >>> shape.insert_text*
 >>> ...
 >>> shape.commit()
 >>>

.. note::

 1. Each *finish()* combines the preceding draws into one logical shape, giving it common colors, line width, morphing, etc. If *closePath* is specified, it will also connect the end point of the last draw with the starting point of the first one.

 2. To successfully create compound graphics, let each draw method use the end point of the previous one as its starting point. In the above pseudo code, *draw2* should hence use the returned :ref:`Point` of *draw1* as its starting point. Failing to do so, would automatically start a new path and *finish()* may not work as expected (but it won't complain either).

 3. Text insertions may occur anywhere before the commit (they neither touch :attr:`Shape.draw_cont` nor :attr:`Shape.lastPoint`). They are appended to *Shape.totalcont* directly, whereas draws will be appended by *Shape.finish*.

 4. Each *commit* takes all text insertions and shapes and places them in foreground or background on the page -- thus providing a way to control graphical layers.

 5. **Only** *commit* **will update** the page's contents, the other methods are basically string manipulations.

Examples

1. Create a full circle of pieces of pie in different colors::

 shape = page.new_shape() # start a new shape
 cols = (...) # a sequence of RGB color triples
 pieces = len(cols) # number of pieces to draw
 beta = 360. / pieces # angle of each piece of pie
 center = fitz.Point(...) # center of the pie
 p0 = fitz.Point(...) # starting point
 for i in range(pieces):
 p0 = shape.draw_sector(center, p0, beta,
 fullSector=True) # draw piece
 # now fill it but do not connect ends of the arc
 shape.finish(fill=cols[i], closePath=False)
 shape.commit() # update the page

Here is an example for 5 colors:

.. image:: images/img-cake.*

2. Create a regular n-edged polygon (fill yellow, red border). We use *draw_sector()* only to calculate the points on the circumference, and empty the draw command buffer again before drawing the polygon::

 shape = page.new_shape() # start a new shape
 beta = -360.0 / n # our angle, drawn clockwise
 center = fitz.Point(...) # center of circle
 p0 = fitz.Point(...) # start here (1st edge)
 points = [p0] # store polygon edges
 for i in range(n): # calculate the edges
 p0 = shape.draw_sector(center, p0, beta)
 points.append(p0)
 shape.draw_cont = "" # do not draw the circle sectors
 shape.draw_polyline(points) # draw the polygon
 shape.finish(color=(1,0,0), fill=(1,1,0), closePath=False)
 shape.commit()

Here is the polygon for n = 7:

.. image:: images/img-7edges.*

.. _CommonParms:

Common Parameters

fontname (*str*)

 In general, there are three options:

 1. Use one of the standard :ref:`Base-14-Fonts`. In this case, *fontfile* **must not** be specified and *"Helvetica"* is used if this parameter is omitted, too.
 2. Choose a font already in use by the page. Then specify its **reference** name prefixed with a slash "/", see example below.
 3. Specify a font file present on your system. In this case choose an arbitrary, but new name for this parameter (without "/" prefix).

 If inserted text should re-use one of the page's fonts, use its reference name appearing in :meth:`Page.get_fonts` like so:

 Suppose the font list has the item *[1024, 0, 'Type1', 'NimbusMonL-Bold', 'R366']*, then specify *fontname = "/R366", fontfile = None* to use font *NimbusMonL-Bold*.

fontfile (*str*)

 File path of a font existing on your computer. If you specify *fontfile*, make sure you use a *fontname* **not occurring** in the above list. This new font will be embedded in the PDF upon *doc.save()*. Similar to new images, a font file will be embedded only once. A table of MD5 codes for the binary font contents is used to ensure this.

set_simple (*bool*)

 Fonts installed from files are installed as **Type0** fonts by default. If you want to use 1-byte characters only, set this to true. This setting cannot be reverted. Subsequent changes are ignored.

fontsize (*float*)

 Font size of text.

dashes (*str*)

 Causes lines to be drawn dashed. The general format is ``"[n m] p"`` of (up to) 3 floats denoting pixel lengths. ``n`` is the dash length, ``m`` (optional) is the subsequent gap length, and ``p`` (the "phase" - **required**, even if 0!) specifies how many pixels should be skipped before the dashing starts. If ``m`` is omitted, it defaults to ``n``.

 A continuous line (no dashes) is drawn with ``"[] 0"`` or *None* or ``""``. Examples:

 * Specifying ``"[3 4] 0"`` means dashes of 3 and gaps of 4 pixels following each other.
 * ``"[3 3] 0"`` and ``"[3] 0"`` do the same thing.

 For (the rather complex) details on how to achieve sophisticated dashing effects, see :ref:`AdobeManual`, page 217.

color / fill (*list, tuple*)

 Stroke and fill colors can be specified as tuples or list of of floats from 0 to 1. These sequences must have a length of 1 (GRAY), 3 (RGB) or 4 (CMYK). For GRAY colorspace, a single float instead of the unwieldy *(float,)* or *[float]* is also accepted. Accept (default) or use ``None`` to not use the parameter.

 To simplify color specification, method *getColor()* in *fitz.utils* may be used to get predefined RGB color triples by name. It accepts a string as the name of the color and returns the corresponding triple. The method knows over 540 color names -- see section :ref:`ColorDatabase`.

 Please note that the term *color* usually means "stroke" color when used in conjunction with fill color.

 If letting default a color parameter to ``None``, then no resp. color selection command will be generated. If *fill* and *color* are both ``None``, then the drawing will contain no color specification. But it will still be "stroked", which causes PDF's default color "black" be used by Adobe Acrobat and all other viewers.

stroke_opacity / fill_opacity (*floats*)

 Both values are floats in range [0, 1]. Negative values or values > 1 will ignored (in most cases). Both set the transparency such that a value 0.5 corresponds to 50% transparency, 0 means invisible and 1 means intransparent. For e.g. a rectangle the stroke opacity applies to its border and fill opacity to its interior.

 For text insertions (:meth:`Shape.insert_text` and :meth:`Shape.insert_textbox`), use *fill_opacity* for the text. At first sight this seems surprising, but it becomes obvious when you look further down to *render_mode*: *fill_opacity* applies to the yellow and *stroke_opacity* applies to the blue color.

border_width (*float*)

 Set the border width for text insertions. New in v1.14.9. Relevant only if the render mode argument is used with a value greater zero.

render_mode (*int*)

 New in version 1.14.9: Integer in ``range(8)`` which controls the text appearance (:meth:`Shape.insert_text` and :meth:`Shape.insert_textbox`). See page 246 in :ref:`AdobeManual`. New in v1.14.9. These methods now also differentiate between fill and stroke colors.

 * For default 0, only the text fill color is used to paint the text. For backward compatibility, using the *color* parameter instead also works.
 * For render mode 1, only the border of each glyph (i.e. text character) is drawn with a thickness as set in argument *border_width*. The color chosen in the *color* argument is taken for this, the *fill* parameter is ignored.
 * For render mode 2, the glyphs are filled and stroked, using both color parameters and the specified border width. You can use this value to simulate **bold text** without using another font: choose the same value for *fill* and *color* and an appropriate value for *border_width*.
 * For render mode 3, the glyphs are neither stroked nor filled: the text becomes invisible.

 The following examples use border_width=0.3, together with a fontsize of 15. Stroke color is blue and fill color is some yellow.

 .. image:: images/img-rendermode.*

overlay (*bool*)

 Causes the item to appear in foreground (default) or background.

morph (*sequence*)

 Causes "morphing" of either a shape, created by the *draw*()* methods, or the text inserted by page methods *insert_textbox()* / *insert_text()*. If not *None*, it must be a pair *(fixpoint, matrix)*, where *fixpoint* is a :ref:`Point` and *matrix* is a :ref:`Matrix`. The matrix can be anything except translations, i.e. *matrix.e == matrix.f == 0* must be true. The point is used as a fixed point for the matrix operation. For example, if *matrix* is a rotation or scaling, then *fixpoint* is its center. Similarly, if *matrix* is a left-right or up-down flip, then the mirroring axis will be the vertical, respectively horizontal line going through *fixpoint*, etc.

 .. note:: Several methods contain checks whether the to be inserted items will actually fit into the page (like :meth:`Shape.insert_text`, or :meth:`Shape.draw_rect`). For the result of a morphing operation there is however no such guaranty: this is entirely the rpogrammer's responsibility.

lineCap (deprecated: "roundCap") (*int*)

 Controls the look of line ends. The default value 0 lets each line end at exactly the given coordinate in a sharp edge. A value of 1 adds a semi-circle to the ends, whose center is the end point and whose diameter is the line width. Value 2 adds a semi-square with an edge length of line width and a center of the line end.

 Changed in version 1.14.15

lineJoin (*int*)

 New in version 1.14.15: Controls the way how line connections look like. This may be either as a sharp edge (0), a rounded join (1), or a cut-off edge (2, "butt").

closePath (*bool*)

 Causes the end point of a drawing to be automatically connected with the starting point (by a straight line).

.. include:: footer.rst

PyMuPDF-1.21.1/docs/story-class.rst

.. include:: header.rst

.. _Story:

================
Story
================

.. role:: htmlTag(emphasis)

* New in v1.21.0

=== ===
Method / Attribute **Short Description**
=== ===
:meth:`Story.reset` "rewind" story output to its beginning
:meth:`Story.place` compute story content to fit in provided rectangle
:meth:`Story.draw` write the computed content to current page
:meth:`Story.element_positions` callback function logging currently processed story content
:attr:`Story.body` the story's underlying :htmlTag:`body`
:meth:`Story.write` places and draws Story to a DocumentWriter
:meth:`Story.write_stabilized` iterative layout of html content to a DocumentWriter
:meth:`Story.write_with_links` like `write()` but also creates PDF links
:meth:`Story.write_stabilized_with_links` like `write_stabilized()` but also creates PDF links
=== ===

Class API

.. class:: Story

 .. method:: __init__(self, html=None, user_css=None, em=12, archive=None)

 Create a **story**, optionally providing HTML and CSS source.
 The HTML is parsed, and held within the Story as a DOM (Document Object Model).

 This structure may be modified: content (text, images) may be added,
 copied, modified or removed by using methods of the :ref:`Xml` class.

 When finished, the **story** can be written to any device;
 in typical usage the device may be provided by a :ref:`DocumentWriter` to make new pages.

 Here are some general remarks:

 * The :ref:`Story` constructor parses and validates the provided HTML to create the DOM.
 * PyMuPDF provides a number of ways to manipulate the HTML source by
 providing access to the *nodes* of the underlying DOM.
 Documents can be completely built from ground up programmatically,
 or the existing DOM can be modified pretty arbitrarily.
 For details of this interface, please see the :ref:`Xml` class.
 * If no (or no more) changes to the DOM are required,
 the story is ready to be laid out and to be fed to a series of devices
 (typically devices provided by a :ref:`DocumentWriter` to produce new pages).
 * The next step is to place the story and write it out.
 This can either be done directly, by looping around calling `place()` and `draw()`,
 or alternatively,
 the looping can handled for you using the `write()` or `write_stabilised()` methods.
 Which method you choose is largely a matter of taste.

 * To work in the first of these styles, the following loop should be used:

 1. Obtain a suitable device to write to;
 typically by requesting a new,
 empty page from a :ref:`DocumentWriter`.
 2. Determine one or more rectangles on the page,
 that should receive **story** data.
 Note that not every page needs to have the same set of rectangles.
 3. Pass each rectangle to the **story** to place it,
 learning what part of that rectangle has been filled,
 and whether there is more story data that did not fit.
 This step can be repeated several times with adjusted rectangles
 until the caller is happy with the results.
 4. Optionally, at this point,
 we can request details of where interesting items have been placed,
 by calling the `element_positions()` method.
 Items are deemed to be interesting if their integer ``heading`` attribute is a non-zero
 (corresponding to HTML tags :htmlTag:`h1` - :htmlTag:`h6`),
 if their ``id`` attribute is not `None` (corresponding to HTML tag :htmlTag:`id`),
 or if their ``href`` attribute is not `None` (responding to HTML tag :htmlTag:`href`).
 This can conveniently be used for automatic generation of a Table of Contents,
 an index of images or the like.
 5. Next, draw that rectangle out to the device with the `draw()` method.
 6. If the most recent call to `place()` indicated that all the story data had fitted,
 stop now.
 7. Otherwise, we can loop back.
 If there are more rectangles to be placed on the current device (page),
 we jump back to step 3 - if not, we jump back to step 1 to get a new device.
 * Alternatively, in the case where you are using a :ref:`DocumentWriter`,
 the `write()` or `write_stabilized()` methods can be used.
 These handle all the looping for you,
 in exchange for being provided with callbacks that control the behaviour
 (notably a callback that enumerates the rectangles/pages to use).
 * Which part of the **story** will land on which rectangle / which page,
 is fully under control of the :ref:`Story` object and cannot be predicted.
 * Images may be part of a **story**. They will be placed together with any surrounding text.
 * Multiple stories may - independently from each other - write to the same page.
 For example, one may have separate stories for page header,
 page footer, regular text, comment boxes, etc.

 :arg str html: HTML source code. If omitted, a basic minimum is generated (see below).
 :arg str user_css: CSS source code. If provided, must contain valid CSS specifications.
 :arg float em: the default text font size.
 :arg archive: an :ref:`Archive` from which to load resources for rendering. Currently supported resource types are images and text fonts. If omitted, the story will not try to look up any such data and may thus produce incomplete output.

 .. note:: Instead of an actual archive, valid arguments for **creating** an :ref:`Archive` can also be provided -- in which case an archive will temporarily be constructed. So, instead of ``story = fitz.Story(archive=fitz.Archive("myfolder"))``, one can also shorter write ``story = fitz.Story(archive="myfolder")``.

 .. method:: place(where)

 Calculate that part of the story's content, that will fit in the provided rectangle. The method maintains a pointer which part of the story's content has already been written and upon the next invocation resumes from that pointer's position.

 :arg rect_like where: layout the current part of the content to fit into this rectangle. This must be a sub-rectangle of the page's :ref:`MediaBox<Glossary_MediaBox>`.

 :rtype: tuple[bool, rect_like]
 :returns: a bool (int) `more` and a rectangle `filled`. If `more == 0`, all content of the story has been written, otherwise more is waiting to be written to subsequent rectangles / pages. Rectangle `filled` is the part of `where` that has actually been filled.

 .. method:: draw(dev, matrix=None)

 Write the content part prepared by :meth:`Story.place` to the page.

 :arg dev: the :ref:`Device` created by `dev = writer.begin_page(mediabox)`. The device knows how to call all MuPDF functions needed to write the content.
 :arg matrix_like matrix: a matrix for transforming content when writing to the page. An example may be writing rotated text. The default means no transformation (i.e. the :ref:`Identity` matrix).

 .. method:: element_positions(function, args=None)

 Let the Story provide positioning information about certain HTML elements once their place on the current page has been computed - i.e. invoke this method **directly after** :meth:`Story.place`.

 :arg function: a Python function taking a :ref:`ElementPostion` instance, which will be invoked by this method to process positioning information.
 :arg dict args: an optional dictionary with any **additional** information that should be added to the ElementPosition instance passed to ``function``. Like for example the current output page number. Every key in this dictionary must be a string that conforms to the rules for a valid Python identifier. The complete set of information is explained below.

 .. method:: reset()

 Rewind the story's document to the beginning for starting over its output.

 .. attribute:: body

 The :htmlTag:`body` part of the story's DOM. Even if `html=None` has been used at story creation, the following minimum HTML source will always be available::

 <html>
 <head></head>
 <body></body>
 </html>

 This attribute contains the :ref:`Xml` node of :htmlTag:`body`. All relevant content for PDF production is contained between "<body>" and "</body>".

 .. method:: write(writer, rectfn, positionfn=None, pagefn=None)

 Places and draws Story to a `DocumentWriter`. Avoids the need for
 calling code to implement a loop that calls `Story.place()` and
 `Story.draw()` etc, at the expense of having to provide at least the
 `rectfn()` callback.

 :arg writer: a `DocumentWriter` or None.
 :arg rectfn: a callable taking `(rect_num: int, filled: Rect)` and
 returning `(mediabox, rect, ctm)`:
 mediabox:
 None or rect for new page.
 rect:
 The next rect into which content should be placed.
 ctm:
 None or a `Matrix`.
 :arg positionfn: None, or a callable taking `(position: ElementPosition)`:
 position:
 An `ElementPosition` with an extra `.page_num` member.
 Typically called multiple times as we generate elements that
 are headings or have an id.
 :arg pagefn:
 None, or a callable taking `(page_num, mediabox, dev, after)`;
 called at start (`after=0`) and end (`after=1`) of each page.

 .. staticmethod:: write_stabilized(writer, contentfn, rectfn, user_css=None, em=12, positionfn=None, pagefn=None, archive=None, add_header_ids=True)

 Static method that does iterative layout of html content to a
 `DocumentWriter`.

 For example this allows one to add a table of contents section
 while ensuring that page numbers are patched up until stable.

 Repeatedly creates a new `Story` from `(contentfn(),
 user_css, em, archive)` and lays it out with internal call
 to `Story.write()`; uses a None writer and extracts the list
 of `ElementPosition`'s which is passed to the next call of
 `contentfn()`.

 When the html from `contentfn()` becomes unchanged, we do a
 final iteration using `writer`.

 :arg writer:
 A `DocumentWriter`.
 :arg contentfn:
 A function taking a list of `ElementPositions` and
 returning a string containing html. The returned html
 can depend on the list of positions, for example with a
 table of contents near the start.
 :arg rectfn:
 A callable taking `(rect_num: int, filled: Rect)` and
 returning `(mediabox, rect, ctm)`:
 mediabox:
 None or rect for new page.
 rect:
 The next rect into which content should be
 placed.
 ctm:
 A `Matrix`.
 :arg pagefn:
 None, or a callable taking `(page_num, medibox,
 dev, after)`; called at start (`after=0`) and end
 (`after=1`) of each page.
 :arg archive:
 .
 :arg add_header_ids:
 If true, we add unique ids to all header tags that
 don't already have an id. This can help automatic
 generation of tables of contents.
 Returns:
 None.

 .. method:: write_with_links(rectfn, positionfn=None, pagefn=None)

 Similar to `write()` except that we don't have a `writer` arg
 and we return a PDF `Document` in which links have been created
 for each internal html link.

 .. staticmethod:: write_stabilized_with_links(contentfn, rectfn, user_css=None, em=12, positionfn=None, pagefn=None, archive=None, add_header_ids=True)

 Similar to `write_stabilized()` except that we don't have a `writer`
 arg and instead return a PDF `Document` in which links have been
 created for each internal html link.

Element Positioning CallBack function

The callback function can be used to log information about story output. The function's access to the information is read-only: it has no way to influence the story's output.

A typical loop for executing a story with using this method would look like this::

 HTML = """
 <html>
 <head></head>
 <body>
 <h1>Header level 1</h1>
 <h2>Header level 2</h2>
 <p>Hello MuPDF!</p>
 </body>
 </html>
 """
 MEDIABOX = fitz.paper_rect("letter") # size of a page
 WHERE = MEDIABOX + (36, 36, -36, -36) # leave borders of 0.5 inches
 story = fitz.Story(html=HTML) # make the story
 writer = fitz.DocumentWriter("test.pdf") # make the writer
 pno = 0 # current page number
 more = 1 # will be set to 0 when done
 while more: # loop until all story content is processed
 dev = writer.begin_page(MEDIABOX) # make a device to write on the page
 more, filled = story.place(WHERE) # compute content positions on page
 story.element_positions(recorder, {"page": pno}) # provide page number in addition
 story.draw(dev)
 writer.end_page()
 pno += 1 # increase page number
 writer.close() # close output file

 def recorder(elpos):
 pass

Attributes of the ElementPosition class
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The parameter passed to the ``recorder`` function is an object with the following attributes:

* ``elpos.depth`` (int) -- depth of this element in the box structure.

* ``elpos.heading`` (int) -- the header level, 0 if no header, 1-6 for :htmlTag:`h1` - :htmlTag:`h6`.

* ``elpos.href`` (str) -- value of the ``href`attribute, or None if not defined.

* ``elpos.id`` (str) -- value of the ``id`` attribute, or None if not defined.

* ``elpos.rect`` (tuple) -- element position on page.

* ``elpos.text`` (str) -- immediate text of the element.

* ``elpos.open_close`` (int bit field) -- bit 0 set: opens element, bit 1 set: closes element. Relevant for elements that may contain other elements and thus may not immediately be closed after being created / opened.

* ``elpos.rect_num`` (int) -- count of rectangles filled by the story so far.

* ``elpos.page_num`` (int) -- page number; only present when using `fitz.Story.write*()` functions.

.. include:: footer.rst







PyMuPDF-1.21.1/docs/textpage.rst

.. include:: header.rst

.. _TextPage:

================
TextPage
================

This class represents text and images shown on a document page. All MuPDF document types are supported.

The usual ways to create a textpage are :meth:`DisplayList.get_textpage` and :meth:`Page.get_textpage`. Because there is a limited set of methods in this class, there exist wrappers in :ref:`Page` which are handier to use. The last column of this table shows these corresponding :ref:`Page` methods.

For a description of what this class is all about, see Appendix 2.

======================== ================================ ==============================
**Method**               **Description**                  page get_text or search method
======================== ================================ ==============================
:meth:`~.extractText`    extract plain text               "text"
:meth:`~.extractTEXT`    synonym of previous              "text"
:meth:`~.extractBLOCKS`  plain text grouped in blocks     "blocks"
:meth:`~.extractWORDS`   all words with their bbox        "words"
:meth:`~.extractHTML`    page content in HTML format      "html"
:meth:`~.extractXHTML`   page content in XHTML format     "xhtml"
:meth:`~.extractXML`     page text in XML format          "xml"
:meth:`~.extractDICT`    page content in *dict* format    "dict"
:meth:`~.extractJSON`    page content in JSON format      "json"
:meth:`~.extractRAWDICT` page content in *dict* format    "rawdict"
:meth:`~.extractRAWJSON` page content in JSON format      "rawjson"
:meth:`~.search`         Search for a string in the page  :meth:`Page.search_for`
======================== ================================ ==============================

**Class API**

.. class:: TextPage

   .. method:: extractText

   .. method:: extractTEXT

      Return a string of the page's complete text. The text is UTF-8 unicode and in the same sequence as specified at the time of document creation.

      :rtype: str


   .. method:: extractBLOCKS

      Textpage content as a list of text lines grouped by block. Each list items looks like this::

         (x0, y0, x1, y1, "lines in the block", block_no, block_type)

      The first four entries are the block's bbox coordinates, *block_type* is 1 for an image block, 0 for text. *block_no* is the block sequence number. Multiple text lines are joined via line breaks.

      For an image block, its bbox and a text line with some image meta information is included -- **not the image content**.

      This is a high-speed method with just enough information to output plain text in desired reading sequence.

      :rtype: list

   .. method:: extractWORDS

      Textpage content as a list of single words with bbox information. An item of this list looks like this::

         (x0, y0, x1, y1, "word", block_no, line_no, word_no)

      Everything delimited by spaces is treated as a *"word"*. This is a high-speed method which e.g. allows extracting text from within given areas or recovering the text reading sequence.

      :rtype: list

   .. method:: extractHTML

      Textpage content as a string in HTML format. This version contains complete formatting and positioning information. Images are included (encoded as base64 strings). You need an HTML package to interpret the output in Python. Your internet browser should be able to adequately display this information, but see :ref:`HTMLQuality`.

      :rtype: str

   .. method:: extractDICT

      Textpage content as a Python dictionary. Provides same information detail as HTML. See below for the structure.

      :rtype: dict

   .. method:: extractJSON

      Textpage content as a JSON string. Created by ``json.dumps(TextPage.extractDICT())``. It is included for backlevel compatibility. You will probably use this method ever only for outputting the result to some file. The  method detects binary image data and converts them to base64 encoded strings.

      :rtype: str

   .. method:: extractXHTML

      Textpage content as a string in XHTML format. Text information detail is comparable with :meth:`extractTEXT`, but also contains images (base64 encoded). This method makes no attempt to re-create the original visual appearance.

      :rtype: str

   .. method:: extractXML

      Textpage content as a string in XML format. This contains complete formatting information about every single character on the page: font, size, line, paragraph, location, color, etc. Contains no images. You need an XML package to interpret the output in Python.

      :rtype: str

   .. method:: extractRAWDICT

      Textpage content as a Python dictionary -- technically similar to :meth:`extractDICT`, and it contains that information as a subset (including any images). It provides additional detail down to each character, which makes using XML obsolete in many cases. See below for the structure.

      :rtype: dict

   .. method:: extractRAWJSON

      Textpage content as a JSON string. Created by ``json.dumps(TextPage.extractRAWDICT())``. You will probably use this method ever only for outputting the result to some file. The  method detects binary image data and converts them to base64 encoded strings.

      :rtype: str

   .. method:: search(needle, quads=False)

      * Changed in v1.18.2

      Search for *string* and return a list of found locations.

      :arg str needle: the string to search for. Upper and lower cases will all match if needle consists of ASCII letters only -- it does not yet work for "Ä" versus "ä", etc.
      :arg bool quads: return quadrilaterals instead of rectangles.
      :rtype: list
      :returns: a list of :ref:`Rect` or :ref:`Quad` objects, each surrounding a found *needle* occurrence. As the search string may contain spaces, its parts may be found on different lines. In this case, more than one rectangle (resp. quadrilateral) are returned. **(Changed in v1.18.2)** The method **now supports dehyphenation**, so it will find e.g. "method", even if it was hyphenated in two parts "meth-" and "od" across two lines. The two returned rectangles will contain "meth" (no hyphen) and "od".

      .. note:: **Overview of changes in v1.18.2:**

        1. The ``hit_max`` parameter has been removed: all hits are always returned.
        2. The ``rect`` parameter of the :ref:`TextPage` is now respected: only text inside this area is examined. Only characters with fully contained bboxes are considered. The wrapper method :meth:`Page.search_for` correspondingly supports a *clip* parameter.
        3. **Hyphenated words** are now found.
        4. **Overlapping rectangles** in the same line are now automatically joined. We assume that such separations are an artifact created by multiple marked content groups, containing parts of the same search needle.

      Example Quad versus Rect: when searching for needle "pymupdf", then the corresponding entry will either be the blue rectangle, or, if *quads* was specified, the quad *Quad(ul, ur, ll, lr)*.

      .. image:: images/img-quads.*

   .. attribute:: rect

      The rectangle associated with the text page. This either equals the rectangle of the creating page or the ``clip`` parameter of :meth:`Page.get_textpage` and text extration / searching methods.

      .. note:: The output of text searching and most text extractions **is restricted to this rectangle**. (X)HTML and XML output will however always extract the full page.

.. _textpagedict:

Structure of Dictionary Outputs
--------------------------------
Methods :meth:`TextPage.extractDICT`, :meth:`TextPage.extractJSON`, :meth:`TextPage.extractRAWDICT`, and :meth:`TextPage.extractRAWJSON` return dictionaries, containing the page's text and image content. The dictionary structures of all four methods are almost equal. They strive to map the text page's information hierarchy of blocks, lines, spans and characters as precisely as possible, by representing each of these by its own sub-dictionary:

* A **page** consists of a list of **block dictionaries**.
* A (text) **block** consists of a list of **line dictionaries**.
* A **line** consists of a list of **span dictionaries**.
* A **span** either consists of the text itself or, for the RAW variants, a list of **character dictionaries**.
* RAW variants: a **character** is a dictionary of its origin, bbox and unicode.

All PyMuPDF geometry objects herein (points, rectangles, matrices) are represented by there **"like"** formats: a :data:`rect_like` *tuple* is used instead of a :ref:`Rect`, etc. The reasons for this are performance and memory considerations:

* This code is written in C, where Python tuples can easily be generated. The geometry objects on the other hand are defined in Python source only. A conversion of each Python tuple into its corresponding geometry object would add significant -- and largely unnecessary -- execution time.
* A 4-tuple needs about 168 bytes, the corresponding :ref:`Rect` 472 bytes - almost three times the size. A "dict" dictionary for a text-heavy page contains 300+ bbox objects -- which thus require about 50 KB storage as 4-tuples versus 140 KB as :ref:`Rect` objects. A "rawdict" output for such a page will however contain **4 to 5 thousand** bboxes, so in this case we talk about 750 KB versus 2 MB.

Please also note, that only **bboxes** (= :data:`rect_like` 4-tuples) are returned, whereas a :ref:`TextPage` actually has the **full position information** -- in :ref:`Quad` format. The reason for this decision is again a memory consideration: a :data:`quad_like` needs 488 bytes (3 times the size of a :data:`rect_like`). Given the mentioned amounts of generated bboxes, returning :data:`quad_like` information would have a significant impact.

In the vast majority of cases, we are dealing with **horizontal text only**, where bboxes provide entirely sufficient information.

In addition, **the full quad information is not lost**: it can be recovered as needed for lines, spans, and characters by using the appropriate function from the following list:

* :meth:`recover_quad` -- the quad of a complete span
* :meth:`recover_span_quad` -- the quad of a character subset of a span
* :meth:`recover_line_quad` -- the quad of a line
* :meth:`recover_char_quad` -- the quad of a character

As mentioned, using these functions is ever only needed, if the text is **not written horizontally** -- ``line["dir"] != (1, 0)`` -- and you need the quad for text marker annotations (:meth:`Page.add_highlight_annot` and friends).


.. image:: images/img-textpage.*
   :scale: 66


Page Dictionary
~~~~~~~~~~~~~~~~~

=============== ==
Key **Value**
=============== ==
width width of the ``clip`` rectangle *(float)*
height height of the ``clip`` rectangle *(float)*
blocks *list* of block dictionaries
=============== ==

Block Dictionaries
~~~~~~~~~~~~~~~~~~
Block dictionaries come in two different formats for **image blocks** and for **text blocks**.

* *(Changed in v1.18.0)* -- new dict key *number*, the block number.
* *(Changed in v1.18.11)* -- new dict key *transform*, the image transformation matrix for image blocks.
* *(Changed in v1.18.11)* -- new dict key *size*, the size of the image in bytes for image blocks.

**Image block:**

=============== ===============================================================
**Key**             **Value**
=============== ===============================================================
type            1 = image *(int)*
bbox            image bbox on page (:data:`rect_like`)
number          block count *(int)*
ext             image type *(str)*, as file extension, see below
width           original image width *(int)*
height          original image height *(int)*
colorspace      colorspace component count *(int)*
xres            resolution in x-direction *(int)*
yres            resolution in y-direction *(int)*
bpc             bits per component *(int)*
transform       matrix transforming image rect to bbox (:data:`matrix_like`)
size            size of the image in bytes *(int)*
image           image content *(bytes)*
=============== ===============================================================

Possible values of the "ext" key are "bmp", "gif", "jpeg", "jpx" (JPEG 2000), "jxr" (JPEG XR), "png", "pnm", and "tiff".

.. note::

   1. An image block is generated for **all and every image occurrence** on the page. Hence there may be duplicates, if an image is shown at different locations.

   2. :ref:`TextPage` and corresponding method :meth:`Page.get_text` are **available for all document types**. Only for PDF documents, methods :meth:`Document.get_page_images` / :meth:`Page.get_images` offer some overlapping functionality as far as image lists are concerned. But both lists **may or may not** contain the same items. Any differences are most probably caused by one of the following:

       - "Inline" images (see page 214 of the :ref:`AdobeManual`) of a PDF page are contained in a textpage, but **do not appear** in :meth:`Page.get_images`.
       - Annotations may also contain images -- these will **not appear** in :meth:`Page.get_images`.
       - Image blocks in a textpage are generated for **every** image location -- whether or not there are any duplicates. This is in contrast to :meth:`Page.get_images`, which will list each image only once (per reference name).
       - Images mentioned in the page's :data:`object` definition will **always** appear in :meth:`Page.get_images` [#f1]_. But it may happen, that there is no "display" command in the page's :data:`contents` (erroneously or on purpose). In this case the image will **not appear** in the textpage.

   3. The image's "transformation matrix" is defined as the matrix, for which the expression ``bbox / transform == fitz.Rect(0, 0, 1, 1)`` is true, lookup details here: :ref:`ImageTransformation`.


**Text block:**

=============== ====================================================
**Key**             **Value**
=============== ====================================================
type            0 = text *(int)*
bbox            block rectangle, :data:`rect_like`
number          block count *(int)*
lines           *list* of text line dictionaries
=============== ====================================================

Line Dictionary
~~~~~~~~~~~~~~~~~

=============== ===
Key **Value**
=============== ===
bbox line rectangle, :data:`rect_like`
wmode writing mode *(int)*: 0 = horizontal, 1 = vertical
dir writing direction, :data:`point_like`
spans *list* of span dictionaries
=============== ===

The value of key *"dir"* is the **unit vector** ``dir = (cosine, sine)`` of the angle, which the text has relative to the x-axis. See the following picture: The word in each quadrant (counter-clockwise from top-right to bottom-right) is rotated by 30, 120, 210 and 300 degrees respectively.

.. image:: images/img-line-dir.*
 :scale: 100

Span Dictionary
~~~~~~~~~~~~~~~~~

Spans contain the actual text. A line contains **more than one span only**, if it contains text with different font properties.

* Changed in version 1.14.17 Spans now also have a *bbox* key (again).
* Changed in version 1.17.6 Spans now also have an *origin* key.

=============== =====================================================================
**Key**             **Value**
=============== =====================================================================
bbox            span rectangle, :data:`rect_like`
origin          the first character's origin, :data:`point_like`
font            font name *(str)*
ascender        ascender of the font *(float)*
descender       descender of the font *(float)*
size            font size *(float)*
flags           font characteristics *(int)*
color           text color in sRGB format *(int)*
text            (only for :meth:`extractDICT`) text *(str)*
chars           (only for :meth:`extractRAWDICT`) *list* of character dictionaries
=============== =====================================================================

*(New in version 1.16.0):* *"color"* is the text color encoded in sRGB (int) format, e.g. 0xFF0000 for red. There are functions for converting this integer back to formats (r, g, b) (PDF with float values from 0 to 1) :meth:`sRGB_to_pdf`, or (R, G, B), :meth:`sRGB_to_rgb` (with integer values from 0 to 255).

*(New in v1.18.5):* *"ascender"* and *"descender"* are font properties, provided relative to fontsize 1. Note that descender is a negative value. The following picture shows the relationship to other values and properties.

.. image:: images/img-asc-desc.*
   :scale: 60

These numbers may be used to compute the minimum height of a character (or span) -- as opposed to the standard height provided in the "bbox" values (which actually represents the **line height**). The following code recalculates the span bbox to have a height of **fontsize** exactly fitting the text inside:

>>> a = span["ascender]
>>> d = span["descender"]
>>> r = fitz.Rect(span["bbox"])
>>> o = fitz.Point(span["origin"])  # its y-value is the baseline
>>> r.y1 = o.y - span["size"] * d / (a - d)
>>> r.y0 = r.y1 - span["size"]
>>> # r now is a rectangle of height 'fontsize'

.. caution:: The above calculation may deliver a **larger** height! This may e.g. happen for OCRed documents, where the risk of all sorts of text artifacts is high. MuPDF tries to come up with a reasonable bbox height, independently from the fontsize found in the PDF. So please ensure that the height of ``span["bbox"]`` is **larger** than ``span["size"]``.

.. note:: You may request PyMuPDF to do all of the above automatically by executing ``fitz.TOOLS.set_small_glyph_heights(True)``. This sets a global parameter so that all subsequent text searches and text extractions are based on reduced glyph heights, where meaningful.

The following shows the original span rectangle in red and the rectangle with re-computed height in blue.

.. image:: images/img-span-rect.*
   :scale: 200


*"flags"* is an integer, which represents font properties except for the first bit 0. They are to be interpreted like this:

* bit 0: superscripted (2\ :sup:`0`) -- not a font property, detected by MuPDF code.
* bit 1: italic (2\ :sup:`1`)
* bit 2: serifed (2\ :sup:`2`)
* bit 3: monospaced (2\ :sup:`3`)
* bit 4: bold (2\ :sup:`4`)

Test these characteristics like so:

>>> if flags & 2**1: print("italic")
>>> # etc.

Bits 1 thru 4 are font properties, i.e. encoded in the font program. Please note, that this information is not necessarily correct or complete: fonts quite often contain wrong data here.

Character Dictionary for :meth:`extractRAWDICT`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

=============== ===
Key **Value**
=============== ===
origin character's left baseline point, :data:`point_like`
bbox character rectangle, :data:`rect_like`
c the character (unicode)
=============== ===

This image shows the relationship between a character's bbox and its quad: |textpagechar|

.. |textpagechar| image:: images/img-textpage-char.*
 :align: top
 :scale: 66

.. rubric:: Footnotes

.. [#f1] Image specifications for a PDF page are done in a page's (sub-) :data:`dictionary`, called *"/Resources"*. Resource dictionaries can be **inherited** from the page's parent object (usually the :data:`catalog`). The PDF creator may e.g. define one */Resources* on file level, naming all images and all fonts ever used by any page. In these cases, :meth:`Page.get_images` and :meth:`Page.get_fonts` will return the same lists for all pages.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/textwriter.rst

.. include:: header.rst

.. _TextWriter:

================
TextWriter
================

* New in v1.16.18

This class represents a MuPDF *text* object. The basic idea is to **decouple (1) text preparation, and (2) text output** to PDF pages.

During **preparation**, a text writer stores any number of text pieces ("spans") together with their positions and individual font information. The **output** of the writer's prepared content may happen multiple times to any PDF page with a compatible page size.

A text writer is an elegant alternative to methods :meth:`Page.insert_text` and friends:

* **Improved text positioning:** Choose any point where insertion of text should start. Storing text returns the "cursor position" after the *last character* of the span.
* **Free font choice:** Each text span has its own font and fontsize. This lets you easily switch when composing a larger text.
* **Automatic fallback fonts:** If a character is not supported by the chosen font, alternative fonts are automatically searched. This significantly reduces the risk of seeing unprintable symbols in the output ("TOFUs" -- looking like a small rectangle). PyMuPDF now also comes with the **universal font "Droid Sans Fallback Regular"**, which supports **all Latin** characters (incuding Cyrillic and Greek), and **all CJK** characters (Chinese, Japanese, Korean).
* **Cyrillic and Greek Support:** The :ref:`Base-14-fonts` have integrated support of Cyrillic and Greek characters **without specifying encoding.** Your text may be a mixture of Latin, Greek and Cyrillic.
* **Transparency support:** Parameter *opacity* is supported. This offers a handy way to create watermark-style text.
* **Justified text:** Supported for any font -- not just simple fonts as in :meth:`Page.insert_textbox`.
* **Reusability:** A TextWriter object exists independent from PDF pages. It can be written multiple times, either to the same or to other pages, in the same or in different PDFs, choosing different colors or transparency.

Using this object entails three steps:

1. When **created**, a TextWriter requires a fixed **page rectangle** in relation to which it calculates text positions. A text writer can write to pages of this size only.
2. Store text in the TextWriter using methods :meth:`TextWriter.append`, :meth:`TextWriter.appendv` and :meth:`TextWriter.fill_textbox` as often as is desired.
3. Output the TextWriter object on some PDF page(s).

.. note::

 * Starting with version 1.17.0, TextWriters **do support** text rotation via the *morph* parameter of :meth:`TextWriter.write_text`.

 * There also exists :meth:`Page.write_text` which combines one or more TextWriters and jointly writes them to a given rectangle and with a given rotation angle -- much like :meth:`Page.show_pdf_page`.

================================ ==
Method / Attribute **Short Description**
================================ ==
:meth:`~TextWriter.append` Add text in horizontal write mode
:meth:`~TextWriter.appendv` Add text in vertical write mode
:meth:`~TextWriter.fill_textbox` Fill rectangle (horizontal write mode)
:meth:`~TextWriter.write_text` Output TextWriter to a PDF page
:attr:`~TextWriter.color` Text color (can be changed)
:attr:`~TextWriter.last_point` Last written character ends here
:attr:`~TextWriter.opacity` Text opacity (can be changed)
:attr:`~TextWriter.rect` Page rectangle used by this TextWriter
:attr:`~TextWriter.text_rect` Area occupied so far
================================ ==

Class API

.. class:: TextWriter

 .. method:: __init__(self, rect, opacity=1, color=None)

 :arg rect-like rect: rectangle internally used for text positioning computations.
 :arg float opacity: sets the transparency for the text to store here. Values outside the interval ``[0, 1)`` will be ignored. A value of e.g. 0.5 means 50% transparency.
 :arg float,sequ color: the color of the text. All colors are specified as floats *0 <= color <= 1*. A single float represents some gray level, a sequence implies the colorspace via its length.

 .. method:: append(pos, text, font=None, fontsize=11, language=None, right_to_left=False, small_caps=0)

 * *Changed in v1.18.9*
 * *Changed in v1.18.15*

 Add some new text in horizontal writing.

 :arg point_like pos: start position of the text, the bottom left point of the first character.
 :arg str text: a string of arbitrary length. It will be written starting at position "pos".
 :arg font: a :ref:`Font`. If omitted, ``fitz.Font("helv")`` will be used.
 :arg float fontsize: the fontsize, a positive number, default 11.
 :arg str language: the language to use, e.g. "en" for English. Meaningful values should be compliant with the ISO 639 standards 1, 2, 3 or 5. Reserved for future use: currently has no effect as far as we know.
 :arg bool right_to_left: *(New in v1.18.9)* whether the text should be written from right to left. Applicable for languages like Arabian or Hebrew. Default is *False*. If *True*, any Latin parts within the text will automatically converted. There are no other consequences, i.e. :attr:`TextWriter.last_point` will still be the rightmost character, and there neither is any alignment taking place. Hence you may want to use :meth:`TextWriter.fill_textbox` instead.
 :arg bool small_caps: *(New in v1.18.15)* look for the character's Small Capital version in the font. If present, take that value instead. Otherwise the original character (this font or the fallback font) will be taken. The fallback font will never return small caps. For example, this snippet::

 >>> doc = fitz.open()
 >>> page = doc.new_page()
 >>> text = "PyMuPDF: the Python bindings for MuPDF"
 >>> font = fitz.Font("figo") # choose a font with small caps
 >>> tw = fitz.TextWriter(page.rect)
 >>> tw.append((50,100), text, font=font, small_caps=True)
 >>> tw.write_text(page)
 >>> doc.ez_save("x.pdf")

 will produce this PDF text:

 .. image:: images/img-smallcaps.*

 :returns: :attr:`text_rect` and :attr:`last_point`. *(Changed in v1.18.0:)* Raises an exception for an unsupported font -- checked via :attr:`Font.is_writable`.

 .. method:: appendv(pos, text, font=None, fontsize=11, language=None, small_caps=0)

 Changed in v1.18.15

 Add some new text in vertical, top-to-bottom writing.

 :arg point_like pos: start position of the text, the bottom left point of the first character.
 :arg str text: a string. It will be written starting at position "pos".
 :arg font: a :ref:`Font`. If omitted, ``fitz.Font("helv")`` will be used.
 :arg float fontsize: the fontsize, a positive float, default 11.
 :arg str language: the language to use, e.g. "en" for English. Meaningful values should be compliant with the ISO 639 standards 1, 2, 3 or 5. Reserved for future use: currently has no effect as far as we know.
 :arg bool small_caps: *(New in v1.18.15)* see :meth:`append`.

 :returns: :attr:`text_rect` and :attr:`last_point`. *(Changed in v1.18.0:)* Raises an exception for an unsupported font -- checked via :attr:`Font.is_writable`.

 .. method:: fill_textbox(rect, text, *, pos=None, font=None, fontsize=11, align=0, right_to_left=False, warn=None, small_caps=0)

 * Changed in 1.17.3: New parameter ``pos`` to specify where to start writing within rectangle.
 * Changed in v1.18.9: Return list of lines which do not fit in rectangle. Support writing right-to-left (e.g. Arabian, Hebrew).
 * Changed in v1.18.15: Prefer small caps if supported by the font.

 Fill a given rectangle with text in horizontal writing mode. This is a convenience method to use as an alternative for :meth:`append`.

 :arg rect_like rect: the area to fill. No part of the text will appear outside of this.
 :arg str,sequ text: the text. Can be specified as a (UTF-8) string or a list / tuple of strings. A string will first be converted to a list using *splitlines()*. Every list item will begin on a new line (forced line breaks).
 :arg point_like pos: *(new in v1.17.3)* start storing at this point. Default is a point near rectangle top-left.
 :arg font: the :ref:`Font`, default `fitz.Font("helv")`.
 :arg float fontsize: the fontsize.
 :arg int align: text alignment. Use one of TEXT_ALIGN_LEFT, TEXT_ALIGN_CENTER, TEXT_ALIGN_RIGHT or TEXT_ALIGN_JUSTIFY.
 :arg bool right_to_left: *(New in v1.18.9)* whether the text should be written from right to left. Applicable for languages like Arabian or Hebrew. Default is *False*. If *True*, any Latin parts are automatically reverted. You must still set the alignment (if you want right alignment), it does not happen automatically -- the other alignment options remain available as well.
 :arg bool warn: on text overflow do nothing, warn, or raise an exception. Overflow text will never be written. **Changed in v1.18.9:**

 * Default is *None*.
 * The list of overflow lines will be returned.

 :arg bool small_caps: *(New in v1.18.15)* see :meth:`append`.

 :rtype: list
 :returns: *New in v1.18.9* -- List of lines that did not fit in the rectangle. Each item is a tuple `(text, length)` containing a string and its length (on the page).

 .. note:: Use these methods as often as is required -- there is no technical limit (except memory constraints of your system). You can also mix :meth:`append` and text boxes and have multiple of both. Text positioning is exclusively controlled by the insertion point. Therefore there is no need to adhere to any order. *(Changed in v1.18.0:)* Raise an exception for an unsupported font -- checked via :attr:`Font.is_writable`.

 .. method:: write_text(page, opacity=None, color=None, morph=None, overlay=True, oc=0, render_mode=0)

 Write the TextWriter text to a page, which is the only mandatory parameter. The other parameters can be used to temporarily override the values used when the TextWriter was created.

 :arg page: write to this :ref:`Page`.
 :arg float opacity: override the value of the TextWriter for this output.
 :arg sequ color: override the value of the TextWriter for this output.
 :arg sequ morph: modify the text appearance by applying a matrix to it. If provided, this must be a sequence *(fixpoint, matrix)* with a point-like *fixpoint* and a matrix-like *matrix*. A typical example is rotating the text around *fixpoint*.
 :arg bool overlay: put in foreground (default) or background.
 :arg int oc: *(new in v1.18.4)* the :data:`xref` of an :data:`OCG` or :data:`OCMD`.
 :arg int render_mode: The PDF ``Tr`` operator value. Values: 0 (default), 1, 2, 3 (invisible).

 .. image:: images/img-rendermode.*

 .. attribute:: text_rect

 The area currently occupied.

 :rtype: :ref:`Rect`

 .. attribute:: last_point

 The "cursor position" -- a :ref:`Point` -- after the last written character (its bottom-right).

 :rtype: :ref:`Point`

 .. attribute:: opacity

 The text opacity (modifyable).

 :rtype: float

 .. attribute:: color

 The text color (modifyable).

 :rtype: float,tuple

 .. attribute:: rect

 The page rectangle for which this TextWriter was created. Must not be modified.

 :rtype: :ref:`Rect`

.. note:: To see some demo scripts dealing with TextWriter, have a look at `this <https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/textwriter>`_ repository.

 1. Opacity and color apply to **all the text** in this object.
 2. If you need different colors / transpareny, you must create a separate TextWriter. Whenever you determine the color should change, simply append the text to the respective TextWriter using the previously returned :attr:`last_point` as position for the new text span.
 3. Appending items or text boxes can occur in arbitrary order: only the position parameter controls where text appears.
 4. Font and fontsize can freely vary within the same TextWriter. This can be used to let text with different properties appear on the same displayed line: just specify *pos* accordingly, and e.g. set it to :attr:`last_point` of the previously added item.
 5. You can use the *pos* argument of :meth:`TextWriter.fill_textbox` to set the position of the first text character. This allows filling the same textbox with contents from different :ref:`TextWriter` objects, thus allowing for multiple colors, opacities, etc.
 6. MuPDF does not support all fonts with this feature, e.g. no Type3 fonts. Starting with v1.18.0 this can be checked via the font attribute :attr:`Font.is_writable`. This attribute is also checked when using :ref:`TextWriter` methods.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/toc.rst

.. include:: header.rst

PyMuPDF Documentation
=================================

.. toctree::
 :maxdepth: 4

 intro.rst
 installation.rst
 tutorial.rst
 recipes.rst
 module.rst
 classes.rst
 algebra.rst
 lowlevel.rst
 glossary.rst
 vars.rst
 colors.rst
 app1.rst
 app2.rst
 app3.rst
 changes.rst
 znames.rst

.. include:: footer.rst

PyMuPDF-1.21.1/docs/tools.rst

.. include:: header.rst

.. _Tools:

Tools
================

This class is a collection of utility methods and attributes, mainly around memory management. To simplify and speed up its use, it is automatically instantiated under the name *TOOLS* when PyMuPDF is imported.

====================================== ===
Method / Attribute **Description**
====================================== ===
:meth:`Tools.gen_id` generate a unique identifyer
:meth:`Tools.store_shrink` shrink the storables cache [#f1]_
:meth:`Tools.mupdf_warnings` return the accumulated MuPDF warnings
:meth:`Tools.mupdf_display_errors` return the accumulated MuPDF warnings
:meth:`Tools.reset_mupdf_warnings` empty MuPDF messages on STDOUT
:meth:`Tools.set_aa_level` set the anti-aliasing values
:meth:`Tools.set_annot_stem` set the prefix of new annotation / link ids
:meth:`Tools.set_small_glyph_heights` search and extract using small bbox heights
:meth:`Tools.set_subset_fontnames` control suppression of subset fontname tags
:meth:`Tools.show_aa_level` return the anti-aliasing values
:meth:`Tools.unset_quad_corrections` disable PyMuPDF-specific code
:attr:`Tools.fitz_config` configuration settings of PyMuPDF
:attr:`Tools.store_maxsize` maximum storables cache size
:attr:`Tools.store_size` current storables cache size
====================================== ===

Class API

.. class:: Tools

 .. method:: gen_id()

 A convenience method returning a unique positive integer which will increase by 1 on every invocation. Example usages include creating unique keys in databases - its creation should be faster than using timestamps by an order of magnitude.

 .. note:: MuPDF has dropped support for this in v1.14.0, so we have re-implemented a similar function with the following differences:

 * It is not part of MuPDF's global context and not threadsafe (not an issue because we do not support threads in PyMuPDF anyway).
 * It is implemented as *int*. This means that the maximum number is *sys.maxsize*. Should this number ever be exceeded, the counter starts over again at 1.

 :rtype: int
 :returns: a unique positive integer.

 .. method:: set_annot_stem(stem=None)

 * New in v1.18.6

 Set or inquire the prefix for the id of new annotations, fields or links.

 :arg str stem: if omitted, the current value is returned, default is "fitz". Annotations, fields / widgets and links technically are subtypes of the same type of object (`/Annot`) in PDF documents. An `/Annot` object may be given a unique identifier within a page. For each of the applicable subtypes, PyMuPDF generates identifiers "stem-Annn", "stem-Wnnn" or "stem-Lnnn" respectively. The number "nnn" is used to enforce the required uniqueness.

 :rtype: str
 :returns: the current value.

 .. method:: set_small_glyph_heights(on=None)

 * New in v1.18.5

 Set or inquire reduced bbox heights in text extract and text search methods.

 :arg bool on: if omitted or ``None``, the current setting is returned. For other values the *bool()* function is applied to set a global variable. If ``True``, :meth:`Page.search_for` and :meth:`Page.get_text` methods return character, span, line or block bboxes that have a height of *font size*. If ``False`` (standard setting when PyMuPDF is imported), bbox height will be based on font properties and normally equal *line height*.

 :rtype: bool
 :returns: *True* or *False*.

 .. note:: Text extraction options "xml", "xhtml" and "html", which directly wrap MuPDF code, are not influenced by this.

 .. method:: set_subset_fontnames(on=None)

 * New in v1.18.9

 Control suppression of subset fontname tags in text extractions.

 :arg bool on: if omitted / ``None``, the current setting is returned. Arguments evaluating to ``True`` or ``False`` set a global variable. If ``True``, options "dict", "json", "rawdict" and "rawjson" will return e.g. ``"NOHSJV+Calibri-Light"``, otherwise only ``"Calibri-Light"`` (the default). The setting remains in effect until changed again.

 :rtype: bool
 :returns: *True* or *False*.

 .. note:: Except mentioned above, no other text extraction variants are influenced by this. This is especially true for the options "xml", "xhtml" and "html", which are based on MuPDF code. They extract the font name ``"Calibri-Light"``, or even just the **family** name -- ``Calibri`` in this example.

 .. method:: unset_quad_corrections(on=None)

 * New in v1.18.10

 Enable / disable PyMuPDF-specific code, that tries to rebuild valid character quads when encountering nonsense in :meth:`Page.get_text` text extractions. This code depends on certain font properties (ascender and descender), which do not exist in rare situations and cause segmentation faults when trying to access them. This method sets a global parameter in PyMuPDF, which suppresses execution of this code.

 :arg bool on: if omitted or ``None``, the current setting is returned. For other values the *bool()* function is applied to set a global variable. If ``True``, PyMuPDF will not try to access the resp. font properties and use values ``ascender=0.8`` and ``descender=-0.2`` instead.

 :rtype: bool
 :returns: *True* or *False*.

 .. method:: store_shrink(percent)

 Reduce the storables cache by a percentage of its current size.

 :arg int percent: the percentage of current size to free. If 100+ the store will be emptied, if zero, nothing will happen. MuPDF's caching strategy is "least recently used", so low-usage elements get deleted first.

 :rtype: int
 :returns: the new current store size. Depending on the situation, the size reduction may be larger than the requested percentage.

 .. method:: show_aa_level()

 * New in version 1.16.14

 Return the current anti-aliasing values. These values control the rendering quality of graphics and text elements.

 :rtype: dict
 :returns: A dictionary with the following initial content: ``{'graphics': 8, 'text': 8, 'graphics_min_line_width': 0.0}``.

 .. method:: set_aa_level(level)

 * New in version 1.16.14

 Set the new number of bits to use for anti-aliasing. The same value is taken currently for graphics and text rendering. This might change in a future MuPDF release.

 :arg int level: an integer ranging between 0 and 8. Value outside this range will be silently changed to valid values. The value will remain in effect throughout the current session or until changed again.

 .. method:: reset_mupdf_warnings()

 * New in version 1.16.0

 Empty MuPDF warnings message buffer.

 .. method:: mupdf_display_errors(value=None)

 * New in version 1.16.8

 Show or set whether MuPDF errors should be displayed.

 :arg bool value: if not a bool, the current setting is returned. If true, MuPDF errors will be shown on *sys.stderr*, otherwise suppressed. In any case, messages continue to be stored in the warnings store. Upon import of PyMuPDF this value is *True*.

 :returns: *True* or *False*

 .. method:: mupdf_warnings(reset=True)

 * New in version 1.16.0

 Return all stored MuPDF messages as a string with interspersed line-breaks.

 :arg bool reset: *(new in version 1.16.7)* whether to automatically empty the store.

 .. attribute:: fitz_config

 A dictionary containing the actual values used for configuring PyMuPDF and MuPDF. Also refer to the installation chapter. This is an overview of the keys, each of which describes the status of a support aspect.

 ================= ===
 Key **Support included for ...**
 ================= ===
 plotter-g Gray colorspace rendering
 plotter-rgb RGB colorspace rendering
 plotter-cmyk CMYK colorspcae rendering
 plotter-n overprint rendering
 pdf PDF documents
 xps XPS documents
 svg SVG documents
 cbz CBZ documents
 img IMG documents
 html HTML documents
 epub EPUB documents
 jpx JPEG2000 images
 js JavaScript
 tofu all TOFU fonts
 tofu-cjk CJK font subset (China, Japan, Korea)
 tofu-cjk-ext CJK font extensions
 tofu-cjk-lang CJK font language extensions
 tofu-emoji TOFU emoji fonts
 tofu-historic TOFU historic fonts
 tofu-symbol TOFU symbol fonts
 tofu-sil TOFU SIL fonts
 icc ICC profiles
 py-memory using Python memory management [#f2]_
 base14 Base-14 fonts (should always be true)
 ================= ===

 For an explanation of the term "TOFU" see `this Wikipedia article <https://en.wikipedia.org/wiki/Noto_fonts>`_.::

 In [1]: import fitz
 In [2]: TOOLS.fitz_config
 Out[2]:
 {'plotter-g': True,
 'plotter-rgb': True,
 'plotter-cmyk': True,
 'plotter-n': True,
 'pdf': True,
 'xps': True,
 'svg': True,
 'cbz': True,
 'img': True,
 'html': True,
 'epub': True,
 'jpx': True,
 'js': True,
 'tofu': False,
 'tofu-cjk': True,
 'tofu-cjk-ext': False,
 'tofu-cjk-lang': False,
 'tofu-emoji': False,
 'tofu-historic': False,
 'tofu-symbol': False,
 'tofu-sil': False,
 'icc': True,
 'py-memory': False,
 'base14': True}

 :rtype: dict

 .. attribute:: store_maxsize

 Maximum storables cache size in bytes. PyMuPDF is generated with a value of 268'435'456 (256 MB, the default value), which you should therefore always see here. If this value is zero, then an "unlimited" growth is permitted.

 :rtype: int

 .. attribute:: store_size

 Current storables cache size in bytes. This value may change (and will usually increase) with every use of a PyMuPDF function. It will (automatically) decrease only when :attr:`Tools.store_maxize` is going to be exceeded: in this case, MuPDF will evict low-usage objects until the value is again in range.

 :rtype: int

Example Session

.. highlight:: python

::
 >>> import fitz
 # print the maximum and current cache sizes
 >>> fitz.TOOLS.store_maxsize
 268435456
 >>> fitz.TOOLS.store_size
 0
 >>> doc = fitz.open("demo1.pdf")
 # pixmap creation puts lots of object in cache (text, images, fonts),
 # apart from the pixmap itself
 >>> pix = doc[0].get_pixmap(alpha=False)
 >>> fitz.TOOLS.store_size
 454519
 # release (at least) 50% of the storage
 >>> fitz.TOOLS.store_shrink(50)
 13471
 >>> fitz.TOOLS.store_size
 13471
 # get a few unique numbers
 >>> fitz.TOOLS.gen_id()
 1
 >>> fitz.TOOLS.gen_id()
 2
 >>> fitz.TOOLS.gen_id()
 3
 # close document and see how much cache is still in use
 >>> doc.close()
 >>> fitz.TOOLS.store_size
 0
 >>>

.. rubric:: Footnotes

.. [#f1] This memory area is internally used by MuPDF, and it serves as a cache for objects that have already been read and interpreted, thus improving performance. The most bulky object types are images and also fonts. When an application starts up the MuPDF library (in our case this happens as part of *import fitz*), it must specify a maximum size for this area. PyMuPDF's uses the default value (256 MB) to limit memory consumption. Use the methods here to control or investigate store usage. For example: even after a document has been closed and all related objects have been deleted, the store usage may still not drop down to zero. So you might want to enforce that before opening another document.

.. [#f2] By default PyMuPDF and MuPDF use ``malloc()``/``free()`` for dynamic memory management. One can instead force them to use the Python allocation functions ``PyMem_New()``/``PyMem_Del()``, by modifying *fitz/fitz.i* to do ``#define JM_MEMORY 1`` and rebuilding PyMuPDF.

.. include:: footer.rst

PyMuPDF-1.21.1/docs/tutorial.rst

.. include:: header.rst

.. _Tutorial:

=========
Tutorial
=========

.. highlight:: python

This tutorial will show you the use of PyMuPDF, MuPDF in Python, step by step.

Because MuPDF supports not only PDF, but also XPS, OpenXPS, CBZ, CBR, FB2 and EPUB formats, so does PyMuPDF [#f1]_. Nevertheless, for the sake of brevity we will only talk about PDF files. At places where indeed only PDF files are supported, this will be mentioned explicitely.

Importing the Bindings
==========================
The Python bindings to MuPDF are made available by this import statement. We also show here how your version can be checked::

 >>> import fitz
 >>> print(fitz.__doc__)
 PyMuPDF 1.16.0: Python bindings for the MuPDF 1.16.0 library.
 Version date: 2019-07-28 07:30:14.
 Built for Python 3.7 on win32 (64-bit).

Opening a Document
======================
To access a supported document, it must be opened with the following statement::

 doc = fitz.open(filename) # or fitz.Document(filename)

This creates the :ref:`Document` object *doc*. *filename* must be a Python string (or a ``pathlib.Path``) specifying the name of an existing file.

It is also possible to open a document from memory data, or to create a new, empty PDF. See :ref:`Document` for details. You can also use :ref:`Document` as a *context manager*.

A document contains many attributes and functions. Among them are meta information (like "author" or "subject"), number of total pages, outline and encryption information.

Some :ref:`Document` Methods and Attributes
===

=========================== ==
Method / Attribute **Description**
=========================== ==
:attr:`Document.page_count` the number of pages (*int*)
:attr:`Document.metadata` the metadata (*dict*)
:meth:`Document.get_toc` get the table of contents (*list*)
:meth:`Document.load_page` read a :ref:`Page`
=========================== ==

Accessing Meta Data
========================
PyMuPDF fully supports standard metadata. :attr:`Document.metadata` is a Python dictionary with the following keys. It is available for **all document types**, though not all entries may always contain data. For details of their meanings and formats consult the respective manuals, e.g. :ref:`AdobeManual` for PDF. Further information can also be found in chapter :ref:`Document`. The meta data fields are strings or *None* if not otherwise indicated. Also be aware that not all of them always contain meaningful data -- even if they are not *None*.

============== =================================
Key Value
============== =================================
producer producer (producing software)
format format: 'PDF-1.4', 'EPUB', etc.
encryption encryption method used if any
author author
modDate date of last modification
keywords keywords
title title
creationDate date of creation
creator creating application
subject subject
============== =================================

.. note:: Apart from these standard metadata, **PDF documents** starting from PDF version 1.4 may also contain so-called *"metadata streams"* (see also :data:`stream`). Information in such streams is coded in XML. PyMuPDF deliberately contains no XML components for this purpose (the :ref:`PyMuPDF Xml class<Xml>` is a helper class intended to access the DOM content of a :ref:`Story` object), so we do not directly support access to information contained therein. But you can extract the stream as a whole, inspect or modify it using a package like `lxml`_ and then store the result back into the PDF. If you want, you can also delete this data altogether.

.. note:: There are two utility scripts in the repository that `metadata import (PDF only)`_ resp. `metadata export`_ metadata from resp. to CSV files.

Working with Outlines
=========================
The easiest way to get all outlines (also called "bookmarks") of a document, is by loading its *table of contents*::

 toc = doc.get_toc()

This will return a Python list of lists *[[lvl, title, page, ...], ...]* which looks much like a conventional table of contents found in books.

lvl is the hierarchy level of the entry (starting from 1), *title* is the entry's title, and *page* the page number (1-based!). Other parameters describe details of the bookmark target.

.. note:: There are two utility scripts in the repository that `toc import (PDF only)`_ resp. `toc export`_ table of contents from resp. to CSV files.

Working with Pages
======================
:ref:`Page` handling is at the core of MuPDF's functionality.

* You can render a page into a raster or vector (SVG) image, optionally zooming, rotating, shifting or shearing it.
* You can extract a page's text and images in many formats and search for text strings.
* For PDF documents many more methods are available to add text or images to pages.

First, a :ref:`Page` must be created. This is a method of :ref:`Document`::

 page = doc.load_page(pno) # loads page number 'pno' of the document (0-based)
 page = doc[pno] # the short form

Any integer ``-∞ < pno < page_count`` is possible here. Negative numbers count backwards from the end, so *doc[-1]* is the last page, like with Python sequences.

Some more advanced way would be using the document as an **iterator** over its pages::

 for page in doc:
 # do something with 'page'

 # ... or read backwards
 for page in reversed(doc):
 # do something with 'page'

 # ... or even use 'slicing'
 for page in doc.pages(start, stop, step):
 # do something with 'page'

Once you have your page, here is what you would typically do with it:

Inspecting the Links, Annotations or Form Fields of a Page

Links are shown as "hot areas" when a document is displayed with some viewer software. If you click while your cursor shows a hand symbol, you will usually be taken to the taget that is encoded in that hot area. Here is how to get all links::

 # get all links on a page
 links = page.get_links()

links is a Python list of dictionaries. For details see :meth:`Page.get_links`.

You can also use an iterator which emits one link at a time::

 for link in page.links():
 # do something with 'link'

If dealing with a PDF document page, there may also exist annotations (:ref:`Annot`) or form fields (:ref:`Widget`), each of which have their own iterators::

 for annot in page.annots():
 # do something with 'annot'

 for field in page.widgets():
 # do something with 'field'

Rendering a Page

This example creates a **raster** image of a page's content::

 pix = page.get_pixmap()

pix is a :ref:`Pixmap` object which (in this case) contains an **RGB** image of the page, ready to be used for many purposes. Method :meth:`Page.get_pixmap` offers lots of variations for controlling the image: resolution / DPI, colorspace (e.g. to produce a grayscale image or an image with a subtractive color scheme), transparency, rotation, mirroring, shifting, shearing, etc. For example: to create an **RGBA** image (i.e. containing an alpha channel), specify *pix = page.get_pixmap(alpha=True)*.

A :ref:`Pixmap` contains a number of methods and attributes which are referenced below. Among them are the integers *width*, *height* (each in pixels) and *stride* (number of bytes of one horizontal image line). Attribute *samples* represents a rectangular area of bytes representing the image data (a Python *bytes* object).

.. note:: You can also create a **vector** image of a page by using :meth:`Page.get_svg_image`. Refer to this `Vector Image Support page`_ for details.

Saving the Page Image in a File

We can simply store the image in a PNG file::

 pix.save("page-%i.png" % page.number)

Displaying the Image in GUIs

We can also use it in GUI dialog managers. :attr:`Pixmap.samples` represents an area of bytes of all the pixels as a Python bytes object. Here are some examples, find more in the `examples`_ directory.

wxPython
~~~~~~~~~~~~~
Consult their documentation for adjustments to RGB(A) pixmaps and, potentially, specifics for your wxPython release::

    if pix.alpha:
        bitmap = wx.Bitmap.FromBufferRGBA(pix.width, pix.height, pix.samples)
    else:
        bitmap = wx.Bitmap.FromBuffer(pix.width, pix.height, pix.samples)

Tkinter
~~~~~~~~~~
Please also see section 3.19 of the `Pillow documentation`_::

 from PIL import Image, ImageTk

 # set the mode depending on alpha
 mode = "RGBA" if pix.alpha else "RGB"
 img = Image.frombytes(mode, [pix.width, pix.height], pix.samples)
 tkimg = ImageTk.PhotoImage(img)

The following **avoids using Pillow**::

 # remove alpha if present
 pix1 = fitz.Pixmap(pix, 0) if pix.alpha else pix # PPM does not support transparency
 imgdata = pix1.tobytes("ppm") # extremely fast!
 tkimg = tkinter.PhotoImage(data = imgdata)

If you are looking for a complete Tkinter script paging through **any supported** document, `here it is!`_. It can also zoom into pages, and it runs under Python 2 or 3. It requires the extremely handy `PySimpleGUI`_ pure Python package.

PyQt4, PyQt5, PySide
~~~~~~~~~~~~~~~~~~~~~
Please also see section 3.16 of the `Pillow documentation`_::

    from PIL import Image, ImageQt

    # set the mode depending on alpha
    mode = "RGBA" if pix.alpha else "RGB"
    img = Image.frombytes(mode, [pix.width, pix.height], pix.samples)
    qtimg = ImageQt.ImageQt(img)

Again, you also can get along **without using Pillow.** Qt's `QImage` luckily supports native Python pointers, so the following is the recommended way to create Qt images::

    from PyQt5.QtGui import QImage

    # set the correct QImage format depending on alpha
    fmt = QImage.Format_RGBA8888 if pix.alpha else QImage.Format_RGB888
    qtimg = QImage(pix.samples_ptr, pix.width, pix.height, fmt)


Extracting Text and Images
---------------------------
We can also extract all text, images and other information of a page in many different forms, and levels of detail::

    text = page.get_text(opt)

Use one of the following strings for *opt* to obtain different formats [#f2]_:

* **"text"**: (default) plain text with line breaks. No formatting, no text position details, no images.

* **"blocks"**: generate a list of text blocks (= paragraphs).

* **"words"**: generate a list of words (strings not containing spaces).

* **"html"**: creates a full visual version of the page including any images. This can be displayed with your internet browser.

* **"dict"** / **"json"**: same information level as HTML, but provided as a Python dictionary or resp. JSON string. See :meth:`TextPage.extractDICT` for details of its structure.

* **"rawdict"** / **"rawjson"**: a super-set of **"dict"** / **"json"**. It additionally provides character detail information like XML. See :meth:`TextPage.extractRAWDICT` for details of its structure.

* **"xhtml"**: text information level as the TEXT version but includes images. Can also be displayed by internet browsers.

* **"xml"**: contains no images, but full position and font information down to each single text character. Use an XML module to interpret.

To give you an idea about the output of these alternatives, we did text example extracts. See :ref:`Appendix2`.

Searching for Text
-------------------
You can find out, exactly where on a page a certain text string appears::

    areas = page.search_for("mupdf")

This delivers a list of rectangles (see :ref:`Rect`), each of which surrounds one occurrence of the string "mupdf" (case insensitive). You could use this information to e.g. highlight those areas (PDF only) or create a cross reference of the document.

Please also do have a look at chapter :ref:`cooperation` and at demo programs `demo.py`_ and `demo-lowlevel.py`_. Among other things they contain details on how the :ref:`TextPage`, :ref:`Device` and :ref:`DisplayList` classes can be used for a more direct control, e.g. when performance considerations suggest it.



.. _WorkingWithStories:

Working with Stories
======================

The :ref:`Story` class is a new feature of PyMuPDF version 1.21.0. It represents support for MuPDF's **"story"** interface.

The following is a quote from the book `"MuPDF Explored"`_ by Robin Watts from `Artifex`_:

-----

*Stories provide a way to easily layout styled content for use with devices, such as those offered by Document Writers (...). The concept of a story comes from desktop publishing, which in turn (...) gets it from newspapers. If you consider a traditional newspaper layout, it will consist of various news articles (stories) that are laid out into multiple columns, possibly across multiple pages.*

*Accordingly, MuPDF uses a story to represent a flow of text with styling information. The user of the story can then supply a sequence of rectangles into which the story will be laid out, and the positioned text can then be drawn to an output device. This keeps the concept of the text itself (the story) to be separated from the areas into which the text should be flowed (the layout).*

-----

.. note:: A Story works somewhat similar to an internet browser: It faithfully parses and renders HTML hypertext and also optional stylesheets (CSS). But its **output is a PDF** -- not web pages.


When creating a :ref:`Story`, the input from up to three different information sources is taken into account. All these items are optional.

1. HTML source code, provided as a Python string, from which a so-called **Document Object Model (DOM)** is created. As usual, this string may be read from a file, be stored in a Python variable of the script, **or** be programmatically created by the script itself via an API (:ref:`Xml`).

2. CSS (Cascaded Style Sheet) source code, provided as a Python string. CSS can be used to provide styling information (text font size, color, etc.) like it would happen for web pages. Obviously, this string may also be read from a file.

3. An :ref:`Archive` **must be used** whenever the DOM references images, or uses text fonts except the standard :ref:`Base-14-Fonts`, CJK fonts and the NOTO fonts generated into the PyMuPDF binary.


The :ref:`API<Xml>` allows creating DOMs completely from scratch, including desired styling information. It can also be used to modify or extend **provided** HTML: text can be deleted or replaced, or its styling can be changed. Text -- for example extracted from databases -- can also be added and fill template-like HTML documents.

After the story DOM is considered complete, it can be used to create a PDF document. This happens via the new :ref:`DocumentWriter` class. During the output page creation, the programmer will provide a number of rectangles where the story should place its content.

The story in turn will return completion codes indicating whether or not more content is waiting to be written. Which part of the content will land in which rectangle or on which page is automatically determined by the story itself -- it cannot be influenced other than by providing the rectangles.

Please see the :ref:`Stories recipes<RecipesStories>` for a number of typical use cases.


PDF Maintenance
==================
PDFs are the only document type that can be **modified** using PyMuPDF. Other file types are read-only.

However, you can convert **any document** (including images) to a PDF and then apply all PyMuPDF features to the conversion result. Find out more here :meth:`Document.convert_to_pdf`, and also look at the demo script `pdf-converter.py`_ which can convert any supported document to PDF.

:meth:`Document.save()` always stores a PDF in its current (potentially modified) state on disk.

You normally can choose whether to save to a new file, or just append your modifications to the existing one ("incremental save"), which often is very much faster.

The following describes ways how you can manipulate PDF documents. This description is by no means complete: much more can be found in the following chapters.

Modifying, Creating, Re-arranging and Deleting Pages
-------------------------------------------------------
There are several ways to manipulate the so-called **page tree** (a structure describing all the pages) of a PDF:

:meth:`Document.delete_page` and :meth:`Document.delete_pages` delete pages.

:meth:`Document.copy_page`, :meth:`Document.fullcopy_page` and :meth:`Document.move_page` copy or move a page to other locations within the same document.

:meth:`Document.select` shrinks a PDF down to selected pages. Parameter is a sequence [#f3]_ of the page numbers that you want to keep. These integers must all be in range *0 <= i < page_count*. When executed, all pages **missing** in this list will be deleted. Remaining pages will occur **in the sequence and as many times (!) as you specify them**.

So you can easily create new PDFs with

* the first or last 10 pages,
* only the odd or only the even pages (for doing double-sided printing),
* pages that **do** or **don't** contain a given text,
* reverse the page sequence, ...

... whatever you can think of.

The saved new document will contain links, annotations and bookmarks that are still valid (i.a.w. either pointing to a selected page or to some external resource).

:meth:`Document.insert_page` and :meth:`Document.new_page` insert new pages.

Pages themselves can moreover be modified by a range of methods (e.g. page rotation, annotation and link maintenance, text and image insertion).

Joining and Splitting PDF Documents
------------------------------------

Method :meth:`Document.insert_pdf` copies pages **between different** PDF documents. Here is a simple **joiner** example (*doc1* and *doc2* being openend PDFs)::

    # append complete doc2 to the end of doc1
    doc1.insert_pdf(doc2)

Here is a snippet that **splits** *doc1*. It creates a new document of its first and its last 10 pages::

    doc2 = fitz.open()                 # new empty PDF
    doc2.insert_pdf(doc1, to_page = 9)  # first 10 pages
    doc2.insert_pdf(doc1, from_page = len(doc1) - 10) # last 10 pages
    doc2.save("first-and-last-10.pdf")

More can be found in the :ref:`Document` chapter. Also have a look at `PDFjoiner.py`_.

Embedding Data
---------------

PDFs can be used as containers for abitrary data (executables, other PDFs, text or binary files, etc.) much like ZIP archives.

PyMuPDF fully supports this feature via :ref:`Document` *embfile_** methods and attributes. For some detail read :ref:`Appendix 3`, consult the Wiki on `dealing with embedding files`_, or the example scripts `embedded-copy.py`_, `embedded-export.py`_, `embedded-import.py`_, and `embedded-list.py`_.


Saving
-------

As mentioned above, :meth:`Document.save` will **always** save the document in its current state.

You can write changes back to the **original PDF** by specifying option *incremental=True*. This process is (usually) **extremely fast**, since changes are **appended to the original file** without completely rewriting it.

:meth:`Document.save` options correspond to options of MuPDF's command line utility *mutool clean*, see the following table.

=================== =========== ==================================================
**Save Option**     **mutool**  **Effect**
=================== =========== ==================================================
garbage=1           g           garbage collect unused objects
garbage=2           gg          in addition to 1, compact :data:`xref` tables
garbage=3           ggg         in addition to 2, merge duplicate objects
garbage=4           gggg        in addition to 3, merge duplicate stream content
clean=True          cs          clean and sanitize content streams
deflate=True        z           deflate uncompressed streams
deflate_images=True i           deflate image streams
deflate_fonts=True  f           deflate fontfile streams
ascii=True          a           convert binary data to ASCII format
linear=True         l           create a linearized version
expand=True         d           decompress all streams
=================== =========== ==================================================

.. note:: For an explanation of terms like *object, stream, xref* consult the :ref:`Glossary` chapter.

For example, *mutool clean -ggggz file.pdf* yields excellent compression results. It corresponds to *doc.save(filename, garbage=4, deflate=True)*.

Closing
=========
It is often desirable to "close" a document to relinquish control of the underlying file to the OS, while your program continues.

This can be achieved by the :meth:`Document.close` method. Apart from closing the underlying file, buffer areas associated with the document will be freed.

Further Reading
================
Also have a look at PyMuPDF's `Wiki`_ pages. Especially those named in the sidebar under title **"Recipes"** cover over 15 topics written in "How-To" style.

This document also contains a :ref:`FAQ`. This chapter has close connection to the aforementioned recipes, and it will be extended with more content over time.


-----


.. rubric:: Footnotes

.. [#f1] PyMuPDF lets you also open several image file types just like normal documents. See section :ref:`ImageFiles` in chapter :ref:`Pixmap` for more comments.

.. [#f2] :meth:`Page.get_text` is a convenience wrapper for several methods of another PyMuPDF class, :ref:`TextPage`. The names of these methods correspond to the argument string passed to :meth:`Page.get_text` \:  *Page.get_text("dict")* is equivalent to *TextPage.extractDICT()* \.

.. [#f3] "Sequences" are Python objects conforming to the sequence protocol. These objects implement a method named *__getitem__()*. Best known examples are Python tuples and lists. But *array.array*, *numpy.array* and PyMuPDF's "geometry" objects (:ref:`Algebra`) are sequences, too. Refer to :ref:`SequenceTypes` for details.


.. include:: footer.rst

.. External links:


.. _lxml: https://pypi.org/project/lxml/
.. _metadata import (PDF only): https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/csv2meta.py
.. _metadata export: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/meta2csv.py
.. _toc import (PDF only): https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/csv2toc.py
.. _toc export: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/toc2csv.py
.. _Vector Image Support page: https://github.com/pymupdf/PyMuPDF/wiki/Vector-Image-Support
.. _examples: https://github.com/pymupdf/PyMuPDF/tree/master/examples
.. _Pillow documentation: https://Pillow.readthedocs.io
.. _here it is!: https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/doc-browser.py
.. _PySimpleGUI: https://pypi.org/project/PySimpleGUI/
.. _demo.py: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/demo.py
.. _demo-lowlevel.py: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/demo-lowlevel.py
.. _"MuPDF Explored": https://mupdf.com/docs/mupdf-explored.html
.. _Artifex: https://www.artifex.com
.. _pdf-converter.py: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/pdf-converter.py
.. _PDFjoiner.py: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/PDFjoiner.py
.. _dealing with embedding files: https://github.com/pymupdf/PyMuPDF/wiki/Dealing-with-Embedded-Files
.. _embedded-copy.py: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-copy.py
.. _embedded-export.py: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-export.py
.. _embedded-import.py: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-import.py
.. _embedded-list.py: https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-list.py
.. _Wiki: https://github.com/pymupdf/PyMuPDF/wiki









PyMuPDF-1.21.1/docs/vars.rst

.. include:: header.rst

===============================
Constants and Enumerations
===============================
Constants and enumerations of MuPDF as implemented by PyMuPDF. Each of the following variables is accessible as *fitz.variable*.


Constants
---------

.. py:data:: Base14_Fonts

    Predefined Python list of valid :ref:`Base-14-Fonts`.

    :rtype: list

.. py:data:: csRGB

    Predefined RGB colorspace *fitz.Colorspace(fitz.CS_RGB)*.

    :rtype: :ref:`Colorspace`

.. py:data:: csGRAY

    Predefined GRAY colorspace *fitz.Colorspace(fitz.CS_GRAY)*.

    :rtype: :ref:`Colorspace`

.. py:data:: csCMYK

    Predefined CMYK colorspace *fitz.Colorspace(fitz.CS_CMYK)*.

    :rtype: :ref:`Colorspace`

.. py:data:: CS_RGB

    1 -- Type of :ref:`Colorspace` is RGBA

    :rtype: int

.. py:data:: CS_GRAY

    2 -- Type of :ref:`Colorspace` is GRAY

    :rtype: int

.. py:data:: CS_CMYK

    3 -- Type of :ref:`Colorspace` is CMYK

    :rtype: int

.. py:data:: VersionBind

    'x.xx.x' -- version of PyMuPDF (these bindings)

    :rtype: string

.. py:data:: VersionFitz

    'x.xxx' -- version of MuPDF

    :rtype: string

.. py:data:: VersionDate

    ISO timestamp *YYYY-MM-DD HH:MM:SS* when these bindings were built.

    :rtype: string

.. Note:: The docstring of *fitz* contains information of the above which can be retrieved like so: *print(fitz.__doc__)*, and should look like: *PyMuPDF 1.10.0: Python bindings for the MuPDF 1.10 library, built on 2016-11-30 13:09:13*.

.. py:data:: version

    (VersionBind, VersionFitz, timestamp) -- combined version information where *timestamp* is the generation point in time formatted as "YYYYMMDDhhmmss".

    :rtype: tuple


.. _PermissionCodes:

Document Permissions
----------------------------

====================== =======================================================================
Code                   Permitted Action
====================== =======================================================================
PDF_PERM_PRINT         Print the document
PDF_PERM_MODIFY        Modify the document's contents
PDF_PERM_COPY          Copy or otherwise extract text and graphics
PDF_PERM_ANNOTATE      Add or modify text annotations and interactive form fields
PDF_PERM_FORM          Fill in forms and sign the document
PDF_PERM_ACCESSIBILITY Obsolete, always permitted
PDF_PERM_ASSEMBLE      Insert, rotate, or delete pages, bookmarks, thumbnail images
PDF_PERM_PRINT_HQ      High quality printing
====================== =======================================================================

.. _EncryptionMethods:

PDF encryption method codes
----------------------------

=================== ====================================================
Code                Meaning
=================== ====================================================
PDF_ENCRYPT_KEEP    do not change
PDF_ENCRYPT_NONE    remove any encryption
PDF_ENCRYPT_RC4_40  RC4 40 bit
PDF_ENCRYPT_RC4_128 RC4 128 bit
PDF_ENCRYPT_AES_128 *Advanced Encryption Standard* 128 bit
PDF_ENCRYPT_AES_256 *Advanced Encryption Standard* 256 bit
PDF_ENCRYPT_UNKNOWN unknown
=================== ====================================================

.. _FontExtensions:

Font File Extensions
-----------------------
The table show file extensions you should use when saving fontfile buffers extracted from a PDF. This string is returned by :meth:`Document.get_page_fonts`, :meth:`Page.get_fonts` and :meth:`Document.extract_font`.

==== ============================================================================
Ext  Description
==== ============================================================================
ttf  TrueType font
pfa  Postscript for ASCII font (various subtypes)
cff  Type1C font (compressed font equivalent to Type1)
cid  character identifier font (postscript format)
otf  OpenType font
n/a  not extractable, e.g. :ref:`Base-14-Fonts`, Type 3 fonts and others
==== ============================================================================

.. _TextAlign:

Text Alignment
-----------------------
.. py:data:: TEXT_ALIGN_LEFT

    0 -- align left.

.. py:data:: TEXT_ALIGN_CENTER

    1 -- align center.

.. py:data:: TEXT_ALIGN_RIGHT

    2 -- align right.

.. py:data:: TEXT_ALIGN_JUSTIFY

    3 -- align justify.

.. _TextPreserve:

Text Extraction Flags
---------------------
Option bits controlling the amount of data, that are parsed into a :ref:`TextPage` -- this class is mainly used only internally in PyMuPDF.

For the PyMuPDF programmer, some combination (using Python's ``|`` operator, or simply use ``+``) of these values are aggregated in the ``flags`` integer, a parameter of all text search and text extraction methods. Depending on the individual method, different default combinations of the values are used. Please use a value that meets your situation. Especially make sure to switch off image extraction unless you really need them. The impact on performance and memory is significant!

.. py:data:: TEXT_PRESERVE_LIGATURES

    1 -- If set, ligatures are passed through to the application in their original form. Otherwise ligatures are expanded into their constituent parts, e.g. the ligature "ffi" is expanded into three  eparate characters f, f and i. Default is "on" in PyMuPDF. MuPDF supports the following 7 ligatures: "ff", "fi", "fl", "ffi", "ffl", , "ft", "st".

.. py:data:: TEXT_PRESERVE_WHITESPACE

    2 -- If set, whitespace is passed through. Otherwise any type of horizontal whitespace (including horizontal tabs) will be replaced with space characters of variable width. Default is "on" in PyMuPDF.

.. py:data:: TEXT_PRESERVE_IMAGES

    4 -- If set, then images will be stored in the :ref:`TextPage`. This causes the presence of (usually large!) binary image content in the output of text extractions of types "blocks", "dict", "json", "rawdict", "rawjson", "html", and "xhtml" and is the default there. If used with "blocks" however, only image metadata will be returned, not the image itself.

.. py:data:: TEXT_INHIBIT_SPACES

    8 -- If set, Mupdf will not try to add missing space characters where there are large gaps between characters. In PDF, the creator often does not insert spaces to point to the next character's position, but will provide the direct location address. The default in PyMuPDF is "off" -- so spaces **will be generated**.

.. py:data:: TEXT_DEHYPHENATE

    16 -- Ignore hyphens at line ends and join with next line. Used internally with the text search functions. However, it is generally available: if on, text extractions will return joined text lines (or spans) with the ending hyphen of the first line eliminated. So two separate spans **"first meth-"** and **"od leads to wrong results"** on different lines will be joined to one span **"first method leads to wrong results"** and correspondingly updated bboxes: the characters of the resulting span will no longer have identical y-coordinates.

.. py:data:: TEXT_PRESERVE_SPANS

    32 -- Generate a new line for every span. Not used ("off") in PyMuPDF, but available for your use. Every line in "dict", "json", "rawdict", "rawjson" will contain exactly one span.

.. py:data:: TEXT_MEDIABOX_CLIP

    64 -- If set, characters entirely outside a page's **mediabox** will be ignored. This is default in PyMuPDF.

The following constants represent the default combinations of the above for text extraction and searching:

.. py:data:: TEXTFLAGS_TEXT

.. py:data:: TEXTFLAGS_WORDS

.. py:data:: TEXTFLAGS_BLOCKS

.. py:data:: TEXTFLAGS_DICT

.. py:data:: TEXTFLAGS_RAWDICT

.. py:data:: TEXTFLAGS_HTML

.. py:data:: TEXTFLAGS_XHTML

.. py:data:: TEXTFLAGS_XML

.. py:data:: TEXTFLAGS_SEARCH


.. _linkDest Kinds:

Link Destination Kinds
-----------------------
Possible values of :attr:`linkDest.kind` (link destination kind).

.. py:data:: LINK_NONE

    0 -- No destination. Indicates a dummy link.

    :rtype: int

.. py:data:: LINK_GOTO

    1 -- Points to a place in this document.

    :rtype: int

.. py:data:: LINK_URI

    2 -- Points to a URI -- typically a resource specified with internet syntax.

    :rtype: int

.. py:data:: LINK_LAUNCH

    3 -- Launch (open) another file (of any "executable" type).

    :rtype: int

.. py:data:: LINK_NAMED

    4 -- points to a named location.

    :rtype: int

.. py:data:: LINK_GOTOR

    5 -- Points to a place in another PDF document.

    :rtype: int

.. _linkDest Flags:

Link Destination Flags
-------------------------

.. Note:: The rightmost byte of this integer is a bit field, so test the truth of these bits with the *&* operator.

.. py:data:: LINK_FLAG_L_VALID

    1  (bit 0) Top left x value is valid

    :rtype: bool

.. py:data:: LINK_FLAG_T_VALID

    2  (bit 1) Top left y value is valid

    :rtype: bool

.. py:data:: LINK_FLAG_R_VALID

    4  (bit 2) Bottom right x value is valid

    :rtype: bool

.. py:data:: LINK_FLAG_B_VALID

    8  (bit 3) Bottom right y value is valid

    :rtype: bool

.. py:data:: LINK_FLAG_FIT_H

    16 (bit 4) Horizontal fit

    :rtype: bool

.. py:data:: LINK_FLAG_FIT_V

    32 (bit 5) Vertical fit

    :rtype: bool

.. py:data:: LINK_FLAG_R_IS_ZOOM

    64 (bit 6) Bottom right x is a zoom figure

    :rtype: bool


Annotation Related Constants
-----------------------------
See chapter 8.4.5, pp. 615 of the :ref:`AdobeManual` for details.

.. _AnnotationTypes:

Annotation Types
~~~~~~~~~~~~~~~~~
These identifiers also cover **links** and **widgets**: the PDF specification technically handles them all in the same way, whereas **MuPDF** (and PyMuPDF) treats them as three basically different types of objects.

::

 PDF_ANNOT_TEXT 0
 PDF_ANNOT_LINK 1 # <=== Link object in PyMuPDF
 PDF_ANNOT_FREE_TEXT 2
 PDF_ANNOT_LINE 3
 PDF_ANNOT_SQUARE 4
 PDF_ANNOT_CIRCLE 5
 PDF_ANNOT_POLYGON 6
 PDF_ANNOT_POLY_LINE 7
 PDF_ANNOT_HIGHLIGHT 8
 PDF_ANNOT_UNDERLINE 9
 PDF_ANNOT_SQUIGGLY 10
 PDF_ANNOT_STRIKE_OUT 11
 PDF_ANNOT_REDACT 12
 PDF_ANNOT_STAMP 13
 PDF_ANNOT_CARET 14
 PDF_ANNOT_INK 15
 PDF_ANNOT_POPUP 16
 PDF_ANNOT_FILE_ATTACHMENT 17
 PDF_ANNOT_SOUND 18
 PDF_ANNOT_MOVIE 19
 PDF_ANNOT_RICH_MEDIA 20
 PDF_ANNOT_WIDGET 21 # <=== Widget object in PyMuPDF
 PDF_ANNOT_SCREEN 22
 PDF_ANNOT_PRINTER_MARK 23
 PDF_ANNOT_TRAP_NET 24
 PDF_ANNOT_WATERMARK 25
 PDF_ANNOT_3D 26
 PDF_ANNOT_PROJECTION 27
 PDF_ANNOT_UNKNOWN -1

.. _AnnotationFlags:

Annotation Flag Bits
~~~~~~~~~~~~~~~~~~~~~
::

    PDF_ANNOT_IS_INVISIBLE 1 << (1-1)
    PDF_ANNOT_IS_HIDDEN 1 << (2-1)
    PDF_ANNOT_IS_PRINT 1 << (3-1)
    PDF_ANNOT_IS_NO_ZOOM 1 << (4-1)
    PDF_ANNOT_IS_NO_ROTATE 1 << (5-1)
    PDF_ANNOT_IS_NO_VIEW 1 << (6-1)
    PDF_ANNOT_IS_READ_ONLY 1 << (7-1)
    PDF_ANNOT_IS_LOCKED 1 << (8-1)
    PDF_ANNOT_IS_TOGGLE_NO_VIEW 1 << (9-1)
    PDF_ANNOT_IS_LOCKED_CONTENTS 1 << (10-1)

.. _AnnotationLineEnds:

Annotation Line Ending Styles
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::

 PDF_ANNOT_LE_NONE 0
 PDF_ANNOT_LE_SQUARE 1
 PDF_ANNOT_LE_CIRCLE 2
 PDF_ANNOT_LE_DIAMOND 3
 PDF_ANNOT_LE_OPEN_ARROW 4
 PDF_ANNOT_LE_CLOSED_ARROW 5
 PDF_ANNOT_LE_BUTT 6
 PDF_ANNOT_LE_R_OPEN_ARROW 7
 PDF_ANNOT_LE_R_CLOSED_ARROW 8
 PDF_ANNOT_LE_SLASH 9

Widget Constants

.. _WidgetTypes:

Widget Types (*field_type*)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::

    PDF_WIDGET_TYPE_UNKNOWN 0
    PDF_WIDGET_TYPE_BUTTON 1
    PDF_WIDGET_TYPE_CHECKBOX 2
    PDF_WIDGET_TYPE_COMBOBOX 3
    PDF_WIDGET_TYPE_LISTBOX 4
    PDF_WIDGET_TYPE_RADIOBUTTON 5
    PDF_WIDGET_TYPE_SIGNATURE 6
    PDF_WIDGET_TYPE_TEXT 7

Text Widget Subtypes (*text_format*)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::

 PDF_WIDGET_TX_FORMAT_NONE 0
 PDF_WIDGET_TX_FORMAT_NUMBER 1
 PDF_WIDGET_TX_FORMAT_SPECIAL 2
 PDF_WIDGET_TX_FORMAT_DATE 3
 PDF_WIDGET_TX_FORMAT_TIME 4

Widget flags (*field_flags*)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Common to all field types**::

    PDF_FIELD_IS_READ_ONLY 1
    PDF_FIELD_IS_REQUIRED 1 << 1
    PDF_FIELD_IS_NO_EXPORT 1 << 2

**Text widgets**::

    PDF_TX_FIELD_IS_MULTILINE  1 << 12
    PDF_TX_FIELD_IS_PASSWORD  1 << 13
    PDF_TX_FIELD_IS_FILE_SELECT  1 << 20
    PDF_TX_FIELD_IS_DO_NOT_SPELL_CHECK  1 << 22
    PDF_TX_FIELD_IS_DO_NOT_SCROLL  1 << 23
    PDF_TX_FIELD_IS_COMB  1 << 24
    PDF_TX_FIELD_IS_RICH_TEXT  1 << 25

**Button widgets**::

    PDF_BTN_FIELD_IS_NO_TOGGLE_TO_OFF  1 << 14
    PDF_BTN_FIELD_IS_RADIO  1 << 15
    PDF_BTN_FIELD_IS_PUSHBUTTON  1 << 16
    PDF_BTN_FIELD_IS_RADIOS_IN_UNISON  1 << 25

**Choice widgets**::

    PDF_CH_FIELD_IS_COMBO  1 << 17
    PDF_CH_FIELD_IS_EDIT  1 << 18
    PDF_CH_FIELD_IS_SORT  1 << 19
    PDF_CH_FIELD_IS_MULTI_SELECT  1 << 21
    PDF_CH_FIELD_IS_DO_NOT_SPELL_CHECK  1 << 22
    PDF_CH_FIELD_IS_COMMIT_ON_SEL_CHANGE  1 << 26


.. _BlendModes:

PDF Standard Blend Modes
----------------------------

For an explanation see :ref:`AdobeManual`, page 324::

    PDF_BM_Color "Color"
    PDF_BM_ColorBurn "ColorBurn"
    PDF_BM_ColorDodge "ColorDodge"
    PDF_BM_Darken "Darken"
    PDF_BM_Difference "Difference"
    PDF_BM_Exclusion "Exclusion"
    PDF_BM_HardLight "HardLight"
    PDF_BM_Hue "Hue"
    PDF_BM_Lighten "Lighten"
    PDF_BM_Luminosity "Luminosity"
    PDF_BM_Multiply "Multiply"
    PDF_BM_Normal "Normal"
    PDF_BM_Overlay "Overlay"
    PDF_BM_Saturation "Saturation"
    PDF_BM_Screen "Screen"
    PDF_BM_SoftLight "Softlight"


.. _StampIcons:

Stamp Annotation Icons
----------------------------
MuPDF has defined the following icons for **rubber stamp** annotations::

    STAMP_Approved 0
    STAMP_AsIs 1
    STAMP_Confidential 2
    STAMP_Departmental 3
    STAMP_Experimental 4
    STAMP_Expired 5
    STAMP_Final 6
    STAMP_ForComment 7
    STAMP_ForPublicRelease 8
    STAMP_NotApproved 9
    STAMP_NotForPublicRelease 10
    STAMP_Sold 11
    STAMP_TopSecret 12
    STAMP_Draft 13

.. include:: footer.rst







PyMuPDF-1.21.1/docs/version.rst

Covered Version
--------------------

This documentation covers PyMuPDF v1.21.1 features as of **2022-12-13 00:00:01**.

.. note:: The major and minor versions of **PyMuPDF** and **MuPDF** will always be the same. Only the third qualifier (patch level) may deviate from that of MuPDF.







PyMuPDF-1.21.1/docs/widget.rst

.. include:: header.rst

.. _Widget:

================
Widget
================

This class represents a PDF Form field, also called a "widget". Throughout this documentation, we are using these terms synonymously. Fields technically are a special case of PDF annotations, which allow users with limited permissions to enter information in a PDF. This is primarily used for filling out forms.

Like annotations, widgets live on PDF pages. Similar to annotations, the first widget on a page is accessible via :attr:`Page.first_widget` and subsequent widgets can be accessed via the :attr:`Widget.next` property.

*(Changed in version 1.16.0)* MuPDF no longer treats widgets as a subset of general annotations. Consequently, :attr:`Page.first_annot` and :meth:`Annot.next` will deliver **non-widget annotations exclusively**, and be *None* if only form fields exist on a page. Vice versa, :attr:`Page.first_widget` and :meth:`Widget.next` will only show widgets. This design decision is purely internal to MuPDF; technically, links, annotations and fields have a lot in common and also continue to share the better part of their code within (Py-) MuPDF.


**Class API**

.. class:: Widget

    .. method:: button_states

      *New in version 1.18.15*

       Return the names of On / Off (i.e. selected / clicked or not) states a button field may have. While the 'Off' state usually is also named like so, the 'On' state is often given a name relating to the functional context, for example 'Yes', 'Female', etc.

       This method helps finding out the possible values of :attr:`field_value` in these cases.

       :returns: a dictionary with the names of 'On' and 'Off' for the *normal* and the *pressed-down* appearance of button widgets. Example:

         >>> print(field.field_name, field.button_states())
         Gender Second person {'down': ['Male', 'Off'], 'normal': ['Male', 'Off']}


    .. method:: update

       After any changes to a widget, this method **must be used** to store them in the PDF [#f1]_.

    .. method:: reset

       Reset the field's value to its default -- if defined -- or remove it. Do not forget to issue :meth:`update` afterwards.

    .. attribute:: next

       Point to the next form field on the page. The last widget returns *None*.

    .. attribute:: border_color

       A list of up to 4 floats defining the field's border color. Default value is *None* which causes border style and border width to be ignored.

    .. attribute:: border_style

       A string defining the line style of the field's border. See :attr:`Annot.border`. Default is "s" ("Solid") -- a continuous line. Only the first character (upper or lower case) will be regarded when creating a widget.

    .. attribute:: border_width

       A float defining the width of the border line. Default is 1.

    .. attribute:: border_dashes

       A list/tuple of integers defining the dash properties of the border line. This is only meaningful if *border_style == "D"* and :attr:`border_color` is provided.

    .. attribute:: choice_values

       Python sequence of strings defining the valid choices of list boxes and combo boxes. For these widget types, this property is mandatory and must contain at least two items. Ignored for other types.

    .. attribute:: field_name

       A mandatory string defining the field's name. No checking for duplicates takes place.

    .. attribute:: field_label

       An optional string containing an "alternate" field name. Typically used for any notes, help on field usage, etc. Default is the field name.

    .. attribute:: field_value

       The value of the field.

    .. attribute:: field_flags

       An integer defining a large amount of properties of a field. Be careful when changing this attribute as this may change the field type.

    .. attribute:: field_type

       A mandatory integer defining the field type. This is a value in the range of 0 to 6. It cannot be changed when updating the widget.

    .. attribute:: field_type_string

       A string describing (and derived from) the field type.

    .. attribute:: fill_color

       A list of up to 4 floats defining the field's background color.

    .. attribute:: button_caption

       The caption string of a button-type field.

    .. attribute:: is_signed

       A bool indicating the signing status of a signature field, else *None*.

    .. attribute:: rect

       The rectangle containing the field.

    .. attribute:: text_color

       A list of **1, 3 or 4 floats** defining the text color. Default value is black (`[0, 0, 0]`).

    .. attribute:: text_font

       A string defining the font to be used. Default and replacement for invalid values is *"Helv"*. For valid font reference names see the table below.

    .. attribute:: text_fontsize

       A float defining the text fontsize. Default value is zero, which causes PDF viewer software to dynamically choose a size suitable for the annotation's rectangle and text amount.

    .. attribute:: text_maxlen

       An integer defining the maximum number of text characters. PDF viewers will (should) not accept a longer text.

    .. attribute:: text_type

       An integer defining acceptable text types (e.g. numeric, date, time, etc.). For reference only for the time being -- will be ignored when creating or updating widgets.

    .. attribute:: xref

       The PDF :data:`xref` of the widget.

    .. attribute:: script

       * New in version 1.16.12
       
       JavaScript text (unicode) for an action associated with the widget, or *None*. This is the only script action supported for **button type** widgets.

    .. attribute:: script_stroke

       * New in version 1.16.12
       
       JavaScript text (unicode) to be performed when the user types a key-stroke into a text field or combo box or modifies the selection in a scrollable list box. This action can check the keystroke for validity and reject or modify it. *None* if not present.

    .. attribute:: script_format

       * New in version 1.16.12
       
       JavaScript text (unicode) to be performed before the field is formatted to display its current value. This action can modify the field’s value before formatting. *None* if not present.

    .. attribute:: script_change

       * New in version 1.16.12
       
       JavaScript text (unicode) to be performed when the field’s value is changed. This action can check the new value for validity. *None* if not present.

    .. attribute:: script_calc

       * New in version 1.16.12
       
       JavaScript text (unicode) to be performed to recalculate the value of this field when that of another field changes. *None* if not present.

    .. note::
       1. For **adding** or **changing** one of the above scripts, just put the appropriate JavaScript source code in the widget attribute. To **remove** a script, set the respective attribute to *None*.
       2. Button fields only support :attr:`script`. Other script entries will automatically be set to *None*.


Standard Fonts for Widgets
----------------------------------
Widgets use their own resources object */DR*. A widget resources object must at least contain a */Font* object. Widget fonts are independent from page fonts. We currently support the 14 PDF base fonts using the following fixed reference names, or any name of an already existing field font. When specifying a text font for new or changed widgets, **either** choose one in the first table column (upper and lower case supported), **or** one of the already existing form fonts. In the latter case, spelling must exactly match.

To find out already existing field fonts, inspect the list :attr:`Document.FormFonts`.

============= =======================
**Reference** **Base14 Fontname**
============= =======================
CoBI          Courier-BoldOblique
CoBo          Courier-Bold
CoIt          Courier-Oblique
Cour          Courier
HeBI          Helvetica-BoldOblique
HeBo          Helvetica-Bold
HeIt          Helvetica-Oblique
Helv          Helvetica **(default)**
Symb          Symbol
TiBI          Times-BoldItalic
TiBo          Times-Bold
TiIt          Times-Italic
TiRo          Times-Roman
ZaDb          ZapfDingbats
============= =======================

You are generally free to use any font for every widget. However, we recommend using *ZaDb* ("ZapfDingbats") and fontsize 0 for check boxes: typical viewers will put a correctly sized tickmark in the field's rectangle, when it is clicked.

Supported Widget Types
-----------------------
PyMuPDF supports the creation and update of many, but not all widget types.

* text (``PDF_WIDGET_TYPE_TEXT``)
* push button (``PDF_WIDGET_TYPE_BUTTON``)
* check box (``PDF_WIDGET_TYPE_CHECKBOX``)
* combo box (``PDF_WIDGET_TYPE_COMBOBOX``)
* list box (``PDF_WIDGET_TYPE_LISTBOX``)
* radio button (``PDF_WIDGET_TYPE_RADIOBUTTON``): PyMuPDF does not currently support groups of (interconnected) buttons, where setting one automatically unsets the other buttons in the group. The widget object also does not reflect the presence of a button group. Setting or unsetting happens via values ``True`` and ``False`` and will always work without affecting other radio buttons.
* signature (``PDF_WIDGET_TYPE_SIGNATURE``) **read only**.

.. rubric:: Footnotes

.. [#f1] If you intend to re-access a new or updated field (e.g. for making a pixmap), make sure to reload the page first. Either close and re-open the document, or load another page first, or simply do ``page = doc.reload_page(page)``.

.. include:: footer.rst







PyMuPDF-1.21.1/docs/xml-class.rst

.. include:: header.rst

.. _Xml:

================
Xml
================

.. role:: htmlTag(emphasis)

* New in v1.21.0

This represents an HTML or an XML node. It is a helper class intended to access the DOM (Document Object Model) content of a :ref:`Story` object.

There is no need to ever directly construct an :ref:`Xml` object: after creating a :ref:`Story`, simply take :attr:`Story.body` -- which is an Xml node -- and use it to navigate your way through the story's DOM.


================================ ===========================================================================================
**Method / Attribute**             **Description**
================================ ===========================================================================================
:meth:`~.add_bullet_list`        add a :htmlTag:`ul` tag - bulleted list, context manager.
:meth:`~.add_codeblock`          add a :htmlTag:`pre` tag, context manager.
:meth:`~.add_description_list`   add a :htmlTag:`dl` tag, context manager.
:meth:`~.add_division`           add a :htmlTag:`div` tag (renamed from “section”), context manager.
:meth:`~.add_header`             add a header tag (one of :htmlTag:`h1` to :htmlTag:`h6`), context manager.
:meth:`~.add_horizontal_line`    add a :htmlTag:`hr` tag.
:meth:`~.add_image`              add a :htmlTag:`img` tag.
:meth:`~.add_link`               add a :htmlTag:`a` tag.
:meth:`~.add_number_list`        add a :htmlTag:`ol` tag, context manager.
:meth:`~.add_paragraph`          add a :htmlTag:`p` tag.
:meth:`~.add_span`               add a :htmlTag:`span` tag, context manager.
:meth:`~.add_subscript`          add subscript text(:htmlTag:`sub` tag) - inline element, treated like text.
:meth:`~.add_superscript`        add subscript text (:htmlTag:`sup` tag) - inline element, treated like text.
:meth:`~.add_code`               add code text (:htmlTag:`code` tag) - inline element, treated like text.
:meth:`~.add_var`                add code text (:htmlTag:`code` tag) - inline element, treated like text.
:meth:`~.add_samp`               add code text (:htmlTag:`code` tag) - inline element, treated like text.
:meth:`~.add_kbd`                add code text (:htmlTag:`code` tag) - inline element, treated like text.
:meth:`~.add_text`               add a text string. Line breaks ``\n`` are honored as :htmlTag:`br` tags.
:meth:`~.set_align`              sets the alignment using a CSS style spec. Only works for block-level tags.
:meth:`~.set_attribute`          sets an arbitrary key to some value (which may be empty).
:meth:`~.set_bgcolor`            sets the background color. Only works for block-level tags.
:meth:`~.set_bold`               sets bold on or off or to some string value.
:meth:`~.set_color`              sets text color.
:meth:`~.set_columns`            sets the number of columns. Argument may be any valid number or string.
:meth:`~.set_font`               sets the font-family, e.g. “sans-serif”.
:meth:`~.set_fontsize`           sets the font size. Either a float or a valid HTML/CSS string.
:meth:`~.set_id`                 sets a :htmlTag:`id`. A check for uniqueness is performed.
:meth:`~.set_italic`             sets italic on or off or to some string value.
:meth:`~.set_leading`            set inter-block text distance (``-mupdf-leading``), only works on block-level nodes.
:meth:`~.set_lineheight`         set height of a line. Float like 1.5, which sets to `1.5 * fontsize`.
:meth:`~.set_margins`            sets the margin(s), float or string with up to 4 values.
:meth:`~.set_pagebreak_after`    insert a page break after this node.
:meth:`~.set_pagebreak_before`   insert a page break before this node.
:meth:`~.set_properties`         set any or all desired properties in one call.
:meth:`~.add_style`              set (add) some “style” attribute not supported by its own ``set_`` method.
:meth:`~.add_class`              set (add) some “class” attribute.
:meth:`~.set_text_indent`        set indentation for first textblock line. Only works for block-level nodes.
:attr:`~.tagname`                either the HTML tag name like :htmlTag:`p` or ``None`` if a text node.
:attr:`~.text`                   either the node's text or ``None`` if a tag node.
:attr:`~.is_text`                check if the node is a text.
:attr:`~.first_child`            contains the first node one level below this one (or ``None``).
:attr:`~.last_child`             contains the last node one level below this one (or ``None``).
:attr:`~.next`                   the next node at the same level (or ``None``).
:attr:`~.previous`               the previous node at the same level.
:attr:`~.root`                   the top node of the DOM, which hence has the tagname :htmlTag:`html`.
================================ ===========================================================================================



**Class API**

.. class:: Xml

    .. method:: add_bullet_list

       Add an :htmlTag:`ul` tag - bulleted list, context manager. See `ul <https://developer.mozilla.org/en-US/docs/Web/HTML/Element/ul>`_.

    .. method:: add_codeblock

       Add a :htmlTag:`pre` tag, context manager. See `pre <https://developer.mozilla.org/en-US/docs/Web/HTML/Element/pre>`_.

    .. method:: add_description_list

       Add a :htmlTag:`dl` tag, context manager. See `dl <https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dl>`_.

    .. method:: add_division

       Add a :htmlTag:`div` tag, context manager. See `div <https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div>`_.

    .. method:: add_header(value)

       Add a header tag (one of :htmlTag:`h1` to :htmlTag:`h6`), context manager. See `headings <https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Heading_Elements>`_.

       :arg int value: a value 1 - 6.

    .. method:: add_horizontal_line

       Add a :htmlTag:`hr` tag. See `hr <https://developer.mozilla.org/en-US/docs/Web/HTML/Element/hr>`_.

    .. method:: add_image(name, width=None, height=None)

       Add an :htmlTag:`img` tag. This causes the inclusion of the named image in the DOM.

       :arg str name: the filename of the image. This **must be the member name** of some entry of the :ref:`Archive` parameter of the :ref:`Story` constructor.
       :arg width: if provided, either an absolute (int) value, or a percentage string like "30%". A percentage value refers to the width of the specified ``where`` rectangle in :meth:`Story.place`. If this value is provided and ``height`` is omitted, the image will be included keeping its aspect ratio.
       :arg height: if provided, either an absolute (int) value, or a percentage string like "30%". A percentage value refers to the height of the specified ``where`` rectangle in :meth:`Story.place`. If this value is provided and ``width`` is omitted, the image's aspect ratio will be honored.

    .. method:: add_link(href, text=None)

       Add an :htmlTag:`a` tag - inline element, treated like text.

       :arg str href: the URL target.
       :arg str text: the text to display. If omitted, the ``href`` text is shown instead.

    .. method:: add_number_list

       Add an :htmlTag:`ol` tag, context manager.

    .. method:: add_paragraph

       Add a :htmlTag:`p` tag, context manager.

    .. method:: add_span

       Add a :htmlTag:`span` tag, context manager. See `span`_

    .. method:: add_subscript(text)

       Add "subscript" text(:htmlTag:`sub` tag) - inline element, treated like text.

    .. method:: add_superscript(text)

       Add "superscript" text (:htmlTag:`sup` tag) - inline element, treated like text.

    .. method:: add_code(text)

       Add "code" text (:htmlTag:`code` tag) - inline element, treated like text.

    .. method:: add_var(text)

       Add "variable" text (:htmlTag:`var` tag) - inline element, treated like text.

    .. method:: add_samp(text)

       Add "sample output" text (:htmlTag:`samp` tag) - inline element, treated like text.

    .. method:: add_kbd(text)

       Add "keyboard input" text (:htmlTag:`kbd` tag) - inline element, treated like text.

    .. method:: add_text(text)

       Add a text string. Line breaks ``\n`` are honored as :htmlTag:`br` tags.

    .. method:: set_align(value)

       Set the text alignment. Only works for block-level tags.

       :arg value: either one of the :ref:`TextAlign` or the `text-align <https://developer.mozilla.org/en-US/docs/Web/CSS/text-align>`_ values.

    .. method:: set_attribute(key, value=None)

       Set an arbitrary key to some value (which may be empty).

       :arg str key: the name of the attribute.
       :arg str value: the (optional) value of the attribute.

    .. method:: get_attributes()

       Retrieve all attributes of the current nodes as a dictionary.

       :returns: a dictionary with the attributes and their values of the node.

    .. method:: get_attribute_value(key)

       Get the attribute value of ``key``.

       :arg str key: the name of the attribute.

       :returns: a string with the value of ``key``.

    .. method:: remove_attribute(key)

       Remove the attribute ``key`` from the node.

       :arg str key: the name of the attribute.

    .. method:: set_bgcolor(value)

       Sets the background color. Only works for block-level tags.

       :arg value: either an RGB value like (255, 0, 0) (for "red") or a valid `background-color <https://developer.mozilla.org/en-US/docs/Web/CSS/background-color>`_ value.

    .. method:: set_bold(value)

       Sets bold on or off or to some string value.

       :arg value: ``True``, ``False`` or a valid `font-weight <https://developer.mozilla.org/en-US/docs/Web/CSS/font-weight>`_ value.

    .. method:: set_color(value)

       Set the color of the text following.

       :arg value: either an RGB value like (255, 0, 0) (for "red") or a valid `color <https://developer.mozilla.org/en-US/docs/Web/CSS/color_value>`_ value.

    .. method:: set_columns(value)

       Sets the number of columns.

       :arg value: a valid `columns <https://developer.mozilla.org/en-US/docs/Web/CSS/columns>`_ value.

       .. note:: Currently ignored - supported in a future MuPDF version.

    .. method:: set_font(value)

       Set the font-family.

       :arg str value: e.g. "sans-serif".

    .. method:: set_fontsize(value)

       Set the font size for text following.

       :arg value: a float or a valid `font-size <https://developer.mozilla.org/en-US/docs/Web/CSS/font-size>`_ value.

    .. method:: set_id(unqid)

       Sets a :htmlTag:`id`. This serves as a unique identification of the node within the DOM. Use it to easily locate the node to inspect or modify it. A check for uniqueness is performed.

       :arg str unqid: id string of the node.

    .. method:: set_italic(value)

       Sets italic on or off or to some string value for the text following it.

       :arg value: ``True``, ``False`` or some valid `font-style <https://developer.mozilla.org/en-US/docs/Web/CSS/font-style>`_ value.

    .. method:: set_leading(value)

       Set inter-block text distance (``-mupdf-leading``), only works on block-level nodes.

       :arg float value: the distance in points to the previous block.

    .. method:: set_lineheight(value)

       Set height of a line.

       :arg value:  a float like 1.5 (which sets to `1.5 * fontsize`), or some valid `line-height <https://developer.mozilla.org/en-US/docs/Web/CSS/line-height>`_ value.

    .. method:: set_margins(value)

       Sets the margin(s).

       :arg value: float or string with up to 4 values. See `CSS documentation <https://developer.mozilla.org/en-US/docs/Web/CSS/margin>`_.

    .. method:: set_pagebreak_after

       Insert a page break after this node.

    .. method:: set_pagebreak_before

       Insert a page break before this node.

    .. method:: set_properties(align=None, bgcolor=None, bold=None, color=None, columns=None, font=None, fontsize=None, indent=None, italic=None, leading=None, lineheight=None, margins=None, pagebreak_after=False, pagebreak_before=False, unqid=None, cls=None)

       Set any or all desired properties in one call. The meaning of argument values equal the values of the corresponding ``set_`` methods.

       .. note:: The properties set by this method are directly attached to the node, whereas every ``set_`` method generates a new :htmlTag:`span` below the current node that has the respective property. So to e.g. "globally" set some property for the :htmlTag:`body`, this method must be used.

    .. method:: add_style(value)

       Set (add) some style attribute not supported by its own ``set_`` method.

       :arg str value: any valid CSS style value.

    .. method:: add_class(value)

       Set (add) some "class" attribute.

       :arg str value: the name of the class. Must have been defined in either the HTML or the CSS source of the DOM.

    .. method:: set_text_indent(value)

       Set indentation for the first textblock line. Only works for block-level nodes.

       :arg value: a valid `text-indent <https://developer.mozilla.org/en-US/docs/Web/CSS/text-indent>`_ value. Please note that negative values do not work.


    .. method:: append_child(node)

       Append a child node. This is a low-level method used by other methods like :meth:`Xml.add_paragraph`.

       :arg node: the :ref:`Xml` node to append.

    .. method:: create_text_node(text)

       Create direct text for the current node

       :arg str text: the text to append.

       :rtype: :ref:`Xml`
       :returns: the created element.

    .. method:: create_element(tag)

       Create a new node with a given tag. This a low-level method used by other methods like :meth:`Xml.add_paragraph`.

       :arg str tag: the element tag.

       :rtype: :ref:`Xml`
       :returns: the created element. To actually bind it to the DOM, use :meth:`Xml.append_child`.

    .. method:: insert_before(elem)

       Insert the given element ``elem`` before this node.

       :arg elem: some :ref:`Xml` element.

    .. method:: insert_after(elem)

       Insert the given element ``elem`` after this node.

       :arg elem: some :ref:`Xml` element.

    .. method:: clone()

       Make a copy of this node, which then may be appended (using :meth:`Xml.append_child`) or inserted (using one of :meth:`Xml.insert_before`, :meth:`Xml.insert_after`) in this DOM.

       :returns: the clone (:ref:`Xml`) of the current node.

    .. method:: remove()

       Remove this node from the DOM.


    .. method:: debug()

       For debugging purposes, print this node's structure in a simplified form.

    .. method:: find(tag, att, match)

       Under the current node, find a node with the given ``tag``, atribute ``att`` and value ``match``.

       :arg str tag: restrict search to this tag. May be ``None`` for unrestricted search.
       :arg str att: check this attribute.
       :arg str match: the desired attribute value to match.

       :rtype: :ref:`Xml`.
       :returns: ``None`` if nothing found, otherwise the first matching node.

    .. method:: find_next( tag, att, match)

       Continue a previous :meth:`Xml.find` with the same values.

       :rtype: :ref:`Xml`.
       :returns: ``None`` if none more found, otherwise the next matching node.


    .. attribute:: tagname

       Either the HTML tag name like :htmlTag:`p` or ``None`` if a text node.

    .. attribute:: text

       Either the node's text or ``None`` if a tag node.

    .. attribute:: is_text

       Check if a text node.

    .. attribute:: first_child

       Contains the first node one level below this one (or ``None``).

    .. attribute:: last_child

       Contains the last node one level below this one (or ``None``).

    .. attribute:: next

       The next node at the same level (or ``None``).

    .. attribute:: previous

       The previous node at the same level.

    .. attribute:: root

       The top node of the DOM, which hence has the tagname :htmlTag:`html`.


Setting Text properties
------------------------

In HTML tags can be nested such that innermost text **inherits properties** from the tag enveloping its parent tag. For example ``<p><b>some bold text<i>this is bold and italic</i></b>regular text</p>``.

To achieve the same effect, methods like :meth:`Xml.set_bold` and :meth:`Xml.set_italic` each open a temporary :htmlTag:`span` with the desired property underneath the current node.

In addition, these methods return there parent node, so they can be concatenated with each other.



Context Manager support
------------------------
The standard way to add nodes to a DOM is this::

   body = story.body
   para = body.add_paragraph()  # add a paragraph
   para.set_bold()  # text that follows will be bold
   para.add_text("some bold text")
   para.set_italic()  # text that follows will additionally be italic
   para.add_txt("this is bold and italic")
   para.set_italic(False).set_bold(False)  # all following text will be regular
   para.add_text("regular text")



Methods that are flagged as "context managers" can conveniently be used in this way::

   body = story.body
   with body.add_paragraph() as para:
      para.set_bold().add_text("some bold text")
      para.set_italic().add_text("this is bold and italic")
      para.set_italic(False).set_bold(False).add_text("regular text")
      para.add_text("more regular text")

.. include:: footer.rst

.. External links:

.. _span: https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span







PyMuPDF-1.21.1/docs/znames.rst

.. include:: header.rst

.. _Deprecated:

================
Deprecated Names
================

The original naming convention for methods and properties has been "camelCase". Since its creation around 2013, a tremendous increase of functionality has happened in PyMuPDF -- and with it a corresponding increase in classes, methods and properties. In too many cases, this has led to non-intuitive, illogical and ugly names, difficult to memorize or guess.

A few versions ago, I therefore decided to shift gears and switch to a "snake_cased" naming standard.
This was a major effort, which needed a step-wise approach. I think am done with it now (version 1.18.14).

The following list maps deprecated names to their new versions. For example, property ``pageCount`` became ``page_count`` in the :ref:`Document` class. There also are less obvious name changes, e.g. method ``getPNGdata`` was renamed to ``tobytes`` in the :ref:`Pixmap` class.

Names of classes (camel case) and package-wide constants (the majority is upper case) remain untouched.

Old names will remain available as deprecated aliases through MuPDF version 1.19.0 and **be removed** in the version that follows it - probably version 1.20.0, but this depends on upstream decisions (MuPDF).

Starting with version 1.19.0, we will issue deprecation warnings on ``sys.stderr`` like ``Deprecation: 'newPage' removed from class 'Document' after v1.19.0 - use 'new_page'.`` when aliased methods are being used. Using a deprecated property will not cause this type of warning.

Starting immediately, all deprecated objects (methods and properties) will show a copy of the original's docstring, **prefixed** with the deprecation message, for example::

    >>> print(fitz.Document.pageCount.__doc__)
    *** Deprecated and removed in version following 1.19.0 - use 'page_count'. ***
    Number of pages.
    >>> print(fitz.Document.newPage.__doc__)
    *** Deprecated and removed in version following 1.19.0 - use 'new_page'. ***
    Create and return a new page object.

        Args:
            pno: (int) insert before this page. Default: after last page.
            width: (float) page width in points. Default: 595 (ISO A4 width).
            height: (float) page height in points. Default 842 (ISO A4 height).
        Returns:
            A Page object.
        

There is a utility script `alias-changer.py <https://github.com/pymupdf/PyMuPDF-Utilities/alias-changer.py>`_ which can be used to do mass-renames in your scripts. It accepts either a single file or a folder as argument. If a folder is supplied, all its Python files and those of its subfolders are changed. Optionally, backups of the scripts can be taken.

Deprecated names are not separately documented. The following list will help you find the documentation of the original.

.. note:: This is automatically generated. One or two items refer to yet undocumented methods - please simply ignore them.

.. include:: deprecated.rst

.. include:: footer.rst







PyMuPDF-1.21.1/fitz/__init__.py

# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
import sys

from fitz.fitz import *

# define the supported colorspaces for convenience
fitz.csRGB = fitz.Colorspace(fitz.CS_RGB)
fitz.csGRAY = fitz.Colorspace(fitz.CS_GRAY)
fitz.csCMYK = fitz.Colorspace(fitz.CS_CMYK)
csRGB = fitz.csRGB
csGRAY = fitz.csGRAY
csCMYK = fitz.csCMYK

# create the TOOLS object.
#
# Unfortunately it seems that this is never be destructed even if we use an
# atexit() handler, which makes MuPDF's Memento list it as a leak. In fitz.i
# we use Memento_startLeaking()/Memento_stopLeaking() when allocating
# the Tools instance so at least the leak is marked as known.
#
TOOLS = fitz.Tools()
TOOLS.thisown = True
fitz.TOOLS = TOOLS

# This atexit handler runs, but doesn't cause ~Tools() to be run.
#
import atexit


def cleanup_tools(TOOLS):
    # print(f'cleanup_tools: TOOLS={TOOLS} id(TOOLS)={id(TOOLS)}')
    # print(f'TOOLS.thisown={TOOLS.thisown}')
    del TOOLS
    del fitz.TOOLS


atexit.register(cleanup_tools, TOOLS)

if fitz.VersionFitz != fitz.TOOLS.mupdf_version():
    v1 = fitz.VersionFitz.split(".")
    v2 = fitz.TOOLS.mupdf_version().split(".")
    if v1[:-1] != v2[:-1]:
        raise ValueError(
            "MuPDF library mismatch %s <> %s"
            % (fitz.VersionFitz, fitz.TOOLS.mupdf_version())
        )

# copy functions in 'utils' to their respective fitz classes
import fitz.utils

# ------------------------------------------------------------------------------
# General
# ------------------------------------------------------------------------------
fitz.recover_quad = fitz.utils.recover_quad
fitz.recover_bbox_quad = fitz.utils.recover_bbox_quad
fitz.recover_line_quad = fitz.utils.recover_line_quad
fitz.recover_span_quad = fitz.utils.recover_span_quad
fitz.recover_char_quad = fitz.utils.recover_char_quad

# ------------------------------------------------------------------------------
# Document
# ------------------------------------------------------------------------------
fitz.open = fitz.Document
fitz.Document._do_links = fitz.utils.do_links
fitz.Document.del_toc_item = fitz.utils.del_toc_item
fitz.Document.get_char_widths = fitz.utils.get_char_widths
fitz.Document.get_ocmd = fitz.utils.get_ocmd
fitz.Document.get_page_labels = fitz.utils.get_page_labels
fitz.Document.get_page_numbers = fitz.utils.get_page_numbers
fitz.Document.get_page_pixmap = fitz.utils.get_page_pixmap
fitz.Document.get_page_text = fitz.utils.get_page_text
fitz.Document.get_toc = fitz.utils.get_toc
fitz.Document.has_annots = fitz.utils.has_annots
fitz.Document.has_links = fitz.utils.has_links
fitz.Document.insert_page = fitz.utils.insert_page
fitz.Document.new_page = fitz.utils.new_page
fitz.Document.scrub = fitz.utils.scrub
fitz.Document.search_page_for = fitz.utils.search_page_for
fitz.Document.set_metadata = fitz.utils.set_metadata
fitz.Document.set_ocmd = fitz.utils.set_ocmd
fitz.Document.set_page_labels = fitz.utils.set_page_labels
fitz.Document.set_toc = fitz.utils.set_toc
fitz.Document.set_toc_item = fitz.utils.set_toc_item
fitz.Document.tobytes = fitz.Document.write
fitz.Document.subset_fonts = fitz.utils.subset_fonts
fitz.Document.get_oc = fitz.utils.get_oc
fitz.Document.set_oc = fitz.utils.set_oc
fitz.Document.xref_copy = fitz.utils.xref_copy


# ------------------------------------------------------------------------------
# Page
# ------------------------------------------------------------------------------
fitz.Page.apply_redactions = fitz.utils.apply_redactions
fitz.Page.delete_widget = fitz.utils.delete_widget
fitz.Page.draw_bezier = fitz.utils.draw_bezier
fitz.Page.draw_circle = fitz.utils.draw_circle
fitz.Page.draw_curve = fitz.utils.draw_curve
fitz.Page.draw_line = fitz.utils.draw_line
fitz.Page.draw_oval = fitz.utils.draw_oval
fitz.Page.draw_polyline = fitz.utils.draw_polyline
fitz.Page.draw_quad = fitz.utils.draw_quad
fitz.Page.draw_rect = fitz.utils.draw_rect
fitz.Page.draw_sector = fitz.utils.draw_sector
fitz.Page.draw_squiggle = fitz.utils.draw_squiggle
fitz.Page.draw_zigzag = fitz.utils.draw_zigzag
fitz.Page.get_links = fitz.utils.get_links
fitz.Page.get_pixmap = fitz.utils.get_pixmap
fitz.Page.get_text = fitz.utils.get_text
fitz.Page.get_image_info = fitz.utils.get_image_info
fitz.Page.get_text_blocks = fitz.utils.get_text_blocks
fitz.Page.get_text_selection = fitz.utils.get_text_selection
fitz.Page.get_text_words = fitz.utils.get_text_words
fitz.Page.get_textbox = fitz.utils.get_textbox
fitz.Page.insert_image = fitz.utils.insert_image
fitz.Page.insert_link = fitz.utils.insert_link
fitz.Page.insert_text = fitz.utils.insert_text
fitz.Page.insert_textbox = fitz.utils.insert_textbox
fitz.Page.new_shape = lambda x: fitz.utils.Shape(x)
fitz.Page.search_for = fitz.utils.search_for
fitz.Page.show_pdf_page = fitz.utils.show_pdf_page
fitz.Page.update_link = fitz.utils.update_link
fitz.Page.write_text = fitz.utils.write_text
fitz.Page.get_label = fitz.utils.get_label
fitz.Page.get_image_rects = fitz.utils.get_image_rects
fitz.Page.get_textpage_ocr = fitz.utils.get_textpage_ocr
fitz.Page.delete_image = fitz.utils.delete_image
fitz.Page.replace_image = fitz.utils.replace_image

# ------------------------------------------------------------------------
# Annot
# ------------------------------------------------------------------------
fitz.Annot.get_text = fitz.utils.get_text
fitz.Annot.get_textbox = fitz.utils.get_textbox

# ------------------------------------------------------------------------
# Rect and IRect
# ------------------------------------------------------------------------
fitz.Rect.get_area = fitz.utils.get_area
fitz.IRect.get_area = fitz.utils.get_area

# ------------------------------------------------------------------------
# TextWriter
# ------------------------------------------------------------------------
fitz.TextWriter.fill_textbox = fitz.utils.fill_textbox


class FitzDeprecation(DeprecationWarning):
    pass


def restore_aliases():
    import warnings

    warnings.filterwarnings(
        "once",
        category=FitzDeprecation,
    )

    def showthis(msg, cat, filename, lineno, file=None, line=None):
        text = warnings.formatwarning(msg, cat, filename, lineno, line=line)
        s = text.find("FitzDeprecation")
        if s < 0:
            print(text, file=sys.stderr)
            return
        text = text[s:].splitlines()[0][4:]
        print(text, file=sys.stderr)

    warnings.showwarning = showthis

    def _alias(fitz_class, old, new):
        fname = getattr(fitz_class, new)
        r = str(fitz_class)[1:-1]
        objname = " ".join(r.split()[:2])
        objname = objname.replace("fitz.fitz.", "")
        objname = objname.replace("fitz.utils.", "")
        if callable(fname):

            def deprecated_function(*args, **kw):
                msg = "'%s' removed from %s after v1.19 - use '%s'." % (
                    old,
                    objname,
                    new,
                )
                if not VersionBind.startswith("1.18"):
                    warnings.warn(msg, category=FitzDeprecation)
                return fname(*args, **kw)

            setattr(fitz_class, old, deprecated_function)
        else:
            if type(fname) is property:
                setattr(fitz_class, old, property(fname.fget))
            else:
                setattr(fitz_class, old, fname)

        eigen = getattr(fitz_class, old)
        x = fname.__doc__
        if not x:
            x = ""
        try:
            if callable(fname) or type(fname) is property:
                eigen.__doc__ = (
                    "*** Deprecated and removed after v1.19 - use '%s'. ***\n" % new + x
                )
        except:
            pass

    # deprecated Document aliases
    _alias(fitz.Document, "chapterCount", "chapter_count")
    _alias(fitz.Document, "chapterPageCount", "chapter_page_count")
    _alias(fitz.Document, "convertToPDF", "convert_to_pdf")
    _alias(fitz.Document, "copyPage", "copy_page")
    _alias(fitz.Document, "deletePage", "delete_page")
    _alias(fitz.Document, "deletePageRange", "delete_pages")
    _alias(fitz.Document, "embeddedFileAdd", "embfile_add")
    _alias(fitz.Document, "embeddedFileCount", "embfile_count")
    _alias(fitz.Document, "embeddedFileDel", "embfile_del")
    _alias(fitz.Document, "embeddedFileGet", "embfile_get")
    _alias(fitz.Document, "embeddedFileInfo", "embfile_info")
    _alias(fitz.Document, "embeddedFileNames", "embfile_names")
    _alias(fitz.Document, "embeddedFileUpd", "embfile_upd")
    _alias(fitz.Document, "extractFont", "extract_font")
    _alias(fitz.Document, "extractImage", "extract_image")
    _alias(fitz.Document, "findBookmark", "find_bookmark")
    _alias(fitz.Document, "fullcopyPage", "fullcopy_page")
    _alias(fitz.Document, "getCharWidths", "get_char_widths")
    _alias(fitz.Document, "getOCGs", "get_ocgs")
    _alias(fitz.Document, "getPageFontList", "get_page_fonts")
    _alias(fitz.Document, "getPageImageList", "get_page_images")
    _alias(fitz.Document, "getPagePixmap", "get_page_pixmap")
    _alias(fitz.Document, "getPageText", "get_page_text")
    _alias(fitz.Document, "getPageXObjectList", "get_page_xobjects")
    _alias(fitz.Document, "getSigFlags", "get_sigflags")
    _alias(fitz.Document, "getToC", "get_toc")
    _alias(fitz.Document, "getXmlMetadata", "get_xml_metadata")
    _alias(fitz.Document, "insertPage", "insert_page")
    _alias(fitz.Document, "insertPDF", "insert_pdf")
    _alias(fitz.Document, "isDirty", "is_dirty")
    _alias(fitz.Document, "isFormPDF", "is_form_pdf")
    _alias(fitz.Document, "isPDF", "is_pdf")
    _alias(fitz.Document, "isReflowable", "is_reflowable")
    _alias(fitz.Document, "isRepaired", "is_repaired")
    _alias(fitz.Document, "isStream", "xref_is_stream")
    _alias(fitz.Document, "is_stream", "xref_is_stream")
    _alias(fitz.Document, "lastLocation", "last_location")
    _alias(fitz.Document, "loadPage", "load_page")
    _alias(fitz.Document, "makeBookmark", "make_bookmark")
    _alias(fitz.Document, "metadataXML", "xref_xml_metadata")
    _alias(fitz.Document, "movePage", "move_page")
    _alias(fitz.Document, "needsPass", "needs_pass")
    _alias(fitz.Document, "newPage", "new_page")
    _alias(fitz.Document, "nextLocation", "next_location")
    _alias(fitz.Document, "pageCount", "page_count")
    _alias(fitz.Document, "pageCropBox", "page_cropbox")
    _alias(fitz.Document, "pageXref", "page_xref")
    _alias(fitz.Document, "PDFCatalog", "pdf_catalog")
    _alias(fitz.Document, "PDFTrailer", "pdf_trailer")
    _alias(fitz.Document, "previousLocation", "prev_location")
    _alias(fitz.Document, "resolveLink", "resolve_link")
    _alias(fitz.Document, "searchPageFor", "search_page_for")
    _alias(fitz.Document, "setLanguage", "set_language")
    _alias(fitz.Document, "setMetadata", "set_metadata")
    _alias(fitz.Document, "setToC", "set_toc")
    _alias(fitz.Document, "setXmlMetadata", "set_xml_metadata")
    _alias(fitz.Document, "updateObject", "update_object")
    _alias(fitz.Document, "updateStream", "update_stream")
    _alias(fitz.Document, "xrefLength", "xref_length")
    _alias(fitz.Document, "xrefObject", "xref_object")
    _alias(fitz.Document, "xrefStream", "xref_stream")
    _alias(fitz.Document, "xrefStreamRaw", "xref_stream_raw")

    # deprecated Page aliases
    _alias(fitz.Page, "_isWrapped", "is_wrapped")
    _alias(fitz.Page, "addCaretAnnot", "add_caret_annot")
    _alias(fitz.Page, "addCircleAnnot", "add_circle_annot")
    _alias(fitz.Page, "addFileAnnot", "add_file_annot")
    _alias(fitz.Page, "addFreetextAnnot", "add_freetext_annot")
    _alias(fitz.Page, "addHighlightAnnot", "add_highlight_annot")
    _alias(fitz.Page, "addInkAnnot", "add_ink_annot")
    _alias(fitz.Page, "addLineAnnot", "add_line_annot")
    _alias(fitz.Page, "addPolygonAnnot", "add_polygon_annot")
    _alias(fitz.Page, "addPolylineAnnot", "add_polyline_annot")
    _alias(fitz.Page, "addRectAnnot", "add_rect_annot")
    _alias(fitz.Page, "addRedactAnnot", "add_redact_annot")
    _alias(fitz.Page, "addSquigglyAnnot", "add_squiggly_annot")
    _alias(fitz.Page, "addStampAnnot", "add_stamp_annot")
    _alias(fitz.Page, "addStrikeoutAnnot", "add_strikeout_annot")
    _alias(fitz.Page, "addTextAnnot", "add_text_annot")
    _alias(fitz.Page, "addUnderlineAnnot", "add_underline_annot")
    _alias(fitz.Page, "addWidget", "add_widget")
    _alias(fitz.Page, "cleanContents", "clean_contents")
    _alias(fitz.Page, "CropBox", "cropbox")
    _alias(fitz.Page, "CropBoxPosition", "cropbox_position")
    _alias(fitz.Page, "deleteAnnot", "delete_annot")
    _alias(fitz.Page, "deleteLink", "delete_link")
    _alias(fitz.Page, "deleteWidget", "delete_widget")
    _alias(fitz.Page, "derotationMatrix", "derotation_matrix")
    _alias(fitz.Page, "drawBezier", "draw_bezier")
    _alias(fitz.Page, "drawCircle", "draw_circle")
    _alias(fitz.Page, "drawCurve", "draw_curve")
    _alias(fitz.Page, "drawLine", "draw_line")
    _alias(fitz.Page, "drawOval", "draw_oval")
    _alias(fitz.Page, "drawPolyline", "draw_polyline")
    _alias(fitz.Page, "drawQuad", "draw_quad")
    _alias(fitz.Page, "drawRect", "draw_rect")
    _alias(fitz.Page, "drawSector", "draw_sector")
    _alias(fitz.Page, "drawSquiggle", "draw_squiggle")
    _alias(fitz.Page, "drawZigzag", "draw_zigzag")
    _alias(fitz.Page, "firstAnnot", "first_annot")
    _alias(fitz.Page, "firstLink", "first_link")
    _alias(fitz.Page, "firstWidget", "first_widget")
    _alias(fitz.Page, "getContents", "get_contents")
    _alias(fitz.Page, "getDisplayList", "get_displaylist")
    _alias(fitz.Page, "getDrawings", "get_drawings")
    _alias(fitz.Page, "getFontList", "get_fonts")
    _alias(fitz.Page, "getImageBbox", "get_image_bbox")
    _alias(fitz.Page, "getImageList", "get_images")
    _alias(fitz.Page, "getLinks", "get_links")
    _alias(fitz.Page, "getPixmap", "get_pixmap")
    _alias(fitz.Page, "getSVGimage", "get_svg_image")
    _alias(fitz.Page, "getText", "get_text")
    _alias(fitz.Page, "getTextBlocks", "get_text_blocks")
    _alias(fitz.Page, "getTextbox", "get_textbox")
    _alias(fitz.Page, "getTextPage", "get_textpage")
    _alias(fitz.Page, "getTextWords", "get_text_words")
    _alias(fitz.Page, "insertFont", "insert_font")
    _alias(fitz.Page, "insertImage", "insert_image")
    _alias(fitz.Page, "insertLink", "insert_link")
    _alias(fitz.Page, "insertText", "insert_text")
    _alias(fitz.Page, "insertTextbox", "insert_textbox")
    _alias(fitz.Page, "loadAnnot", "load_annot")
    _alias(fitz.Page, "loadLinks", "load_links")
    _alias(fitz.Page, "MediaBox", "mediabox")
    _alias(fitz.Page, "MediaBoxSize", "mediabox_size")
    _alias(fitz.Page, "newShape", "new_shape")
    _alias(fitz.Page, "readContents", "read_contents")
    _alias(fitz.Page, "rotationMatrix", "rotation_matrix")
    _alias(fitz.Page, "searchFor", "search_for")
    _alias(fitz.Page, "setCropBox", "set_cropbox")
    _alias(fitz.Page, "setMediaBox", "set_mediabox")
    _alias(fitz.Page, "setRotation", "set_rotation")
    _alias(fitz.Page, "showPDFpage", "show_pdf_page")
    _alias(fitz.Page, "transformationMatrix", "transformation_matrix")
    _alias(fitz.Page, "updateLink", "update_link")
    _alias(fitz.Page, "wrapContents", "wrap_contents")
    _alias(fitz.Page, "writeText", "write_text")

    # deprecated Shape aliases
    _alias(fitz.utils.Shape, "drawBezier", "draw_bezier")
    _alias(fitz.utils.Shape, "drawCircle", "draw_circle")
    _alias(fitz.utils.Shape, "drawCurve", "draw_curve")
    _alias(fitz.utils.Shape, "drawLine", "draw_line")
    _alias(fitz.utils.Shape, "drawOval", "draw_oval")
    _alias(fitz.utils.Shape, "drawPolyline", "draw_polyline")
    _alias(fitz.utils.Shape, "drawQuad", "draw_quad")
    _alias(fitz.utils.Shape, "drawRect", "draw_rect")
    _alias(fitz.utils.Shape, "drawSector", "draw_sector")
    _alias(fitz.utils.Shape, "drawSquiggle", "draw_squiggle")
    _alias(fitz.utils.Shape, "drawZigzag", "draw_zigzag")
    _alias(fitz.utils.Shape, "insertText", "insert_text")
    _alias(fitz.utils.Shape, "insertTextbox", "insert_textbox")

    # deprecated Annot aliases
    _alias(fitz.Annot, "getText", "get_text")
    _alias(fitz.Annot, "getTextbox", "get_textbox")
    _alias(fitz.Annot, "fileGet", "get_file")
    _alias(fitz.Annot, "fileUpd", "update_file")
    _alias(fitz.Annot, "getPixmap", "get_pixmap")
    _alias(fitz.Annot, "getTextPage", "get_textpage")
    _alias(fitz.Annot, "lineEnds", "line_ends")
    _alias(fitz.Annot, "setBlendMode", "set_blendmode")
    _alias(fitz.Annot, "setBorder", "set_border")
    _alias(fitz.Annot, "setColors", "set_colors")
    _alias(fitz.Annot, "setFlags", "set_flags")
    _alias(fitz.Annot, "setInfo", "set_info")
    _alias(fitz.Annot, "setLineEnds", "set_line_ends")
    _alias(fitz.Annot, "setName", "set_name")
    _alias(fitz.Annot, "setOpacity", "set_opacity")
    _alias(fitz.Annot, "setRect", "set_rect")
    _alias(fitz.Annot, "setOC", "set_oc")
    _alias(fitz.Annot, "soundGet", "get_sound")

    # deprecated TextWriter aliases
    _alias(fitz.TextWriter, "writeText", "write_text")
    _alias(fitz.TextWriter, "fillTextbox", "fill_textbox")

    # deprecated DisplayList aliases
    _alias(fitz.DisplayList, "getPixmap", "get_pixmap")
    _alias(fitz.DisplayList, "getTextPage", "get_textpage")

    # deprecated Pixmap aliases
    _alias(fitz.Pixmap, "setAlpha", "set_alpha")
    _alias(fitz.Pixmap, "gammaWith", "gamma_with")
    _alias(fitz.Pixmap, "tintWith", "tint_with")
    _alias(fitz.Pixmap, "clearWith", "clear_with")
    _alias(fitz.Pixmap, "copyPixmap", "copy")
    _alias(fitz.Pixmap, "getImageData", "tobytes")
    _alias(fitz.Pixmap, "getPNGData", "tobytes")
    _alias(fitz.Pixmap, "getPNGdata", "tobytes")
    _alias(fitz.Pixmap, "writeImage", "save")
    _alias(fitz.Pixmap, "writePNG", "save")
    _alias(fitz.Pixmap, "pillowWrite", "pil_save")
    _alias(fitz.Pixmap, "pillowData", "pil_tobytes")
    _alias(fitz.Pixmap, "invertIRect", "invert_irect")
    _alias(fitz.Pixmap, "setPixel", "set_pixel")
    _alias(fitz.Pixmap, "setOrigin", "set_origin")
    _alias(fitz.Pixmap, "setRect", "set_rect")
    _alias(fitz.Pixmap, "setResolution", "set_dpi")

    # deprecated geometry aliases
    _alias(fitz.Rect, "getArea", "get_area")
    _alias(fitz.IRect, "getArea", "get_area")
    _alias(fitz.Rect, "getRectArea", "get_area")
    _alias(fitz.IRect, "getRectArea", "get_area")
    _alias(fitz.Rect, "includePoint", "include_point")
    _alias(fitz.IRect, "includePoint", "include_point")
    _alias(fitz.Rect, "includeRect", "include_rect")
    _alias(fitz.IRect, "includeRect", "include_rect")
    _alias(fitz.Rect, "isInfinite", "is_infinite")
    _alias(fitz.IRect, "isInfinite", "is_infinite")
    _alias(fitz.Rect, "isEmpty", "is_empty")
    _alias(fitz.IRect, "isEmpty", "is_empty")
    _alias(fitz.Quad, "isEmpty", "is_empty")
    _alias(fitz.Quad, "isRectangular", "is_rectangular")
    _alias(fitz.Quad, "isConvex", "is_convex")
    _alias(fitz.Matrix, "isRectilinear", "is_rectilinear")
    _alias(fitz.Matrix, "preRotate", "prerotate")
    _alias(fitz.Matrix, "preScale", "prescale")
    _alias(fitz.Matrix, "preShear", "preshear")
    _alias(fitz.Matrix, "preTranslate", "pretranslate")

    # deprecated other aliases
    _alias(fitz.Outline, "isExternal", "is_external")
    _alias(fitz.Outline, "isOpen", "is_open")
    _alias(fitz.Link, "isExternal", "is_external")
    _alias(fitz.Link, "setBorder", "set_border")
    _alias(fitz.Link, "setColors", "set_colors")
    _alias(fitz, "getPDFstr", "get_pdf_str")
    _alias(fitz, "getPDFnow", "get_pdf_now")
    _alias(fitz, "PaperSize", "paper_size")
    _alias(fitz, "PaperRect", "paper_rect")
    _alias(fitz, "paperSizes", "paper_sizes")
    _alias(fitz, "ImageProperties", "image_profile")
    _alias(fitz, "planishLine", "planish_line")
    _alias(fitz, "getTextLength", "get_text_length")
    _alias(fitz, "getTextlength", "get_text_length")


fitz.__doc__ = """
PyMuPDF %s: Python bindings for the MuPDF %s library.
Version date: %s.
Built for Python %i.%i on %s (%i-bit).
""" % (
    fitz.VersionBind,
    fitz.VersionFitz,
    fitz.VersionDate,
    sys.version_info[0],
    sys.version_info[1],
    sys.platform,
    64 if sys.maxsize > 2**32 else 32,
)

if VersionBind.startswith("1.19"):  # don't generate aliases after v1.19.*
    restore_aliases()

pdfcolor = dict(
    [
        (k, (r / 255, g / 255, b / 255))
        for k, (r, g, b) in fitz.utils.getColorInfoDict().items()
    ]
)







PyMuPDF-1.21.1/fitz/__main__.py

# -----------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
# Part of "PyMuPDF", Python bindings for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# -----------------------------------------------------------------------------
import argparse
import bisect
import os
import sys
import statistics
from typing import Dict, List, Set, Tuple

import fitz
from fitz.fitz import (
    TEXT_INHIBIT_SPACES,
    TEXT_PRESERVE_LIGATURES,
    TEXT_PRESERVE_WHITESPACE,
)

mycenter = lambda x: (" %s " % x).center(75, "-")


def recoverpix(doc, item):
    """Return image for a given XREF."""
    x = item[0]  # xref of PDF image
    s = item[1]  # xref of its /SMask
    if s == 0:  # no smask: use direct image output
        return doc.extract_image(x)

    def getimage(pix):
        if pix.colorspace.n != 4:
            return pix
        tpix = fitz.Pixmap(fitz.csRGB, pix)
        return tpix

    # we need to reconstruct the alpha channel with the smask
    pix1 = fitz.Pixmap(doc, x)
    pix2 = fitz.Pixmap(doc, s)  # create pixmap of the /SMask entry

    """Sanity check:
    - both pixmaps must have the same rectangle
    - both pixmaps must have alpha=0
    - pix2 must consist of 1 byte per pixel
    """
    if not (pix1.irect == pix2.irect and pix1.alpha == pix2.alpha == 0 and pix2.n == 1):
        print("Warning: unsupported /SMask %i for %i:" % (s, x))
        print(pix2)
        pix2 = None
        return getimage(pix1)  # return the pixmap as is

    pix = fitz.Pixmap(pix1)  # copy of pix1, with an alpha channel added
    pix.set_alpha(pix2.samples)  # treat pix2.samples as the alpha values
    pix1 = pix2 = None  # free temp pixmaps

    # we may need to adjust something for CMYK pixmaps here:
    return getimage(pix)


def open_file(filename, password, show=False, pdf=True):
    """Open and authenticate a document."""
    doc = fitz.open(filename)
    if not doc.is_pdf and pdf is True:
        sys.exit("this command supports PDF files only")
    rc = -1
    if not doc.needs_pass:
        return doc
    if password:
        rc = doc.authenticate(password)
        if not rc:
            sys.exit("authentication unsuccessful")
        if show is True:
            print("authenticated as %s" % "owner" if rc > 2 else "user")
    else:
        sys.exit("'%s' requires a password" % doc.name)
    return doc


def print_dict(item):
    """Print a Python dictionary."""
    l = max([len(k) for k in item.keys()]) + 1
    for k, v in item.items():
        msg = "%s: %s" % (k.rjust(l), v)
        print(msg)
    return


def print_xref(doc, xref):
    """Print an object given by XREF number.

    Simulate the PDF source in "pretty" format.
    For a stream also print its size.
    """
    print("%i 0 obj" % xref)
    xref_str = doc.xref_object(xref)
    print(xref_str)
    if doc.xref_is_stream(xref):
        temp = xref_str.split()
        try:
            idx = temp.index("/Length") + 1
            size = temp[idx]
            if size.endswith("0 R"):
                size = "unknown"
        except:
            size = "unknown"
        print("stream\n...%s bytes" % size)
        print("endstream")
    print("endobj")


def get_list(rlist, limit, what="page"):
    """Transform a page / xref specification into a list of integers.

    Args
    ----
        rlist: (str) the specification
        limit: maximum number, i.e. number of pages, number of objects
        what: a string to be used in error messages
    Returns
    -------
        A list of integers representing the specification.
    """
    N = str(limit - 1)
    rlist = rlist.replace("N", N).replace(" ", "")
    rlist_arr = rlist.split(",")
    out_list = []
    for seq, item in enumerate(rlist_arr):
        n = seq + 1
        if item.isdecimal():  # a single integer
            i = int(item)
            if 1 <= i < limit:
                out_list.append(int(item))
            else:
                sys.exit("bad %s specification at item %i" % (what, n))
            continue
        try:  # this must be a range now, and all of the following must work:
            i1, i2 = item.split("-")  # will fail if not 2 items produced
            i1 = int(i1)  # will fail on non-integers
            i2 = int(i2)
        except:
            sys.exit("bad %s range specification at item %i" % (what, n))

        if not (1 <= i1 < limit and 1 <= i2 < limit):
            sys.exit("bad %s range specification at item %i" % (what, n))

        if i1 == i2:  # just in case: a range of equal numbers
            out_list.append(i1)
            continue

        if i1 < i2:  # first less than second
            out_list += list(range(i1, i2 + 1))
        else:  # first larger than second
            out_list += list(range(i1, i2 - 1, -1))

    return out_list


def show(args):
    doc = open_file(args.input, args.password, True)
    size = os.path.getsize(args.input) / 1024
    flag = "KB"
    if size > 1000:
        size /= 1024
        flag = "MB"
    size = round(size, 1)
    meta = doc.metadata
    print(
        "'%s', pages: %i, objects: %i, %g %s, %s, encryption: %s"
        % (
            args.input,
            doc.page_count,
            doc.xref_length() - 1,
            size,
            flag,
            meta["format"],
            meta["encryption"],
        )
    )
    n = doc.is_form_pdf
    if n > 0:
        s = doc.get_sigflags()
        print(
            "document contains %i root form fields and is %ssigned"
            % (n, "not " if s != 3 else "")
        )
    n = doc.embfile_count()
    if n > 0:
        print("document contains %i embedded files" % n)
    print()
    if args.catalog:
        print(mycenter("PDF catalog"))
        xref = doc.pdf_catalog()
        print_xref(doc, xref)
        print()
    if args.metadata:
        print(mycenter("PDF metadata"))
        print_dict(doc.metadata)
        print()
    if args.xrefs:
        print(mycenter("object information"))
        xrefl = get_list(args.xrefs, doc.xref_length(), what="xref")
        for xref in xrefl:
            print_xref(doc, xref)
            print()
    if args.pages:
        print(mycenter("page information"))
        pagel = get_list(args.pages, doc.page_count + 1)
        for pno in pagel:
            n = pno - 1
            xref = doc.page_xref(n)
            print("Page %i:" % pno)
            print_xref(doc, xref)
            print()
    if args.trailer:
        print(mycenter("PDF trailer"))
        print(doc.pdf_trailer())
        print()
    doc.close()


def clean(args):
    doc = open_file(args.input, args.password, pdf=True)
    encryption = args.encryption
    encrypt = ("keep", "none", "rc4-40", "rc4-128", "aes-128", "aes-256").index(
        encryption
    )

    if not args.pages:  # simple cleaning
        doc.save(
            args.output,
            garbage=args.garbage,
            deflate=args.compress,
            pretty=args.pretty,
            clean=args.sanitize,
            ascii=args.ascii,
            linear=args.linear,
            encryption=encrypt,
            owner_pw=args.owner,
            user_pw=args.user,
            permissions=args.permission,
        )
        return

    # create sub document from page numbers
    pages = get_list(args.pages, doc.page_count + 1)
    outdoc = fitz.open()
    for pno in pages:
        n = pno - 1
        outdoc.insert_pdf(doc, from_page=n, to_page=n)
    outdoc.save(
        args.output,
        garbage=args.garbage,
        deflate=args.compress,
        pretty=args.pretty,
        clean=args.sanitize,
        ascii=args.ascii,
        linear=args.linear,
        encryption=encrypt,
        owner_pw=args.owner,
        user_pw=args.user,
        permissions=args.permission,
    )
    doc.close()
    outdoc.close()
    return


def doc_join(args):
    """Join pages from several PDF documents."""
    doc_list = args.input  # a list of input PDFs
    doc = fitz.open()  # output PDF
    for src_item in doc_list:  # process one input PDF
        src_list = src_item.split(",")
        password = src_list[1] if len(src_list) > 1 else None
        src = open_file(src_list[0], password, pdf=True)
        pages = ",".join(src_list[2:])  # get 'pages' specifications
        if pages:  # if anything there, retrieve a list of desired pages
            page_list = get_list(",".join(src_list[2:]), src.page_count + 1)
        else:  # take all pages
            page_list = range(1, src.page_count + 1)
        for i in page_list:
            doc.insert_pdf(src, from_page=i - 1, to_page=i - 1)  # copy each source page
        src.close()

    doc.save(args.output, garbage=4, deflate=True)
    doc.close()


def embedded_copy(args):
    """Copy embedded files between PDFs."""
    doc = open_file(args.input, args.password, pdf=True)
    if not doc.can_save_incrementally() and (
        not args.output or args.output == args.input
    ):
        sys.exit("cannot save PDF incrementally")
    src = open_file(args.source, args.pwdsource)
    names = set(args.name) if args.name else set()
    src_names = set(src.embfile_names())
    if names:
        if not names <= src_names:
            sys.exit("not all names are contained in source")
    else:
        names = src_names
    if not names:
        sys.exit("nothing to copy")
    intersect = names & set(doc.embfile_names())  # any equal name already in target?
    if intersect:
        sys.exit("following names already exist in receiving PDF: %s" % str(intersect))

    for item in names:
        info = src.embfile_info(item)
        buff = src.embfile_get(item)
        doc.embfile_add(
            item,
            buff,
            filename=info["filename"],
            ufilename=info["ufilename"],
            desc=info["desc"],
        )
        print("copied entry '%s' from '%s'" % (item, src.name))
    src.close()
    if args.output and args.output != args.input:
        doc.save(args.output, garbage=3)
    else:
        doc.saveIncr()
    doc.close()


def embedded_del(args):
    """Delete an embedded file entry."""
    doc = open_file(args.input, args.password, pdf=True)
    if not doc.can_save_incrementally() and (
        not args.output or args.output == args.input
    ):
        sys.exit("cannot save PDF incrementally")

    try:
        doc.embfile_del(args.name)
    except ValueError:
        sys.exit("no such embedded file '%s'" % args.name)
    if not args.output or args.output == args.input:
        doc.save_incr()
    else:
        doc.save(args.output, garbage=1)
    doc.close()


def embedded_get(args):
    """Retrieve contents of an embedded file."""
    doc = open_file(args.input, args.password, pdf=True)
    try:
        stream = doc.embfile_get(args.name)
        d = doc.embfile_info(args.name)
    except ValueError:
        sys.exit("no such embedded file '%s'" % args.name)
    filename = args.output if args.output else d["filename"]
    output = open(filename, "wb")
    output.write(stream)
    output.close()
    print("saved entry '%s' as '%s'" % (args.name, filename))
    doc.close()


def embedded_add(args):
    """Insert a new embedded file."""
    doc = open_file(args.input, args.password, pdf=True)
    if not doc.can_save_incrementally() and (
        args.output is None or args.output == args.input
    ):
        sys.exit("cannot save PDF incrementally")

    try:
        doc.embfile_del(args.name)
        sys.exit("entry '%s' already exists" % args.name)
    except:
        pass

    if not os.path.exists(args.path) or not os.path.isfile(args.path):
        sys.exit("no such file '%s'" % args.path)
    stream = open(args.path, "rb").read()
    filename = args.path
    ufilename = filename
    if not args.desc:
        desc = filename
    else:
        desc = args.desc
    doc.embfile_add(
        args.name, stream, filename=filename, ufilename=ufilename, desc=desc
    )
    if not args.output or args.output == args.input:
        doc.saveIncr()
    else:
        doc.save(args.output, garbage=3)
    doc.close()


def embedded_upd(args):
    """Update contents or metadata of an embedded file."""
    doc = open_file(args.input, args.password, pdf=True)
    if not doc.can_save_incrementally() and (
        args.output is None or args.output == args.input
    ):
        sys.exit("cannot save PDF incrementally")

    try:
        doc.embfile_info(args.name)
    except:
        sys.exit("no such embedded file '%s'" % args.name)

    if (
        args.path is not None
        and os.path.exists(args.path)
        and os.path.isfile(args.path)
    ):
        stream = open(args.path, "rb").read()
    else:
        stream = None

    if args.filename:
        filename = args.filename
    else:
        filename = None

    if args.ufilename:
        ufilename = args.ufilename
    elif args.filename:
        ufilename = args.filename
    else:
        ufilename = None

    if args.desc:
        desc = args.desc
    else:
        desc = None

    doc.embfile_upd(
        args.name, stream, filename=filename, ufilename=ufilename, desc=desc
    )
    if args.output is None or args.output == args.input:
        doc.saveIncr()
    else:
        doc.save(args.output, garbage=3)
    doc.close()


def embedded_list(args):
    """List embedded files."""
    doc = open_file(args.input, args.password, pdf=True)
    names = doc.embfile_names()
    if args.name is not None:
        if args.name not in names:
            sys.exit("no such embedded file '%s'" % args.name)
        else:
            print()
            print(
                "printing 1 of %i embedded file%s:"
                % (len(names), "s" if len(names) > 1 else "")
            )
            print()
            print_dict(doc.embfile_info(args.name))
            print()
            return
    if not names:
        print("'%s' contains no embedded files" % doc.name)
        return
    if len(names) > 1:
        msg = "'%s' contains the following %i embedded files" % (doc.name, len(names))
    else:
        msg = "'%s' contains the following embedded file" % doc.name
    print(msg)
    print()
    for name in names:
        if not args.detail:
            print(name)
            continue
        _ = doc.embfile_info(name)
        print_dict(doc.embfile_info(name))
        print()
    doc.close()


def extract_objects(args):
    """Extract images and / or fonts from a PDF."""
    if not args.fonts and not args.images:
        sys.exit("neither fonts nor images requested")
    doc = open_file(args.input, args.password, pdf=True)

    if args.pages:
        pages = get_list(args.pages, doc.page_count + 1)
    else:
        pages = range(1, doc.page_count + 1)

    if not args.output:
        out_dir = os.path.abspath(os.curdir)
    else:
        out_dir = args.output
        if not (os.path.exists(out_dir) and os.path.isdir(out_dir)):
            sys.exit("output directory %s does not exist" % out_dir)

    font_xrefs = set()  # already saved fonts
    image_xrefs = set()  # already saved images

    for pno in pages:
        if args.fonts:
            itemlist = doc.get_page_fonts(pno - 1)
            for item in itemlist:
                xref = item[0]
                if xref not in font_xrefs:
                    font_xrefs.add(xref)
                    fontname, ext, _, buffer = doc.extract_font(xref)
                    if ext == "n/a" or not buffer:
                        continue
                    outname = os.path.join(
                        out_dir, f"{fontname.replace(' ', '-')}-{xref}.{ext}"
                    )
                    outfile = open(outname, "wb")
                    outfile.write(buffer)
                    outfile.close()
                    buffer = None
        if args.images:
            itemlist = doc.get_page_images(pno - 1)
            for item in itemlist:
                xref = item[0]
                if xref not in image_xrefs:
                    image_xrefs.add(xref)
                    pix = recoverpix(doc, item)
                    if type(pix) is dict:
                        ext = pix["ext"]
                        imgdata = pix["image"]
                        outname = os.path.join(out_dir, "img-%i.%s" % (xref, ext))
                        outfile = open(outname, "wb")
                        outfile.write(imgdata)
                        outfile.close()
                    else:
                        outname = os.path.join(out_dir, "img-%i.png" % xref)
                        pix2 = (
                            pix
                            if pix.colorspace.n < 4
                            else fitz.Pixmap(fitz.csRGB, pix)
                        )
                        pix2.save(outname)

    if args.fonts:
        print("saved %i fonts to '%s'" % (len(font_xrefs), out_dir))
    if args.images:
        print("saved %i images to '%s'" % (len(image_xrefs), out_dir))
    doc.close()


def page_simple(page, textout, GRID, fontsize, noformfeed, skip_empty, flags):
    eop = b"\n" if noformfeed else bytes([12])
    text = page.get_text("text", flags=flags)
    if not text:
        if not skip_empty:
            textout.write(eop)  # write formfeed
        return
    textout.write(text.encode("utf8", errors="surrogatepass"))
    textout.write(eop)
    return


def page_blocksort(page, textout, GRID, fontsize, noformfeed, skip_empty, flags):
    eop = b"\n" if noformfeed else bytes([12])
    blocks = page.get_text("blocks", flags=flags)
    if blocks == []:
        if not skip_empty:
            textout.write(eop)  # write formfeed
        return
    blocks.sort(key=lambda b: (b[3], b[0]))
    for b in blocks:
        textout.write(b[4].encode("utf8", errors="surrogatepass"))
    textout.write(eop)
    return


def page_layout(page, textout, GRID, fontsize, noformfeed, skip_empty, flags):
    eop = b"\n" if noformfeed else bytes([12])

    # --------------------------------------------------------------------
    def find_line_index(values: List[int], value: int) -> int:
        """Find the right row coordinate.

        Args:
            values: (list) y-coordinates of rows.
            value: (int) lookup for this value (y-origin of char).
        Returns:
            y-ccordinate of appropriate line for value.
        """
        i = bisect.bisect_right(values, value)
        if i:
            return values[i - 1]
        raise RuntimeError("Line for %g not found in %s" % (value, values))

    # --------------------------------------------------------------------
    def curate_rows(rows: Set[int], GRID) -> List:
        rows = list(rows)
        rows.sort()  # sort ascending
        nrows = [rows[0]]
        for h in rows[1:]:
            if h >= nrows[-1] + GRID:  # only keep significant differences
                nrows.append(h)
        return nrows  # curated list of line bottom coordinates

    def process_blocks(blocks: List[Dict], page: fitz.Page):
        rows = set()
        page_width = page.rect.width
        page_height = page.rect.height
        rowheight = page_height
        left = page_width
        right = 0
        chars = []
        for block in blocks:
            for line in block["lines"]:
                if line["dir"] != (1, 0):  # ignore non-horizontal text
                    continue
                x0, y0, x1, y1 = line["bbox"]
                if y1 < 0 or y0 > page.rect.height:  # ignore if outside CropBox
                    continue
                # upd row height
                height = y1 - y0

                if rowheight > height:
                    rowheight = height
                for span in line["spans"]:
                    if span["size"] <= fontsize:
                        continue
                    for c in span["chars"]:
                        x0, _, x1, _ = c["bbox"]
                        cwidth = x1 - x0
                        ox, oy = c["origin"]
                        oy = int(round(oy))
                        rows.add(oy)
                        ch = c["c"]
                        if left > ox and ch != " ":
                            left = ox  # update left coordinate
                        if right < x1:
                            right = x1  # update right coordinate
                        # handle ligatures:
                        if cwidth == 0 and chars != []:  # potential ligature
                            old_ch, old_ox, old_oy, old_cwidth = chars[-1]
                            if old_oy == oy:  # ligature
                                if old_ch != chr(0xFB00):  # previous "ff" char lig?
                                    lig = joinligature(old_ch + ch)  # no
                                # convert to one of the 3-char ligatures:
                                elif ch == "i":
                                    lig = chr(0xFB03)  # "ffi"
                                elif ch == "l":
                                    lig = chr(0xFB04)  # "ffl"
                                else:  # something wrong, leave old char in place
                                    lig = old_ch
                                chars[-1] = (lig, old_ox, old_oy, old_cwidth)
                                continue
                        chars.append((ch, ox, oy, cwidth))  # all chars on page
        return chars, rows, left, right, rowheight

    def joinligature(lig: str) -> str:
        """Return ligature character for a given pair / triple of characters.

        Args:
            lig: (str) 2/3 characters, e.g. "ff"
        Returns:
            Ligature, e.g. "ff" -> chr(0xFB00)
        """

        if lig == "ff":
            return chr(0xFB00)
        elif lig == "fi":
            return chr(0xFB01)
        elif lig == "fl":
            return chr(0xFB02)
        elif lig == "ffi":
            return chr(0xFB03)
        elif lig == "ffl":
            return chr(0xFB04)
        elif lig == "ft":
            return chr(0xFB05)
        elif lig == "st":
            return chr(0xFB06)
        return lig

    # --------------------------------------------------------------------
    def make_textline(left, slot, minslot, lchars):
        """Produce the text of one output line.

        Args:
            left: (float) left most coordinate used on page
            slot: (float) avg width of one character in any font in use.
            minslot: (float) min width for the characters in this line.
            chars: (list[tuple]) characters of this line.
        Returns:
            text: (str) text string for this line
        """
        text = ""  # we output this
        old_char = ""
        old_x1 = 0  # end coordinate of last char
        old_ox = 0  # x-origin of last char
        if minslot <= fitz.EPSILON:
            raise RuntimeError("program error: minslot too small = %g" % minslot)

        for c in lchars:  # loop over characters
            char, ox, _, cwidth = c
            ox = ox - left  # its (relative) start coordinate
            x1 = ox + cwidth  # ending coordinate

            # eliminate overprint effect
            if old_char == char and ox - old_ox <= cwidth * 0.2:
                continue

            # omit spaces overlapping previous char
            if char == " " and (old_x1 - ox) / cwidth > 0.8:
                continue

            old_char = char
            # close enough to previous?
            if ox < old_x1 + minslot:  # assume char adjacent to previous
                text += char  # append to output
                old_x1 = x1  # new end coord
                old_ox = ox  # new origin.x
                continue

            # else next char starts after some gap:
            # fill in right number of spaces, so char is positioned
            # in the right slot of the line
            if char == " ":  # rest relevant for non-space only
                continue
            delta = int(ox / slot) - len(text)
            if ox > old_x1 and delta > 1:
                text += " " * delta
            # now append char
            text += char
            old_x1 = x1  # new end coordinate
            old_ox = ox  # new origin
        return text.rstrip()

    # extract page text by single characters ("rawdict")
    blocks = page.get_text("rawdict", flags=flags)["blocks"]
    chars, rows, left, right, rowheight = process_blocks(blocks, page)

    if chars == []:
        if not skip_empty:
            textout.write(eop)  # write formfeed
        return
    # compute list of line coordinates - ignoring small (GRID) differences
    rows = curate_rows(rows, GRID)

    # sort all chars by x-coordinates, so every line will receive char info,
    # sorted from left to right.
    chars.sort(key=lambda c: c[1])

    # populate the lines with their char info
    lines = {}  # key: y1-ccordinate, value: char list
    for c in chars:
        _, _, oy, _ = c
        y = find_line_index(rows, oy)  # y-coord of the right line
        lchars = lines.get(y, [])  # read line chars so far
        lchars.append(c)  # append this char
        lines[y] = lchars  # write back to line

    # ensure line coordinates are ascending
    keys = list(lines.keys())
    keys.sort()

    # -------------------------------------------------------------------------
    # Compute "char resolution" for the page: the char width corresponding to
    # 1 text char position on output - call it 'slot'.
    # For each line, compute median of its char widths. The minimum across all
    # lines is 'slot'.
    # The minimum char width of each line is used to determine if spaces must
    # be inserted in between two characters.
    # -------------------------------------------------------------------------
    slot = right - left
    minslots = {}
    for k in keys:
        lchars = lines[k]
        ccount = len(lchars)
        if ccount < 2:
            minslots[k] = 1
            continue
        widths = [c[3] for c in lchars]
        widths.sort()
        this_slot = statistics.median(widths)  # take median value
        if this_slot < slot:
            slot = this_slot
        minslots[k] = widths[0]

    # compute line advance in text output
    rowheight = rowheight * (rows[-1] - rows[0]) / (rowheight * len(rows)) * 1.2
    rowpos = rows[0]  # first line positioned here
    textout.write(b"\n")
    for k in keys:  # walk through the lines
        while rowpos < k:  # honor distance between lines
            textout.write(b"\n")
            rowpos += rowheight
        text = make_textline(left, slot, minslots[k], lines[k])
        textout.write((text + "\n").encode("utf8", errors="surrogatepass"))
        rowpos = k + rowheight

    textout.write(eop)  # write formfeed


def gettext(args):
    doc = open_file(args.input, args.password, pdf=False)
    pagel = get_list(args.pages, doc.page_count + 1)
    output = args.output
    if output == None:
        filename, _ = os.path.splitext(doc.name)
        output = filename + ".txt"
    textout = open(output, "wb")
    flags = TEXT_PRESERVE_LIGATURES | TEXT_PRESERVE_WHITESPACE
    if args.convert_white:
        flags ^= TEXT_PRESERVE_WHITESPACE
    if args.noligatures:
        flags ^= TEXT_PRESERVE_LIGATURES
    if args.extra_spaces:
        flags ^= TEXT_INHIBIT_SPACES
    func = {
        "simple": page_simple,
        "blocks": page_blocksort,
        "layout": page_layout,
    }
    for pno in pagel:
        page = doc[pno - 1]
        func[args.mode](
            page,
            textout,
            args.grid,
            args.fontsize,
            args.noformfeed,
            args.skip_empty,
            flags=flags,
        )

    textout.close()


def main():
    """Define command configurations."""
    parser = argparse.ArgumentParser(
        prog="fitz",
        description=mycenter("Basic PyMuPDF Functions"),
    )
    subps = parser.add_subparsers(
        title="Subcommands", help="Enter 'command -h' for subcommand specific help"
    )

    # -------------------------------------------------------------------------
    # 'show' command
    # -------------------------------------------------------------------------
    ps_show = subps.add_parser("show", description=mycenter("display PDF information"))
    ps_show.add_argument("input", type=str, help="PDF filename")
    ps_show.add_argument("-password", help="password")
    ps_show.add_argument("-catalog", action="store_true", help="show PDF catalog")
    ps_show.add_argument("-trailer", action="store_true", help="show PDF trailer")
    ps_show.add_argument("-metadata", action="store_true", help="show PDF metadata")
    ps_show.add_argument(
        "-xrefs", type=str, help="show selected objects, format: 1,5-7,N"
    )
    ps_show.add_argument(
        "-pages", type=str, help="show selected pages, format: 1,5-7,50-N"
    )
    ps_show.set_defaults(func=show)

    # -------------------------------------------------------------------------
    # 'clean' command
    # -------------------------------------------------------------------------
    ps_clean = subps.add_parser(
        "clean", description=mycenter("optimize PDF, or create sub-PDF if pages given")
    )
    ps_clean.add_argument("input", type=str, help="PDF filename")
    ps_clean.add_argument("output", type=str, help="output PDF filename")
    ps_clean.add_argument("-password", help="password")

    ps_clean.add_argument(
        "-encryption",
        help="encryption method",
        choices=("keep", "none", "rc4-40", "rc4-128", "aes-128", "aes-256"),
        default="none",
    )

    ps_clean.add_argument("-owner", type=str, help="owner password")
    ps_clean.add_argument("-user", type=str, help="user password")

    ps_clean.add_argument(
        "-garbage",
        type=int,
        help="garbage collection level",
        choices=range(5),
        default=0,
    )

    ps_clean.add_argument(
        "-compress",
        action="store_true",
        default=False,
        help="compress (deflate) output",
    )

    ps_clean.add_argument(
        "-ascii", action="store_true", default=False, help="ASCII encode binary data"
    )

    ps_clean.add_argument(
        "-linear",
        action="store_true",
        default=False,
        help="format for fast web display",
    )

    ps_clean.add_argument(
        "-permission", type=int, default=-1, help="integer with permission levels"
    )

    ps_clean.add_argument(
        "-sanitize",
        action="store_true",
        default=False,
        help="sanitize / clean contents",
    )
    ps_clean.add_argument(
        "-pretty", action="store_true", default=False, help="prettify PDF structure"
    )
    ps_clean.add_argument(
        "-pages", help="output selected pages pages, format: 1,5-7,50-N"
    )
    ps_clean.set_defaults(func=clean)

    # -------------------------------------------------------------------------
    # 'join' command
    # -------------------------------------------------------------------------
    ps_join = subps.add_parser(
        "join",
        description=mycenter("join PDF documents"),
        epilog="specify each input as 'filename[,password[,pages]]'",
    )
    ps_join.add_argument("input", nargs="*", help="input filenames")
    ps_join.add_argument("-output", required=True, help="output filename")
    ps_join.set_defaults(func=doc_join)

    # -------------------------------------------------------------------------
    # 'extract' command
    # -------------------------------------------------------------------------
    ps_extract = subps.add_parser(
        "extract", description=mycenter("extract images and fonts to disk")
    )
    ps_extract.add_argument("input", type=str, help="PDF filename")
    ps_extract.add_argument("-images", action="store_true", help="extract images")
    ps_extract.add_argument("-fonts", action="store_true", help="extract fonts")
    ps_extract.add_argument(
        "-output", help="folder to receive output, defaults to current"
    )
    ps_extract.add_argument("-password", help="password")
    ps_extract.add_argument(
        "-pages", type=str, help="consider these pages only, format: 1,5-7,50-N"
    )
    ps_extract.set_defaults(func=extract_objects)

    # -------------------------------------------------------------------------
    # 'embed-info'
    # -------------------------------------------------------------------------
    ps_show = subps.add_parser(
        "embed-info", description=mycenter("list embedded files")
    )
    ps_show.add_argument("input", help="PDF filename")
    ps_show.add_argument("-name", help="if given, report only this one")
    ps_show.add_argument("-detail", action="store_true", help="detail information")
    ps_show.add_argument("-password", help="password")
    ps_show.set_defaults(func=embedded_list)

    # -------------------------------------------------------------------------
    # 'embed-add' command
    # -------------------------------------------------------------------------
    ps_embed_add = subps.add_parser(
        "embed-add", description=mycenter("add embedded file")
    )
    ps_embed_add.add_argument("input", help="PDF filename")
    ps_embed_add.add_argument("-password", help="password")
    ps_embed_add.add_argument(
        "-output", help="output PDF filename, incremental save if none"
    )
    ps_embed_add.add_argument("-name", required=True, help="name of new entry")
    ps_embed_add.add_argument("-path", required=True, help="path to data for new entry")
    ps_embed_add.add_argument("-desc", help="description of new entry")
    ps_embed_add.set_defaults(func=embedded_add)

    # -------------------------------------------------------------------------
    # 'embed-del' command
    # -------------------------------------------------------------------------
    ps_embed_del = subps.add_parser(
        "embed-del", description=mycenter("delete embedded file")
    )
    ps_embed_del.add_argument("input", help="PDF filename")
    ps_embed_del.add_argument("-password", help="password")
    ps_embed_del.add_argument(
        "-output", help="output PDF filename, incremental save if none"
    )
    ps_embed_del.add_argument("-name", required=True, help="name of entry to delete")
    ps_embed_del.set_defaults(func=embedded_del)

    # -------------------------------------------------------------------------
    # 'embed-upd' command
    # -------------------------------------------------------------------------
    ps_embed_upd = subps.add_parser(
        "embed-upd",
        description=mycenter("update embedded file"),
        epilog="except '-name' all parameters are optional",
    )
    ps_embed_upd.add_argument("input", help="PDF filename")
    ps_embed_upd.add_argument("-name", required=True, help="name of entry")
    ps_embed_upd.add_argument("-password", help="password")
    ps_embed_upd.add_argument(
        "-output", help="Output PDF filename, incremental save if none"
    )
    ps_embed_upd.add_argument("-path", help="path to new data for entry")
    ps_embed_upd.add_argument("-filename", help="new filename to store in entry")
    ps_embed_upd.add_argument(
        "-ufilename", help="new unicode filename to store in entry"
    )
    ps_embed_upd.add_argument("-desc", help="new description to store in entry")
    ps_embed_upd.set_defaults(func=embedded_upd)

    # -------------------------------------------------------------------------
    # 'embed-extract' command
    # -------------------------------------------------------------------------
    ps_embed_extract = subps.add_parser(
        "embed-extract", description=mycenter("extract embedded file to disk")
    )
    ps_embed_extract.add_argument("input", type=str, help="PDF filename")
    ps_embed_extract.add_argument("-name", required=True, help="name of entry")
    ps_embed_extract.add_argument("-password", help="password")
    ps_embed_extract.add_argument(
        "-output", help="output filename, default is stored name"
    )
    ps_embed_extract.set_defaults(func=embedded_get)

    # -------------------------------------------------------------------------
    # 'embed-copy' command
    # -------------------------------------------------------------------------
    ps_embed_copy = subps.add_parser(
        "embed-copy", description=mycenter("copy embedded files between PDFs")
    )
    ps_embed_copy.add_argument("input", type=str, help="PDF to receive embedded files")
    ps_embed_copy.add_argument("-password", help="password of input")
    ps_embed_copy.add_argument(
        "-output", help="output PDF, incremental save to 'input' if omitted"
    )
    ps_embed_copy.add_argument(
        "-source", required=True, help="copy embedded files from here"
    )
    ps_embed_copy.add_argument("-pwdsource", help="password of 'source' PDF")
    ps_embed_copy.add_argument(
        "-name", nargs="*", help="restrict copy to these entries"
    )
    ps_embed_copy.set_defaults(func=embedded_copy)

    # -------------------------------------------------------------------------
    # 'textlayout' command
    # -------------------------------------------------------------------------
    ps_gettext = subps.add_parser(
        "gettext", description=mycenter("extract text in various formatting modes")
    )
    ps_gettext.add_argument("input", type=str, help="input document filename")
    ps_gettext.add_argument("-password", help="password for input document")
    ps_gettext.add_argument(
        "-mode",
        type=str,
        help="mode: simple, block sort, or layout (default)",
        choices=("simple", "blocks", "layout"),
        default="layout",
    )
    ps_gettext.add_argument(
        "-pages",
        type=str,
        help="select pages, format: 1,5-7,50-N",
        default="1-N",
    )
    ps_gettext.add_argument(
        "-noligatures",
        action="store_true",
        help="expand ligature characters (default False)",
        default=False,
    )
    ps_gettext.add_argument(
        "-convert-white",
        action="store_true",
        help="convert whitespace characters to white (default False)",
        default=False,
    )
    ps_gettext.add_argument(
        "-extra-spaces",
        action="store_true",
        help="fill gaps with spaces (default False)",
        default=False,
    )
    ps_gettext.add_argument(
        "-noformfeed",
        action="store_true",
        help="write linefeeds, no formfeeds (default False)",
        default=False,
    )
    ps_gettext.add_argument(
        "-skip-empty",
        action="store_true",
        help="suppress pages with no text (default False)",
        default=False,
    )
    ps_gettext.add_argument(
        "-output",
        help="store text in this file (default inputfilename.txt)",
    )
    ps_gettext.add_argument(
        "-grid",
        type=float,
        help="merge lines if closer than this (default 2)",
        default=2,
    )
    ps_gettext.add_argument(
        "-fontsize",
        type=float,
        help="only include text with a larger fontsize (default 3)",
        default=3,
    )
    ps_gettext.set_defaults(func=gettext)

    # -------------------------------------------------------------------------
    # start program
    # -------------------------------------------------------------------------
    args = parser.parse_args()  # create parameter arguments class
    if not hasattr(args, "func"):  # no function selected
        parser.print_help()  # so print top level help
    else:
        args.func(args)  # execute requested command


if __name__ == "__main__":
    main()







PyMuPDF-1.21.1/fitz/fitz.i

%module fitz
%pythonbegin %{
%}
//------------------------------------------------------------------------
// SWIG macros: handle fitz exceptions
//------------------------------------------------------------------------
%define FITZEXCEPTION(meth, cond)
%exception meth
{
    $action
    if (cond) {
        return JM_ReturnException(gctx);
    }
}
%enddef


%define FITZEXCEPTION2(meth, cond)
%exception meth
{
    $action
    if (cond) {
        const char *msg = fz_caught_message(gctx);
        if (strcmp(msg, MSG_BAD_FILETYPE) == 0) {
            PyErr_SetString(PyExc_ValueError, msg);
        } else {
            PyErr_SetString(JM_Exc_FileDataError, MSG_BAD_DOCUMENT);
        }
        return NULL;
    }
}
%enddef

//------------------------------------------------------------------------
// SWIG macro: check that a document is not closed / encrypted
//------------------------------------------------------------------------
%define CLOSECHECK(meth, doc)
%pythonprepend meth %{doc
if self.is_closed or self.is_encrypted:
    raise ValueError("document closed or encrypted")%}
%enddef

%define CLOSECHECK0(meth, doc)
%pythonprepend meth%{doc
if self.is_closed:
    raise ValueError("document closed")%}
%enddef

//------------------------------------------------------------------------
// SWIG macro: check if object has a valid parent
//------------------------------------------------------------------------
%define PARENTCHECK(meth, doc)
%pythonprepend meth %{doc
CheckParent(self)%}
%enddef


//------------------------------------------------------------------------
// SWIG macro: ensure object still exists
//------------------------------------------------------------------------
%define ENSURE_OWNERSHIP(meth, doc)
%pythonprepend meth %{doc
EnsureOwnership(self)%}
%enddef


%{
#define MEMDEBUG 0
#if MEMDEBUG == 1
    #define DEBUGMSG1(x) PySys_WriteStderr("[DEBUG] free %s ", x)
    #define DEBUGMSG2 PySys_WriteStderr("... done!\n")
#else
    #define DEBUGMSG1(x)
    #define DEBUGMSG2
#endif

#ifndef FLT_EPSILON
  #define FLT_EPSILON 1e-5
#endif

#define SWIG_FILE_WITH_INIT

// JM_MEMORY controls what allocators we tell MuPDF to use when we call
// fz_new_context():
//
//  JM_MEMORY=0: MuPDF uses malloc()/free().
//  JM_MEMORY=1: MuPDF uses PyMem_Malloc()/PyMem_Free().
//
// There are also a small number of places where we call malloc() or
// PyMem_Malloc() ourselves, depending on JM_MEMORY.
//
#define JM_MEMORY 0

#if JM_MEMORY == 1
    #define JM_Alloc(type, len) PyMem_New(type, len)
    #define JM_Free(x) PyMem_Del(x)
#else
    #define JM_Alloc(type, len) (type *) malloc(sizeof(type)*len)
    #define JM_Free(x) free(x)
#endif

#define EMPTY_STRING PyUnicode_FromString("")
#define EXISTS(x) (x != NULL && PyObject_IsTrue(x)==1)
#define RAISEPY(context, msg, exc) {JM_Exc_CurrentException=exc; fz_throw(context, FZ_ERROR_GENERIC, msg);}
#define ASSERT_PDF(cond) if (cond == NULL) RAISEPY(gctx, MSG_IS_NO_PDF, PyExc_RuntimeError)
#define ENSURE_OPERATION(ctx, pdf) if (!JM_have_operation(ctx, pdf)) RAISEPY(ctx, "No journalling operation started", PyExc_RuntimeError)
#define INRANGE(v, low, high) ((low) <= v && v <= (high))
#define JM_BOOL(x) PyBool_FromLong((long) (x))
#define JM_PyErr_Clear if (PyErr_Occurred()) PyErr_Clear()

#define JM_StrAsChar(x) (char *)PyUnicode_AsUTF8(x)
#define JM_BinFromChar(x) PyBytes_FromString(x)
#define JM_BinFromCharSize(x, y) PyBytes_FromStringAndSize(x, (Py_ssize_t) y)

#include <fitz.h>
#include <pdf.h>
#include <time.h>
// freetype includes >> --------------------------------------------------
#include <ft2build.h>
#include FT_FREETYPE_H
#ifdef FT_FONT_FORMATS_H
#include FT_FONT_FORMATS_H
#else
#include FT_XFREE86_H
#endif
#include FT_TRUETYPE_TABLES_H

#ifndef FT_SFNT_HEAD
#define FT_SFNT_HEAD ft_sfnt_head
#endif
// << freetype includes --------------------------------------------------

void JM_delete_widget(fz_context *ctx, pdf_page *page, pdf_annot *annot);
static void JM_get_page_labels(fz_context *ctx, PyObject *liste, pdf_obj *nums);
static int DICT_SETITEMSTR_DROP(PyObject *dict, const char *key, PyObject *value);
static int LIST_APPEND_DROP(PyObject *list, PyObject *item);
static int LIST_APPEND_DROP(PyObject *list, PyObject *item);
static fz_irect JM_irect_from_py(PyObject *r);
static fz_matrix JM_matrix_from_py(PyObject *m);
static fz_point JM_normalize_vector(float x, float y);
static fz_point JM_point_from_py(PyObject *p);
static fz_quad JM_quad_from_py(PyObject *r);
static fz_rect JM_rect_from_py(PyObject *r);
static int JM_FLOAT_ITEM(PyObject *obj, Py_ssize_t idx, double *result);
static int JM_INT_ITEM(PyObject *obj, Py_ssize_t idx, int *result);
static PyObject *JM_py_from_irect(fz_irect r);
static PyObject *JM_py_from_matrix(fz_matrix m);
static PyObject *JM_py_from_point(fz_point p);
static PyObject *JM_py_from_quad(fz_quad q);
static PyObject *JM_py_from_rect(fz_rect r);


// additional headers ----------------------------------------------
pdf_obj *pdf_lookup_page_loc(fz_context *ctx, pdf_document *doc, int needle, pdf_obj **parentp, int *indexp);
fz_pixmap *fz_scale_pixmap(fz_context *ctx, fz_pixmap *src, float x, float y, float w, float h, const fz_irect *clip);
int fz_pixmap_size(fz_context *ctx, fz_pixmap *src);
void fz_subsample_pixmap(fz_context *ctx, fz_pixmap *tile, int factor);
void fz_copy_pixmap_rect(fz_context *ctx, fz_pixmap *dest, fz_pixmap *src, fz_irect b, const fz_default_colorspaces *default_cs);
static const float JM_font_ascender(fz_context *ctx, fz_font *font);
static const float JM_font_descender(fz_context *ctx, fz_font *font);

// end of additional headers --------------------------------------------

static PyObject *JM_mupdf_warnings_store;
static int JM_mupdf_show_errors;
static int JM_mupdf_show_warnings;
static PyObject *JM_Exc_FileDataError;
static PyObject *JM_Exc_CurrentException;
%}

//------------------------------------------------------------------------
// global context
//------------------------------------------------------------------------
%init %{
#if JM_MEMORY == 1
    gctx = fz_new_context(&JM_Alloc_Context, NULL, FZ_STORE_DEFAULT);
#else
    gctx = fz_new_context(NULL, NULL, FZ_STORE_DEFAULT);
#endif
    if(!gctx)
    {
        PyErr_SetString(PyExc_RuntimeError, "Fatal error: cannot create global context.");
        return NULL;
    }
    fz_register_document_handlers(gctx);

//------------------------------------------------------------------------
// START redirect stdout/stderr
//------------------------------------------------------------------------
JM_mupdf_warnings_store = PyList_New(0);
JM_mupdf_show_errors = 1;
JM_mupdf_show_warnings = 0;
char user[] = "PyMuPDF";
fz_set_warning_callback(gctx, JM_mupdf_warning, &user);
fz_set_error_callback(gctx, JM_mupdf_error, &user);
JM_Exc_FileDataError = NULL;
JM_Exc_CurrentException = PyExc_RuntimeError;
//------------------------------------------------------------------------
// STOP redirect stdout/stderr
//------------------------------------------------------------------------
// init global constants
//------------------------------------------------------------------------
dictkey_align = PyUnicode_InternFromString("align");
dictkey_ascender = PyUnicode_InternFromString("ascender");
dictkey_bbox = PyUnicode_InternFromString("bbox");
dictkey_blocks = PyUnicode_InternFromString("blocks");
dictkey_bpc = PyUnicode_InternFromString("bpc");
dictkey_c = PyUnicode_InternFromString("c");
dictkey_chars = PyUnicode_InternFromString("chars");
dictkey_color = PyUnicode_InternFromString("color");
dictkey_colorspace = PyUnicode_InternFromString("colorspace");
dictkey_content = PyUnicode_InternFromString("content");
dictkey_creationDate = PyUnicode_InternFromString("creationDate");
dictkey_cs_name = PyUnicode_InternFromString("cs-name");
dictkey_da = PyUnicode_InternFromString("da");
dictkey_dashes = PyUnicode_InternFromString("dashes");
dictkey_desc = PyUnicode_InternFromString("desc");
dictkey_desc = PyUnicode_InternFromString("descender");
dictkey_descender = PyUnicode_InternFromString("descender");
dictkey_dir = PyUnicode_InternFromString("dir");
dictkey_effect = PyUnicode_InternFromString("effect");
dictkey_ext = PyUnicode_InternFromString("ext");
dictkey_filename = PyUnicode_InternFromString("filename");
dictkey_fill = PyUnicode_InternFromString("fill");
dictkey_flags = PyUnicode_InternFromString("flags");
dictkey_font = PyUnicode_InternFromString("font");
dictkey_glyph = PyUnicode_InternFromString("glyph");
dictkey_height = PyUnicode_InternFromString("height");
dictkey_id = PyUnicode_InternFromString("id");
dictkey_image = PyUnicode_InternFromString("image");
dictkey_items = PyUnicode_InternFromString("items");
dictkey_length = PyUnicode_InternFromString("length");
dictkey_lines = PyUnicode_InternFromString("lines");
dictkey_matrix = PyUnicode_InternFromString("transform");
dictkey_modDate = PyUnicode_InternFromString("modDate");
dictkey_name = PyUnicode_InternFromString("name");
dictkey_number = PyUnicode_InternFromString("number");
dictkey_origin = PyUnicode_InternFromString("origin");
dictkey_rect = PyUnicode_InternFromString("rect");
dictkey_size = PyUnicode_InternFromString("size");
dictkey_smask = PyUnicode_InternFromString("smask");
dictkey_spans = PyUnicode_InternFromString("spans");
dictkey_stroke = PyUnicode_InternFromString("stroke");
dictkey_style = PyUnicode_InternFromString("style");
dictkey_subject = PyUnicode_InternFromString("subject");
dictkey_text = PyUnicode_InternFromString("text");
dictkey_title = PyUnicode_InternFromString("title");
dictkey_type = PyUnicode_InternFromString("type");
dictkey_ufilename = PyUnicode_InternFromString("ufilename");
dictkey_width = PyUnicode_InternFromString("width");
dictkey_wmode = PyUnicode_InternFromString("wmode");
dictkey_xref = PyUnicode_InternFromString("xref");
dictkey_xres = PyUnicode_InternFromString("xres");
dictkey_yres = PyUnicode_InternFromString("yres");

atexit( cleanup);
%}

%header %{
fz_context *gctx;

static void cleanup()
{
    fz_drop_context( gctx);
}

static int JM_UNIQUE_ID = 0;

struct DeviceWrapper {
    fz_device *device;
    fz_display_list *list;
};
%}

//------------------------------------------------------------------------
// include version information and several other helpers
//------------------------------------------------------------------------
%pythoncode %{
import io
import math
import os
import weakref
import hashlib
import typing
import binascii
import re
import tarfile
import zipfile
import pathlib

TESSDATA_PREFIX = os.environ.get("TESSDATA_PREFIX")
point_like = "point_like"
rect_like = "rect_like"
matrix_like = "matrix_like"
quad_like = "quad_like"
AnyType = typing.Any
OptInt = typing.Union[int, None]
OptFloat = typing.Optional[float]
OptStr = typing.Optional[str]
OptDict = typing.Optional[dict]
OptBytes = typing.Optional[typing.ByteString]
OptSeq = typing.Optional[typing.Sequence]

try:
    from pymupdf_fonts import fontdescriptors, fontbuffers

    fitz_fontdescriptors = fontdescriptors.copy()
    for k in fitz_fontdescriptors.keys():
        fitz_fontdescriptors[k]["loader"] = fontbuffers[k]
    del fontdescriptors, fontbuffers
except ImportError:
    fitz_fontdescriptors = {}
%}
%include version.i
%include helper-defines.i
%include helper-globals.i
%include helper-geo-c.i
%include helper-other.i
%include helper-pixmap.i
%include helper-geo-py.i
%include helper-annot.i
%include helper-fields.i
%include helper-python.i
%include helper-portfolio.i
%include helper-select.i
%include helper-stext.i
%include helper-xobject.i
%include helper-pdfinfo.i
%include helper-convert.i
%include helper-fileobj.i
%include helper-devices.i

%{
// Declaring these structs here prevents gcc from generating warnings like:
//
//      warning: 'struct Document' declared inside parameter list will not be visible outside of this definition or declaration
//
struct Colorspace;
struct Document;
struct Font;
struct Graftmap;
struct TextPage;
struct TextWriter;
struct DocumentWriter;
struct Xml;
struct Archive;
struct Story;
%}

//------------------------------------------------------------------------
// fz_document
//------------------------------------------------------------------------
struct Document
{
    %extend
    {
        ~Document()
        {
            DEBUGMSG1("Document");
            fz_document *this_doc = (fz_document *) $self;
            fz_drop_document(gctx, this_doc);
            DEBUGMSG2;
        }
        FITZEXCEPTION2(Document, !result)

        %pythonprepend Document %{
        """Creates a document. Use 'open' as a synonym.

        Notes:
            Basic usages:
            open() - new PDF document
            open(filename) - string, pathlib.Path, or file object.
            open(filename, fileype=type) - overwrite filename extension.
            open(type, buffer) - type: extension, buffer: bytes object.
            open(stream=buffer, filetype=type) - keyword version of previous.
            Parameters rect, width, height, fontsize: layout reflowable
                 document on open (e.g. EPUB). Ignored if n/a.
        """
        self.is_closed = False
        self.is_encrypted = False
        self.isEncrypted = False
        self.metadata    = None
        self.FontInfos   = []
        self.Graftmaps   = {}
        self.ShownPages  = {}
        self.InsertedImages  = {}
        self._page_refs  = weakref.WeakValueDictionary()

        if not filename or type(filename) is str:
            pass
        elif hasattr(filename, "absolute"):
            filename = str(filename)
        elif hasattr(filename, "name"):
            filename = filename.name
        else:
            msg = "bad filename"
            raise TypeError(msg)

        if stream != None:
            if type(stream) is bytes:
                self.stream = stream
            elif type(stream) is bytearray:
                self.stream = bytes(stream)
            elif type(stream) is io.BytesIO:
                self.stream = stream.getvalue()
            else:
                msg = "bad type: 'stream'"
                raise TypeError(msg)
            stream = self.stream
            if not (filename or filetype):
                filename = "pdf"
        else:
            self.stream = None

        if filename and self.stream == None:
            self.name = filename
            from_file = True
        else:
            from_file = False
            self.name = ""

        if from_file:
            if not os.path.exists(filename):
                msg = f"no such file: '{filename}'"
                raise FileNotFoundError(msg)
            elif not os.path.isfile(filename):
                msg = f"'{filename}' is no file"
                raise FileDataError(msg)
        if from_file and os.path.getsize(filename) == 0 or type(self.stream) is bytes and len(self.stream) == 0:
            msg = "cannot open empty document"
            raise EmptyFileError(msg)
        %}
        %pythonappend Document %{
            if self.thisown:
                self._graft_id = TOOLS.gen_id()
                if self.needs_pass is True:
                    self.is_encrypted = True
                    self.isEncrypted = True
                else: # we won't init until doc is decrypted
                    self.init_doc()
                # the following hack detects invalid/empty SVG files, which else may lead
                # to interpreter crashes
                if filename and filename.lower().endswith("svg") or filetype and "svg" in filetype.lower():
                    try:
                        _ = self.convert_to_pdf()  # this seems to always work
                    except:
                        raise FileDataError("cannot open broken document") from None
        %}

        Document(const char *filename=NULL, PyObject *stream=NULL,
                      const char *filetype=NULL, PyObject *rect=NULL,
                      float width=0, float height=0,
                      float fontsize=11)
        {
            int old_msg_option = JM_mupdf_show_errors;
            JM_mupdf_show_errors = 0;
            fz_document *doc = NULL;
            const fz_document_handler *handler;
            char *c = NULL;
            char *magic = NULL;
            size_t len = 0;
            fz_stream *data = NULL;
            float w = width, h = height;
            fz_rect r = JM_rect_from_py(rect);
            if (!fz_is_infinite_rect(r)) {
                w = r.x1 - r.x0;
                h = r.y1 - r.y0;
            }

            fz_try(gctx) {
                if (stream != Py_None) { // stream given, **MUST** be bytes!
                    c = PyBytes_AS_STRING(stream); // just a pointer, no new obj
                    len = (size_t) PyBytes_Size(stream);
                    data = fz_open_memory(gctx, (const unsigned char *) c, len);
                    magic = (char *)filename;
                    if (!magic) magic = (char *)filetype;
                    handler = fz_recognize_document(gctx, magic);
                    if (!handler) {
                        RAISEPY(gctx, MSG_BAD_FILETYPE, PyExc_ValueError);
                    }
                    doc = fz_open_document_with_stream(gctx, magic, data);
                } else {
                    if (filename && strlen(filename)) {
                        if (!filetype || strlen(filetype) == 0) {
                            doc = fz_open_document(gctx, filename);
                        } else {
                            handler = fz_recognize_document(gctx, filetype);
                            if (!handler) {
                                RAISEPY(gctx, MSG_BAD_FILETYPE, PyExc_ValueError);
                            }
                            if (handler->open) {
                                doc = handler->open(gctx, filename);
                            } else if (handler->open_with_stream) {
                                data = fz_open_file(gctx, filename);
                                doc = handler->open_with_stream(gctx, data);
                            }
                        }
                    } else {
                        pdf_document *pdf = pdf_create_document(gctx);
                        doc = (fz_document *) pdf;
                    }
                }
            }
            fz_always(gctx) {
                fz_drop_stream(gctx, data);
            }
            fz_catch(gctx) {
                JM_mupdf_show_errors = old_msg_option;
                return NULL;
            }
            if (w > 0 && h > 0) {
                fz_layout_document(gctx, doc, w, h, fontsize);
            } else if (fz_is_document_reflowable(gctx, doc)) {
                fz_layout_document(gctx, doc, 400, 600, 11);
            }
            return (struct Document *) doc;
        }


        FITZEXCEPTION(load_page, !result)
        %pythonprepend load_page %{
        """Load a page.

        'page_id' is either a 0-based page number or a tuple (chapter, pno),
        with chapter number and page number within that chapter.
        """

        if self.is_closed or self.is_encrypted:
            raise ValueError("document closed or encrypted")
        if page_id is None:
            page_id = 0
        if page_id not in self:
            raise ValueError("page not in document")
        if type(page_id) is int and page_id < 0:
            np = self.page_count
            while page_id < 0:
                page_id += np
        %}
        %pythonappend load_page %{
        val.thisown = True
        val.parent = weakref.proxy(self)
        self._page_refs[id(val)] = val
        val._annot_refs = weakref.WeakValueDictionary()
        val.number = page_id
        %}
        struct Page *
        load_page(PyObject *page_id)
        {
            fz_page *page = NULL;
            fz_document *doc = (fz_document *) $self;
            int pno = 0, chapter = 0;
            fz_try(gctx) {
                if (PySequence_Check(page_id)) {
                    if (JM_INT_ITEM(page_id, 0, &chapter) == 1) {
                        RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                    }
                    if (JM_INT_ITEM(page_id, 1, &pno) == 1) {
                        RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                    }
                    page = fz_load_chapter_page(gctx, doc, chapter, pno);
                } else {
                    pno = (int) PyLong_AsLong(page_id);
                    if (PyErr_Occurred()) {
                        RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                    }
                    page = fz_load_page(gctx, doc, pno);
                }
            }
            fz_catch(gctx) {
                PyErr_Clear();
                return NULL;
            }
            PyErr_Clear();
            return (struct Page *) page;
        }


        FITZEXCEPTION(_remove_links_to, !result)
        PyObject *_remove_links_to(PyObject *numbers)
        {
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                remove_dest_range(gctx, pdf, numbers);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        CLOSECHECK0(_loadOutline, """Load first outline.""")
        struct Outline *_loadOutline()
        {
            fz_outline *ol = NULL;
            fz_document *doc = (fz_document *) $self;
            fz_try(gctx) {
                ol = fz_load_outline(gctx, doc);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Outline *) ol;
        }

        void _dropOutline(struct Outline *ol) {
            DEBUGMSG1("Outline");
            fz_outline *this_ol = (fz_outline *) ol;
            fz_drop_outline(gctx, this_ol);
            DEBUGMSG2;
        }

        FITZEXCEPTION(_insert_font, !result)
        CLOSECHECK0(_insert_font, """Utility: insert font from file or binary.""")
        PyObject *
        _insert_font(char *fontfile=NULL, PyObject *fontbuffer=NULL)
        {
            PyObject *value=NULL;
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *)$self);

            fz_try(gctx) {
                ASSERT_PDF(pdf);
                if (!fontfile && !EXISTS(fontbuffer)) {
                    RAISEPY(gctx, MSG_FILE_OR_BUFFER, PyExc_ValueError);
                }
                value = JM_insert_font(gctx, pdf, NULL, fontfile, fontbuffer,
                            0, 0, 0, 0, 0, -1);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return value;
        }


        FITZEXCEPTION(get_outline_xrefs, !result)
        CLOSECHECK0(get_outline_xrefs, """Get list of outline xref numbers.""")
        PyObject *
        get_outline_xrefs()
        {
            PyObject *xrefs = PyList_New(0);
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *)$self);
            if (!pdf) {
                return xrefs;
            }
            fz_try(gctx) {
                pdf_obj *root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root));
                if (!root) goto finished;
                pdf_obj *olroot = pdf_dict_get(gctx, root, PDF_NAME(Outlines));
                if (!olroot) goto finished;
                pdf_obj *first = pdf_dict_get(gctx, olroot, PDF_NAME(First));
                if (!first) goto finished;
                xrefs = JM_outline_xrefs(gctx, first, xrefs);
                finished:;
            }
            fz_catch(gctx) {
                Py_DECREF(xrefs);
                return NULL;
            }
            return xrefs;
        }


        FITZEXCEPTION(xref_get_keys, !result)
        CLOSECHECK0(xref_get_keys, """Get the keys of PDF dict object at 'xref'. Use -1 for the PDF trailer.""")
        PyObject *
        xref_get_keys(int xref)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *)$self);
            pdf_obj *obj=NULL;
            PyObject *rc = NULL;
            int i, n;
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                int xreflen = pdf_xref_len(gctx, pdf);
                if (!INRANGE(xref, 1, xreflen-1) && xref != -1) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                if (xref > 0) {
                    obj = pdf_load_object(gctx, pdf, xref);
                } else {
                    obj = pdf_trailer(gctx, pdf);
                }
                n = pdf_dict_len(gctx, obj);
                rc = PyTuple_New(n);
                if (!n) goto finished;
                for (i = 0; i < n; i++) {
                    const char *key = pdf_to_name(gctx, pdf_dict_get_key(gctx, obj, i));
                    PyTuple_SET_ITEM(rc, i, Py_BuildValue("s", key));
                }
                finished:;
            }
            fz_always(gctx) {
                if (xref > 0) {
                    pdf_drop_obj(gctx, obj);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return rc;
        }


        FITZEXCEPTION(xref_get_key, !result)
        CLOSECHECK0(xref_get_key, """Get PDF dict key value of object at 'xref'.""")
        PyObject *
        xref_get_key(int xref, const char *key)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *)$self);
            pdf_obj *obj=NULL, *subobj=NULL;
            PyObject *rc = NULL;
            fz_buffer *res = NULL;
            PyObject *text = NULL;
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                int xreflen = pdf_xref_len(gctx, pdf);
                if (!INRANGE(xref, 1, xreflen-1) && xref != -1) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                if (xref > 0) {
                    obj = pdf_load_object(gctx, pdf, xref);
                } else {
                    obj = pdf_trailer(gctx, pdf);
                }
                if (!obj) {
                    goto not_found;
                }
                subobj = pdf_dict_getp(gctx, obj, key);
                if (!subobj) {
                    goto not_found;
                }
                char *type;
                if (pdf_is_indirect(gctx, subobj)) {
                    type = "xref";
                    text = PyUnicode_FromFormat("%i 0 R", pdf_to_num(gctx, subobj));
                } else if (pdf_is_array(gctx, subobj)) {
                    type = "array";
                } else if (pdf_is_dict(gctx, subobj)) {
                    type = "dict";
                } else if (pdf_is_int(gctx, subobj)) {
                    type = "int";
                    text = PyUnicode_FromFormat("%i", pdf_to_int(gctx, subobj));
                } else if (pdf_is_real(gctx, subobj)) {
                    type = "float";
                } else if (pdf_is_null(gctx, subobj)) {
                    type = "null";
                    text = PyUnicode_FromString("null");
                } else if (pdf_is_bool(gctx, subobj)) {
                    type = "bool";
                    if (pdf_to_bool(gctx, subobj)) {
                        text = PyUnicode_FromString("true");
                    } else {
                        text = PyUnicode_FromString("false");
                    }
                } else if (pdf_is_name(gctx, subobj)) {
                    type = "name";
                    text = PyUnicode_FromFormat("/%s", pdf_to_name(gctx, subobj));
                } else if (pdf_is_string(gctx, subobj)) {
                    type = "string";
                    text = JM_UnicodeFromStr(pdf_to_text_string(gctx, subobj));
                } else {
                    type = "unknown";
                }
                if (!text) {
                    res = JM_object_to_buffer(gctx, subobj, 1, 0);
                    text = JM_UnicodeFromBuffer(gctx, res);
                }
                rc = Py_BuildValue("sO", type, text);
                Py_DECREF(text);
                goto finished;

                not_found:;
                rc = Py_BuildValue("ss", "null", "null");
                finished:;
            }
            fz_always(gctx) {
                if (xref > 0) {
                    pdf_drop_obj(gctx, obj);
                }
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return rc;
        }


        FITZEXCEPTION(xref_set_key, !result)
        CLOSECHECK0(xref_set_key, """Set the value of a PDF dictionary key.""")
        PyObject *
        xref_set_key(int xref, const char *key, char *value)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *)$self);
            pdf_obj *obj = NULL, *new_obj = NULL;
            int i, n;
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                if (!key || strlen(key) == 0) {
                    RAISEPY(gctx, "bad 'key'", PyExc_ValueError);
                }
                if (!value || strlen(value) == 0) {
                    RAISEPY(gctx, "bad 'value'", PyExc_ValueError);
                }
                int xreflen = pdf_xref_len(gctx, pdf);
                if (!INRANGE(xref, 1, xreflen-1) && xref != -1) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                if (xref != -1) {
                    obj = pdf_load_object(gctx, pdf, xref);
                } else {
                    obj = pdf_trailer(gctx, pdf);
                }
                // if val=="null" and no path hierarchy, delete "key" from object
                // chr(47) = "/"
                if (strcmp(value, "null") == 0 && strchr(key, 47) == NULL) {
                    pdf_dict_dels(gctx, obj, key);
                    goto finished;
                }
                new_obj = JM_set_object_value(gctx, obj, key, value);
                if (!new_obj) {
                    goto finished;  // did not work: skip update
                }
                if (xref != -1) {
                    pdf_drop_obj(gctx, obj);
                    obj = NULL;
                    pdf_update_object(gctx, pdf, xref, new_obj);
                } else {
                    n = pdf_dict_len(gctx, new_obj);
                    for (i = 0; i < n; i++) {
                        pdf_dict_put(gctx, obj, pdf_dict_get_key(gctx, new_obj, i), pdf_dict_get_val(gctx, new_obj, i));
                    }
                }
                finished:;
            }
            fz_always(gctx) {
                if (xref != -1) {
                    pdf_drop_obj(gctx, obj);
                }
                pdf_drop_obj(gctx, new_obj);
                PyErr_Clear();
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(_extend_toc_items, !result)
        CLOSECHECK0(_extend_toc_items, """Add color info to all items of an extended TOC list.""")
        PyObject *
        _extend_toc_items(PyObject *items)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *)$self);
            pdf_obj *bm, *col, *obj;
            int count, flags;
            PyObject *item=NULL, *itemdict=NULL, *xrefs, *bold, *italic, *collapse, *zoom;
            zoom = PyUnicode_FromString("zoom");
            bold = PyUnicode_FromString("bold");
            italic = PyUnicode_FromString("italic");
            collapse = PyUnicode_FromString("collapse");
            fz_try(gctx) {
                pdf_obj *root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root));
                if (!root) goto finished;
                pdf_obj *olroot = pdf_dict_get(gctx, root, PDF_NAME(Outlines));
                if (!olroot) goto finished;
                pdf_obj *first = pdf_dict_get(gctx, olroot, PDF_NAME(First));
                if (!first) goto finished;
                xrefs = PyList_New(0);  // pre-allocate an empty list
                xrefs = JM_outline_xrefs(gctx, first, xrefs);
                Py_ssize_t i, n = PySequence_Size(xrefs), m = PySequence_Size(items);
                if (!n) goto finished;
                if (n != m) {
                    RAISEPY(gctx, "internal error finding outline xrefs", PyExc_IndexError);
                }
                int xref;

                // update all TOC item dictionaries
                for (i = 0; i < n; i++) {
                    JM_INT_ITEM(xrefs, i, &xref);
                    item = PySequence_ITEM(items, i);
                    itemdict = PySequence_ITEM(item, 3);
                    if (!itemdict || !PyDict_Check(itemdict)) {
                        RAISEPY(gctx, "need non-simple TOC format", PyExc_ValueError);
                    }
                    PyDict_SetItem(itemdict, dictkey_xref, PySequence_ITEM(xrefs, i));
                    bm = pdf_load_object(gctx, pdf, xref);
                    flags = pdf_to_int(gctx, (pdf_dict_get(gctx, bm, PDF_NAME(F))));
                    if (flags == 1) {
                        PyDict_SetItem(itemdict, italic, Py_True);
                    } else if (flags == 2) {
                        PyDict_SetItem(itemdict, bold, Py_True);
                    } else if (flags == 3) {
                        PyDict_SetItem(itemdict, italic, Py_True);
                        PyDict_SetItem(itemdict, bold, Py_True);
                    }
                    count = pdf_to_int(gctx, (pdf_dict_get(gctx, bm, PDF_NAME(Count))));
                    if (count < 0) {
                        PyDict_SetItem(itemdict, collapse, Py_True);
                    } else if (count > 0) {
                        PyDict_SetItem(itemdict, collapse, Py_False);
                    }
                    col = pdf_dict_get(gctx, bm, PDF_NAME(C));
                    if (pdf_is_array(gctx, col) && pdf_array_len(gctx, col) == 3) {
                        PyObject *color = PyTuple_New(3);
                        PyTuple_SET_ITEM(color, 0, Py_BuildValue("f", pdf_to_real(gctx, pdf_array_get(gctx, col, 0))));
                        PyTuple_SET_ITEM(color, 1, Py_BuildValue("f", pdf_to_real(gctx, pdf_array_get(gctx, col, 1))));
                        PyTuple_SET_ITEM(color, 2, Py_BuildValue("f", pdf_to_real(gctx, pdf_array_get(gctx, col, 2))));
                        DICT_SETITEM_DROP(itemdict, dictkey_color, color);
                    }
                    float z=0;
                    obj = pdf_dict_get(gctx, bm, PDF_NAME(Dest));
                    if (!obj || !pdf_is_array(gctx, obj)) {
                        obj = pdf_dict_getl(gctx, bm, PDF_NAME(A), PDF_NAME(D), NULL);
                    }
                    if (pdf_is_array(gctx, obj) && pdf_array_len(gctx, obj) == 5) {
                        z = pdf_to_real(gctx, pdf_array_get(gctx, obj, 4));
                    }
                    DICT_SETITEM_DROP(itemdict, zoom, Py_BuildValue("f", z));
                    PyList_SetItem(item, 3, itemdict);
                    PyList_SetItem(items, i, item);
                    pdf_drop_obj(gctx, bm);
                    bm = NULL;
                }
                finished:;
            }
            fz_always(gctx) {
                Py_CLEAR(xrefs);
                Py_CLEAR(bold);
                Py_CLEAR(italic);
                Py_CLEAR(collapse);
                Py_CLEAR(zoom);
                pdf_drop_obj(gctx, bm);
                PyErr_Clear();
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------------------------------------
        // EmbeddedFiles utility functions
        //----------------------------------------------------------------
        FITZEXCEPTION(_embfile_names, !result)
        CLOSECHECK0(_embfile_names, """Get list of embedded file names.""")
        PyObject *_embfile_names(PyObject *namelist)
        {
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_specifics(gctx, doc);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                PyObject *val;
                pdf_obj *names = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                      PDF_NAME(Root),
                                      PDF_NAME(Names),
                                      PDF_NAME(EmbeddedFiles),
                                      PDF_NAME(Names),
                                      NULL);
                if (pdf_is_array(gctx, names)) {
                    int i, n = pdf_array_len(gctx, names);
                    for (i=0; i < n; i+=2) {
                        val = JM_EscapeStrFromStr(pdf_to_text_string(gctx,
                                         pdf_array_get(gctx, names, i)));
                        LIST_APPEND_DROP(namelist, val);
                    }
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        FITZEXCEPTION(_embfile_del, !result)
        PyObject *_embfile_del(int idx)
        {
            fz_try(gctx) {
                fz_document *doc = (fz_document *) $self;
                pdf_document *pdf = pdf_document_from_fz_document(gctx, doc);
                pdf_obj *names = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                      PDF_NAME(Root),
                                      PDF_NAME(Names),
                                      PDF_NAME(EmbeddedFiles),
                                      PDF_NAME(Names),
                                      NULL);
                pdf_array_delete(gctx, names, idx + 1);
                pdf_array_delete(gctx, names, idx);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        FITZEXCEPTION(_embfile_info, !result)
        PyObject *_embfile_info(int idx, PyObject *infodict)
        {
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_document_from_fz_document(gctx, doc);
            char *name;
            int xref = 0, ci_xref=0;
            fz_try(gctx) {
                pdf_obj *names = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                      PDF_NAME(Root),
                                      PDF_NAME(Names),
                                      PDF_NAME(EmbeddedFiles),
                                      PDF_NAME(Names),
                                      NULL);

                pdf_obj *o = pdf_array_get(gctx, names, 2*idx+1);
                pdf_obj *ci = pdf_dict_get(gctx, o, PDF_NAME(CI));
                if (ci) {
                    ci_xref = pdf_to_num(gctx, ci);
                }
                DICT_SETITEMSTR_DROP(infodict, "collection", Py_BuildValue("i", ci_xref));
                name = (char *) pdf_to_text_string(gctx,
                                          pdf_dict_get(gctx, o, PDF_NAME(F)));
                DICT_SETITEM_DROP(infodict, dictkey_filename, JM_EscapeStrFromStr(name));

                name = (char *) pdf_to_text_string(gctx,
                                    pdf_dict_get(gctx, o, PDF_NAME(UF)));
                DICT_SETITEM_DROP(infodict, dictkey_ufilename, JM_EscapeStrFromStr(name));

                name = (char *) pdf_to_text_string(gctx,
                                    pdf_dict_get(gctx, o, PDF_NAME(Desc)));
                DICT_SETITEM_DROP(infodict, dictkey_desc, JM_UnicodeFromStr(name));

                int len = -1, DL = -1;
                pdf_obj *fileentry = pdf_dict_getl(gctx, o, PDF_NAME(EF), PDF_NAME(F), NULL);
                xref = pdf_to_num(gctx, fileentry);
                o = pdf_dict_get(gctx, fileentry, PDF_NAME(Length));
                if (o) len = pdf_to_int(gctx, o);

                o = pdf_dict_get(gctx, fileentry, PDF_NAME(DL));
                if (o) {
                    DL = pdf_to_int(gctx, o);
                } else {
                    o = pdf_dict_getl(gctx, fileentry, PDF_NAME(Params),
                                   PDF_NAME(Size), NULL);
                    if (o) DL = pdf_to_int(gctx, o);
                }
                DICT_SETITEM_DROP(infodict, dictkey_size, Py_BuildValue("i", DL));
                DICT_SETITEM_DROP(infodict, dictkey_length, Py_BuildValue("i", len));
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", xref);
        }

        FITZEXCEPTION(_embfile_upd, !result)
        PyObject *_embfile_upd(int idx, PyObject *buffer = NULL, char *filename = NULL, char *ufilename = NULL, char *desc = NULL)
        {
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_document_from_fz_document(gctx, doc);
            fz_buffer *res = NULL;
            fz_var(res);
            int xref = 0;
            fz_try(gctx) {
                pdf_obj *names = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                      PDF_NAME(Root),
                                      PDF_NAME(Names),
                                      PDF_NAME(EmbeddedFiles),
                                      PDF_NAME(Names),
                                      NULL);

                pdf_obj *entry = pdf_array_get(gctx, names, 2*idx+1);

                pdf_obj *filespec = pdf_dict_getl(gctx, entry, PDF_NAME(EF),
                                                  PDF_NAME(F), NULL);
                if (!filespec) {
                    RAISEPY(gctx, "bad PDF: no /EF object", JM_Exc_FileDataError);
                }
                res = JM_BufferFromBytes(gctx, buffer);
                if (EXISTS(buffer) && !res) {
                    RAISEPY(gctx, MSG_BAD_BUFFER, PyExc_TypeError);
                }
                if (res && buffer != Py_None)
                {
                    JM_update_stream(gctx, pdf, filespec, res, 1);
                    // adjust /DL and /Size parameters
                    int64_t len = (int64_t) fz_buffer_storage(gctx, res, NULL);
                    pdf_obj *l = pdf_new_int(gctx, len);
                    pdf_dict_put(gctx, filespec, PDF_NAME(DL), l);
                    pdf_dict_putl(gctx, filespec, l, PDF_NAME(Params), PDF_NAME(Size), NULL);
                }
                xref = pdf_to_num(gctx, filespec);
                if (filename)
                    pdf_dict_put_text_string(gctx, entry, PDF_NAME(F), filename);

                if (ufilename)
                    pdf_dict_put_text_string(gctx, entry, PDF_NAME(UF), ufilename);

                if (desc)
                    pdf_dict_put_text_string(gctx, entry, PDF_NAME(Desc), desc);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx)
                return NULL;
            
            return Py_BuildValue("i", xref);
        }

        FITZEXCEPTION(_embeddedFileGet, !result)
        PyObject *_embeddedFileGet(int idx)
        {
            fz_document *doc = (fz_document *) $self;
            PyObject *cont = NULL;
            pdf_document *pdf = pdf_document_from_fz_document(gctx, doc);
            fz_buffer *buf = NULL;
            fz_var(buf);
            fz_try(gctx) {
                pdf_obj *names = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                      PDF_NAME(Root),
                                      PDF_NAME(Names),
                                      PDF_NAME(EmbeddedFiles),
                                      PDF_NAME(Names),
                                      NULL);

                pdf_obj *entry = pdf_array_get(gctx, names, 2*idx+1);
                pdf_obj *filespec = pdf_dict_getl(gctx, entry, PDF_NAME(EF),
                                                  PDF_NAME(F), NULL);
                buf = pdf_load_stream(gctx, filespec);
                cont = JM_BinFromBuffer(gctx, buf);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, buf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return cont;
        }

        FITZEXCEPTION(_embfile_add, !result)
        PyObject *_embfile_add(const char *name, PyObject *buffer, char *filename=NULL, char *ufilename=NULL, char *desc=NULL)
        {
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_document_from_fz_document(gctx, doc);
            fz_buffer *data = NULL;
            fz_var(data);
            pdf_obj *names = NULL;
            int xref = 0; // xref of file entry
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                data = JM_BufferFromBytes(gctx, buffer);
                if (!data) {
                    RAISEPY(gctx, MSG_BAD_BUFFER, PyExc_TypeError);
                }

                names = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                      PDF_NAME(Root),
                                      PDF_NAME(Names),
                                      PDF_NAME(EmbeddedFiles),
                                      PDF_NAME(Names),
                                      NULL);
                if (!pdf_is_array(gctx, names)) {
                    pdf_obj *root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf),
                                                 PDF_NAME(Root));
                    names = pdf_new_array(gctx, pdf, 6);  // an even number!
                    pdf_dict_putl_drop(gctx, root, names,
                                      PDF_NAME(Names),
                                      PDF_NAME(EmbeddedFiles),
                                      PDF_NAME(Names),
                                      NULL);
                }

                pdf_obj *fileentry = JM_embed_file(gctx, pdf, data,
                                                   filename,
                                                   ufilename,
                                                   desc, 1);
                xref = pdf_to_num(gctx, pdf_dict_getl(gctx, fileentry,
                                    PDF_NAME(EF), PDF_NAME(F), NULL));
                pdf_array_push_drop(gctx, names, pdf_new_text_string(gctx, name));
                pdf_array_push_drop(gctx, names, fileentry);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, data);
            }
            fz_catch(gctx) {
                return NULL;
            }
            
            return Py_BuildValue("i", xref);
        }

        %pythoncode %{
        def embfile_names(self) -> list:
            """Get list of names of EmbeddedFiles."""
            filenames = []
            self._embfile_names(filenames)
            return filenames

        def _embeddedFileIndex(self, item: typing.Union[int, str]) -> int:
            filenames = self.embfile_names()
            msg = "'%s' not in EmbeddedFiles array." % str(item)
            if item in filenames:
                idx = filenames.index(item)
            elif item in range(len(filenames)):
                idx = item
            else:
                raise ValueError(msg)
            return idx

        def embfile_count(self) -> int:
            """Get number of EmbeddedFiles."""
            return len(self.embfile_names())

        def embfile_del(self, item: typing.Union[int, str]):
            """Delete an entry from EmbeddedFiles.

            Notes:
                The argument must be name or index of an EmbeddedFiles item.
                Physical deletion of data will happen on save to a new
                file with appropriate garbage option.
            Args:
                item: name or number of item.
            Returns:
                None
            """
            idx = self._embeddedFileIndex(item)
            return self._embfile_del(idx)

        def embfile_info(self, item: typing.Union[int, str]) -> dict:
            """Get information of an item in the EmbeddedFiles array.

            Args:
                item: number or name of item.
            Returns:
                Information dictionary.
            """
            idx = self._embeddedFileIndex(item)
            infodict = {"name": self.embfile_names()[idx]}
            xref = self._embfile_info(idx, infodict)
            t, date = self.xref_get_key(xref, "Params/CreationDate")
            if t != "null":
                infodict["creationDate"] = date
            t, date = self.xref_get_key(xref, "Params/ModDate")
            if t != "null":
                infodict["modDate"] = date
            t, md5 = self.xref_get_key(xref, "Params/CheckSum")
            if t != "null":
                infodict["checksum"] = binascii.hexlify(md5.encode()).decode()
            return infodict

        def embfile_get(self, item: typing.Union[int, str]) -> bytes:
            """Get the content of an item in the EmbeddedFiles array.

            Args:
                item: number or name of item.
            Returns:
                (bytes) The file content.
            """
            idx = self._embeddedFileIndex(item)
            return self._embeddedFileGet(idx)

        def embfile_upd(self, item: typing.Union[int, str],
                                 buffer: OptBytes =None,
                                 filename: OptStr =None,
                                 ufilename: OptStr =None,
                                 desc: OptStr =None,) -> None:
            """Change an item of the EmbeddedFiles array.

            Notes:
                Only provided parameters are changed. If all are omitted,
                the method is a no-op.
            Args:
                item: number or name of item.
                buffer: (binary data) the new file content.
                filename: (str) the new file name.
                ufilename: (unicode) the new filen ame.
                desc: (str) the new description.
            """
            idx = self._embeddedFileIndex(item)
            xref = self._embfile_upd(idx, buffer=buffer,
                                         filename=filename,
                                         ufilename=ufilename,
                                         desc=desc)
            date = get_pdf_now()
            self.xref_set_key(xref, "Params/ModDate", get_pdf_str(date))
            return xref

        def embfile_add(self, name: str, buffer: typing.ByteString,
                                  filename: OptStr =None,
                                  ufilename: OptStr =None,
                                  desc: OptStr =None,) -> None:
            """Add an item to the EmbeddedFiles array.

            Args:
                name: name of the new item, must not already exist.
                buffer: (binary data) the file content.
                filename: (str) the file name, default: the name
                ufilename: (unicode) the file name, default: filename
                desc: (str) the description.
            """
            filenames = self.embfile_names()
            msg = "Name '%s' already exists." % str(name)
            if name in filenames:
                raise ValueError(msg)

            if filename is None:
                filename = name
            if ufilename is None:
                ufilename = unicode(filename, "utf8") if str is bytes else filename
            if desc is None:
                desc = name
            xref = self._embfile_add(name, buffer=buffer,
                                         filename=filename,
                                         ufilename=ufilename,
                                         desc=desc)
            date = get_pdf_now()
            self.xref_set_key(xref, "Type", "/EmbeddedFile")
            self.xref_set_key(xref, "Params/CreationDate", get_pdf_str(date))
            self.xref_set_key(xref, "Params/ModDate", get_pdf_str(date))
            return xref
        %}

        FITZEXCEPTION(convert_to_pdf, !result)
        %pythonprepend convert_to_pdf %{
        """Convert document to a PDF, selecting page range and optional rotation. Output bytes object."""
        if self.is_closed or self.is_encrypted:
            raise ValueError("document closed or encrypted")
        %}
        PyObject *convert_to_pdf(int from_page=0, int to_page=-1, int rotate=0)
        {
            PyObject *doc = NULL;
            fz_document *fz_doc = (fz_document *) $self;
            fz_try(gctx) {
                int fp = from_page, tp = to_page, srcCount = fz_count_pages(gctx, fz_doc);
                if (fp < 0) fp = 0;
                if (fp > srcCount - 1) fp = srcCount - 1;
                if (tp < 0) tp = srcCount - 1;
                if (tp > srcCount - 1) tp = srcCount - 1;
                Py_ssize_t len0 = PyList_Size(JM_mupdf_warnings_store);
                doc = JM_convert_to_pdf(gctx, fz_doc, fp, tp, rotate);
                Py_ssize_t len1 = PyList_Size(JM_mupdf_warnings_store);
                Py_ssize_t i = len0;
                while (i < len1) {
                    PySys_WriteStderr("%s\n", JM_StrAsChar(PyList_GetItem(JM_mupdf_warnings_store, i)));
                    i++;
                } 
            }
            fz_catch(gctx) {
                return NULL;
            }
            return doc;
        }


        FITZEXCEPTION(page_count, !result)
        CLOSECHECK0(page_count, """Number of pages.""")
        %pythoncode%{@property%}
        PyObject *page_count()
        {
            PyObject *ret;
            fz_try(gctx) {
                ret = PyLong_FromLong((long) fz_count_pages(gctx, (fz_document *) $self));
            }
            fz_catch(gctx) {
                PyErr_Clear();
                return NULL;
            }
            return ret;
        }

        FITZEXCEPTION(chapter_count, !result)
        CLOSECHECK0(chapter_count, """Number of chapters.""")
        %pythoncode%{@property%}
        PyObject *chapter_count()
        {
            PyObject *ret;
            fz_try(gctx) {
                ret = PyLong_FromLong((long) fz_count_chapters(gctx, (fz_document *) $self));
            }
            fz_catch(gctx) {
                return NULL;
            }
            return ret;
        }

        FITZEXCEPTION(last_location, !result)
        CLOSECHECK0(last_location, """Id (chapter, page) of last page.""")
        %pythoncode%{@property%}
        PyObject *last_location()
        {
            fz_document *this_doc = (fz_document *) $self;
            fz_location last_loc;
            fz_try(gctx) {
                last_loc = fz_last_page(gctx, this_doc);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("ii", last_loc.chapter, last_loc.page);
        }


        FITZEXCEPTION(chapter_page_count, !result)
        CLOSECHECK0(chapter_page_count, """Page count of chapter.""")
        PyObject *chapter_page_count(int chapter)
        {
            long pages = 0;
            fz_try(gctx) {
                int chapters = fz_count_chapters(gctx, (fz_document *) $self);
                if (chapter < 0 || chapter >= chapters) {
                    RAISEPY(gctx, "bad chapter number", PyExc_ValueError);
                }
                pages = (long) fz_count_chapter_pages(gctx, (fz_document *) $self, chapter);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return PyLong_FromLong(pages);
        }

        FITZEXCEPTION(prev_location, !result)
        %pythonprepend prev_location %{
        """Get (chapter, page) of previous page."""
        if self.is_closed or self.is_encrypted:
            raise ValueError("document closed or encrypted")
        if type(page_id) is int:
            page_id = (0, page_id)
        if page_id not in self:
            raise ValueError("page id not in document")
        if page_id  == (0, 0):
            return ()
        %}
        PyObject *prev_location(PyObject *page_id)
        {
            fz_document *this_doc = (fz_document *) $self;
            fz_location prev_loc, loc;
            PyObject *val;
            int pno;
            fz_try(gctx) {
                val = PySequence_GetItem(page_id, 0);
                if (!val) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }
                int chapter = (int) PyLong_AsLong(val);
                Py_DECREF(val);
                if (PyErr_Occurred()) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }

                val = PySequence_GetItem(page_id, 1);
                if (!val) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }
                pno = (int) PyLong_AsLong(val);
                Py_DECREF(val);
                if (PyErr_Occurred()) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }
                loc = fz_make_location(chapter, pno);
                prev_loc = fz_previous_page(gctx, this_doc, loc);
            }
            fz_catch(gctx) {
                PyErr_Clear();
                return NULL;
            }
            return Py_BuildValue("ii", prev_loc.chapter, prev_loc.page);
        }


        FITZEXCEPTION(next_location, !result)
        %pythonprepend next_location %{
        """Get (chapter, page) of next page."""
        if self.is_closed or self.is_encrypted:
            raise ValueError("document closed or encrypted")
        if type(page_id) is int:
            page_id = (0, page_id)
        if page_id not in self:
            raise ValueError("page id not in document")
        if tuple(page_id)  == self.last_location:
            return ()
        %}
        PyObject *next_location(PyObject *page_id)
        {
            fz_document *this_doc = (fz_document *) $self;
            fz_location next_loc, loc;
            PyObject *val;
            int pno;
            fz_try(gctx) {
                val = PySequence_GetItem(page_id, 0);
                if (!val) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }
                int chapter = (int) PyLong_AsLong(val);
                Py_DECREF(val);
                if (PyErr_Occurred()) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }

                val = PySequence_GetItem(page_id, 1);
                if (!val) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }
                pno = (int) PyLong_AsLong(val);
                Py_DECREF(val);
                if (PyErr_Occurred()) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }
                loc = fz_make_location(chapter, pno);
                next_loc = fz_next_page(gctx, this_doc, loc);
            }
            fz_catch(gctx) {
                PyErr_Clear();
                return NULL;
            }
            return Py_BuildValue("ii", next_loc.chapter, next_loc.page);
        }


        FITZEXCEPTION(location_from_page_number, !result)
        CLOSECHECK0(location_from_page_number, """Convert pno to (chapter, page).""")
        PyObject *location_from_page_number(int pno)
        {
            fz_document *this_doc = (fz_document *) $self;
            fz_location loc = fz_make_location(-1, -1);
            int page_count = fz_count_pages(gctx, this_doc);
            while (pno < 0) pno += page_count;
            fz_try(gctx) {
                if (pno >= page_count) {
                    RAISEPY(gctx, MSG_BAD_PAGENO, PyExc_ValueError);
                }
                loc = fz_location_from_page_number(gctx, this_doc, pno);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("ii", loc.chapter, loc.page);
        }

        FITZEXCEPTION(page_number_from_location, !result)
        %pythonprepend page_number_from_location%{
        """Convert (chapter, pno) to page number."""
        if type(page_id) is int:
            np = self.page_count
            while page_id < 0:
                page_id += np
            page_id = (0, page_id)
        if page_id not in self:
            raise ValueError("page id not in document")
        %}
        PyObject *page_number_from_location(PyObject *page_id)
        {
            fz_document *this_doc = (fz_document *) $self;
            fz_location loc;
            long page_n = -1;
            PyObject *val;
            int pno;
            fz_try(gctx) {
                val = PySequence_GetItem(page_id, 0);
                if (!val) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }
                int chapter = (int) PyLong_AsLong(val);
                Py_DECREF(val);
                if (PyErr_Occurred()) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }

                val = PySequence_GetItem(page_id, 1);
                if (!val) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }
                pno = (int) PyLong_AsLong(val);
                Py_DECREF(val);
                if (PyErr_Occurred()) {
                    RAISEPY(gctx, MSG_BAD_PAGEID, PyExc_ValueError);
                }

                loc = fz_make_location(chapter, pno);
                page_n = (long) fz_page_number_from_location(gctx, this_doc, loc);
            }
            fz_catch(gctx) {
                PyErr_Clear();
                return NULL;
            }
            return PyLong_FromLong(page_n);
        }

        FITZEXCEPTION(_getMetadata, !result)
        CLOSECHECK0(_getMetadata, """Get metadata.""")
        PyObject *
        _getMetadata(const char *key)
        {
            PyObject *res = NULL;
            fz_document *doc = (fz_document *) $self;
            int vsize;
            char *value;
            fz_try(gctx) {
                vsize = fz_lookup_metadata(gctx, doc, key, NULL, 0)+1;
                if(vsize > 1) {
                    value = JM_Alloc(char, vsize);
                    fz_lookup_metadata(gctx, doc, key, value, vsize);
                    res = JM_UnicodeFromStr(value);
                    JM_Free(value);
                } else {
                    res = EMPTY_STRING;
                }
            }
            fz_always(gctx) {
                PyErr_Clear();
            }
            fz_catch(gctx) {
                return EMPTY_STRING;
            }
            return res;
        }

        CLOSECHECK0(needs_pass, """Indicate password required.""")
        %pythoncode%{@property%}
        PyObject *needs_pass() {
            return JM_BOOL(fz_needs_password(gctx, (fz_document *) $self));
        }

        %pythoncode%{@property%}
        CLOSECHECK0(language, """Document language.""")
        PyObject *language()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_NONE;
            fz_text_language lang = pdf_document_language(gctx, pdf);
            char buf[8];
            if (lang == FZ_LANG_UNSET) Py_RETURN_NONE;
            return PyUnicode_FromString(fz_string_from_text_language(buf, lang));
        }

        FITZEXCEPTION(set_language, !result)
        PyObject *set_language(char *language=NULL)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                fz_text_language lang;
                if (!language)
                    lang = FZ_LANG_UNSET;
                else
                    lang = fz_text_language_from_string(language);
                pdf_set_document_language(gctx, pdf, lang);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_TRUE;
        }


        %pythonprepend resolve_link %{
        """Calculate internal link destination.

        Args:
            uri: (str) some Link.uri
            chapters: (bool) whether to use (chapter, page) format
        Returns:
            (page_id, x, y) where x, y are point coordinates on the page.
            page_id is either page number (if chapters=0), or (chapter, pno).
        """
        %}
        PyObject *resolve_link(char *uri=NULL, int chapters=0)
        {
            if (!uri) {
                if (chapters) return Py_BuildValue("(ii)ff", -1, -1, 0, 0);
                return Py_BuildValue("iff", -1, 0, 0);
            }
            fz_document *this_doc = (fz_document *) $self;
            float xp = 0, yp = 0;
            fz_location loc = {0, 0};
            fz_try(gctx) {
                loc = fz_resolve_link(gctx, (fz_document *) $self, uri, &xp, &yp);
            }
            fz_catch(gctx) {
                if (chapters) return Py_BuildValue("(ii)ff", -1, -1, 0, 0);
                return Py_BuildValue("iff", -1, 0, 0);
            }
            if (chapters)
                return Py_BuildValue("(ii)ff", loc.chapter, loc.page, xp, yp);
            int pno = fz_page_number_from_location(gctx, this_doc, loc);
            return Py_BuildValue("iff", pno, xp, yp);
        }

        FITZEXCEPTION(layout, !result)
        CLOSECHECK(layout, """Re-layout a reflowable document.""")
        %pythonappend layout %{
            self._reset_page_refs()
            self.init_doc()%}
        PyObject *layout(PyObject *rect = NULL, float width = 0, float height = 0, float fontsize = 11)
        {
            fz_document *doc = (fz_document *) $self;
            if (!fz_is_document_reflowable(gctx, doc)) Py_RETURN_NONE;
            fz_try(gctx) {
                float w = width, h = height;
                fz_rect r = JM_rect_from_py(rect);
                if (!fz_is_infinite_rect(r)) {
                    w = r.x1 - r.x0;
                    h = r.y1 - r.y0;
                }
                if (w <= 0.0f || h <= 0.0f) {
                    RAISEPY(gctx, "bad page size", PyExc_ValueError);
                }
                fz_layout_document(gctx, doc, w, h, fontsize);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        FITZEXCEPTION(make_bookmark, !result)
        CLOSECHECK(make_bookmark, """Make a page pointer before layouting document.""")
        PyObject *make_bookmark(PyObject *loc)
        {
            fz_document *doc = (fz_document *) $self;
            fz_location location;
            fz_bookmark mark;
            fz_try(gctx) {
                if (JM_INT_ITEM(loc, 0, &location.chapter) == 1) {
                    RAISEPY(gctx, MSG_BAD_LOCATION, PyExc_ValueError);
                }
                if (JM_INT_ITEM(loc, 1, &location.page) == 1) {
                    RAISEPY(gctx, MSG_BAD_LOCATION, PyExc_ValueError);
                }
                mark = fz_make_bookmark(gctx, doc, location);
                if (!mark) {
                    RAISEPY(gctx, MSG_BAD_LOCATION, PyExc_ValueError);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return PyLong_FromVoidPtr((void *) mark);
        }


        FITZEXCEPTION(find_bookmark, !result)
        CLOSECHECK(find_bookmark, """Find new location after layouting a document.""")
        PyObject *find_bookmark(PyObject *bm)
        {
            fz_document *doc = (fz_document *) $self;
            fz_location location;
            fz_try(gctx) {
                intptr_t mark = (intptr_t) PyLong_AsVoidPtr(bm);
                location = fz_lookup_bookmark(gctx, doc, mark);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("ii", location.chapter, location.page);
        }


        CLOSECHECK0(is_reflowable, """Check if document is layoutable.""")
        %pythoncode%{@property%}
        PyObject *is_reflowable()
        {
            return JM_BOOL(fz_is_document_reflowable(gctx, (fz_document *) $self));
        }

        FITZEXCEPTION(_deleteObject, !result)
        CLOSECHECK0(_deleteObject, """Delete object.""")
        PyObject *_deleteObject(int xref)
        {
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_specifics(gctx, doc);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                if (!INRANGE(xref, 1, pdf_xref_len(gctx, pdf)-1)) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                pdf_delete_object(gctx, pdf, xref);
            }
            fz_catch(gctx) {
                return NULL;
            }
            
            Py_RETURN_NONE;
        }

        FITZEXCEPTION(pdf_catalog, !result)
        CLOSECHECK0(pdf_catalog, """Get xref of PDF catalog.""")
        PyObject *pdf_catalog()
        {
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_specifics(gctx, doc);
            int xref = 0;
            if (!pdf) return Py_BuildValue("i", xref);
            fz_try(gctx) {
                pdf_obj *root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf),
                                             PDF_NAME(Root));
                xref = pdf_to_num(gctx, root);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", xref);
        }

        FITZEXCEPTION(_getPDFfileid, !result)
        CLOSECHECK0(_getPDFfileid, """Get PDF file id.""")
        PyObject *_getPDFfileid()
        {
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_specifics(gctx, doc);
            if (!pdf) Py_RETURN_NONE;
            PyObject *idlist = PyList_New(0);
            fz_buffer *buffer = NULL;
            unsigned char *hex;
            pdf_obj *o;
            int n, i, len;
            PyObject *bytes;

            fz_try(gctx) {
                pdf_obj *identity = pdf_dict_get(gctx, pdf_trailer(gctx, pdf),
                                             PDF_NAME(ID));
                if (identity) {
                    n = pdf_array_len(gctx, identity);
                    for (i = 0; i < n; i++) {
                        o = pdf_array_get(gctx, identity, i);
                        len = (int) pdf_to_str_len(gctx, o);
                        buffer = fz_new_buffer(gctx, 2 * len);
                        fz_buffer_storage(gctx, buffer, &hex);
                        hexlify(len, (unsigned char *) pdf_to_text_string(gctx, o), hex);
                        LIST_APPEND_DROP(idlist, JM_UnicodeFromStr(hex));
                        Py_CLEAR(bytes);
                        fz_drop_buffer(gctx, buffer);
                        buffer = NULL;
                    }
                }
            }
            fz_catch(gctx) {
                fz_drop_buffer(gctx, buffer);
            }
            return idlist;
        }

        CLOSECHECK0(is_pdf, """Check for PDF.""")
        %pythoncode%{@property%}
        PyObject *is_pdf()
        {
            if (pdf_specifics(gctx, (fz_document *) $self)) Py_RETURN_TRUE;
            else Py_RETURN_FALSE;
        }

        CLOSECHECK0(has_xref_streams, """Check if xref table is a stream.""")
        %pythoncode%{@property%}
        PyObject *has_xref_streams()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_FALSE;
            if (pdf->has_xref_streams) Py_RETURN_TRUE;
            Py_RETURN_FALSE;
        }

        CLOSECHECK0(has_old_style_xrefs, """Check if xref table is old style.""")
        %pythoncode%{@property%}
        PyObject *has_old_style_xrefs()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_FALSE;
            if (pdf->has_old_style_xrefs) Py_RETURN_TRUE;
            Py_RETURN_FALSE;
        }

        CLOSECHECK0(is_dirty, """True if PDF has unsaved changes.""")
        %pythoncode%{@property%}
        PyObject *is_dirty()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_FALSE;
            return JM_BOOL(pdf_has_unsaved_changes(gctx, pdf));
        }

        CLOSECHECK0(can_save_incrementally, """Check whether incremental saves are possible.""")
        PyObject *can_save_incrementally()
        {
            pdf_document *pdf = pdf_document_from_fz_document(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_FALSE; // gracefully handle non-PDF
            return JM_BOOL(pdf_can_be_saved_incrementally(gctx, pdf));
        }

        CLOSECHECK0(is_repaired, """Check whether PDF was repaired.""")
        %pythoncode%{@property%}
        PyObject *is_repaired()
        {
            pdf_document *pdf = pdf_document_from_fz_document(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_FALSE; // gracefully handle non-PDF
            return JM_BOOL(pdf_was_repaired(gctx, pdf));
        }

        FITZEXCEPTION(save_snapshot, !result)
        %pythonprepend save_snapshot %{
        """Save a file snapshot suitable for journalling."""
        if self.is_closed:
            raise ValueError("doc is closed")
        if type(filename) == str:
            pass
        elif hasattr(filename, "open"):  # assume: pathlib.Path
            filename = str(filename)
        elif hasattr(filename, "name"):  # assume: file object
            filename = filename.name
        else:
            raise ValueError("filename must be str, Path or file object")
        if filename == self.name:
            raise ValueError("cannot snapshot to original")
        %}
        PyObject *save_snapshot(const char *filename)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                pdf_save_snapshot(gctx, pdf, filename);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        CLOSECHECK0(authenticate, """Decrypt document.""")
        %pythonappend authenticate %{
        if val:  # the doc is decrypted successfully and we init the outline
            self.is_encrypted = False
            self.isEncrypted = False
            self.init_doc()
            self.thisown = True
        %}
        PyObject *authenticate(char *password)
        {
            return Py_BuildValue("i", fz_authenticate_password(gctx, (fz_document *) $self, (const char *) password));
        }

        //------------------------------------------------------------------
        // save a PDF
        //------------------------------------------------------------------
        FITZEXCEPTION(save, !result)
        %pythonprepend save %{
        """Save PDF to file, pathlib.Path or file pointer."""
        if self.is_closed or self.is_encrypted:
            raise ValueError("document closed or encrypted")
        if type(filename) == str:
            pass
        elif hasattr(filename, "open"):  # assume: pathlib.Path
            filename = str(filename)
        elif hasattr(filename, "name"):  # assume: file object
            filename = filename.name
        elif not hasattr(filename, "seek"):  # assume file object
            raise ValueError("filename must be str, Path or file object")
        if filename == self.name and not incremental:
            raise ValueError("save to original must be incremental")
        if self.page_count < 1:
            raise ValueError("cannot save with zero pages")
        if incremental:
            if self.name != filename or self.stream:
                raise ValueError("incremental needs original file")
        if user_pw and len(user_pw) > 40 or owner_pw and len(owner_pw) > 40:
            raise ValueError("password length must not exceed 40")
        %}

        PyObject *
        save(PyObject *filename, int garbage=0, int clean=0,
            int deflate=0, int deflate_images=0, int deflate_fonts=0,
            int incremental=0, int ascii=0, int expand=0, int linear=0,
            int no_new_id=0, int appearance=0,
            int pretty=0, int encryption=1, int permissions=4095,
            char *owner_pw=NULL, char *user_pw=NULL)
        {
            pdf_write_options opts = pdf_default_write_options;
            opts.do_incremental     = incremental;
            opts.do_ascii           = ascii;
            opts.do_compress        = deflate;
            opts.do_compress_images = deflate_images;
            opts.do_compress_fonts  = deflate_fonts;
            opts.do_decompress      = expand;
            opts.do_garbage         = garbage;
            opts.do_pretty          = pretty;
            opts.do_linear          = linear;
            opts.do_clean           = clean;
            opts.do_sanitize        = clean;
            opts.dont_regenerate_id = no_new_id;
            opts.do_appearance      = appearance;
            opts.do_encrypt         = encryption;
            opts.permissions        = permissions;
            if (owner_pw) {
                memcpy(&opts.opwd_utf8, owner_pw, strlen(owner_pw)+1);
            } else if (user_pw) {
                memcpy(&opts.opwd_utf8, user_pw, strlen(user_pw)+1);
            }
            if (user_pw) {
                memcpy(&opts.upwd_utf8, user_pw, strlen(user_pw)+1);
            }
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_specifics(gctx, doc);
            fz_output *out = NULL;
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                pdf->resynth_required = 0;
                JM_embedded_clean(gctx, pdf);
                if (no_new_id == 0) {
                    JM_ensure_identity(gctx, pdf);
                }
                if (PyUnicode_Check(filename)) {
                    pdf_save_document(gctx, pdf, JM_StrAsChar(filename), &opts);
                } else {
                    out = JM_new_output_fileptr(gctx, filename);
                    pdf_write_document(gctx, pdf, out, &opts);
                }
            }
            fz_always(gctx) {
                fz_drop_output(gctx, out);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        %pythoncode %{
        def write(self, garbage=False, clean=False,
            deflate=False, deflate_images=False, deflate_fonts=False,
            incremental=False, ascii=False, expand=False, linear=False,
            no_new_id=False, appearance=False, pretty=False, encryption=1, permissions=4095,
            owner_pw=None, user_pw=None):
            from io import BytesIO
            bio = BytesIO()
            self.save(bio, garbage=garbage, clean=clean,
            no_new_id=no_new_id, appearance=appearance,
            deflate=deflate, deflate_images=deflate_images, deflate_fonts=deflate_fonts,
            incremental=incremental, ascii=ascii, expand=expand, linear=linear,
            pretty=pretty, encryption=encryption, permissions=permissions,
            owner_pw=owner_pw, user_pw=user_pw)
            return bio.getvalue()
        %}

        //----------------------------------------------------------------
        // Insert pages from a source PDF into this PDF.
        // For reconstructing the links (_do_links method), we must save the
        // insertion point (start_at) if it was specified as -1.
        //----------------------------------------------------------------
        FITZEXCEPTION(insert_pdf, !result)
        %pythonprepend insert_pdf %{
        """Insert a page range from another PDF.

        Args:
            docsrc: PDF to copy from. Must be different object, but may be same file.
            from_page: (int) first source page to copy, 0-based, default 0.
            to_page: (int) last source page to copy, 0-based, default last page.
            start_at: (int) from_page will become this page number in target.
            rotate: (int) rotate copied pages, default -1 is no change.
            links: (int/bool) whether to also copy links.
            annots: (int/bool) whether to also copy annotations.
            show_progress: (int) progress message interval, 0 is no messages.
            final: (bool) indicates last insertion from this source PDF.
            _gmap: internal use only

        Copy sequence reversed if from_page > to_page."""

        if self.is_closed or self.is_encrypted:
            raise ValueError("document closed or encrypted")
        if self._graft_id == docsrc._graft_id:
            raise ValueError("source and target cannot be same object")
        sa = start_at
        if sa < 0:
            sa = self.page_count
        if len(docsrc) > show_progress > 0:
            inname = os.path.basename(docsrc.name)
            if not inname:
                inname = "memory PDF"
            outname = os.path.basename(self.name)
            if not outname:
                outname = "memory PDF"
            print("Inserting '%s' at '%s'" % (inname, outname))

        # retrieve / make a Graftmap to avoid duplicate objects
        isrt = docsrc._graft_id
        _gmap = self.Graftmaps.get(isrt, None)
        if _gmap is None:
            _gmap = Graftmap(self)
            self.Graftmaps[isrt] = _gmap
        %}

        %pythonappend insert_pdf %{
        self._reset_page_refs()
        if links:
            self._do_links(docsrc, from_page = from_page, to_page = to_page,
                        start_at = sa)
        if final == 1:
            self.Graftmaps[isrt] = None%}

        PyObject *
        insert_pdf(struct Document *docsrc,
            int from_page=-1,
            int to_page=-1,
            int start_at=-1,
            int rotate=-1,
            int links=1,
            int annots=1,
            int show_progress=0,
            int final = 1,
            struct Graftmap *_gmap=NULL)
        {
            fz_document *doc = (fz_document *) $self;
            fz_document *src = (fz_document *) docsrc;
            pdf_document *pdfout = pdf_specifics(gctx, doc);
            pdf_document *pdfsrc = pdf_specifics(gctx, src);
            int outCount = fz_count_pages(gctx, doc);
            int srcCount = fz_count_pages(gctx, src);

            // local copies of page numbers
            int fp = from_page, tp = to_page, sa = start_at;

            // normalize page numbers
            fp = Py_MAX(fp, 0);                // -1 = first page
            fp = Py_MIN(fp, srcCount - 1);     // but do not exceed last page

            if (tp < 0) tp = srcCount - 1;  // -1 = last page
            tp = Py_MIN(tp, srcCount - 1);     // but do not exceed last page

            if (sa < 0) sa = outCount;      // -1 = behind last page
            sa = Py_MIN(sa, outCount);         // but that is also the limit

            fz_try(gctx) {
                if (!pdfout || !pdfsrc) {
                    RAISEPY(gctx, "source or target not a PDF", PyExc_TypeError);
                }
                ENSURE_OPERATION(gctx, pdfout);
                JM_merge_range(gctx, pdfout, pdfsrc, fp, tp, sa, rotate, links, annots, show_progress, (pdf_graft_map *) _gmap);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // Create and insert a new page (PDF)
        //------------------------------------------------------------------
        FITZEXCEPTION(_newPage, !result)
        CLOSECHECK(_newPage, """Make a new PDF page.""")
        %pythonappend _newPage %{self._reset_page_refs()%}
        PyObject *_newPage(int pno=-1, float width=595, float height=842)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_rect mediabox = fz_unit_rect;
            mediabox.x1 = width;
            mediabox.y1 = height;
            pdf_obj *resources = NULL, *page_obj = NULL;
            fz_buffer *contents = NULL;
            fz_var(contents);
            fz_var(page_obj);
            fz_var(resources);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                if (pno < -1) {
                    RAISEPY(gctx, MSG_BAD_PAGENO, PyExc_ValueError);
                }
                ENSURE_OPERATION(gctx, pdf);
                // create /Resources and /Contents objects
                resources = pdf_add_new_dict(gctx, pdf, 1);
                page_obj = pdf_add_page(gctx, pdf, mediabox, 0, resources, contents);
                pdf_insert_page(gctx, pdf, pno, page_obj);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, contents);
                pdf_drop_obj(gctx, page_obj);
                pdf_drop_obj(gctx, resources);
            }
            fz_catch(gctx) {
                return NULL;
            }
            
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // Create sub-document to keep only selected pages.
        // Parameter is a Python sequence of the wanted page numbers.
        //------------------------------------------------------------------
        FITZEXCEPTION(select, !result)
        %pythonprepend select %{"""Build sub-pdf with page numbers in the list."""
if self.is_closed or self.is_encrypted:
    raise ValueError("document closed or encrypted")
if not self.is_pdf:
    raise ValueError("is no PDF")
if not hasattr(pyliste, "__getitem__"):
    raise ValueError("sequence required")
if len(pyliste) == 0 or min(pyliste) not in range(len(self)) or max(pyliste) not in range(len(self)):
    raise ValueError("bad page number(s)")%}
        %pythonappend select %{self._reset_page_refs()%}
        PyObject *select(PyObject *pyliste)
        {
            // preparatory stuff:
            // (1) get underlying pdf document,
            // (2) transform Python list into integer array

            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_try(gctx) {
                // call retainpages (code copy of fz_clean_file.c)
                globals glo = {0};
                glo.ctx = gctx;
                glo.doc = pdf;
                retainpages(gctx, &glo, pyliste);
                if (pdf->rev_page_map)
                {
                    pdf_drop_page_tree(gctx, pdf);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // remove one page
        //------------------------------------------------------------------
        FITZEXCEPTION(_delete_page, !result)
        PyObject *_delete_page(int pno)
        {
            fz_try(gctx) {
                fz_document *doc = (fz_document *) $self;
                pdf_document *pdf = pdf_specifics(gctx, doc);
                pdf_delete_page(gctx, pdf, pno);
                if (pdf->rev_page_map)
                {
                    pdf_drop_page_tree(gctx, pdf);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // get document permissions
        //------------------------------------------------------------------
        %pythoncode%{@property%}
        %pythonprepend permissions %{
        """Document permissions."""

        if self.is_encrypted:
            return 0
        %}
        PyObject *permissions()
        {
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_document_from_fz_document(gctx, doc);

            // for PDF return result of standard function
            if (pdf)
                return Py_BuildValue("i", pdf_document_permissions(gctx, pdf));

            // otherwise simulate the PDF return value
            int perm = (int) 0xFFFFFFFC;  // all permissions granted
            // now switch off where needed
            if (!fz_has_permission(gctx, doc, FZ_PERMISSION_PRINT))
                perm = perm ^ PDF_PERM_PRINT;
            if (!fz_has_permission(gctx, doc, FZ_PERMISSION_EDIT))
                perm = perm ^ PDF_PERM_MODIFY;
            if (!fz_has_permission(gctx, doc, FZ_PERMISSION_COPY))
                perm = perm ^ PDF_PERM_COPY;
            if (!fz_has_permission(gctx, doc, FZ_PERMISSION_ANNOTATE))
                perm = perm ^ PDF_PERM_ANNOTATE;
            return Py_BuildValue("i", perm);
        }


        FITZEXCEPTION(journal_enable, !result)
        CLOSECHECK(journal_enable, """Activate document journalling.""")
        PyObject *journal_enable()
        {
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                pdf_enable_journal(gctx, pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(journal_start_op, !result)
        CLOSECHECK(journal_start_op, """Begin a journalling operation.""")
        PyObject *journal_start_op(const char *name=NULL)
        {
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                if (!pdf->journal) {
                    RAISEPY(gctx, "Journalling not enabled", PyExc_RuntimeError);
                }
                if (name) {
                    pdf_begin_operation(gctx, pdf, name);
                } else {
                    pdf_begin_implicit_operation(gctx, pdf);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(journal_stop_op, !result)
        CLOSECHECK(journal_stop_op, """End a journalling operation.""")
        PyObject *journal_stop_op()
        {
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                pdf_end_operation(gctx, pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(journal_position, !result)
        CLOSECHECK(journal_position, """Show journalling state.""")
        PyObject *journal_position()
        {
            int rc, steps=0;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                rc = pdf_undoredo_state(gctx, pdf, &steps);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("ii", rc, steps);
        }


        FITZEXCEPTION(journal_op_name, !result)
        CLOSECHECK(journal_op_name, """Show operation name for given step.""")
        PyObject *journal_op_name(int step)
        {
            const char *name=NULL;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                name = pdf_undoredo_step(gctx, pdf, step);
            }
            fz_catch(gctx) {
                return NULL;
            }
            if (name) {
                return PyUnicode_FromString(name);
            } else {
                Py_RETURN_NONE;
            }
        }


        FITZEXCEPTION(journal_can_do, !result)
        CLOSECHECK(journal_can_do, """Show if undo and / or redo are possible.""")
        PyObject *journal_can_do()
        {
            int undo=0, redo=0;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                undo = pdf_can_undo(gctx, pdf);
                redo = pdf_can_redo(gctx, pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("{s:N,s:N}", "undo", JM_BOOL(undo), "redo", JM_BOOL(redo));
        }


        FITZEXCEPTION(journal_undo, !result)
        CLOSECHECK(journal_undo, """Move backwards in the journal.""")
        PyObject *journal_undo()
        {
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                pdf_undo(gctx, pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_TRUE;
        }


        FITZEXCEPTION(journal_redo, !result)
        CLOSECHECK(journal_redo, """Move forward in the journal.""")
        PyObject *journal_redo()
        {
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                pdf_redo(gctx, pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_TRUE;
        }


        FITZEXCEPTION(journal_save, !result)
        CLOSECHECK(journal_save, """Save journal to a file.""")
        PyObject *journal_save(PyObject *filename)
        {
            fz_output *out = NULL;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                if (PyUnicode_Check(filename)) {
                    pdf_save_journal(gctx, pdf, (const char *) PyUnicode_AsUTF8(filename));
                } else {
                    out = JM_new_output_fileptr(gctx, filename);
                    pdf_write_journal(gctx, pdf, out);
                }
            }
            fz_always(gctx) {
                fz_drop_output(gctx, out);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(journal_load, !result)
        CLOSECHECK(journal_load, """Load a journal from a file.""")
        PyObject *journal_load(PyObject *filename)
        {
            fz_buffer *res = NULL;
            fz_stream *stm = NULL;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                if (PyUnicode_Check(filename)) {
                    pdf_load_journal(gctx, pdf, PyUnicode_AsUTF8(filename));
                } else {
                    res = JM_BufferFromBytes(gctx, filename);
                    stm = fz_open_buffer(gctx, res);
                    pdf_deserialise_journal(gctx, pdf, stm);
                }
                if (!pdf->journal) {
                    RAISEPY(gctx, "Journal and document do not match", JM_Exc_FileDataError);
                }
            }
            fz_always(gctx) {
                fz_drop_stream(gctx, stm);
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(journal_is_enabled, !result)
        CLOSECHECK(journal_is_enabled, """Check if journalling is enabled.""")
        PyObject *journal_is_enabled()
        {
            int enabled = 0;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                enabled = pdf && pdf->journal;
            }
            fz_catch(gctx) {
                return NULL;
            }
            return JM_BOOL(enabled);
        }


        FITZEXCEPTION(_get_char_widths, !result)
        CLOSECHECK(_get_char_widths, """Return list of glyphs and glyph widths of a font.""")
        PyObject *_get_char_widths(int xref, char *bfname, char *ext,
                                 int ordering, int limit, int idx = 0)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            PyObject *wlist = NULL;
            int i, glyph, mylimit;
            mylimit = limit;
            if (mylimit < 256) mylimit = 256;
            const unsigned char *data;
            int size, index;
            fz_font *font = NULL;
            fz_buffer *buf = NULL;

            fz_try(gctx) {
                ASSERT_PDF(pdf);
                if (ordering >= 0) {
                    data = fz_lookup_cjk_font(gctx, ordering, &size, &index);
                    font = fz_new_font_from_memory(gctx, NULL, data, size, index, 0);
                    goto weiter;
                }
                data = fz_lookup_base14_font(gctx, bfname, &size);
                if (data) {
                    font = fz_new_font_from_memory(gctx, bfname, data, size, 0, 0);
                    goto weiter;
                }
                buf = JM_get_fontbuffer(gctx, pdf, xref);
                if (!buf) {
                    fz_throw(gctx, FZ_ERROR_GENERIC, "font at xref %d is not supported", xref);
                }
                font = fz_new_font_from_buffer(gctx, NULL, buf, idx, 0);

                weiter:;
                wlist = PyList_New(0);
                float adv;
                for (i = 0; i < mylimit; i++) {
                    glyph = fz_encode_character(gctx, font, i);
                    adv = fz_advance_glyph(gctx, font, glyph, 0);
                    if (ordering >= 0) {
                        glyph = i;
                    }
                    if (glyph > 0) {
                        LIST_APPEND_DROP(wlist, Py_BuildValue("if", glyph, adv));
                    } else {
                        LIST_APPEND_DROP(wlist, Py_BuildValue("if", glyph, 0.0));
                    }
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, buf);
                fz_drop_font(gctx, font);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return wlist;
        }


        FITZEXCEPTION(page_xref, !result)
        CLOSECHECK0(page_xref, """Get xref of page number.""")
        PyObject *page_xref(int pno)
        {
            fz_document *this_doc = (fz_document *) $self;
            int page_count = fz_count_pages(gctx, this_doc);
            int n = pno;
            while (n < 0) n += page_count;
            pdf_document *pdf = pdf_specifics(gctx, this_doc);
            int xref = 0;
            fz_try(gctx) {
                if (n >= page_count) {
                    RAISEPY(gctx, MSG_BAD_PAGENO, PyExc_ValueError);
                }
                ASSERT_PDF(pdf);
                xref = pdf_to_num(gctx, pdf_lookup_page_obj(gctx, pdf, n));
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", xref);
        }


        FITZEXCEPTION(page_annot_xrefs, !result)
        CLOSECHECK0(page_annot_xrefs, """Get list annotations of page number.""")
        PyObject *page_annot_xrefs(int pno)
        {
            fz_document *this_doc = (fz_document *) $self;
            int page_count = fz_count_pages(gctx, this_doc);
            int n = pno;
            while (n < 0) n += page_count;
            pdf_document *pdf = pdf_specifics(gctx, this_doc);
            PyObject *annots = NULL;
            fz_try(gctx) {
                if (n >= page_count) {
                    RAISEPY(gctx, MSG_BAD_PAGENO, PyExc_ValueError);
                }
                ASSERT_PDF(pdf);
                annots = JM_get_annot_xref_list(gctx, pdf_lookup_page_obj(gctx, pdf, n));
            }
            fz_catch(gctx) {
                return NULL;
            }
            return annots;
        }


        FITZEXCEPTION(page_cropbox, !result)
        CLOSECHECK0(page_cropbox, """Get CropBox of page number (without loading page).""")
        %pythonappend page_cropbox %{val = Rect(JM_TUPLE3(val))%}
        PyObject *page_cropbox(int pno)
        {
            fz_document *this_doc = (fz_document *) $self;
            int page_count = fz_count_pages(gctx, this_doc);
            int n = pno;
            while (n < 0) n += page_count;
            pdf_obj *pageref = NULL;
            fz_var(pageref);
            pdf_document *pdf = pdf_specifics(gctx, this_doc);
            fz_try(gctx) {
                if (n >= page_count) {
                    RAISEPY(gctx, MSG_BAD_PAGENO, PyExc_ValueError);
                }
                ASSERT_PDF(pdf);
                pageref = pdf_lookup_page_obj(gctx, pdf, n);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return JM_py_from_rect(JM_cropbox(gctx, pageref));
        }


        FITZEXCEPTION(_getPageInfo, !result)
        CLOSECHECK(_getPageInfo, """List fonts, images, XObjects used on a page.""")
        PyObject *_getPageInfo(int pno, int what)
        {
            fz_document *doc = (fz_document *) $self;
            pdf_document *pdf = pdf_specifics(gctx, doc);
            pdf_obj *pageref, *rsrc;
            PyObject *liste = NULL, *tracer = NULL;
            fz_var(liste);
            fz_var(tracer);
            fz_try(gctx) {
                int page_count = fz_count_pages(gctx, doc);
                int n = pno;  // pno < 0 is allowed
                while (n < 0) n += page_count;  // make it non-negative
                if (n >= page_count) {
                    RAISEPY(gctx, MSG_BAD_PAGENO, PyExc_ValueError);
                }
                ASSERT_PDF(pdf);
                pageref = pdf_lookup_page_obj(gctx, pdf, n);
                rsrc = pdf_dict_get_inheritable(gctx,
                           pageref, PDF_NAME(Resources));
                liste = PyList_New(0);
                tracer = PyList_New(0);
                if (rsrc) {
                    JM_scan_resources(gctx, pdf, rsrc, liste, what, 0, tracer);
                }
            }
            fz_always(gctx) {
                Py_CLEAR(tracer);
            }
            fz_catch(gctx) {
                Py_CLEAR(liste);
                return NULL;
            }
            return liste;
        }

        FITZEXCEPTION(extract_font, !result)
        CLOSECHECK(extract_font, """Get a font by xref. Returns a tuple or dictionary.""")
        PyObject *extract_font(int xref=0, int info_only=0, PyObject *named=NULL)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);

            fz_try(gctx) {
                ASSERT_PDF(pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }

            fz_buffer *buffer = NULL;
            pdf_obj *obj, *basefont, *bname;
            PyObject *bytes = NULL;
            char *ext = NULL;
            PyObject *rc;
            fz_try(gctx) {
                obj = pdf_load_object(gctx, pdf, xref);
                pdf_obj *type = pdf_dict_get(gctx, obj, PDF_NAME(Type));
                pdf_obj *subtype = pdf_dict_get(gctx, obj, PDF_NAME(Subtype));
                if(pdf_name_eq(gctx, type, PDF_NAME(Font)) &&
                   strncmp(pdf_to_name(gctx, subtype), "CIDFontType", 11) != 0) {
                    basefont = pdf_dict_get(gctx, obj, PDF_NAME(BaseFont));
                    if (!basefont || pdf_is_null(gctx, basefont)) {
                        bname = pdf_dict_get(gctx, obj, PDF_NAME(Name));
                    } else {
                        bname = basefont;
                    }
                    ext = JM_get_fontextension(gctx, pdf, xref);
                    if (strcmp(ext, "n/a") != 0 && !info_only) {
                        buffer = JM_get_fontbuffer(gctx, pdf, xref);
                        bytes = JM_BinFromBuffer(gctx, buffer);
                        fz_drop_buffer(gctx, buffer);
                    } else {
                        bytes = Py_BuildValue("y", "");
                    }
                    if (PyObject_Not(named)) {
                        rc = PyTuple_New(4);
                        PyTuple_SET_ITEM(rc, 0, JM_EscapeStrFromStr(pdf_to_name(gctx, bname)));
                        PyTuple_SET_ITEM(rc, 1, JM_UnicodeFromStr(ext));
                        PyTuple_SET_ITEM(rc, 2, JM_UnicodeFromStr(pdf_to_name(gctx, subtype)));
                        PyTuple_SET_ITEM(rc, 3, bytes);
                    } else {
                        rc = PyDict_New();
                        DICT_SETITEM_DROP(rc, dictkey_name, JM_EscapeStrFromStr(pdf_to_name(gctx, bname)));
                        DICT_SETITEM_DROP(rc, dictkey_ext, JM_UnicodeFromStr(ext));
                        DICT_SETITEM_DROP(rc, dictkey_type, JM_UnicodeFromStr(pdf_to_name(gctx, subtype)));
                        DICT_SETITEM_DROP(rc, dictkey_content, bytes);
                    }
                } else {
                    if (PyObject_Not(named)) {
                        rc = Py_BuildValue("sssy", "", "", "", "");
                    } else {
                        rc = PyDict_New();
                        DICT_SETITEM_DROP(rc, dictkey_name, Py_BuildValue("s", ""));
                        DICT_SETITEM_DROP(rc, dictkey_ext, Py_BuildValue("s", ""));
                        DICT_SETITEM_DROP(rc, dictkey_type, Py_BuildValue("s", ""));
                        DICT_SETITEM_DROP(rc, dictkey_content, Py_BuildValue("y", ""));
                    }
                }
            }
            fz_always(gctx) {
                pdf_drop_obj(gctx, obj);
                JM_PyErr_Clear;
            }
            fz_catch(gctx) {
                if (PyObject_Not(named)) {
                    rc = Py_BuildValue("sssy", "invalid-name", "", "", "");
                } else {
                    rc = PyDict_New();
                    DICT_SETITEM_DROP(rc, dictkey_name, Py_BuildValue("s", "invalid-name"));
                    DICT_SETITEM_DROP(rc, dictkey_ext, Py_BuildValue("s", ""));
                    DICT_SETITEM_DROP(rc, dictkey_type, Py_BuildValue("s", ""));
                    DICT_SETITEM_DROP(rc, dictkey_content, Py_BuildValue("y", ""));
                }
            }
            return rc;
        }


        FITZEXCEPTION(extract_image, !result)
        CLOSECHECK(extract_image, """Get image by xref. Returns a dictionary.""")
        PyObject *extract_image(int xref)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            pdf_obj *obj = NULL;
            fz_buffer *res = NULL;
            fz_image *img = NULL;
            PyObject *rc = NULL;
            const char *ext = NULL;
            const char *cs_name = NULL;
            int img_type = 0, xres, yres, colorspace;
            int smask = 0, width, height, bpc;
            fz_compressed_buffer *cbuf = NULL;
            fz_var(img);
            fz_var(res);
            fz_var(obj);

            fz_try(gctx) {
                ASSERT_PDF(pdf);
                if (!INRANGE(xref, 1, pdf_xref_len(gctx, pdf)-1)) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                obj = pdf_new_indirect(gctx, pdf, xref, 0);
                pdf_obj *subtype = pdf_dict_get(gctx, obj, PDF_NAME(Subtype));

                if (!pdf_name_eq(gctx, subtype, PDF_NAME(Image))) {
                    RAISEPY(gctx, "not an image", PyExc_ValueError);
                }

                pdf_obj *o = pdf_dict_geta(gctx, obj, PDF_NAME(SMask), PDF_NAME(Mask));
                if (o) smask = pdf_to_num(gctx, o);

                if (pdf_is_jpx_image(gctx, obj)) {
                    img_type = FZ_IMAGE_JPX;
                    res = pdf_load_stream(gctx, obj);
                    ext = "jpx";
                }
                if (JM_is_jbig2_image(gctx, obj)) {
                    img_type = FZ_IMAGE_JBIG2;
                    res = pdf_load_stream(gctx, obj);
                    ext = "jb2";
                }
                if (img_type == FZ_IMAGE_UNKNOWN) {
                    res = pdf_load_raw_stream(gctx, obj);
                    unsigned char *c = NULL;
                    fz_buffer_storage(gctx, res, &c);
                    img_type = fz_recognize_image_format(gctx, c);
                    ext = JM_image_extension(img_type);
                }
                if (img_type == FZ_IMAGE_UNKNOWN) {
                    fz_drop_buffer(gctx, res);
                    res = NULL;
                    img = pdf_load_image(gctx, pdf, obj);
                    res = fz_new_buffer_from_image_as_png(gctx, img,
                                fz_default_color_params);
                    ext = "png";
                } else {
                    img = fz_new_image_from_buffer(gctx, res);
                }

                fz_image_resolution(img, &xres, &yres);
                width = img->w;
                height = img->h;
                colorspace = img->n;
                bpc = img->bpc;
                cs_name = fz_colorspace_name(gctx, img->colorspace);

                rc = PyDict_New();
                DICT_SETITEM_DROP(rc, dictkey_ext,
                                    JM_UnicodeFromStr(ext));
                DICT_SETITEM_DROP(rc, dictkey_smask,
                                    Py_BuildValue("i", smask));
                DICT_SETITEM_DROP(rc, dictkey_width,
                                    Py_BuildValue("i", width));
                DICT_SETITEM_DROP(rc, dictkey_height,
                                    Py_BuildValue("i", height));
                DICT_SETITEM_DROP(rc, dictkey_colorspace,
                                    Py_BuildValue("i", colorspace));
                DICT_SETITEM_DROP(rc, dictkey_bpc,
                                    Py_BuildValue("i", bpc));
                DICT_SETITEM_DROP(rc, dictkey_xres,
                                    Py_BuildValue("i", xres));
                DICT_SETITEM_DROP(rc, dictkey_yres,
                                    Py_BuildValue("i", yres));
                DICT_SETITEM_DROP(rc, dictkey_cs_name,
                                    JM_UnicodeFromStr(cs_name));
                DICT_SETITEM_DROP(rc, dictkey_image,
                                    JM_BinFromBuffer(gctx, res));
            }
            fz_always(gctx) {
                fz_drop_image(gctx, img);
                if (!cbuf) fz_drop_buffer(gctx, res);
                pdf_drop_obj(gctx, obj);
            }

            fz_catch(gctx) {
                Py_CLEAR(rc);
                fz_warn(gctx, "%s", fz_caught_message(gctx));
                Py_RETURN_FALSE;
            }
            if (!rc)
                Py_RETURN_NONE;
            return rc;
        }


        //------------------------------------------------------------------
        // Delete all bookmarks (table of contents)
        // returns list of deleted (now available) xref numbers
        //------------------------------------------------------------------
        CLOSECHECK(_delToC, """Delete the TOC.""")
        %pythonappend _delToC %{self.init_doc()%}
        PyObject *_delToC()
        {
            PyObject *xrefs = PyList_New(0);          // create Python list
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) return xrefs;                   // not a pdf

            pdf_obj *root, *olroot, *first;
            int xref_count, olroot_xref, i, xref;

            // get the main root
            root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root));
            // get the outline root
            olroot = pdf_dict_get(gctx, root, PDF_NAME(Outlines));
            if (!olroot) return xrefs;                // no outlines or some problem

            first = pdf_dict_get(gctx, olroot, PDF_NAME(First)); // first outline

            xrefs = JM_outline_xrefs(gctx, first, xrefs);
            xref_count = (int) PyList_Size(xrefs);

            olroot_xref = pdf_to_num(gctx, olroot);        // delete OL root
            pdf_delete_object(gctx, pdf, olroot_xref);     // delete OL root
            pdf_dict_del(gctx, root, PDF_NAME(Outlines));  // delete OL root

            for (i = 0; i < xref_count; i++)
            {
                JM_INT_ITEM(xrefs, i, &xref);
                pdf_delete_object(gctx, pdf, xref);      // delete outline item
            }
            LIST_APPEND_DROP(xrefs, Py_BuildValue("i", olroot_xref));
            
            return xrefs;
        }


        //------------------------------------------------------------------
        // Check: is xref a stream object?
        //------------------------------------------------------------------
        CLOSECHECK0(xref_is_stream, """Check if xref is a stream object.""")
        PyObject *xref_is_stream(int xref=0)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_FALSE;  // not a PDF
            return JM_BOOL(pdf_obj_num_is_stream(gctx, pdf, xref));
        }

        //------------------------------------------------------------------
        // Return or set NeedAppearances
        //------------------------------------------------------------------
        %pythonprepend need_appearances
%{"""Get/set the NeedAppearances value."""
if self.is_closed:
    raise ValueError("document closed")
if not self.is_form_pdf:
    return None
%}
        PyObject *need_appearances(PyObject *value=NULL)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            int oldval = -1;
            pdf_obj *app = NULL;
            char appkey[] = "NeedAppearances";
            fz_try(gctx) {
                pdf_obj *form = pdf_dict_getp(gctx, pdf_trailer(gctx, pdf),
                                "Root/AcroForm");
                app = pdf_dict_gets(gctx, form, appkey);
                if (pdf_is_bool(gctx, app)) {
                    oldval = pdf_to_bool(gctx, app);
                }

                if (EXISTS(value)) {
                    pdf_dict_puts_drop(gctx, form, appkey, PDF_TRUE);
                } else if (value == Py_False) {
                    pdf_dict_puts_drop(gctx, form, appkey, PDF_FALSE);
                }
            }
            fz_catch(gctx) {
                Py_RETURN_NONE;
            }
            if (value != Py_None) {
                return value;
            }
            if (oldval >= 0) {
                return JM_BOOL(oldval);
            }
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // Return the /SigFlags value
        //------------------------------------------------------------------
        CLOSECHECK0(get_sigflags, """Get the /SigFlags value.""")
        int get_sigflags()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) return -1;  // not a PDF
            int sigflag = -1;
            fz_try(gctx) {
                pdf_obj *sigflags = pdf_dict_getl(gctx,
                                        pdf_trailer(gctx, pdf),
                                        PDF_NAME(Root),
                                        PDF_NAME(AcroForm),
                                        PDF_NAME(SigFlags),
                                        NULL);
                if (sigflags) {
                    sigflag = (int) pdf_to_int(gctx, sigflags);
                }
            }
            fz_catch(gctx) {
                return -1;  // any problem
            }
            return sigflag;
        }

        //------------------------------------------------------------------
        // Check: is this an AcroForm with at least one field?
        //------------------------------------------------------------------
        CLOSECHECK0(is_form_pdf, """Either False or PDF field count.""")
        %pythoncode%{@property%}
        PyObject *is_form_pdf()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_FALSE;  // not a PDF
            int count = -1;  // init count
            fz_try(gctx) {
                pdf_obj *fields = pdf_dict_getl(gctx,
                                                pdf_trailer(gctx, pdf),
                                                PDF_NAME(Root),
                                                PDF_NAME(AcroForm),
                                                PDF_NAME(Fields),
                                                NULL);
                if (pdf_is_array(gctx, fields)) {
                    count = pdf_array_len(gctx, fields);
                }
            }
            fz_catch(gctx) {
                Py_RETURN_FALSE;
            }
            if (count >= 0) {
                return Py_BuildValue("i", count);
            } else {
                Py_RETURN_FALSE;
            }
        }

        //------------------------------------------------------------------
        // Return the list of field font resource names
        //------------------------------------------------------------------
        CLOSECHECK0(FormFonts, """Get list of field font resource names.""")
        %pythoncode%{@property%}
        PyObject *FormFonts()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_NONE;           // not a PDF
            pdf_obj *fonts = NULL;
            PyObject *liste = PyList_New(0);
            fz_var(liste);
            fz_try(gctx) {
                fonts = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root), PDF_NAME(AcroForm), PDF_NAME(DR), PDF_NAME(Font), NULL);
                if (fonts && pdf_is_dict(gctx, fonts))       // fonts exist
                {
                    int i, n = pdf_dict_len(gctx, fonts);
                    for (i = 0; i < n; i++)
                    {
                        pdf_obj *f = pdf_dict_get_key(gctx, fonts, i);
                        LIST_APPEND_DROP(liste, JM_UnicodeFromStr(pdf_to_name(gctx, f)));
                    }
                }
            }
            fz_catch(gctx) {
                Py_DECREF(liste);
                Py_RETURN_NONE;  // any problem yields None
            }
            return liste;
        }

        //------------------------------------------------------------------
        // Add a field font
        //------------------------------------------------------------------
        FITZEXCEPTION(_addFormFont, !result)
        CLOSECHECK(_addFormFont, """Add new form font.""")
        PyObject *_addFormFont(char *name, char *font)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_NONE;  // not a PDF
            pdf_obj *fonts = NULL;
            fz_try(gctx) {
                fonts = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root),
                             PDF_NAME(AcroForm), PDF_NAME(DR), PDF_NAME(Font), NULL);
                if (!fonts || !pdf_is_dict(gctx, fonts)) {
                    RAISEPY(gctx, "PDF has no form fonts yet", PyExc_RuntimeError);
                }
                pdf_obj *k = pdf_new_name(gctx, (const char *) name);
                pdf_obj *v = JM_pdf_obj_from_str(gctx, pdf, font);
                pdf_dict_put(gctx, fonts, k, v);
            }
            fz_catch(gctx) NULL;
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // Get Xref Number of Outline Root, create it if missing
        //------------------------------------------------------------------
        FITZEXCEPTION(_getOLRootNumber, !result)
        CLOSECHECK(_getOLRootNumber, """Get xref of Outline Root, create it if missing.""")
        PyObject *_getOLRootNumber()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            pdf_obj *ind_obj = NULL;
            pdf_obj *olroot2 = NULL;
            int ret;
            fz_var(ind_obj);
            fz_var(olroot2);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                // get main root
                pdf_obj *root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root));
                // get outline root
                pdf_obj *olroot = pdf_dict_get(gctx, root, PDF_NAME(Outlines));
                if (!olroot)
                {
                    olroot2 = pdf_new_dict(gctx, pdf, 4);
                    pdf_dict_put(gctx, olroot2, PDF_NAME(Type), PDF_NAME(Outlines));
                    ind_obj = pdf_add_object(gctx, pdf, olroot2);
                    pdf_dict_put(gctx, root, PDF_NAME(Outlines), ind_obj);
                    olroot = pdf_dict_get(gctx, root, PDF_NAME(Outlines));
                    
                }
                ret = pdf_to_num(gctx, olroot);
            }
            fz_always(gctx) {
                pdf_drop_obj(gctx, ind_obj);
                pdf_drop_obj(gctx, olroot2);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", ret);
        }

        //------------------------------------------------------------------
        // Get a new Xref number
        //------------------------------------------------------------------
        FITZEXCEPTION(get_new_xref, !result)
        CLOSECHECK(get_new_xref, """Make a new xref.""")
        PyObject *get_new_xref()
        {
            int xref = 0;
            fz_try(gctx) {
                fz_document *doc = (fz_document *) $self;
                pdf_document *pdf = pdf_specifics(gctx, doc);
                ASSERT_PDF(pdf);
                ENSURE_OPERATION(gctx, pdf);
                xref = pdf_create_object(gctx, pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", xref);
        }

        //------------------------------------------------------------------
        // Get Length of XREF table
        //------------------------------------------------------------------
        FITZEXCEPTION(xref_length, !result)
        CLOSECHECK0(xref_length, """Get length of xref table.""")
        PyObject *xref_length()
        {
            int xreflen = 0;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                if (pdf) xreflen = pdf_xref_len(gctx, pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", xreflen);
        }

        //------------------------------------------------------------------
        // Get XML Metadata
        //------------------------------------------------------------------
        CLOSECHECK0(get_xml_metadata, """Get document XML metadata.""")
        PyObject *get_xml_metadata()
        {
            PyObject *rc = NULL;
            fz_buffer *buff = NULL;
            pdf_obj *xml = NULL;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                if (pdf) {
                    xml = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root), PDF_NAME(Metadata), NULL);
                }
                if (xml) {
                    buff = pdf_load_stream(gctx, xml);
                    rc = JM_UnicodeFromBuffer(gctx, buff);
                } else {
                    rc = EMPTY_STRING;
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, buff);
                PyErr_Clear();
            }
            fz_catch(gctx) {
                return EMPTY_STRING;
            }
            return rc;
        }

        //------------------------------------------------------------------
        // Get XML Metadata xref
        //------------------------------------------------------------------
        FITZEXCEPTION(xref_xml_metadata, !result)
        CLOSECHECK0(xref_xml_metadata, """Get xref of document XML metadata.""")
        PyObject *xref_xml_metadata()
        {
            int xref = 0;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
                ASSERT_PDF(pdf);
                pdf_obj *root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root));
                if (!root) {
                    RAISEPY(gctx, MSG_BAD_PDFROOT, JM_Exc_FileDataError);
                }
                pdf_obj *xml = pdf_dict_get(gctx, root, PDF_NAME(Metadata));
                if (xml) xref = pdf_to_num(gctx, xml);
            }
            fz_catch(gctx) {;}
            return Py_BuildValue("i", xref);
        }

        //------------------------------------------------------------------
        // Delete XML Metadata
        //------------------------------------------------------------------
        FITZEXCEPTION(del_xml_metadata, !result)
        CLOSECHECK(del_xml_metadata, """Delete XML metadata.""")
        PyObject *del_xml_metadata()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                pdf_obj *root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root));
                if (root) pdf_dict_del(gctx, root, PDF_NAME(Metadata));
            }
            fz_catch(gctx) {
                return NULL;
            }
            
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // Set XML-based Metadata
        //------------------------------------------------------------------
        FITZEXCEPTION(set_xml_metadata, !result)
        CLOSECHECK(set_xml_metadata, """Store XML document level metadata.""")
        PyObject *set_xml_metadata(char *metadata)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_buffer *res = NULL;
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                pdf_obj *root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root));
                if (!root) {
                    RAISEPY(gctx, MSG_BAD_PDFROOT, JM_Exc_FileDataError);
                }
                res = fz_new_buffer_from_copied_data(gctx, (const unsigned char *) metadata, strlen(metadata));
                pdf_obj *xml = pdf_dict_get(gctx, root, PDF_NAME(Metadata));
                if (xml) {
                    JM_update_stream(gctx, pdf, xml, res, 0);
                } else {
                    xml = pdf_add_stream(gctx, pdf, res, NULL, 0);
                    pdf_dict_put(gctx, xml, PDF_NAME(Type), PDF_NAME(Metadata));
                    pdf_dict_put(gctx, xml, PDF_NAME(Subtype), PDF_NAME(XML));
                    pdf_dict_put_drop(gctx, root, PDF_NAME(Metadata), xml);
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // Get Object String of xref
        //------------------------------------------------------------------
        FITZEXCEPTION(xref_object, !result)
        CLOSECHECK0(xref_object, """Get xref object source as a string.""")
        PyObject *xref_object(int xref, int compressed=0, int ascii=0)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            pdf_obj *obj = NULL;
            PyObject *text = NULL;
            fz_buffer *res=NULL;
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                int xreflen = pdf_xref_len(gctx, pdf);
                if (!INRANGE(xref, 1, xreflen-1) && xref != -1) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                if (xref > 0) {
                    obj = pdf_load_object(gctx, pdf, xref);
                } else {
                    obj = pdf_trailer(gctx, pdf);
                }
                res = JM_object_to_buffer(gctx, pdf_resolve_indirect(gctx, obj), compressed, ascii);
                text = JM_EscapeStrFromBuffer(gctx, res);
            }
            fz_always(gctx) {
                if (xref > 0) {
                    pdf_drop_obj(gctx, obj);
                }
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) return EMPTY_STRING;
            return text;
        }
        %pythoncode %{
        def pdf_trailer(self, compressed: bool=False, ascii:bool=False)->str:
            """Get PDF trailer as a string."""
            return self.xref_object(-1, compressed=compressed, ascii=ascii)%}


        //------------------------------------------------------------------
        // Get compressed stream of an object by xref
        // Py_RETURN_NONE if not stream
        //------------------------------------------------------------------
        FITZEXCEPTION(xref_stream_raw, !result)
        CLOSECHECK(xref_stream_raw, """Get xref stream without decompression.""")
        PyObject *xref_stream_raw(int xref)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            PyObject *r = Py_None;
            pdf_obj *obj = NULL;
            fz_var(obj);
            fz_buffer *res = NULL;
            fz_var(res);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                int xreflen = pdf_xref_len(gctx, pdf);
                if (!INRANGE(xref, 1, xreflen-1) && xref != -1) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                if (xref >= 0) {
                    obj = pdf_new_indirect(gctx, pdf, xref, 0);
                } else {
                    obj = pdf_trailer(gctx, pdf);
                }
                if (pdf_is_stream(gctx, obj))
                {
                    res = pdf_load_raw_stream_number(gctx, pdf, xref);
                    r = JM_BinFromBuffer(gctx, res);
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
                if (xref >= 0) {
                    pdf_drop_obj(gctx, obj);
                }
            }
            fz_catch(gctx)
            {
                Py_CLEAR(r);
                return NULL;
            }
            return r;
        }

        //------------------------------------------------------------------
        // Get decompressed stream of an object by xref
        // Py_RETURN_NONE if not stream
        //------------------------------------------------------------------
        FITZEXCEPTION(xref_stream, !result)
        CLOSECHECK(xref_stream, """Get decompressed xref stream.""")
        PyObject *xref_stream(int xref)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            PyObject *r = Py_None;
            pdf_obj *obj = NULL;
            fz_var(obj);
            fz_buffer *res = NULL;
            fz_var(res);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                int xreflen = pdf_xref_len(gctx, pdf);
                if (!INRANGE(xref, 1, xreflen-1) && xref != -1) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                if (xref >= 0) {
                    obj = pdf_new_indirect(gctx, pdf, xref, 0);
                } else {
                    obj = pdf_trailer(gctx, pdf);
                }
                if (pdf_is_stream(gctx, obj))
                {
                    res = pdf_load_stream_number(gctx, pdf, xref);
                    r = JM_BinFromBuffer(gctx, res);
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
                if (xref >= 0) {
                    pdf_drop_obj(gctx, obj);
                }
            }
            fz_catch(gctx)
            {
                Py_CLEAR(r);
                return NULL;
            }
            return r;
        }

        //------------------------------------------------------------------
        // Update an Xref number with a new object given as a string
        //------------------------------------------------------------------
        FITZEXCEPTION(update_object, !result)
        CLOSECHECK(update_object, """Replace object definition source.""")
        PyObject *update_object(int xref, char *text, struct Page *page = NULL)
        {
            pdf_obj *new_obj;
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                int xreflen = pdf_xref_len(gctx, pdf);
                if (!INRANGE(xref, 1, xreflen-1)) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                ENSURE_OPERATION(gctx, pdf);
                // create new object with passed-in string
                new_obj = JM_pdf_obj_from_str(gctx, pdf, text);
                pdf_update_object(gctx, pdf, xref, new_obj);
                pdf_drop_obj(gctx, new_obj);
                if (page) {
                    pdf_page *pdfpage = pdf_page_from_fz_page(gctx, (fz_page *) page);
                    JM_refresh_links(gctx, pdfpage);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // Update a stream identified by its xref
        //------------------------------------------------------------------
        FITZEXCEPTION(update_stream, !result)
        CLOSECHECK(update_stream, """Replace xref stream part.""")
        PyObject *update_stream(int xref=0, PyObject *stream=NULL, int new=1, int compress=1)
        {
            pdf_obj *obj = NULL;
            fz_var(obj);
            fz_buffer *res = NULL;
            fz_var(res);
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                int xreflen = pdf_xref_len(gctx, pdf);
                if (!INRANGE(xref, 1, xreflen-1)) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                ENSURE_OPERATION(gctx, pdf);
                // get the object
                obj = pdf_new_indirect(gctx, pdf, xref, 0);
                if (!pdf_is_dict(gctx, obj)) {
                    RAISEPY(gctx, MSG_IS_NO_DICT, PyExc_ValueError);
                }
                res = JM_BufferFromBytes(gctx, stream);
                if (!res) {
                    RAISEPY(gctx, MSG_BAD_BUFFER, PyExc_TypeError);
                }
                JM_update_stream(gctx, pdf, obj, res, compress);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
                pdf_drop_obj(gctx, obj);
            }
            fz_catch(gctx)
                return NULL;
            
            Py_RETURN_NONE;
        }


        //------------------------------------------------------------------
        // create / refresh the page map
        //------------------------------------------------------------------
        FITZEXCEPTION(_make_page_map, !result)
        CLOSECHECK0(_make_page_map, """Make an array page number -> page object.""")
        PyObject *_make_page_map()
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            if (!pdf) Py_RETURN_NONE;
            fz_try(gctx) {
                pdf_drop_page_tree(gctx, pdf);
                pdf_load_page_tree(gctx, pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", pdf->map_page_count);
        }


        //------------------------------------------------------------------
        // full (deep) copy of one page
        //------------------------------------------------------------------
        FITZEXCEPTION(fullcopy_page, !result)
        CLOSECHECK0(fullcopy_page, """Make a full page duplicate.""")
        %pythonappend fullcopy_page %{self._reset_page_refs()%}
        PyObject *fullcopy_page(int pno, int to = -1)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            int page_count = pdf_count_pages(gctx, pdf);
            fz_buffer *res = NULL, *nres=NULL;
            fz_buffer *contents_buffer = NULL;
            fz_var(pdf);
            fz_var(res);
            fz_var(nres);
            fz_var(contents_buffer);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                if (!INRANGE(pno, 0, page_count - 1) ||
                    !INRANGE(to, -1, page_count - 1)) {
                    RAISEPY(gctx, MSG_BAD_PAGENO, PyExc_ValueError);
                }

                pdf_obj *page1 = pdf_resolve_indirect(gctx,
                                 pdf_lookup_page_obj(gctx, pdf, pno));

                pdf_obj *page2 = pdf_deep_copy_obj(gctx, page1);
                pdf_obj *old_annots = pdf_dict_get(gctx, page2, PDF_NAME(Annots));

                // copy annotations, but remove Popup and IRT types
                if (old_annots) {
                    int i, n = pdf_array_len(gctx, old_annots);
                    pdf_obj *new_annots = pdf_new_array(gctx, pdf, n);
                    for (i = 0; i < n; i++) {
                        pdf_obj *o = pdf_array_get(gctx, old_annots, i);
                        pdf_obj *subtype = pdf_dict_get(gctx, o, PDF_NAME(Subtype));
                        if (pdf_name_eq(gctx, subtype, PDF_NAME(Popup))) continue;
                        if (pdf_dict_gets(gctx, o, "IRT")) continue;
                        pdf_obj *copy_o = pdf_deep_copy_obj(gctx,
                                            pdf_resolve_indirect(gctx, o));
                        int xref = pdf_create_object(gctx, pdf);
                        pdf_update_object(gctx, pdf, xref, copy_o);
                        pdf_drop_obj(gctx, copy_o);
                        copy_o = pdf_new_indirect(gctx, pdf, xref, 0);
                        pdf_dict_del(gctx, copy_o, PDF_NAME(Popup));
                        pdf_dict_del(gctx, copy_o, PDF_NAME(P));
                        pdf_array_push_drop(gctx, new_annots, copy_o);
                    }
                pdf_dict_put_drop(gctx, page2, PDF_NAME(Annots), new_annots);
                }

                // copy the old contents stream(s)
                res = JM_read_contents(gctx, page1);

                // create new /Contents object for page2
                if (res) {
                    contents_buffer = fz_new_buffer_from_copied_data(gctx, "  ", 1);
                    pdf_obj *contents = pdf_add_stream(gctx, pdf, contents_buffer, NULL, 0);
                    JM_update_stream(gctx, pdf, contents, res, 1);
                    pdf_dict_put_drop(gctx, page2, PDF_NAME(Contents), contents);
                }

                // now insert target page, making sure it is an indirect object
                int xref = pdf_create_object(gctx, pdf);  // get new xref
                pdf_update_object(gctx, pdf, xref, page2);  // store new page
                pdf_drop_obj(gctx, page2);  // give up this object for now

                page2 = pdf_new_indirect(gctx, pdf, xref, 0);  // reread object
                pdf_insert_page(gctx, pdf, to, page2);  // and store the page
                pdf_drop_obj(gctx, page2);
            }
            fz_always(gctx) {
                pdf_drop_page_tree(gctx, pdf);
                fz_drop_buffer(gctx, res);
                fz_drop_buffer(gctx, nres);
                fz_drop_buffer(gctx, contents_buffer);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //------------------------------------------------------------------
        // move or copy one page
        //------------------------------------------------------------------
        FITZEXCEPTION(_move_copy_page, !result)
        CLOSECHECK0(_move_copy_page, """Move or copy a PDF page reference.""")
        %pythonappend _move_copy_page %{self._reset_page_refs()%}
        PyObject *_move_copy_page(int pno, int nb, int before, int copy)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            int i1, i2, pos, count, same = 0;
            pdf_obj *parent1 = NULL, *parent2 = NULL, *parent = NULL;
            pdf_obj *kids1, *kids2;
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                // get the two page objects -----------------------------------
                // locate the /Kids arrays and indices in each
                pdf_obj *page1 = pdf_lookup_page_loc(gctx, pdf, pno, &parent1, &i1);
                kids1 = pdf_dict_get(gctx, parent1, PDF_NAME(Kids));

                pdf_obj *page2 = pdf_lookup_page_loc(gctx, pdf, nb, &parent2, &i2);
                (void) page2;
                kids2 = pdf_dict_get(gctx, parent2, PDF_NAME(Kids));

                if (before)  // calc index of source page in target /Kids
                    pos = i2;
                else
                    pos = i2 + 1;

                // same /Kids array? ------------------------------------------
                same = pdf_objcmp(gctx, kids1, kids2);

                // put source page in target /Kids array ----------------------
                if (!copy && same != 0)  // update parent in page object
                {
                    pdf_dict_put(gctx, page1, PDF_NAME(Parent), parent2);
                }
                pdf_array_insert(gctx, kids2, page1, pos);

                if (same != 0) // different /Kids arrays ----------------------
                {
                    parent = parent2;
                    while (parent)  // increase /Count objects in parents
                    {
                        count = pdf_dict_get_int(gctx, parent, PDF_NAME(Count));
                        pdf_dict_put_int(gctx, parent, PDF_NAME(Count), count + 1);
                        parent = pdf_dict_get(gctx, parent, PDF_NAME(Parent));
                    }
                    if (!copy)  // delete original item
                    {
                        pdf_array_delete(gctx, kids1, i1);
                        parent = parent1;
                        while (parent) // decrease /Count objects in parents
                        {
                            count = pdf_dict_get_int(gctx, parent, PDF_NAME(Count));
                            pdf_dict_put_int(gctx, parent, PDF_NAME(Count), count - 1);
                            parent = pdf_dict_get(gctx, parent, PDF_NAME(Parent));
                        }
                    }
                }
                else {  // same /Kids array
                    if (copy) {  // source page is copied
                        parent = parent2;
                        while (parent) // increase /Count object in parents
                        {
                            count = pdf_dict_get_int(gctx, parent, PDF_NAME(Count));
                            pdf_dict_put_int(gctx, parent, PDF_NAME(Count), count + 1);
                            parent = pdf_dict_get(gctx, parent, PDF_NAME(Parent));
                        }
                    } else {
                        if (i1 < pos)
                            pdf_array_delete(gctx, kids1, i1);
                        else
                            pdf_array_delete(gctx, kids1, i1 + 1);
                    }
                }
                if (pdf->rev_page_map) {  // page map no longer valid: drop it
                    pdf_drop_page_tree(gctx, pdf);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        FITZEXCEPTION(_remove_toc_item, !result)
        PyObject *_remove_toc_item(int xref)
        {
            // "remove" bookmark by letting it point to nowhere
            pdf_obj *item = NULL, *color;
            int i;
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_try(gctx) {
                item = pdf_new_indirect(gctx, pdf, xref, 0);
                pdf_dict_del(gctx, item, PDF_NAME(Dest));
                pdf_dict_del(gctx, item, PDF_NAME(A));
                color = pdf_new_array(gctx, pdf, 3);
                for (i=0; i < 3; i++) {
                    pdf_array_push_real(gctx, color, 0.8);
                }
                pdf_dict_put_drop(gctx, item, PDF_NAME(C), color);
            }
            fz_always(gctx) {
                pdf_drop_obj(gctx, item);
            }
            fz_catch(gctx){
                return NULL;
            }
            Py_RETURN_NONE;
        }

        FITZEXCEPTION(_update_toc_item, !result)
        PyObject *_update_toc_item(int xref, char *action=NULL, char *title=NULL, int flags=0, PyObject *collapse=NULL, PyObject *color=NULL)
        {
            // "update" bookmark by letting it point to nowhere
            pdf_obj *item = NULL;
            pdf_obj *obj = NULL;
            Py_ssize_t i;
            double f;
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            fz_try(gctx) {
                item = pdf_new_indirect(gctx, pdf, xref, 0);
                if (title) {
                    pdf_dict_put_text_string(gctx, item, PDF_NAME(Title), title);
                }
                if (action) {
                    pdf_dict_del(gctx, item, PDF_NAME(Dest));
                    obj = JM_pdf_obj_from_str(gctx, pdf, action);
                    pdf_dict_put_drop(gctx, item, PDF_NAME(A), obj);
                }
                pdf_dict_put_int(gctx, item, PDF_NAME(F), flags);
                if (EXISTS(color)) {
                    pdf_obj *c = pdf_new_array(gctx, pdf, 3);
                    for (i = 0; i < 3; i++) {
                        JM_FLOAT_ITEM(color, i, &f);
                        pdf_array_push_real(gctx, c, f);
                    }
                    pdf_dict_put_drop(gctx, item, PDF_NAME(C), c);
                } else if (color != Py_None) {
                    pdf_dict_del(gctx, item, PDF_NAME(C));
                }
                if (collapse != Py_None) {
                    if (pdf_dict_get(gctx, item, PDF_NAME(Count))) {
                        i = pdf_dict_get_int(gctx, item, PDF_NAME(Count));
                        if ((i < 0 && collapse == Py_False) || (i > 0 && collapse == Py_True)) {
                            i = i * (-1);
                            pdf_dict_put_int(gctx, item, PDF_NAME(Count), i);
                        }
                    }
                }
            }
            fz_always(gctx) {
                pdf_drop_obj(gctx, item);
            }
            fz_catch(gctx){
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //------------------------------------------------------------------
        // PDF page label getting / setting
        //------------------------------------------------------------------
        FITZEXCEPTION(_get_page_labels, !result)
        PyObject *
        _get_page_labels()
        {
            pdf_obj *obj, *nums, *kids;
            PyObject *rc = NULL;
            int i, n;
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);

            pdf_obj *pagelabels = NULL;
            fz_var(pagelabels);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                rc = PyList_New(0);
                pagelabels = pdf_new_name(gctx, "PageLabels");
                obj = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                   PDF_NAME(Root), pagelabels, NULL);
                if (!obj) {
                    goto finished;
                }
                // simple case: direct /Nums object
                nums = pdf_resolve_indirect(gctx,
                       pdf_dict_get(gctx, obj, PDF_NAME(Nums)));
                if (nums) {
                    JM_get_page_labels(gctx, rc, nums);
                    goto finished;
                }
                // case: /Kids/Nums
                nums = pdf_resolve_indirect(gctx,
                           pdf_dict_getl(gctx, obj, PDF_NAME(Kids), PDF_NAME(Nums), NULL)
                );
                if (nums) {
                    JM_get_page_labels(gctx, rc, nums);
                    goto finished;
                }
                // case: /Kids is an array of multiple /Nums
                kids = pdf_resolve_indirect(gctx,
                       pdf_dict_get(gctx, obj, PDF_NAME(Kids)));
                if (!kids || !pdf_is_array(gctx, kids)) {
                    goto finished;
                }

                n = pdf_array_len(gctx, kids);
                for (i = 0; i < n; i++) {
                    nums = pdf_resolve_indirect(gctx,
                           pdf_dict_get(gctx,
                           pdf_array_get(gctx, kids, i),
                           PDF_NAME(Nums)));
                    JM_get_page_labels(gctx, rc, nums);
                }
                finished:;
            }
            fz_always(gctx) {
                PyErr_Clear();
                pdf_drop_obj(gctx, pagelabels);
            }
            fz_catch(gctx){
                Py_CLEAR(rc);
                return NULL;
            }
            return rc;
        }


        FITZEXCEPTION(_set_page_labels, !result)
        %pythonappend _set_page_labels %{
        xref = self.pdf_catalog()
        text = self.xref_object(xref, compressed=True)
        text = text.replace("/Nums[]", "/Nums[%s]" % labels)
        self.update_object(xref, text)%}
        PyObject *
        _set_page_labels(char *labels)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) $self);
            pdf_obj *pagelabels = NULL;
            fz_var(pagelabels);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                pagelabels = pdf_new_name(gctx, "PageLabels");
                pdf_obj *root = pdf_dict_get(gctx, pdf_trailer(gctx, pdf), PDF_NAME(Root));
                pdf_dict_del(gctx, root, pagelabels);
                pdf_dict_putl_drop(gctx, root, pdf_new_array(gctx, pdf, 0), pagelabels, PDF_NAME(Nums), NULL);
            }
            fz_always(gctx) {
                PyErr_Clear();
                pdf_drop_obj(gctx, pagelabels);
            }
            fz_catch(gctx){
                return NULL;
            }
            
            Py_RETURN_NONE;
        }


        //------------------------------------------------------------------
        // PDF Optional Content functions
        //------------------------------------------------------------------
        FITZEXCEPTION(get_layers, !result)
        CLOSECHECK0(get_layers, """Show optional OC layers.""")
        PyObject *
        get_layers()
        {
            PyObject *rc = NULL;
            pdf_layer_config info = {NULL, NULL};
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) self);
                ASSERT_PDF(pdf);
                int i, n = pdf_count_layer_configs(gctx, pdf);
                if (n == 1) {
                    pdf_obj *obj = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                   PDF_NAME(Root), PDF_NAME(OCProperties), PDF_NAME(Configs), NULL);
                    if (!pdf_is_array(gctx, obj)) n = 0;
                }
                rc = PyTuple_New(n);
                for (i = 0; i < n; i++) {
                    pdf_layer_config_info(gctx, pdf, i, &info);
                    PyObject *item = Py_BuildValue("{s:i,s:s,s:s}",
                        "number", i, "name", info.name, "creator", info.creator);
                    PyTuple_SET_ITEM(rc, i, item);
                    info.name = NULL;
                    info.creator = NULL;
                }
            }
            fz_catch(gctx) {
                Py_CLEAR(rc);
                return NULL;
            }
            return rc;
        }


        FITZEXCEPTION(switch_layer, !result)
        CLOSECHECK0(switch_layer, """Activate an OC layer.""")
        PyObject *
        switch_layer(int config, int as_default=0)
        {
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) self);
                ASSERT_PDF(pdf);
                pdf_obj *cfgs = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                   PDF_NAME(Root), PDF_NAME(OCProperties), PDF_NAME(Configs), NULL);
                if (!pdf_is_array(gctx, cfgs) || !pdf_array_len(gctx, cfgs)) {
                    if (config < 1) goto finished;
                    RAISEPY(gctx, MSG_BAD_OC_LAYER, PyExc_ValueError);
                }
                if (config < 0) goto finished;
                pdf_select_layer_config(gctx, pdf, config);
                if (as_default) {
                    pdf_set_layer_config_as_default(gctx, pdf);
                    pdf_read_ocg(gctx, pdf);
                }
                finished:;
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(get_layer, !result)
        CLOSECHECK0(get_layer, """Content of ON, OFF, RBGroups of an OC layer.""")
        PyObject *
        get_layer(int config=-1)
        {
            PyObject *rc;
            pdf_obj *obj = NULL;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) self);
                ASSERT_PDF(pdf);
                pdf_obj *ocp = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                   PDF_NAME(Root), PDF_NAME(OCProperties), NULL);
                if (!ocp) {
                    rc = Py_BuildValue("s", NULL);
                    goto finished;
                }
                if (config == -1) {
                    obj = pdf_dict_get(gctx, ocp, PDF_NAME(D));
                } else {
                    obj = pdf_array_get(gctx, pdf_dict_get(gctx, ocp, PDF_NAME(Configs)), config);
                }
                if (!obj) {
                    RAISEPY(gctx, MSG_BAD_OC_CONFIG, PyExc_ValueError);
                }
                rc = JM_get_ocg_arrays(gctx, obj);
                finished:;
            }
            fz_catch(gctx) {
                Py_CLEAR(rc);
                PyErr_Clear();
                return NULL;
            }
            return rc;
        }


        FITZEXCEPTION(set_layer, !result)
        %pythonprepend set_layer
%{"""Set the PDF keys /ON, /OFF, /RBGroups of an OC layer."""
if self.is_closed:
    raise ValueError("document closed")
ocgs = set(self.get_ocgs().keys())
if ocgs == set():
    raise ValueError("document has no optional content")

if on:
    if type(on) not in (list, tuple):
        raise ValueError("bad type: 'on'")
    s = set(on).difference(ocgs)
    if s != set():
        raise ValueError("bad OCGs in 'on': %s" % s)

if off:
    if type(off) not in (list, tuple):
        raise ValueError("bad type: 'off'")
    s = set(off).difference(ocgs)
    if s != set():
        raise ValueError("bad OCGs in 'off': %s" % s)

if rbgroups:
    if type(rbgroups) not in (list, tuple):
        raise ValueError("bad type: 'rbgroups'")
    for x in rbgroups:
        if not type(x) in (list, tuple):
            raise ValueError("bad RBGroup '%s'" % x)
        s = set(x).difference(ocgs)
        if f != set():
            raise ValueError("bad OCGs in RBGroup: %s" % s)

if basestate:
    basestate = str(basestate).upper()
    if basestate == "UNCHANGED":
        basestate = "Unchanged"
    if basestate not in ("ON", "OFF", "Unchanged"):
        raise ValueError("bad 'basestate'")
%}
        PyObject *
        set_layer(int config, const char *basestate=NULL, PyObject *on=NULL,
                    PyObject *off=NULL, PyObject *rbgroups=NULL)
        {
            pdf_obj *obj = NULL;
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) self);
                ASSERT_PDF(pdf);
                pdf_obj *ocp = pdf_dict_getl(gctx, pdf_trailer(gctx, pdf),
                                   PDF_NAME(Root), PDF_NAME(OCProperties), NULL);
                if (!ocp) {
                    goto finished;
                }
                if (config == -1) {
                    obj = pdf_dict_get(gctx, ocp, PDF_NAME(D));
                } else {
                    obj = pdf_array_get(gctx, pdf_dict_get(gctx, ocp, PDF_NAME(Configs)), config);
                }
                if (!obj) {
                    RAISEPY(gctx, MSG_BAD_OC_CONFIG, PyExc_ValueError);
                }
                JM_set_ocg_arrays(gctx, obj, basestate, on, off, rbgroups);
                pdf_read_ocg(gctx, pdf);
                finished:;
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(add_layer, !result)
        CLOSECHECK0(add_layer, """Add a new OC layer.""")
        PyObject *add_layer(char *name, char *creator=NULL, PyObject *on=NULL)
        {
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) self);
                ASSERT_PDF(pdf);
                JM_add_layer_config(gctx, pdf, name, creator, on);
                pdf_read_ocg(gctx, pdf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(layer_ui_configs, !result)
        CLOSECHECK0(layer_ui_configs, """Show OC visibility status modifyable by user.""")
        PyObject *layer_ui_configs()
        {
            typedef struct
            {
                const char *text;
                int depth;
                pdf_layer_config_ui_type type;
                int selected;
                int locked;
            } pdf_layer_config_ui;
            PyObject *rc = NULL;

            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) self);
                ASSERT_PDF(pdf);
                pdf_layer_config_ui info;
                int i, n = pdf_count_layer_config_ui(gctx, pdf);
                rc = PyTuple_New(n);
                char *type = NULL;
                for (i = 0; i < n; i++) {
                    pdf_layer_config_ui_info(gctx, pdf, i, (void *) &info);
                    switch (info.type)
                    {
                        case (1): type = "checkbox"; break;
                        case (2): type = "radiobox"; break;
                        default: type = "label"; break;
                    }
                    PyObject *item = Py_BuildValue("{s:i,s:N,s:i,s:s,s:N,s:N}",
                        "number", i,
                        "text", JM_EscapeStrFromStr(info.text),
                        "depth", info.depth,
                        "type", type,
                        "on", JM_BOOL(info.selected),
                        "locked", JM_BOOL(info.locked));
                    PyTuple_SET_ITEM(rc, i, item);
                }
            }
            fz_catch(gctx) {
                Py_CLEAR(rc);
                return NULL;
            }
            return rc;
        }


        FITZEXCEPTION(set_layer_ui_config, !result)
        CLOSECHECK0(set_layer_ui_config, """Set / unset OC intent configuration.""")
        PyObject *set_layer_ui_config(int number, int action=0)
        {
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) self);
                ASSERT_PDF(pdf);
                switch (action)
                {
                    case (1):
                        pdf_toggle_layer_config_ui(gctx, pdf, number);
                        break;
                    case (2):
                        pdf_deselect_layer_config_ui(gctx, pdf, number);
                        break;
                    default:
                        pdf_select_layer_config_ui(gctx, pdf, number);
                        break;
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(get_ocgs, !result)
        CLOSECHECK0(get_ocgs, """Show existing optional content groups.""")
        PyObject *
        get_ocgs()
        {
            PyObject *rc = NULL;
            pdf_obj *ci = pdf_new_name(gctx, "CreatorInfo");
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) self);
                ASSERT_PDF(pdf);
                pdf_obj *ocgs = pdf_dict_getl(gctx,
                                pdf_dict_get(gctx,
                                pdf_trailer(gctx, pdf), PDF_NAME(Root)),
                                PDF_NAME(OCProperties), PDF_NAME(OCGs), NULL);
                rc = PyDict_New();
                if (!pdf_is_array(gctx, ocgs)) goto fertig;
                int i, n = pdf_array_len(gctx, ocgs);
                for (i = 0; i < n; i++) {
                    pdf_obj *ocg = pdf_array_get(gctx, ocgs, i);
                    int xref = pdf_to_num(gctx, ocg);
                    const char *name = pdf_to_text_string(gctx, pdf_dict_get(gctx, ocg, PDF_NAME(Name)));
                    pdf_obj *obj = pdf_dict_getl(gctx, ocg, PDF_NAME(Usage), ci, PDF_NAME(Subtype), NULL);
                    const char *usage = NULL;
                    if (obj) usage = pdf_to_name(gctx, obj);
                    PyObject *intents = PyList_New(0);
                    pdf_obj *intent = pdf_dict_get(gctx, ocg, PDF_NAME(Intent));
                    if (intent) {
                        if (pdf_is_name(gctx, intent)) {
                            LIST_APPEND_DROP(intents, Py_BuildValue("s", pdf_to_name(gctx, intent)));
                        } else if (pdf_is_array(gctx, intent)) {
                            int j, m = pdf_array_len(gctx, intent);
                            for (j = 0; j < m; j++) {
                                pdf_obj *o = pdf_array_get(gctx, intent, j);
                                if (pdf_is_name(gctx, o))
                                    LIST_APPEND_DROP(intents, Py_BuildValue("s", pdf_to_name(gctx, o)));
                            }
                        }
                    }
                    int hidden = pdf_is_ocg_hidden(gctx, pdf, NULL, usage, ocg);
                    PyObject *item = Py_BuildValue("{s:s,s:O,s:O,s:s}",
                            "name", name,
                            "intent", intents,
                            "on", JM_BOOL(!hidden),
                            "usage", usage);
                    Py_DECREF(intents);
                    PyObject *temp = Py_BuildValue("i", xref);
                    DICT_SETITEM_DROP(rc, temp, item);
                    Py_DECREF(temp);
                }
                fertig:;
            }
            fz_always(gctx) {
                pdf_drop_obj(gctx, ci);
            }
            fz_catch(gctx) {
                Py_CLEAR(rc);
                return NULL;
            }
            return rc;
        }


        FITZEXCEPTION(add_ocg, !result)
        CLOSECHECK0(add_ocg, """Add new optional content group.""")
        PyObject *
        add_ocg(char *name, int config=-1, int on=1, PyObject *intent=NULL, const char *usage=NULL)
        {
            int xref = 0;
            pdf_obj *obj = NULL, *cfg = NULL;
            pdf_obj *indocg = NULL;
            pdf_obj *ocg = NULL;
            pdf_obj *ci_name = NULL;
            fz_var(indocg);
            fz_var(ocg);
            fz_var(ci_name);
            fz_try(gctx) {
                pdf_document *pdf = pdf_specifics(gctx, (fz_document *) self);
                ASSERT_PDF(pdf);

                // ------------------------------
                // make the OCG
                // ------------------------------
                ocg = pdf_add_new_dict(gctx, pdf, 3);
                pdf_dict_put(gctx, ocg, PDF_NAME(Type), PDF_NAME(OCG));
                pdf_dict_put_text_string(gctx, ocg, PDF_NAME(Name), name);
                pdf_obj *intents = pdf_dict_put_array(gctx, ocg, PDF_NAME(Intent), 2);
                if (!EXISTS(intent)) {
                    pdf_array_push(gctx, intents, PDF_NAME(View));
                } else if (!PyUnicode_Check(intent)) {
                    int i, n = PySequence_Size(intent);
                    for (i = 0; i < n; i++) {
                        PyObject *item = PySequence_ITEM(intent, i);
                        char *c = JM_StrAsChar(item);
                        if (c) {
                            pdf_array_push_drop(gctx, intents, pdf_new_name(gctx, c));
                        }
                        Py_DECREF(item);
                    }
                } else {
                    char *c = JM_StrAsChar(intent);
                    if (c) {
                        pdf_array_push_drop(gctx, intents, pdf_new_name(gctx, c));
                    }
                }
                pdf_obj *use_for = pdf_dict_put_dict(gctx, ocg, PDF_NAME(Usage), 3);
                ci_name = pdf_new_name(gctx, "CreatorInfo");
                pdf_obj *cre_info = pdf_dict_put_dict(gctx, use_for, ci_name, 2);
                pdf_dict_put_text_string(gctx, cre_info, PDF_NAME(Creator), "PyMuPDF");
                if (usage) {
                    pdf_dict_put_name(gctx, cre_info, PDF_NAME(Subtype), usage);
                } else {
                    pdf_dict_put_name(gctx, cre_info, PDF_NAME(Subtype), "Artwork");
                }
                indocg = pdf_add_object(gctx, pdf, ocg);

                // ------------------------------
                // Insert OCG in the right config
                // ------------------------------
                pdf_obj *ocp = JM_ensure_ocproperties(gctx, pdf);
                obj = pdf_dict_get(gctx, ocp, PDF_NAME(OCGs));
                pdf_array_push(gctx, obj, indocg);

                if (config > -1) {
                    obj = pdf_dict_get(gctx, ocp, PDF_NAME(Configs));
                    if (!pdf_is_array(gctx, obj)) {
                        RAISEPY(gctx, MSG_BAD_OC_CONFIG, PyExc_ValueError);
                    }
                    cfg = pdf_array_get(gctx, obj, config);
                    if (!cfg) {
                        RAISEPY(gctx, MSG_BAD_OC_CONFIG, PyExc_ValueError);
                    }
                } else {
                    cfg = pdf_dict_get(gctx, ocp, PDF_NAME(D));
                }

                obj = pdf_dict_get(gctx, cfg, PDF_NAME(Order));
                if (!obj) {
                    obj = pdf_dict_put_array(gctx, cfg, PDF_NAME(Order), 1);
                }
                pdf_array_push(gctx, obj, indocg);
                if (on) {
                    obj = pdf_dict_get(gctx, cfg, PDF_NAME(ON));
                    if (!obj) {
                        obj = pdf_dict_put_array(gctx, cfg, PDF_NAME(ON), 1);
                    }
                } else {
                    obj = pdf_dict_get(gctx, cfg, PDF_NAME(OFF));
                    if (!obj) {
                        obj = pdf_dict_put_array(gctx, cfg, PDF_NAME(OFF), 1);
                    }
                }
                pdf_array_push(gctx, obj, indocg);

                // let MuPDF take note: re-read OCProperties
                pdf_read_ocg(gctx, pdf);

                xref = pdf_to_num(gctx, indocg);
            }
            fz_always(gctx) {
                pdf_drop_obj(gctx, indocg);
                pdf_drop_obj(gctx, ocg);
                pdf_drop_obj(gctx, ci_name);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", xref);
        }


        //------------------------------------------------------------------
        // Initialize document: set outline and metadata properties
        //------------------------------------------------------------------
        %pythoncode %{
            def init_doc(self):
                if self.is_encrypted:
                    raise ValueError("cannot initialize - document still encrypted")
                self._outline = self._loadOutline()
                if self._outline:
                    self._outline.thisown = True
                self.metadata = dict([(k,self._getMetadata(v)) for k,v in {'format':'format', 'title':'info:Title', 'author':'info:Author','subject':'info:Subject', 'keywords':'info:Keywords','creator':'info:Creator', 'producer':'info:Producer', 'creationDate':'info:CreationDate', 'modDate':'info:ModDate', 'trapped':'info:Trapped'}.items()])
                self.metadata['encryption'] = None if self._getMetadata('encryption')=='None' else self._getMetadata('encryption')

            outline = property(lambda self: self._outline)


            def get_page_fonts(self, pno: int, full: bool =False) -> list:
                """Retrieve a list of fonts used on a page.
                """
                if self.is_closed or self.is_encrypted:
                    raise ValueError("document closed or encrypted")
                if not self.is_pdf:
                    return ()
                if type(pno) is not int:
                    try:
                        pno = pno.number
                    except:
                        raise ValueError("need a Page or page number")
                val = self._getPageInfo(pno, 1)
                if full is False:
                    return [v[:-1] for v in val]
                return val


            def get_page_images(self, pno: int, full: bool =False) -> list:
                """Retrieve a list of images used on a page.
                """
                if self.is_closed or self.is_encrypted:
                    raise ValueError("document closed or encrypted")
                if not self.is_pdf:
                    return ()
                if type(pno) is not int:
                    try:
                        pno = pno.number
                    except:
                        raise ValueError("need a Page or page number")
                val = self._getPageInfo(pno, 2)
                if full is False:
                    return [v[:-1] for v in val]
                return val


            def get_page_xobjects(self, pno: int) -> list:
                """Retrieve a list of XObjects used on a page.
                """
                if self.is_closed or self.is_encrypted:
                    raise ValueError("document closed or encrypted")
                if not self.is_pdf:
                    return ()
                if type(pno) is not int:
                    try:
                        pno = pno.number
                    except:
                        raise ValueError("need a Page or page number")
                val = self._getPageInfo(pno, 3)
                rc = [(v[0], v[1], v[2], Rect(v[3])) for v in val]
                return rc


            def xref_is_image(self, xref):
                """Check if xref is an image object."""
                if self.is_closed or self.is_encrypted:
                    raise ValueError("document closed or encrypted")
                if self.xref_get_key(xref, "Subtype")[1] == "/Image":
                    return True
                return False

            def xref_is_font(self, xref):
                """Check if xref is a font object."""
                if self.is_closed or self.is_encrypted:
                    raise ValueError("document closed or encrypted")
                if self.xref_get_key(xref, "Type")[1] == "/Font":
                    return True
                return False

            def xref_is_xobject(self, xref):
                """Check if xref is a form xobject."""
                if self.is_closed or self.is_encrypted:
                    raise ValueError("document closed or encrypted")
                if self.xref_get_key(xref, "Subtype")[1] == "/Form":
                    return True
                return False

            def copy_page(self, pno: int, to: int =-1):
                """Copy a page within a PDF document.

                This will only create another reference of the same page object.
                Args:
                    pno: source page number
                    to: put before this page, '-1' means after last page.
                """
                if self.is_closed:
                    raise ValueError("document closed")

                page_count = len(self)
                if (
                    pno not in range(page_count) or
                    to not in range(-1, page_count)
                   ):
                    raise ValueError("bad page number(s)")
                before = 1
                copy = 1
                if to == -1:
                    to = page_count - 1
                    before = 0

                return self._move_copy_page(pno, to, before, copy)

            def move_page(self, pno: int, to: int =-1):
                """Move a page within a PDF document.

                Args:
                    pno: source page number.
                    to: put before this page, '-1' means after last page.
                """
                if self.is_closed:
                    raise ValueError("document closed")

                page_count = len(self)
                if (
                    pno not in range(page_count) or
                    to not in range(-1, page_count)
                   ):
                    raise ValueError("bad page number(s)")
                before = 1
                copy = 0
                if to == -1:
                    to = page_count - 1
                    before = 0

                return self._move_copy_page(pno, to, before, copy)

            def delete_page(self, pno: int =-1):
                """ Delete one page from a PDF.
                """
                if not self.is_pdf:
                    raise ValueError("is no PDF")
                if self.is_closed:
                    raise ValueError("document closed")

                page_count = self.page_count
                while pno < 0:
                    pno += page_count

                if pno >= page_count:
                    raise ValueError("bad page number(s)")

                # remove TOC bookmarks pointing to deleted page
                toc = self.get_toc()
                ol_xrefs = self.get_outline_xrefs()
                for i, item in enumerate(toc):
                    if item[2] == pno + 1:
                        self._remove_toc_item(ol_xrefs[i])

                self._remove_links_to(frozenset((pno,)))
                self._delete_page(pno)
                self._reset_page_refs()


            def delete_pages(self, *args, **kw):
                """Delete pages from a PDF.

                Args:
                    Either keywords 'from_page'/'to_page', or two integers to
                    specify the first/last page to delete.
                    Or a list/tuple/range object, which can contain arbitrary
                    page numbers.
                """
                if not self.is_pdf:
                    raise ValueError("is no PDF")
                if self.is_closed:
                    raise ValueError("document closed")

                page_count = self.page_count  # page count of document
                f = t = -1
                if kw:  # check if keywords were used
                    if args:  # then no positional args are allowed
                        raise ValueError("cannot mix keyword and positional argument")
                    f = kw.get("from_page", -1)  # first page to delete
                    t = kw.get("to_page", -1)  # last page to delete
                    while f < 0:
                        f += page_count
                    while t < 0:
                        t += page_count
                    if not f <= t < page_count:
                        raise ValueError("bad page number(s)")
                    numbers = tuple(range(f, t + 1))
                else:
                    if len(args) > 2 or args == []:
                        raise ValueError("need 1 or 2 positional arguments")
                    if len(args) == 2:
                        f, t = args
                        if not (type(f) is int and type(t) is int):
                            raise ValueError("both arguments must be int")
                        if f > t:
                            f, t = t, f
                        if not f <= t < page_count:
                            raise ValueError("bad page number(s)")
                        numbers = tuple(range(f, t + 1))
                    else:
                        r = args[0]
                        if type(r) not in (int, range, list, tuple):
                            raise ValueError("need int or sequence if one argument")
                        numbers = tuple(r)

                numbers = list(map(int, set(numbers)))  # ensure unique integers
                if numbers == []:
                    print("nothing to delete")
                    return
                numbers.sort()
                if numbers[0] < 0 or numbers[-1] >= page_count:
                    raise ValueError("bad page number(s)")
                frozen_numbers = frozenset(numbers)
                toc = self.get_toc()
                for i, xref in enumerate(self.get_outline_xrefs()):
                    if toc[i][2] - 1 in frozen_numbers:
                        self._remove_toc_item(xref)  # remove target in PDF object

                self._remove_links_to(frozen_numbers)

                for i in reversed(numbers):  # delete pages, last to first
                    self._delete_page(i)

                self._reset_page_refs()


            def saveIncr(self):
                """ Save PDF incrementally"""
                return self.save(self.name, incremental=True, encryption=PDF_ENCRYPT_KEEP)


            def ez_save(self, filename, garbage=3, clean=False,
            deflate=True, deflate_images=True, deflate_fonts=True,
            incremental=False, ascii=False, expand=False, linear=False,
            pretty=False, encryption=1, permissions=4095,
            owner_pw=None, user_pw=None, no_new_id=True):
                """ Save PDF using some different defaults"""
                return self.save(filename, garbage=garbage,
                clean=clean,
                deflate=deflate,
                deflate_images=deflate_images,
                deflate_fonts=deflate_fonts,
                incremental=incremental,
                ascii=ascii,
                expand=expand,
                linear=linear,
                pretty=pretty,
                encryption=encryption,
                permissions=permissions,
                owner_pw=owner_pw,
                user_pw=user_pw,
                no_new_id=no_new_id,)


            def reload_page(self, page: "struct Page *") -> "struct Page *":
                """Make a fresh copy of a page."""
                old_annots = {}  # copy annot references to here
                pno = page.number  # save the page number
                for k, v in page._annot_refs.items():  # save the annot dictionary
                    old_annots[k] = v
                page._erase()  # remove the page
                page = None
                page = self.load_page(pno)  # reload the page

                # copy annot refs over to the new dictionary
                page_proxy = weakref.proxy(page)
                for k, v in old_annots.items():
                    annot = old_annots[k]
                    annot.parent = page_proxy  # refresh parent to new page
                    page._annot_refs[k] = annot
                return page


            def __repr__(self) -> str:
                m = "closed " if self.is_closed else ""
                if self.stream is None:
                    if self.name == "":
                        return m + "Document(<new PDF, doc# %i>)" % self._graft_id
                    return m + "Document('%s')" % (self.name,)
                return m + "Document('%s', <memory, doc# %i>)" % (self.name, self._graft_id)


            def __contains__(self, loc) -> bool:
                if type(loc) is int:
                    if loc < self.page_count:
                        return True
                    return False
                if type(loc) not in (tuple, list) or len(loc) != 2:
                    return False

                chapter, pno = loc
                if (type(chapter) != int or
                    chapter < 0 or
                    chapter >= self.chapter_count
                    ):
                    return False
                if (type(pno) != int or
                    pno < 0 or
                    pno >= self.chapter_page_count(chapter)
                    ):
                    return False

                return True


            def __getitem__(self, i: int =0)->"Page":
                if i not in self:
                    raise IndexError("page not in document")
                return self.load_page(i)


            def __delitem__(self, i: AnyType)->None:
                if not self.is_pdf:
                    raise ValueError("is no PDF")
                if type(i) is int:
                    return self.delete_page(i)
                if type(i) in (list, tuple, range):
                    return self.delete_pages(i)
                if type(i) is not slice:
                    raise ValueError("bad argument type")
                pc = self.page_count
                start = i.start if i.start else 0
                stop = i.stop if i.stop else pc
                step = i.step if i.step else 1
                while start < 0:
                    start += pc
                if start >= pc:
                    raise ValueError("bad page number(s)")
                while stop < 0:
                    stop += pc
                if stop > pc:
                    raise ValueError("bad page number(s)")
                return self.delete_pages(range(start, stop, step))


            def pages(self, start: OptInt =None, stop: OptInt =None, step: OptInt =None):
                """Return a generator iterator over a page range.

                Arguments have the same meaning as for the range() built-in.
                """
                # set the start value
                start = start or 0
                while start < 0:
                    start += self.page_count
                if start not in range(self.page_count):
                    raise ValueError("bad start page number")

                # set the stop value
                stop = stop if stop is not None and stop <= self.page_count else self.page_count

                # set the step value
                if step == 0:
                    raise ValueError("arg 3 must not be zero")
                if step is None:
                    if start > stop:
                        step = -1
                    else:
                        step = 1

                for pno in range(start, stop, step):
                    yield (self.load_page(pno))


            def __len__(self) -> int:
                return self.page_count

            def _forget_page(self, page: "struct Page *"):
                """Remove a page from document page dict."""
                pid = id(page)
                if pid in self._page_refs:
                    self._page_refs[pid] = None

            def _reset_page_refs(self):
                """Invalidate all pages in document dictionary."""
                if getattr(self, "is_closed", True):
                    return
                for page in self._page_refs.values():
                    if page:
                        page._erase()
                        page = None
                self._page_refs.clear()



            def _cleanup(self):
                self._reset_page_refs()
                for k in self.Graftmaps.keys():
                    self.Graftmaps[k] = None
                self.Graftmaps = {}
                self.ShownPages = {}
                self.InsertedImages  = {}
                self.FontInfos   = []
                self.metadata    = None
                self.stream      = None
                self.is_closed = True


            def close(self):
                """Close the document."""
                if getattr(self, "is_closed", False):
                    raise ValueError("document closed")
                self._cleanup()
                if getattr(self, "thisown", False):
                    self.__swig_destroy__(self)
                    return
                else:
                    raise RuntimeError("document object unavailable")

            def __del__(self):
                if not type(self) is Document:
                    return
                self._cleanup()
                if getattr(self, "thisown", False):
                    self.__swig_destroy__(self)

            def __enter__(self):
                return self

            def __exit__(self, *args):
                self.close()
            %}
    }
};

/*****************************************************************************/
// fz_page
/*****************************************************************************/
%nodefaultctor;
struct Page {
    %extend {
        ~Page()
        {
            DEBUGMSG1("Page");
            fz_page *this_page = (fz_page *) $self;
            fz_drop_page(gctx, this_page);
            DEBUGMSG2;
        }
        //----------------------------------------------------------------
        // bound()
        //----------------------------------------------------------------
        PARENTCHECK(bound, """Get page rectangle.""")
        %pythonappend bound %{val = Rect(val)%}
        PyObject *bound() {
            fz_rect rect = fz_bound_page(gctx, (fz_page *) $self);
            return JM_py_from_rect(rect);
        }
        %pythoncode %{rect = property(bound, doc="page rectangle")%}

        //----------------------------------------------------------------
        // Page.get_image_bbox
        //----------------------------------------------------------------
        %pythonprepend get_image_bbox %{
        """Get rectangle occupied by image 'name'.

        'name' is either an item of the image list, or the referencing
        name string - elem[7] of the resp. item.
        Option 'transform' also returns the image transformation matrix.
        """
        CheckParent(self)
        doc = self.parent
        if doc.is_closed or doc.is_encrypted:
            raise ValueError("document closed or encrypted")

        inf_rect = Rect(1, 1, -1, -1)
        null_mat = Matrix()
        if transform:
            rc = (inf_rect, null_mat)
        else:
            rc = inf_rect

        if type(name) in (list, tuple):
            if not type(name[-1]) is int:
                raise ValueError("need item of full page image list")
            item = name
        else:
            imglist = [i for i in doc.get_page_images(self.number, True) if name == i[7]]
            if len(imglist) == 1:
                item = imglist[0]
            elif imglist == []:
                raise ValueError("bad image name")
            else:
                raise ValueError("found multiple images named '%s'." % name)
        xref = item[-1]
        if xref != 0 or transform == True:
            try:
                return self.get_image_rects(item, transform=transform)[0]
            except:
                return inf_rect
        %}
        %pythonappend get_image_bbox %{
        if not bool(val):
            return rc

        for v in val:
            if v[0] != item[-3]:
                continue
            q = Quad(v[1])
            bbox = q.rect
            if transform == 0:
                rc = bbox
                break

            hm = Matrix(util_hor_matrix(q.ll, q.lr))
            h = abs(q.ll - q.ul)
            w = abs(q.ur - q.ul)
            m0 = Matrix(1 / w, 0, 0, 1 / h, 0, 0)
            m = ~(hm * m0)
            rc = (bbox, m)
            break
        val = rc%}
        PyObject *
        get_image_bbox(PyObject *name, int transform=0)
        {
            pdf_page *pdf_page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            PyObject *rc =NULL;
            fz_try(gctx) {
                rc = JM_image_reporter(gctx, pdf_page);
            }
            fz_catch(gctx) {
                Py_RETURN_NONE;
            }
            return rc;
        }

        //----------------------------------------------------------------
        // run()
        //----------------------------------------------------------------
        FITZEXCEPTION(run, !result)
        PARENTCHECK(run, """Run page through a device.""")
        PyObject *run(struct DeviceWrapper *dw, PyObject *m)
        {
            fz_try(gctx) {
                fz_run_page(gctx, (fz_page *) $self, dw->device, JM_matrix_from_py(m), NULL);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------------------------------------
        // Page.extend_textpage
        //----------------------------------------------------------------
        FITZEXCEPTION(extend_textpage, !result)
        PyObject *
        extend_textpage(struct TextPage *tpage, int flags=0, PyObject *matrix=NULL)
        {
            fz_page *page = (fz_page *) $self;
            fz_stext_page *tp = (fz_stext_page *) tpage;
            fz_device *dev = NULL;
            fz_stext_options options;
            memset(&options, 0, sizeof options);
            options.flags = flags;
            fz_try(gctx) {
                fz_matrix ctm = JM_matrix_from_py(matrix);
                dev = fz_new_stext_device(gctx, tp, &options);
                fz_run_page(gctx, page, dev, ctm, NULL);
                fz_close_device(gctx, dev);
            }
            fz_always(gctx) {
                fz_drop_device(gctx, dev);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // Page.get_textpage
        //----------------------------------------------------------------
        FITZEXCEPTION(_get_textpage, !result)
        %pythonappend _get_textpage %{val.thisown = True%}
        struct TextPage *
        _get_textpage(PyObject *clip=NULL, int flags=0, PyObject *matrix=NULL)
        {
            fz_stext_page *tpage=NULL;
            fz_page *page = (fz_page *) $self;
            fz_device *dev = NULL;
            fz_stext_options options;
            memset(&options, 0, sizeof options);
            options.flags = flags;
            fz_try(gctx) {
                // Default to page's rect if `clip` not specified, for #2048.
                fz_rect rect = (clip==Py_None) ? fz_bound_page(gctx, page) : JM_rect_from_py(clip);
                fz_matrix ctm = JM_matrix_from_py(matrix);
                tpage = fz_new_stext_page(gctx, rect);
                dev = fz_new_stext_device(gctx, tpage, &options);
                fz_run_page(gctx, page, dev, ctm, NULL);
                fz_close_device(gctx, dev);
            }
            fz_always(gctx) {
                fz_drop_device(gctx, dev);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct TextPage *) tpage;
        }


        %pythoncode %{
        def get_textpage(self, clip: rect_like = None, flags: int = 0, matrix=None) -> "TextPage":
            CheckParent(self)
            if matrix is None:
                matrix = Matrix(1, 1)
            old_rotation = self.rotation
            if old_rotation != 0:
                self.set_rotation(0)
            try:
                textpage = self._get_textpage(clip, flags=flags, matrix=matrix)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            textpage.parent = weakref.proxy(self)
            return textpage
        %}

        /*  inactive
        //----------------------------------------------------------------
        // Page.get_textpage_ocr
        //----------------------------------------------------------------
        FITZEXCEPTION(_get_textpage_ocr, !result)
        %pythonappend _get_textpage_ocr %{val.thisown = True%}
        struct TextPage *
        _get_textpage_ocr(PyObject *clip=NULL, int flags=0, const char *language=NULL)
        {
            fz_stext_page *textpage=NULL;
            fz_try(gctx) {
                fz_rect rect = JM_rect_from_py(clip);
                textpage = JM_new_stext_page_ocr_from_page(gctx, (fz_page *) $self, rect, flags, language);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct TextPage *) textpage;
        }
        */

        //----------------------------------------------------------------
        // Page.language
        //----------------------------------------------------------------
        %pythoncode%{@property%}
        %pythonprepend language %{"""Page language."""%}
        PyObject *language()
        {
            pdf_page *pdfpage = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            if (!pdfpage) Py_RETURN_NONE;
            pdf_obj *lang = pdf_dict_get_inheritable(gctx, pdfpage->obj, PDF_NAME(Lang));
            if (!lang) Py_RETURN_NONE;
            return Py_BuildValue("s", pdf_to_str_buf(gctx, lang));
        }


        //----------------------------------------------------------------
        // Page.set_language
        //----------------------------------------------------------------
        FITZEXCEPTION(set_language, !result)
        PARENTCHECK(set_language, """Set PDF page default language.""")
        PyObject *set_language(char *language=NULL)
        {
            pdf_page *pdfpage = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            fz_try(gctx) {
                ASSERT_PDF(pdfpage);
                fz_text_language lang;
                char buf[8];
                if (!language) {
                    pdf_dict_del(gctx, pdfpage->obj, PDF_NAME(Lang));
                } else {
                    lang = fz_text_language_from_string(language);
                    pdf_dict_put_text_string(gctx, pdfpage->obj,
                        PDF_NAME(Lang),
                        fz_string_from_text_language(buf, lang));
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_TRUE;
        }


        //----------------------------------------------------------------
        // Page.get_svg_image
        //----------------------------------------------------------------
        FITZEXCEPTION(get_svg_image, !result)
        PARENTCHECK(get_svg_image, """Make SVG image from page.""")
        PyObject *get_svg_image(PyObject *matrix = NULL, int text_as_path=1)
        {
            fz_rect mediabox = fz_bound_page(gctx, (fz_page *) $self);
            fz_device *dev = NULL;
            fz_buffer *res = NULL;
            PyObject *text = NULL;
            fz_matrix ctm = JM_matrix_from_py(matrix);
            fz_output *out = NULL;
            fz_var(out);
            fz_var(dev);
            fz_var(res);
            fz_rect tbounds = mediabox;
            int text_option = (text_as_path == 1) ? FZ_SVG_TEXT_AS_PATH : FZ_SVG_TEXT_AS_TEXT;
            tbounds = fz_transform_rect(tbounds, ctm);

            fz_try(gctx) {
                res = fz_new_buffer(gctx, 1024);
                out = fz_new_output_with_buffer(gctx, res);
                dev = fz_new_svg_device(gctx, out,
                            tbounds.x1-tbounds.x0,  // width
                            tbounds.y1-tbounds.y0,  // height
                            text_option, 1);
                fz_run_page(gctx, (fz_page *) $self, dev, ctm, NULL);
                fz_close_device(gctx, dev);
                text = JM_EscapeStrFromBuffer(gctx, res);
            }
            fz_always(gctx) {
                fz_drop_device(gctx, dev);
                fz_drop_output(gctx, out);
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return text;
        }


        //----------------------------------------------------------------
        // page set opacity
        //----------------------------------------------------------------
        FITZEXCEPTION(_set_opacity, !result)
        %pythonprepend _set_opacity %{
        if CA >= 1 and ca >= 1 and blendmode == None:
            return None
        tCA = int(round(max(CA , 0) * 100))
        if tCA >= 100:
            tCA = 99
        tca = int(round(max(ca, 0) * 100))
        if tca >= 100:
            tca = 99
        gstate = "fitzca%02i%02i" % (tCA, tca)
        %}
        PyObject *
        _set_opacity(char *gstate=NULL, float CA=1, float ca=1, char *blendmode=NULL)
        {
            if (!gstate) Py_RETURN_NONE;
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            fz_try(gctx) {
                ASSERT_PDF(page);
                pdf_obj *resources = pdf_dict_get(gctx, page->obj, PDF_NAME(Resources));
                if (!resources) {
                    resources = pdf_dict_put_dict(gctx, page->obj, PDF_NAME(Resources), 2);
                }
                pdf_obj *extg = pdf_dict_get(gctx, resources, PDF_NAME(ExtGState));
                if (!extg) {
                    extg = pdf_dict_put_dict(gctx, resources, PDF_NAME(ExtGState), 2);
                }
                int i, n = pdf_dict_len(gctx, extg);
                for (i = 0; i < n; i++) {
                    pdf_obj *o1 = pdf_dict_get_key(gctx, extg, i);
                    char *name = (char *) pdf_to_name(gctx, o1);
                    if (strcmp(name, gstate) == 0) goto finished;
                }
                pdf_obj *opa = pdf_new_dict(gctx, page->doc, 3);
                pdf_dict_put_real(gctx, opa, PDF_NAME(CA), (double) CA);
                pdf_dict_put_real(gctx, opa, PDF_NAME(ca), (double) ca);
                pdf_dict_puts_drop(gctx, extg, gstate, opa);
                finished:;
            }
            fz_always(gctx) {
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("s", gstate);
        }

        //----------------------------------------------------------------
        // page add_caret_annot
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_caret_annot, !result)
        struct Annot *
        _add_caret_annot(PyObject *point)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            fz_try(gctx) {
                annot = pdf_create_annot(gctx, page, PDF_ANNOT_CARET);
                if (point)
                {
                    fz_point p = JM_point_from_py(point);
                    fz_rect r = pdf_annot_rect(gctx, annot);
                    r = fz_make_rect(p.x, p.y, p.x + r.x1 - r.x0, p.y + r.y1 - r.y0);
                    pdf_set_annot_rect(gctx, annot, r);
                }
                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }


        //----------------------------------------------------------------
        // page addRedactAnnot
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_redact_annot, !result)
        struct Annot *
        _add_redact_annot(PyObject *quad,
            PyObject *text=NULL,
            PyObject *da_str=NULL,
            int align=0,
            PyObject *fill=NULL,
            PyObject *text_color=NULL)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            float fcol[4] = { 1, 1, 1, 0};
            int nfcol = 0, i;
            fz_try(gctx) {
                annot = pdf_create_annot(gctx, page, PDF_ANNOT_REDACT);
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                fz_quad q = JM_quad_from_py(quad);
                fz_rect r = fz_rect_from_quad(q);

                // TODO calculate de-rotated rect
                pdf_set_annot_rect(gctx, annot, r);
                if (EXISTS(fill)) {
                    JM_color_FromSequence(fill, &nfcol, fcol);
                    pdf_obj *arr = pdf_new_array(gctx, page->doc, nfcol);
                    for (i = 0; i < nfcol; i++) {
                        pdf_array_push_real(gctx, arr, fcol[i]);
                    }
                    pdf_dict_put_drop(gctx, annot_obj, PDF_NAME(IC), arr);
                }
                if (EXISTS(text)) {
                    const char *otext = PyUnicode_AsUTF8(text);
                    pdf_dict_puts_drop(gctx, annot_obj, "OverlayText",
                                       pdf_new_text_string(gctx, otext));
                    pdf_dict_put_text_string(gctx,annot_obj, PDF_NAME(DA), PyUnicode_AsUTF8(da_str));
                    pdf_dict_put_int(gctx, annot_obj, PDF_NAME(Q), (int64_t) align);
                }
                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }

        //----------------------------------------------------------------
        // page addLineAnnot
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_line_annot, !result)
        struct Annot *
        _add_line_annot(PyObject *p1, PyObject *p2)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            fz_try(gctx) {
                ASSERT_PDF(page);
                annot = pdf_create_annot(gctx, page, PDF_ANNOT_LINE);
                fz_point a = JM_point_from_py(p1);
                fz_point b = JM_point_from_py(p2);
                pdf_set_annot_line(gctx, annot, a, b);
                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }

        //----------------------------------------------------------------
        // page addTextAnnot
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_text_annot, !result)
        struct Annot *
        _add_text_annot(PyObject *point,
            char *text,
            char *icon=NULL)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            fz_rect r;
            fz_point p = JM_point_from_py(point);
            fz_var(annot);
            fz_try(gctx) {
                ASSERT_PDF(page);
                annot = pdf_create_annot(gctx, page, PDF_ANNOT_TEXT);
                r = pdf_annot_rect(gctx, annot);
                r = fz_make_rect(p.x, p.y, p.x + r.x1 - r.x0, p.y + r.y1 - r.y0);
                pdf_set_annot_rect(gctx, annot, r);
                pdf_set_annot_contents(gctx, annot, text);
                if (icon) {
                    pdf_set_annot_icon_name(gctx, annot, icon);
                }
                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }

        //----------------------------------------------------------------
        // page addInkAnnot
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_ink_annot, !result)
        struct Annot *
        _add_ink_annot(PyObject *list)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            PyObject *p = NULL, *sublist = NULL;
            pdf_obj *inklist = NULL, *stroke = NULL;
            fz_matrix ctm, inv_ctm;
            fz_point point;
            fz_var(annot);
            fz_try(gctx) {
                ASSERT_PDF(page);
                if (!PySequence_Check(list)) {
                    RAISEPY(gctx, MSG_BAD_ARG_INK_ANNOT, PyExc_ValueError);
                }
                pdf_page_transform(gctx, page, NULL, &ctm);
                inv_ctm = fz_invert_matrix(ctm);
                annot = pdf_create_annot(gctx, page, PDF_ANNOT_INK);
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                Py_ssize_t i, j, n0 = PySequence_Size(list), n1;
                inklist = pdf_new_array(gctx, page->doc, n0);

                for (j = 0; j < n0; j++) {
                    sublist = PySequence_ITEM(list, j);
                    n1 = PySequence_Size(sublist);
                    stroke = pdf_new_array(gctx, page->doc, 2 * n1);

                    for (i = 0; i < n1; i++) {
                        p = PySequence_ITEM(sublist, i);
                        if (!PySequence_Check(p) || PySequence_Size(p) != 2) {
                            RAISEPY(gctx, MSG_BAD_ARG_INK_ANNOT, PyExc_ValueError);
                        }
                        point = fz_transform_point(JM_point_from_py(p), inv_ctm);
                        Py_CLEAR(p);
                        pdf_array_push_real(gctx, stroke, point.x);
                        pdf_array_push_real(gctx, stroke, point.y);
                    }

                    pdf_array_push_drop(gctx, inklist, stroke);
                    stroke = NULL;
                    Py_CLEAR(sublist);
                }

                pdf_dict_put_drop(gctx, annot_obj, PDF_NAME(InkList), inklist);
                inklist = NULL;
                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }

            fz_catch(gctx) {
                Py_CLEAR(p);
                Py_CLEAR(sublist);
                return NULL;
            }
            return (struct Annot *) annot;
        }

        //----------------------------------------------------------------
        // page addStampAnnot
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_stamp_annot, !result)
        struct Annot *
        _add_stamp_annot(PyObject *rect, int stamp=0)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            pdf_obj *stamp_id[] = {PDF_NAME(Approved), PDF_NAME(AsIs),
                                   PDF_NAME(Confidential), PDF_NAME(Departmental),
                                   PDF_NAME(Experimental), PDF_NAME(Expired),
                                   PDF_NAME(Final), PDF_NAME(ForComment),
                                   PDF_NAME(ForPublicRelease), PDF_NAME(NotApproved),
                                   PDF_NAME(NotForPublicRelease), PDF_NAME(Sold),
                                   PDF_NAME(TopSecret), PDF_NAME(Draft)};
            int n = nelem(stamp_id);
            pdf_obj *name = stamp_id[0];
            fz_try(gctx) {
                ASSERT_PDF(page);
                fz_rect r = JM_rect_from_py(rect);
                if (fz_is_infinite_rect(r) || fz_is_empty_rect(r)) {
                    RAISEPY(gctx, MSG_BAD_RECT, PyExc_ValueError);
                }
                if (INRANGE(stamp, 0, n-1)) {
                    name = stamp_id[stamp];
                }
                annot = pdf_create_annot(gctx, page, PDF_ANNOT_STAMP);
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_set_annot_rect(gctx, annot, r);
                pdf_dict_put(gctx, annot_obj, PDF_NAME(Name), name);
                pdf_set_annot_contents(gctx, annot,
                        pdf_dict_get_name(gctx, annot_obj, PDF_NAME(Name)));
                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }

        //----------------------------------------------------------------
        // page addFileAnnot
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_file_annot, !result)
        struct Annot *
        _add_file_annot(PyObject *point,
            PyObject *buffer,
            char *filename,
            char *ufilename=NULL,
            char *desc=NULL,
            char *icon=NULL)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            char *uf = ufilename, *d = desc;
            if (!ufilename) uf = filename;
            if (!desc) d = filename;
            fz_buffer *filebuf = NULL;
            fz_rect r;
            fz_point p = JM_point_from_py(point);
            fz_var(filebuf);
            fz_try(gctx) {
                ASSERT_PDF(page);
                filebuf = JM_BufferFromBytes(gctx, buffer);
                if (!filebuf) {
                    RAISEPY(gctx, MSG_BAD_BUFFER, PyExc_TypeError);
                }
                annot = pdf_create_annot(gctx, page, PDF_ANNOT_FILE_ATTACHMENT);
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                r = pdf_annot_rect(gctx, annot);
                r = fz_make_rect(p.x, p.y, p.x + r.x1 - r.x0, p.y + r.y1 - r.y0);
                pdf_set_annot_rect(gctx, annot, r);
                int flags = PDF_ANNOT_IS_PRINT;
                pdf_set_annot_flags(gctx, annot, flags);

                if (icon)
                    pdf_set_annot_icon_name(gctx, annot, icon);

                pdf_obj *val = JM_embed_file(gctx, page->doc, filebuf,
                                    filename, uf, d, 1);
                pdf_dict_put_drop(gctx, annot_obj, PDF_NAME(FS), val);
                pdf_dict_put_text_string(gctx, annot_obj, PDF_NAME(Contents), filename);
                pdf_update_annot(gctx, annot);
                pdf_set_annot_rect(gctx, annot, r);
                pdf_set_annot_flags(gctx, annot, flags);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, filebuf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }


        //----------------------------------------------------------------
        // page: add a text marker annotation
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_text_marker, !result)
        %pythonprepend _add_text_marker %{
        CheckParent(self)
        if not self.parent.is_pdf:
            raise ValueError("is no PDF")%}

        %pythonappend _add_text_marker %{
        if not val:
            return None
        val.parent = weakref.proxy(self)
        self._annot_refs[id(val)] = val%}

        struct Annot *
        _add_text_marker(PyObject *quads, int annot_type)
        {
            pdf_page *pdfpage = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            PyObject *item = NULL;
            int rotation = JM_page_rotation(gctx, pdfpage);
            fz_quad q;
            fz_var(annot);
            fz_var(item);
            fz_try(gctx) {
                if (rotation != 0) {
                    pdf_dict_put_int(gctx, pdfpage->obj, PDF_NAME(Rotate), 0);
                }
                annot = pdf_create_annot(gctx, pdfpage, annot_type);
                Py_ssize_t i, len = PySequence_Size(quads);
                for (i = 0; i < len; i++) {
                    item = PySequence_ITEM(quads, i);
                    q = JM_quad_from_py(item);
                    Py_DECREF(item);
                    pdf_add_annot_quad_point(gctx, annot, q);
                }
                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_always(gctx) {
                if (rotation != 0) {
                    pdf_dict_put_int(gctx, pdfpage->obj, PDF_NAME(Rotate), rotation);
                }
            }
            fz_catch(gctx) {
                pdf_drop_annot(gctx, annot);
                return NULL;
            }
            return (struct Annot *) annot;
        }


        //----------------------------------------------------------------
        // page: add circle or rectangle annotation
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_square_or_circle, !result)
        struct Annot *
        _add_square_or_circle(PyObject *rect, int annot_type)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            fz_try(gctx) {
                fz_rect r = JM_rect_from_py(rect);
                if (fz_is_infinite_rect(r) || fz_is_empty_rect(r)) {
                    RAISEPY(gctx, MSG_BAD_RECT, PyExc_ValueError);
                }
                annot = pdf_create_annot(gctx, page, annot_type);
                pdf_set_annot_rect(gctx, annot, r);
                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }


        //----------------------------------------------------------------
        // page: add multiline annotation
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_multiline, !result)
        struct Annot *
        _add_multiline(PyObject *points, int annot_type)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *annot = NULL;
            fz_try(gctx) {
                Py_ssize_t i, n = PySequence_Size(points);
                if (n < 2) {
                    RAISEPY(gctx, MSG_BAD_ARG_POINTS, PyExc_ValueError);
                }
                annot = pdf_create_annot(gctx, page, annot_type);
                for (i = 0; i < n; i++) {
                    PyObject *p = PySequence_ITEM(points, i);
                    if (PySequence_Size(p) != 2) {
                        Py_DECREF(p);
                        RAISEPY(gctx, MSG_BAD_ARG_POINTS, PyExc_ValueError);
                    }
                    fz_point point = JM_point_from_py(p);
                    Py_DECREF(p);
                    pdf_add_annot_vertex(gctx, annot, point);
                }

                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }


        //----------------------------------------------------------------
        // page addFreetextAnnot
        //----------------------------------------------------------------
        FITZEXCEPTION(_add_freetext_annot, !result)
        %pythonappend _add_freetext_annot %{
        ap = val._getAP()
        BT = ap.find(b"BT")
        ET = ap.find(b"ET") + 2
        ap = ap[BT:ET]
        w = rect[2]-rect[0]
        h = rect[3]-rect[1]
        if rotate in (90, -90, 270):
            w, h = h, w
        re = b"0 0 %g %g re" % (w, h)
        ap = re + b"\nW\nn\n" + ap
        ope = None
        bwidth = b""
        fill_string = ColorCode(fill_color, "f").encode()
        if fill_string:
            fill_string += b"\n"
            ope = b"f"
        stroke_string = ColorCode(border_color, "c").encode()
        if stroke_string:
            stroke_string += b"\n"
            bwidth = b"1 w\n"
            ope = b"S"
        if fill_string and stroke_string:
            ope = b"B"
        if ope != None:
            ap = bwidth + fill_string + stroke_string + re + b"\n" + ope + b"\n" + ap
        val._setAP(ap)
        %}
        struct Annot *
        _add_freetext_annot(PyObject *rect, char *text,
            float fontsize=11,
            char *fontname=NULL,
            PyObject *text_color=NULL,
            PyObject *fill_color=NULL,
            PyObject *border_color=NULL,
            int align=0,
            int rotate=0)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            float fcol[4] = {1, 1, 1, 1}; // fill color: white
            int nfcol = 0;
            JM_color_FromSequence(fill_color, &nfcol, fcol);
            float tcol[4] = {0, 0, 0, 0}; // std. text color: black
            int ntcol = 0;
            JM_color_FromSequence(text_color, &ntcol, tcol);
            fz_rect r = JM_rect_from_py(rect);
            pdf_annot *annot = NULL;
            fz_try(gctx) {
                if (fz_is_infinite_rect(r) || fz_is_empty_rect(r)) {
                    RAISEPY(gctx, MSG_BAD_RECT, PyExc_ValueError);
                }
                annot = pdf_create_annot(gctx, page, PDF_ANNOT_FREE_TEXT);
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_set_annot_contents(gctx, annot, text);
                pdf_set_annot_rect(gctx, annot, r);
                pdf_dict_put_int(gctx, annot_obj, PDF_NAME(Rotate), rotate);
                pdf_dict_put_int(gctx, annot_obj, PDF_NAME(Q), align);

                if (nfcol > 0) {
                    pdf_set_annot_color(gctx, annot, nfcol, fcol);
                }

                // insert the default appearance string
                JM_make_annot_DA(gctx, annot, ntcol, tcol, fontname, fontsize);
                pdf_update_annot(gctx, annot);
                JM_add_annot_id(gctx, annot, "A");
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }


    %pythoncode %{
        @property
        def rotation_matrix(self) -> Matrix:
            """Reflects page rotation."""
            return Matrix(TOOLS._rotate_matrix(self))

        @property
        def derotation_matrix(self) -> Matrix:
            """Reflects page de-rotation."""
            return Matrix(TOOLS._derotate_matrix(self))

        def add_caret_annot(self, point: point_like) -> "struct Annot *":
            """Add a 'Caret' annotation."""
            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_caret_annot(point)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_strikeout_annot(self, quads=None, start=None, stop=None, clip=None) -> "struct Annot *":
            """Add a 'StrikeOut' annotation."""
            if quads is None:
                q = get_highlight_selection(self, start=start, stop=stop, clip=clip)
            else:
                q = CheckMarkerArg(quads)
            return self._add_text_marker(q, PDF_ANNOT_STRIKE_OUT)


        def add_underline_annot(self, quads=None, start=None, stop=None, clip=None) -> "struct Annot *":
            """Add a 'Underline' annotation."""
            if quads is None:
                q = get_highlight_selection(self, start=start, stop=stop, clip=clip)
            else:
                q = CheckMarkerArg(quads)
            return self._add_text_marker(q, PDF_ANNOT_UNDERLINE)


        def add_squiggly_annot(self, quads=None, start=None,
                             stop=None, clip=None) -> "struct Annot *":
            """Add a 'Squiggly' annotation."""
            if quads is None:
                q = get_highlight_selection(self, start=start, stop=stop, clip=clip)
            else:
                q = CheckMarkerArg(quads)
            return self._add_text_marker(q, PDF_ANNOT_SQUIGGLY)


        def add_highlight_annot(self, quads=None, start=None,
                              stop=None, clip=None) -> "struct Annot *":
            """Add a 'Highlight' annotation."""
            if quads is None:
                q = get_highlight_selection(self, start=start, stop=stop, clip=clip)
            else:
                q = CheckMarkerArg(quads)
            return self._add_text_marker(q, PDF_ANNOT_HIGHLIGHT)


        def add_rect_annot(self, rect: rect_like) -> "struct Annot *":
            """Add a 'Square' (rectangle) annotation."""
            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_square_or_circle(rect, PDF_ANNOT_SQUARE)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_circle_annot(self, rect: rect_like) -> "struct Annot *":
            """Add a 'Circle' (ellipse, oval) annotation."""
            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_square_or_circle(rect, PDF_ANNOT_CIRCLE)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_text_annot(self, point: point_like, text: str, icon: str ="Note") -> "struct Annot *":
            """Add a 'Text' (sticky note) annotation."""
            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_text_annot(point, text, icon=icon)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_line_annot(self, p1: point_like, p2: point_like) -> "struct Annot *":
            """Add a 'Line' annotation."""
            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_line_annot(p1, p2)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_polyline_annot(self, points: list) -> "struct Annot *":
            """Add a 'PolyLine' annotation."""
            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_multiline(points, PDF_ANNOT_POLY_LINE)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_polygon_annot(self, points: list) -> "struct Annot *":
            """Add a 'Polygon' annotation."""
            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_multiline(points, PDF_ANNOT_POLYGON)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_stamp_annot(self, rect: rect_like, stamp: int =0) -> "struct Annot *":
            """Add a ('rubber') 'Stamp' annotation."""
            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_stamp_annot(rect, stamp)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_ink_annot(self, handwriting: list) -> "struct Annot *":
            """Add a 'Ink' ('handwriting') annotation.

            The argument must be a list of lists of point_likes.
            """
            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_ink_annot(handwriting)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_file_annot(self, point: point_like,
            buffer: typing.ByteString,
            filename: str,
            ufilename: OptStr =None,
            desc: OptStr =None,
            icon: OptStr =None) -> "struct Annot *":
            """Add a 'FileAttachment' annotation."""

            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_file_annot(point,
                            buffer,
                            filename,
                            ufilename=ufilename,
                            desc=desc,
                            icon=icon)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_freetext_annot(self, rect: rect_like, text: str, fontsize: float =11,
                             fontname: OptStr =None, border_color: OptSeq =None,
                             text_color: OptSeq =None,
                             fill_color: OptSeq =None, align: int =0, rotate: int =0) -> "struct Annot *":
            """Add a 'FreeText' annotation."""

            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_freetext_annot(rect, text, fontsize=fontsize,
                        fontname=fontname, border_color=border_color,text_color=text_color,
                        fill_color=fill_color, align=align, rotate=rotate)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            return annot


        def add_redact_annot(self, quad, text: OptStr =None, fontname: OptStr =None,
                           fontsize: float =11, align: int =0, fill: OptSeq =None, text_color: OptSeq =None,
                           cross_out: bool =True) -> "struct Annot *":
            """Add a 'Redact' annotation."""
            da_str = None
            if text:
                CheckColor(fill)
                CheckColor(text_color)
                if not fontname:
                    fontname = "Helv"
                if not fontsize:
                    fontsize = 11
                if not text_color:
                    text_color = (0, 0, 0)
                if hasattr(text_color, "__float__"):
                    text_color = (text_color, text_color, text_color)
                if len(text_color) > 3:
                    text_color = text_color[:3]
                fmt = "{:g} {:g} {:g} rg /{f:s} {s:g} Tf"
                da_str = fmt.format(*text_color, f=fontname, s=fontsize)
                if fill is None:
                    fill = (1, 1, 1)
                if fill:
                    if hasattr(fill, "__float__"):
                        fill = (fill, fill, fill)
                    if len(fill) > 3:
                        fill = fill[:3]

            old_rotation = annot_preprocess(self)
            try:
                annot = self._add_redact_annot(quad, text=text, da_str=da_str,
                           align=align, fill=fill)
            finally:
                if old_rotation != 0:
                    self.set_rotation(old_rotation)
            annot_postprocess(self, annot)
            #-------------------------------------------------------------
            # change appearance to show a crossed-out rectangle
            #-------------------------------------------------------------
            if cross_out:
                ap_tab = annot._getAP().splitlines()[:-1]  # get the 4 commands only
                _, LL, LR, UR, UL = ap_tab
                ap_tab.append(LR)
                ap_tab.append(LL)
                ap_tab.append(UR)
                ap_tab.append(LL)
                ap_tab.append(UL)
                ap_tab.append(b"S")
                ap = b"\n".join(ap_tab)
                annot._setAP(ap, 0)
            return annot
        %}


        //----------------------------------------------------------------
        // page load annot by name or xref
        //----------------------------------------------------------------
        FITZEXCEPTION(_load_annot, !result)
        struct Annot *
        _load_annot(char *name, int xref)
        {
            pdf_annot *annot = NULL;
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            fz_try(gctx) {
                ASSERT_PDF(page);
                if (xref == 0)
                    annot = JM_get_annot_by_name(gctx, page, name);
                else
                    annot = JM_get_annot_by_xref(gctx, page, xref);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }


        //----------------------------------------------------------------
        // page load widget by xref
        //----------------------------------------------------------------
        FITZEXCEPTION(load_widget, !result)
        %pythonprepend load_widget %{
        """Load a widget by its xref."""
        CheckParent(self)
        %}
        %pythonappend load_widget %{
        if not val:
            return val
        val.thisown = True
        val.parent = weakref.proxy(self)
        self._annot_refs[id(val)] = val
        widget = Widget()
        TOOLS._fill_widget(val, widget)
        val = widget
        %}
        struct Annot *
        load_widget(int xref)
        {
            pdf_annot *annot = NULL;
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            fz_try(gctx) {
                ASSERT_PDF(page);
                annot = JM_get_widget_by_xref(gctx, page, xref);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }


        //----------------------------------------------------------------
        // page list Resource/Properties
        //----------------------------------------------------------------
        FITZEXCEPTION(_get_resource_properties, !result)
        PyObject *
        _get_resource_properties()
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            PyObject *rc;
            fz_try(gctx) {
                ASSERT_PDF(page);
                rc = JM_get_resource_properties(gctx, page->obj);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return rc;
        }


        //----------------------------------------------------------------
        // page list Resource/Properties
        //----------------------------------------------------------------
        FITZEXCEPTION(_set_resource_property, !result)
        PyObject *
        _set_resource_property(char *name, int xref)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            fz_try(gctx) {
                ASSERT_PDF(page);
                JM_set_resource_property(gctx, page->obj, name, xref);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        %pythoncode %{
def _get_optional_content(self, oc: OptInt) -> OptStr:
    if oc == None or oc == 0:
        return None
    doc = self.parent
    check = doc.xref_object(oc, compressed=True)
    if not ("/Type/OCG" in check or "/Type/OCMD" in check):
        raise ValueError("bad optional content: 'oc'")
    props = {}
    for p, x in self._get_resource_properties():
        props[x] = p
    if oc in props.keys():
        return props[oc]
    i = 0
    mc = "MC%i" % i
    while mc in props.values():
        i += 1
        mc = "MC%i" % i
    self._set_resource_property(mc, oc)
    return mc

def get_oc_items(self) -> list:
    """Get OCGs and OCMDs used in the page's contents.

    Returns:
        List of items (name, xref, type), where type is one of "ocg" / "ocmd",
        and name is the property name.
    """
    rc = []
    for pname, xref in self._get_resource_properties():
        text = self.parent.xrefObject(xref, compressed=True)
        if "/Type/OCG" in text:
            octype = "ocg"
        elif "/Type/OCMD" in text:
            octype = "ocmd"
        else:
            continue
        rc.append((pname, xref, octype))
    return rc
%}

        //----------------------------------------------------------------
        // page get list of annot names
        //----------------------------------------------------------------
        PARENTCHECK(annot_names, """List of names of annotations, fields and links.""")
        PyObject *annot_names()
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);

            if (!page) {
                PyObject *rc = PyList_New(0);
                return rc;
            }
            return JM_get_annot_id_list(gctx, page);
        }


        //----------------------------------------------------------------
        // page retrieve list of annotation xrefs
        //----------------------------------------------------------------
        PARENTCHECK(annot_xrefs,"""List of xref numbers of annotations, fields and links.""")
        PyObject *annot_xrefs()
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            if (!page) {
                PyObject *rc = PyList_New(0);
                return rc;
            }
            return JM_get_annot_xref_list(gctx, page->obj);
        }


        %pythoncode %{
        def load_annot(self, ident: typing.Union[str, int]) -> "struct Annot *":
            """Load an annot by name (/NM key) or xref.

            Args:
                ident: identifier, either name (str) or xref (int).
            """

            CheckParent(self)
            if type(ident) is str:
                xref = 0
                name = ident
            elif type(ident) is int:
                xref = ident
                name = None
            else:
                raise ValueError("identifier must be string or integer")
            val = self._load_annot(name, xref)
            if not val:
                return val
            val.thisown = True
            val.parent = weakref.proxy(self)
            self._annot_refs[id(val)] = val
            return val


        #---------------------------------------------------------------------
        # page addWidget
        #---------------------------------------------------------------------
        def add_widget(self, widget: Widget) -> "struct Annot *":
            """Add a 'Widget' (form field)."""
            CheckParent(self)
            doc = self.parent
            if not doc.is_pdf:
                raise ValueError("is no PDF")
            widget._validate()
            annot = self._addWidget(widget.field_type, widget.field_name)
            if not annot:
                return None
            annot.thisown = True
            annot.parent = weakref.proxy(self) # owning page object
            self._annot_refs[id(annot)] = annot
            widget.parent = annot.parent
            widget._annot = annot
            widget.update()
            return annot
        %}

        FITZEXCEPTION(_addWidget, !result)
        struct Annot *_addWidget(int field_type, char *field_name)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_document *pdf = page->doc;
            pdf_annot *annot = NULL;
            fz_var(annot);
            fz_try(gctx) {
                annot = JM_create_widget(gctx, pdf, page, field_type, field_name);
                if (!annot) {
                    RAISEPY(gctx, "cannot create widget", PyExc_RuntimeError);
                }
                JM_add_annot_id(gctx, annot, "W");
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Annot *) annot;
        }

        //----------------------------------------------------------------
        // Page.get_displaylist
        //----------------------------------------------------------------
        FITZEXCEPTION(get_displaylist, !result)
        %pythonprepend get_displaylist %{
        """Make a DisplayList from the page for Pixmap generation.

        Include (default) or exclude annotations."""

        CheckParent(self)
        %}
        %pythonappend get_displaylist %{val.thisown = True%}
        struct DisplayList *get_displaylist(int annots=1)
        {
            fz_display_list *dl = NULL;
            fz_try(gctx) {
                if (annots) {
                    dl = fz_new_display_list_from_page(gctx, (fz_page *) $self);
                } else {
                    dl = fz_new_display_list_from_page_contents(gctx, (fz_page *) $self);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct DisplayList *) dl;
        }


        //----------------------------------------------------------------
        // Page.get_drawings
        //----------------------------------------------------------------
        %pythoncode %{
        def get_drawings(self):
            """Get page drawings paths.

            Note:
            For greater comfort, this method converts point-likes, rect-likes, quad-likes
            of the C version to respective Point / Rect / Quad objects.
            It also adds default items that are missing in original path types.
            """
            allkeys = (
                    ("closePath", False), ("fill", None),
                    ("color", None), ("width", 0), ("lineCap", [0]),
                    ("lineJoin", 0), ("dashes", "[] 0"), ("stroke_opacity", 1),
                    ("fill_opacity", 1), ("even_odd", True),
                )
            val = self.get_cdrawings()
            paths = []
            for path in val:
                npath = path.copy()
                npath["rect"] = Rect(path["rect"])
                items = path["items"]
                newitems = []
                for item in items:
                    cmd = item[0]
                    rest = item[1:]
                    if  cmd == "re":
                        item = ("re", Rect(rest[0]), rest[1])
                    elif cmd == "qu":
                        item = ("qu", Quad(rest[0]))
                    else:
                        item = tuple([cmd] + [Point(i) for i in rest])
                    newitems.append(item)
                npath["items"] = newitems
                for k, v in allkeys:
                    npath[k] = npath.get(k, v)
                paths.append(npath)
            val = None
            return paths
        %}


        FITZEXCEPTION(get_cdrawings, !result)
        %pythonprepend get_cdrawings %{
        """Extract drawing paths from the page."""
        CheckParent(self)
        old_rotation = self.rotation
        if old_rotation != 0:
            self.set_rotation(0)
        %}
        %pythonappend get_cdrawings %{
        if old_rotation != 0:
            self.set_rotation(old_rotation)
        %}
        PyObject *
        get_cdrawings()
        {
            fz_page *page = (fz_page *) $self;
            fz_device *dev = NULL;
            PyObject *rc = PyList_New(0);
            fz_var(rc);
            fz_try(gctx) {
                fz_rect prect = fz_bound_page(gctx, page);
                trace_device_ptm = fz_make_matrix(1, 0, 0, -1, 0, prect.y1);
                dev = JM_new_tracedraw_device(gctx, rc);
                fz_run_page(gctx, page, dev, fz_identity, NULL);
                fz_close_device(gctx, dev);
            }
            fz_always(gctx) {
                fz_drop_device(gctx, dev);
            }
            fz_catch(gctx) {
                Py_CLEAR(rc);
                return NULL;
            }
            return rc;
        }


        FITZEXCEPTION(get_bboxlog, !result)
        %pythonprepend get_bboxlog %{
        CheckParent(self)
        old_rotation = self.rotation
        if old_rotation != 0:
            self.set_rotation(0)
        %}
        %pythonappend get_bboxlog %{
        if old_rotation != 0:
            self.set_rotation(old_rotation)
        %}
        PyObject *
        get_bboxlog()
        {
            fz_page *page = (fz_page *) $self;
            fz_device *dev = NULL;
            PyObject *rc = PyList_New(0);
            fz_try(gctx) {
                dev = JM_new_bbox_device(gctx, rc);
                fz_run_page(gctx, page, dev, fz_identity, NULL);
                fz_close_device(gctx, dev);
            }
            fz_always(gctx) {
                fz_drop_device(gctx, dev);
            }
            fz_catch(gctx) {
                Py_CLEAR(rc);
                return NULL;
            }
            return rc;
        }


        FITZEXCEPTION(get_texttrace, !result)
        %pythonprepend get_texttrace %{
        CheckParent(self)
        old_rotation = self.rotation
        if old_rotation != 0:
            self.set_rotation(0)
        %}
        %pythonappend get_texttrace %{
        if old_rotation != 0:
            self.set_rotation(old_rotation)
        %}
        PyObject *
        get_texttrace()
        {
            fz_page *page = (fz_page *) $self;
            fz_device *dev = NULL;
            PyObject *rc = PyList_New(0);
            fz_try(gctx) {
                dev = JM_new_tracetext_device(gctx, rc);
                fz_rect prect = fz_bound_page(gctx, page);
                trace_device_rot = fz_identity;
                trace_device_ptm = fz_make_matrix(1, 0, 0, -1, 0, prect.y1);
                fz_run_page(gctx, page, dev, fz_identity, NULL);
                fz_close_device(gctx, dev);
            }
            fz_always(gctx) {
                fz_drop_device(gctx, dev);
            }
            fz_catch(gctx) {
                Py_CLEAR(rc);
                return NULL;
            }
            return rc;
        }


        //----------------------------------------------------------------
        // Page apply redactions
        //----------------------------------------------------------------
        FITZEXCEPTION(_apply_redactions, !result)
        PyObject *_apply_redactions(int images=PDF_REDACT_IMAGE_PIXELS)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            int success = 0;
            pdf_redact_options opts;
            opts.black_boxes = 0;  // no black boxes
            opts.image_method = images;  // how to treat images
            fz_try(gctx) {
                ASSERT_PDF(page);
                success = pdf_redact_page(gctx, page->doc, page, &opts);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return JM_BOOL(success);
        }


        //----------------------------------------------------------------
        // Page._makePixmap
        //----------------------------------------------------------------
        FITZEXCEPTION(_makePixmap, !result)
        struct Pixmap *
        _makePixmap(struct Document *doc,
            PyObject *ctm,
            struct Colorspace *cs,
            int alpha=0,
            int annots=1,
            PyObject *clip=NULL)
        {
            fz_pixmap *pix = NULL;
            fz_try(gctx) {
                pix = JM_pixmap_from_page(gctx, (fz_document *) doc, (fz_page *) $self, ctm, (fz_colorspace *) cs, alpha, annots, clip);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) pix;
        }


        //----------------------------------------------------------------
        // Page.set_mediabox
        //----------------------------------------------------------------
        FITZEXCEPTION(set_mediabox, !result)
        PARENTCHECK(set_mediabox, """Set the MediaBox.""")
        PyObject *set_mediabox(PyObject *rect)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            fz_try(gctx) {
                ASSERT_PDF(page);
                fz_rect mediabox = JM_rect_from_py(rect);
                if (fz_is_empty_rect(mediabox) ||
                    fz_is_infinite_rect(mediabox)) {
                    RAISEPY(gctx, MSG_BAD_RECT, PyExc_ValueError);
                }
                pdf_dict_put_rect(gctx, page->obj, PDF_NAME(MediaBox), mediabox);
                pdf_dict_del(gctx, page->obj, PDF_NAME(CropBox));
                pdf_dict_del(gctx, page->obj, PDF_NAME(ArtBox));
                pdf_dict_del(gctx, page->obj, PDF_NAME(BleedBox));
                pdf_dict_del(gctx, page->obj, PDF_NAME(TrimBox));
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // Page.load_links()
        //----------------------------------------------------------------
        PARENTCHECK(load_links, """Get first Link.""")
        %pythonappend load_links %{
            if val:
                val.thisown = True
                val.parent = weakref.proxy(self) # owning page object
                self._annot_refs[id(val)] = val
                if self.parent.is_pdf:
                    link_id = [x for x in self.annot_xrefs() if x[1] == PDF_ANNOT_LINK][0]
                    val.xref = link_id[0]
                    val.id = link_id[2]
                else:
                    val.xref = 0
                    val.id = ""
        %}
        struct Link *load_links()
        {
            fz_link *l = NULL;
            fz_try(gctx) {
                l = fz_load_links(gctx, (fz_page *) $self);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Link *) l;
        }
        %pythoncode %{first_link = property(load_links, doc="First link on page")%}

        //----------------------------------------------------------------
        // Page.first_annot
        //----------------------------------------------------------------
        PARENTCHECK(first_annot, """First annotation.""")
        %pythonappend first_annot %{
        if val:
            val.thisown = True
            val.parent = weakref.proxy(self) # owning page object
            self._annot_refs[id(val)] = val
        %}
        %pythoncode %{@property%}
        struct Annot *first_annot()
        {
            pdf_annot *annot = NULL;
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            if (page)
            {
                annot = pdf_first_annot(gctx, page);
                if (annot) pdf_keep_annot(gctx, annot);
            }
            return (struct Annot *) annot;
        }

        //----------------------------------------------------------------
        // first_widget
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(first_widget, """First widget/field.""")
        %pythonappend first_widget %{
        if val:
            val.thisown = True
            val.parent = weakref.proxy(self) # owning page object
            self._annot_refs[id(val)] = val
            widget = Widget()
            TOOLS._fill_widget(val, widget)
            val = widget
        %}
        struct Annot *first_widget()
        {
            pdf_annot *annot = NULL;
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            if (page) {
                annot = pdf_first_widget(gctx, page);
                if (annot) pdf_keep_annot(gctx, annot);
            }
            return (struct Annot *) annot;
        }


        //----------------------------------------------------------------
        // Page.delete_link() - delete link
        //----------------------------------------------------------------
        PARENTCHECK(delete_link, """Delete a Link.""")
        %pythonappend delete_link %{
        if linkdict["xref"] == 0: return
        try:
            linkid = linkdict["id"]
            linkobj = self._annot_refs[linkid]
            linkobj._erase()
        except:
            pass
        %}
        void delete_link(PyObject *linkdict)
        {
            if (!PyDict_Check(linkdict)) return; // have no dictionary
            fz_try(gctx) {
                pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
                if (!page) goto finished;  // have no PDF
                int xref = (int) PyInt_AsLong(PyDict_GetItem(linkdict, dictkey_xref));
                if (xref < 1) goto finished;  // invalid xref
                pdf_obj *annots = pdf_dict_get(gctx, page->obj, PDF_NAME(Annots));
                if (!annots) goto finished;  // have no annotations
                int len = pdf_array_len(gctx, annots);
                if (len == 0) goto finished;
                int i, oxref = 0;

                for (i = 0; i < len; i++) {
                    oxref = pdf_to_num(gctx, pdf_array_get(gctx, annots, i));
                    if (xref == oxref) break;        // found xref in annotations
                }

                if (xref != oxref) goto finished;  // xref not in annotations
                pdf_array_delete(gctx, annots, i);   // delete entry in annotations
                pdf_delete_object(gctx, page->doc, xref);  // delete link obj
                pdf_dict_put(gctx, page->obj, PDF_NAME(Annots), annots);
                JM_refresh_links(gctx, page);
                finished:;

            }
            fz_catch(gctx) {;}
        }

        //----------------------------------------------------------------
        // Page.delete_annot() - delete annotation and return the next one
        //----------------------------------------------------------------
        %pythonprepend delete_annot %{
        """Delete annot and return next one."""
        CheckParent(self)
        CheckParent(annot)%}

        %pythonappend delete_annot %{
        if val:
            val.thisown = True
            val.parent = weakref.proxy(self) # owning page object
            val.parent._annot_refs[id(val)] = val
        annot._erase()
        %}

        struct Annot *delete_annot(struct Annot *annot)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_annot *irt_annot = NULL;
            while (1) {
                // first loop through all /IRT annots and remove them
                irt_annot = JM_find_annot_irt(gctx, (pdf_annot *) annot);
                if (!irt_annot)  // no more there
                    break;
                pdf_delete_annot(gctx, page, irt_annot);
            }
            pdf_annot *nextannot = pdf_next_annot(gctx, (pdf_annot *) annot);  // store next
            pdf_delete_annot(gctx, page, (pdf_annot *) annot);
            if (nextannot) {
                nextannot = pdf_keep_annot(gctx, nextannot);
            }
            return (struct Annot *) nextannot;
        }


        //----------------------------------------------------------------
        // mediabox: get the /MediaBox (PDF only)
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(mediabox, """The MediaBox.""")
        %pythonappend mediabox %{val = Rect(JM_TUPLE3(val))%}
        PyObject *mediabox()
        {
            fz_rect rect = fz_infinite_rect;
            fz_try(gctx) {
                pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
                if (!page) {
                    rect = fz_bound_page(gctx, (fz_page *) $self);
                } else {
                    rect = JM_mediabox(gctx, page->obj);
                }
            }
            fz_catch(gctx) {;}
            return JM_py_from_rect(rect);
        }


        //----------------------------------------------------------------
        // cropbox: get the /CropBox (PDF only)
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(cropbox, """The CropBox.""")
        %pythonappend cropbox %{val = Rect(JM_TUPLE3(val))%}
        PyObject *cropbox()
        {
            fz_rect rect = fz_infinite_rect;
            fz_try(gctx) {
                pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
                if (!page) {
                    rect = fz_bound_page(gctx, (fz_page *) $self);
                } else {
                    rect = JM_cropbox(gctx, page->obj);
                }
            }
            fz_catch(gctx) {;}
            return JM_py_from_rect(rect);
        }


        PyObject *_other_box(const char *boxtype)
        {
            fz_rect rect = fz_infinite_rect;
            fz_try(gctx) {
                pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
                if (page) {
                    pdf_obj *obj = pdf_dict_gets(gctx, page->obj, boxtype);
                    if (pdf_is_array(gctx, obj)) {
                        rect = pdf_to_rect(gctx, obj);
                    }
                }
            }
            fz_catch(gctx) {;}
            if (fz_is_infinite_rect(rect)) {
                Py_RETURN_NONE;
            }
            return JM_py_from_rect(rect);
        }


        //----------------------------------------------------------------
        // CropBox position: x0, y0 of /CropBox
        //----------------------------------------------------------------
        %pythoncode %{
        @property
        def cropbox_position(self):
            return self.cropbox.tl

        @property
        def artbox(self):
            """The ArtBox"""
            rect = self._other_box("ArtBox")
            if rect == None:
                return self.cropbox
            mb = self.mediabox
            return Rect(rect[0], mb.y1 - rect[3], rect[2], mb.y1 - rect[1])

        @property
        def trimbox(self):
            """The TrimBox"""
            rect = self._other_box("TrimBox")
            if rect == None:
                return self.cropbox
            mb = self.mediabox
            return Rect(rect[0], mb.y1 - rect[3], rect[2], mb.y1 - rect[1])

        @property
        def bleedbox(self):
            """The BleedBox"""
            rect = self._other_box("BleedBox")
            if rect == None:
                return self.cropbox
            mb = self.mediabox
            return Rect(rect[0], mb.y1 - rect[3], rect[2], mb.y1 - rect[1])

        def _set_pagebox(self, boxtype, rect):
            doc = self.parent
            if doc == None:
                raise ValueError("orphaned object: parent is None")
            if not doc.is_pdf:
                raise ValueError("is no PDF")
            valid_boxes = ("CropBox", "BleedBox", "TrimBox", "ArtBox")
            if boxtype not in valid_boxes:
                raise ValueError("bad boxtype")
            mb = self.mediabox
            rect = Rect(rect[0], mb.y1 - rect[3], rect[2], mb.y1 - rect[1])
            rect = Rect(JM_TUPLE3(rect))
            if rect.is_infinite or rect.is_empty:
                raise ValueError("rect is infinite or empty")
            if rect not in mb:
                raise ValueError("rect not in mediabox")
            doc.xref_set_key(self.xref, boxtype, "[%g %g %g %g]" % tuple(rect))

        def set_cropbox(self, rect):
            """Set the CropBox. Will also change Page.rect."""
            return self._set_pagebox("CropBox", rect)

        def set_artbox(self, rect):
            """Set the ArtBox."""
            return self._set_pagebox("ArtBox", rect)

        def set_bleedbox(self, rect):
            """Set the BleedBox."""
            return self._set_pagebox("BleedBox", rect)

        def set_trimbox(self, rect):
            """Set the TrimBox."""
            return self._set_pagebox("TrimBox", rect)
        %}


        //----------------------------------------------------------------
        // rotation - return page rotation
        //----------------------------------------------------------------
        PARENTCHECK(rotation, """Page rotation.""")
        %pythoncode %{@property%}
        int rotation()
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            if (!page) return 0;
            return JM_page_rotation(gctx, page);
        }

        /*********************************************************************/
        // set_rotation() - set page rotation
        /*********************************************************************/
        FITZEXCEPTION(set_rotation, !result)
        PARENTCHECK(set_rotation, """Set page rotation.""")
        PyObject *set_rotation(int rotation)
        {
            fz_try(gctx) {
                pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
                ASSERT_PDF(page);
                int rot = JM_norm_rotation(rotation);
                pdf_dict_put_int(gctx, page->obj, PDF_NAME(Rotate), (int64_t) rot);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        /*********************************************************************/
        // Page._addAnnot_FromString
        // Add new links provided as an array of string object definitions.
        /*********************************************************************/
        FITZEXCEPTION(_addAnnot_FromString, !result)
        PARENTCHECK(_addAnnot_FromString, """Add links from list of object sources.""")
        PyObject *_addAnnot_FromString(PyObject *linklist)
        {
            pdf_obj *annots, *annot, *ind_obj;
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            PyObject *txtpy = NULL;
            char *text = NULL;
            int lcount = (int) PySequence_Size(linklist); // link count
            if (lcount < 1) Py_RETURN_NONE;
            int i = -1;
            fz_var(text);

            // insert links from the provided sources
            fz_try(gctx) {
                ASSERT_PDF(page);
                if (!pdf_dict_get(gctx, page->obj, PDF_NAME(Annots))) {
                    pdf_dict_put_array(gctx, page->obj, PDF_NAME(Annots), lcount);
                }
                annots = pdf_dict_get(gctx, page->obj, PDF_NAME(Annots));
                for (i = 0; i < lcount; i++) {
                    text = NULL;
                    txtpy = PySequence_ITEM(linklist, (Py_ssize_t) i);
                    text = JM_StrAsChar(txtpy);
                    Py_CLEAR(txtpy);
                    if (!text) {
                        PySys_WriteStderr("skipping bad link / annot item %i.\n", i);
                        continue;
                    }
                    fz_try(gctx) {
                        annot = pdf_add_object_drop(gctx, page->doc,
                                JM_pdf_obj_from_str(gctx, page->doc, text));
                        ind_obj = pdf_new_indirect(gctx, page->doc, pdf_to_num(gctx, annot), 0);
                        pdf_array_push_drop(gctx, annots, ind_obj);
                        pdf_drop_obj(gctx, annot);
                    }
                    fz_catch(gctx) {
                        PySys_WriteStderr("skipping bad link / annot item %i.\n", i);
                    }
                }
            }
            fz_catch(gctx) {
                PyErr_Clear();
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------------------------------------
        // Page clean contents stream
        //----------------------------------------------------------------
        FITZEXCEPTION(clean_contents, !result)
        %pythonprepend clean_contents
%{"""Clean page /Contents into one object."""
CheckParent(self)
if not sanitize and not self.is_wrapped:
    self.wrap_contents()%}
        PyObject *clean_contents(int sanitize=1)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            if (!page) {
                Py_RETURN_NONE;
            }
            pdf_filter_options filter = {
                NULL,  // opaque
                NULL,  // image filter
                NULL,  // text filter
                NULL,  // after text
                NULL,  // end page
                1,     // recurse: true
                1,     // instance forms
                1,     // sanitize plus filtering
                0      // do not ascii-escape binary data
                };
            filter.sanitize = sanitize;
            fz_try(gctx) {
                pdf_filter_page_contents(gctx, page->doc, page, &filter);
            }
            fz_catch(gctx) {
                Py_RETURN_NONE;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------------------------------------
        // Show a PDF page
        //----------------------------------------------------------------
        FITZEXCEPTION(_show_pdf_page, !result)
        PyObject *_show_pdf_page(struct Page *fz_srcpage, int overlay=1, PyObject *matrix=NULL, int xref=0, int oc=0, PyObject *clip = NULL, struct Graftmap *graftmap = NULL, char *_imgname = NULL)
        {
            pdf_obj *xobj1=NULL, *xobj2=NULL, *resources;
            fz_buffer *res=NULL, *nres=NULL;
            fz_rect cropbox = JM_rect_from_py(clip);
            fz_matrix mat = JM_matrix_from_py(matrix);
            int rc_xref = xref;
            fz_var(xobj1);
            fz_var(xobj2);
            fz_try(gctx) {
                pdf_page *tpage = pdf_page_from_fz_page(gctx, (fz_page *) $self);
                pdf_obj *tpageref = tpage->obj;
                pdf_document *pdfout = tpage->doc;    // target PDF
                ENSURE_OPERATION(gctx, pdfout);
                //-------------------------------------------------------------
                // convert the source page to a Form XObject
                //-------------------------------------------------------------
                xobj1 = JM_xobject_from_page(gctx, pdfout, (fz_page *) fz_srcpage,
                                             xref, (pdf_graft_map *) graftmap);
                if (!rc_xref) rc_xref = pdf_to_num(gctx, xobj1);

                //-------------------------------------------------------------
                // create referencing XObject (controls display on target page)
                //-------------------------------------------------------------
                // fill reference to xobj1 into the /Resources
                //-------------------------------------------------------------
                pdf_obj *subres1 = pdf_new_dict(gctx, pdfout, 5);
                pdf_dict_puts(gctx, subres1, "fullpage", xobj1);
                pdf_obj *subres  = pdf_new_dict(gctx, pdfout, 5);
                pdf_dict_put_drop(gctx, subres, PDF_NAME(XObject), subres1);

                res = fz_new_buffer(gctx, 20);
                fz_append_string(gctx, res, "/fullpage Do");

                xobj2 = pdf_new_xobject(gctx, pdfout, cropbox, mat, subres, res);
                if (oc > 0) {
                    JM_add_oc_object(gctx, pdfout, pdf_resolve_indirect(gctx, xobj2), oc);
                }
                pdf_drop_obj(gctx, subres);
                fz_drop_buffer(gctx, res);

                //-------------------------------------------------------------
                // update target page with xobj2:
                //-------------------------------------------------------------
                // 1. insert Xobject in Resources
                //-------------------------------------------------------------
                resources = pdf_dict_get_inheritable(gctx, tpageref, PDF_NAME(Resources));
                subres = pdf_dict_get(gctx, resources, PDF_NAME(XObject));
                if (!subres) {
                    subres = pdf_dict_put_dict(gctx, resources, PDF_NAME(XObject), 5);
                }

                pdf_dict_puts(gctx, subres, _imgname, xobj2);

                //-------------------------------------------------------------
                // 2. make and insert new Contents object
                //-------------------------------------------------------------
                nres = fz_new_buffer(gctx, 50);       // buffer for Do-command
                fz_append_string(gctx, nres, " q /");    // Do-command
                fz_append_string(gctx, nres, _imgname);
                fz_append_string(gctx, nres, " Do Q ");

                JM_insert_contents(gctx, pdfout, tpageref, nres, overlay);
                fz_drop_buffer(gctx, nres);
            }
            fz_always(gctx) {
                pdf_drop_obj(gctx, xobj1);
                pdf_drop_obj(gctx, xobj2);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", rc_xref);
        }

        //----------------------------------------------------------------
        // insert an image
        //----------------------------------------------------------------
        FITZEXCEPTION(_insert_image, !result)
        PyObject *
        _insert_image(char *filename=NULL,
                struct Pixmap *pixmap=NULL,
                PyObject *stream=NULL,
                PyObject *imask=NULL,
                PyObject *clip=NULL,
                int overlay=1,
                int rotate=0,
                int keep_proportion=1,
                int oc=0,
                int width=0,
                int height=0,
                int xref=0,
                int alpha=-1,
                const char *_imgname=NULL,
                PyObject *digests=NULL)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_document *pdf = page->doc;
            float w = width, h = height;
            fz_pixmap *pm = NULL;
            fz_pixmap *pix = NULL;
            fz_image *mask = NULL, *zimg = NULL, *image = NULL, *freethis = NULL;
            pdf_obj *resources, *xobject, *ref;
            fz_buffer *nres = NULL,  *imgbuf = NULL, *maskbuf = NULL;
            fz_compressed_buffer *cbuf1 = NULL;
            int xres, yres, bpc, img_xref = xref, rc_digest = 0;
            unsigned char digest[16];
            PyObject *md5_py = NULL, *temp;
            const char *template = "\nq\n%g %g %g %g %g %g cm\n/%s Do\nQ\n";

            fz_try(gctx) {
                if (xref > 0) {
                    ref = pdf_new_indirect(gctx, pdf, xref, 0);
                    w = pdf_to_int(gctx,
                        pdf_dict_geta(gctx, ref,
                        PDF_NAME(Width), PDF_NAME(W)));
                    h = pdf_to_int(gctx,
                        pdf_dict_geta(gctx, ref,
                        PDF_NAME(Height), PDF_NAME(H)));
                    if ((w + h) == 0) {
                        RAISEPY(gctx, MSG_IS_NO_IMAGE, PyExc_ValueError);
                    }
                    goto have_xref;
                }
                if (EXISTS(stream)) {
                    imgbuf = JM_BufferFromBytes(gctx, stream);
                    goto have_stream;
                }
                if (filename) {
                    imgbuf = fz_read_file(gctx, filename);
                    goto have_stream;
                }
            // process pixmap ---------------------------------
                fz_pixmap *arg_pix = (fz_pixmap *) pixmap;
                w = arg_pix->w;
                h = arg_pix->h;
                fz_md5_pixmap(gctx, arg_pix, digest);
                md5_py = PyBytes_FromStringAndSize(digest, 16);
                temp = PyDict_GetItem(digests, md5_py);
                if (temp) {
                    img_xref = (int) PyLong_AsLong(temp);
                    ref = pdf_new_indirect(gctx, page->doc, img_xref, 0);
                    goto have_xref;
                }
                if (arg_pix->alpha == 0) {
                    image = fz_new_image_from_pixmap(gctx, arg_pix, NULL);
                } else {
                    pm = fz_convert_pixmap(gctx, arg_pix, NULL, NULL, NULL,
                            fz_default_color_params, 1);
                    pm->alpha = 0;
                    pm->colorspace = NULL;
                    mask = fz_new_image_from_pixmap(gctx, pm, NULL);
                    image = fz_new_image_from_pixmap(gctx, arg_pix, mask);
                }
                goto have_image;

            // process stream ---------------------------------
            have_stream:;
                fz_md5 state;
                fz_md5_init(&state);
                fz_md5_update(&state, imgbuf->data, imgbuf->len);
                if (imask != Py_None) {
                    maskbuf = JM_BufferFromBytes(gctx, imask);
                    fz_md5_update(&state, maskbuf->data, maskbuf->len);
                }
                fz_md5_final(&state, digest);
                md5_py = PyBytes_FromStringAndSize(digest, 16);
                temp = PyDict_GetItem(digests, md5_py);
                if (temp) {
                    img_xref = (int) PyLong_AsLong(temp);
                    ref = pdf_new_indirect(gctx, page->doc, img_xref, 0);
                    w = pdf_to_int(gctx,
                        pdf_dict_geta(gctx, ref,
                        PDF_NAME(Width), PDF_NAME(W)));
                    h = pdf_to_int(gctx,
                        pdf_dict_geta(gctx, ref,
                        PDF_NAME(Height), PDF_NAME(H)));
                    goto have_xref;
                }
                image = fz_new_image_from_buffer(gctx, imgbuf);
                w = image->w;
                h = image->h;
                if (imask == Py_None) {
                    goto have_image;
                }

                cbuf1 = fz_compressed_image_buffer(gctx, image);
                if (!cbuf1) {
                    RAISEPY(gctx, "uncompressed image cannot have mask", PyExc_ValueError);
                }
                bpc = image->bpc;
                fz_colorspace *colorspace = image->colorspace;
                fz_image_resolution(image, &xres, &yres);
                mask = fz_new_image_from_buffer(gctx, maskbuf);
                zimg = fz_new_image_from_compressed_buffer(gctx, w, h,
                            bpc, colorspace, xres, yres, 1, 0, NULL,
                            NULL, cbuf1, mask);
                freethis = image;
                image = zimg;
                zimg = NULL;
                goto have_image;

            have_image:;
                ref =  pdf_add_image(gctx, pdf, image);
                if (oc) {
                    JM_add_oc_object(gctx, pdf, ref, oc);
                }
                img_xref = pdf_to_num(gctx, ref);
                DICT_SETITEM_DROP(digests, md5_py, Py_BuildValue("i", img_xref));
                rc_digest = 1;
            have_xref:;
                resources = pdf_dict_get_inheritable(gctx, page->obj,
                                PDF_NAME(Resources));
                if (!resources) {
                    resources = pdf_dict_put_dict(gctx, page->obj,
                                    PDF_NAME(Resources), 2);
                }
                xobject = pdf_dict_get(gctx, resources, PDF_NAME(XObject));
                if (!xobject) {
                    xobject = pdf_dict_put_dict(gctx, resources,
                                  PDF_NAME(XObject), 2);
                }
                fz_matrix mat = calc_image_matrix(w, h, clip, rotate, keep_proportion);
                pdf_dict_puts_drop(gctx, xobject, _imgname, ref);
                nres = fz_new_buffer(gctx, 50);
                fz_append_printf(gctx, nres, template,
                                 mat.a, mat.b, mat.c, mat.d, mat.e, mat.f, _imgname);
                JM_insert_contents(gctx, pdf, page->obj, nres, overlay);
            }
            fz_always(gctx) {
                if (freethis) {
                    fz_drop_image(gctx, freethis);
                } else {
                    fz_drop_image(gctx, image);
                }
                fz_drop_image(gctx, mask);
                fz_drop_image(gctx, zimg);
                fz_drop_pixmap(gctx, pix);
                fz_drop_pixmap(gctx, pm);
                fz_drop_buffer(gctx, imgbuf);
                fz_drop_buffer(gctx, maskbuf);
                fz_drop_buffer(gctx, nres);
            }
            fz_catch(gctx) {
                return NULL;
            }

            if (rc_digest) {
                return Py_BuildValue("iO", img_xref, digests);
            } else {
                return Py_BuildValue("iO", img_xref, Py_None);
            }
        }


        //----------------------------------------------------------------
        // Page.refresh()
        //----------------------------------------------------------------
        %pythoncode %{
        def refresh(self):
            doc = self.parent
            page = doc.reload_page(self)
            self = page
        %}


        //----------------------------------------------------------------
        // insert font
        //----------------------------------------------------------------
        %pythoncode
%{
def insert_font(self, fontname="helv", fontfile=None, fontbuffer=None,
               set_simple=False, wmode=0, encoding=0):
    doc = self.parent
    if doc is None:
        raise ValueError("orphaned object: parent is None")
    idx = 0

    if fontname.startswith("/"):
        fontname = fontname[1:]

    font = CheckFont(self, fontname)
    if font is not None:                    # font already in font list of page
        xref = font[0]                      # this is the xref
        if CheckFontInfo(doc, xref):        # also in our document font list?
            return xref                     # yes: we are done
        # need to build the doc FontInfo entry - done via get_char_widths
        doc.get_char_widths(xref)
        return xref

    #--------------------------------------------------------------------------
    # the font is not present for this page
    #--------------------------------------------------------------------------

    bfname = Base14_fontdict.get(fontname.lower(), None) # BaseFont if Base-14 font

    serif = 0
    CJK_number = -1
    CJK_list_n = ["china-t", "china-s", "japan", "korea"]
    CJK_list_s = ["china-ts", "china-ss", "japan-s", "korea-s"]

    try:
        CJK_number = CJK_list_n.index(fontname)
        serif = 0
    except:
        pass

    if CJK_number < 0:
        try:
            CJK_number = CJK_list_s.index(fontname)
            serif = 1
        except:
            pass

    if fontname.lower() in fitz_fontdescriptors.keys():
        import pymupdf_fonts
        fontbuffer = pymupdf_fonts.myfont(fontname)  # make a copy
        del pymupdf_fonts

    # install the font for the page
    if fontfile != None:
        if type(fontfile) is str:
            fontfile_str = fontfile
        elif hasattr(fontfile, "absolute"):
            fontfile_str = str(fontfile)
        elif hasattr(fontfile, "name"):
            fontfile_str = fontfile.name
        else:
            raise ValueError("bad fontfile")
    else:
        fontfile_str = None
    val = self._insertFont(fontname, bfname, fontfile_str, fontbuffer, set_simple, idx,
                           wmode, serif, encoding, CJK_number)

    if not val:                   # did not work, error return
        return val

    xref = val[0]                 # xref of installed font
    fontdict = val[1]

    if CheckFontInfo(doc, xref):  # check again: document already has this font
        return xref               # we are done

    # need to create document font info
    doc.get_char_widths(xref, fontdict=fontdict)
    return xref

%}

        FITZEXCEPTION(_insertFont, !result)
        PyObject *_insertFont(char *fontname, char *bfname,
                             char *fontfile,
                             PyObject *fontbuffer,
                             int set_simple, int idx,
                             int wmode, int serif,
                             int encoding, int ordering)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            pdf_document *pdf;
            pdf_obj *resources, *fonts, *font_obj;
            PyObject *value;
            fz_try(gctx) {
                ASSERT_PDF(page);
                pdf = page->doc;

                value = JM_insert_font(gctx, pdf, bfname, fontfile,fontbuffer,
                            set_simple, idx, wmode, serif, encoding, ordering);

                // get the objects /Resources, /Resources/Font
                resources = pdf_dict_get_inheritable(gctx, page->obj, PDF_NAME(Resources));
                fonts = pdf_dict_get(gctx, resources, PDF_NAME(Font));
                if (!fonts) {  // page has no fonts yet
                    fonts = pdf_new_dict(gctx, pdf, 5);
                    pdf_dict_putl_drop(gctx, page->obj, fonts, PDF_NAME(Resources), PDF_NAME(Font), NULL);
                }
                // store font in resources and fonts objects will contain named reference to font
                int xref = 0;
                JM_INT_ITEM(value, 0, &xref);
                if (!xref) {
                    RAISEPY(gctx, "cannot insert font", PyExc_RuntimeError);
                }
                font_obj = pdf_new_indirect(gctx, pdf, xref, 0);
                pdf_dict_puts_drop(gctx, fonts, fontname, font_obj);
            }
            fz_always(gctx) {
                ;
            }
            fz_catch(gctx) {
                return NULL;
            }
            
            return value;
        }

        //----------------------------------------------------------------
        // Get page transformation matrix
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(transformation_matrix, """Page transformation matrix.""")
        %pythonappend transformation_matrix %{
        if self.rotation % 360 == 0:
            val = Matrix(val)
        else:
            val = Matrix(1, 0, 0, -1, 0, self.cropbox.height)
        %}
        PyObject *transformation_matrix()
        {
            fz_matrix ctm = fz_identity;
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            if (!page) return JM_py_from_matrix(ctm);
            fz_try(gctx) {
                pdf_page_transform(gctx, page, NULL, &ctm);
            }
            fz_catch(gctx) {;}
            return JM_py_from_matrix(ctm);
        }

        //----------------------------------------------------------------
        // Page Get list of contents objects
        //----------------------------------------------------------------
        FITZEXCEPTION(get_contents, !result)
        PARENTCHECK(get_contents, """Get xrefs of /Contents objects.""")
        PyObject *get_contents()
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) $self);
            PyObject *list = NULL;
            pdf_obj *contents = NULL, *icont = NULL;
            int i, xref;
            size_t n = 0;
            fz_try(gctx) {
                ASSERT_PDF(page);
                contents = pdf_dict_get(gctx, page->obj, PDF_NAME(Contents));
                if (pdf_is_array(gctx, contents)) {
                    n = pdf_array_len(gctx, contents);
                    list = PyList_New(n);
                    for (i = 0; i < n; i++) {
                        icont = pdf_array_get(gctx, contents, i);
                        xref = pdf_to_num(gctx, icont);
                        PyList_SET_ITEM(list, i, Py_BuildValue("i", xref));
                    }
                }
                else if (contents) {
                    list = PyList_New(1);
                    xref = pdf_to_num(gctx, contents);
                    PyList_SET_ITEM(list, 0, Py_BuildValue("i", xref));
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            if (list) {
                return list;
            }
            return PyList_New(0);
        }

        //----------------------------------------------------------------
        //
        //----------------------------------------------------------------
        %pythoncode %{
        def set_contents(self, xref: int)->None:
            """Set object at 'xref' as the page's /Contents."""
            CheckParent(self)
            doc = self.parent
            if doc.is_closed:
                raise ValueError("document closed")
            if not doc.is_pdf:
                raise ValueError("is no PDF")
            if not xref in range(1, doc.xref_length()):
                raise ValueError("bad xref")
            if not doc.xref_is_stream(xref):
                raise ValueError("xref is no stream")
            doc.xref_set_key(self.xref, "Contents", "%i 0 R" % xref)


        @property
        def is_wrapped(self):
            """Check if /Contents is wrapped with string pair "q" / "Q"."""
            if getattr(self, "was_wrapped", False):  # costly checks only once
                return True
            cont = self.read_contents().split()
            if cont == []:  # no contents treated as okay
                self.was_wrapped = True
                return True
            if cont[0] != b"q" or cont[-1] != b"Q":
                return False  # potential "geometry" issue
            self.was_wrapped = True  # cheap check next time
            return True


        def wrap_contents(self):
            if self.is_wrapped:  # avoid unnecessary wrapping
                return
            TOOLS._insert_contents(self, b"q\n", False)
            TOOLS._insert_contents(self, b"\nQ", True)
            self.was_wrapped = True  # indicate not needed again


        def links(self, kinds=None):
            """ Generator over the links of a page.

            Args:
                kinds: (list) link kinds to subselect from. If none,
                       all links are returned. E.g. kinds=[LINK_URI]
                       will only yield URI links.
            """
            all_links = self.get_links()
            for link in all_links:
                if kinds is None or link["kind"] in kinds:
                    yield (link)


        def annots(self, types=None):
            """ Generator over the annotations of a page.

            Args:
                types: (list) annotation types to subselect from. If none,
                       all annotations are returned. E.g. types=[PDF_ANNOT_LINE]
                       will only yield line annotations.
            """
            skip_types = (PDF_ANNOT_LINK, PDF_ANNOT_POPUP, PDF_ANNOT_WIDGET)
            if not hasattr(types, "__getitem__"):
                annot_xrefs = [a[0] for a in self.annot_xrefs() if a[1] not in skip_types]
            else:
                annot_xrefs = [a[0] for a in self.annot_xrefs() if a[1] in types and a[1] not in skip_types]
            for xref in annot_xrefs:
                annot = self.load_annot(xref)
                annot._yielded=True
                yield annot


        def widgets(self, types=None):
            """ Generator over the widgets of a page.

            Args:
                types: (list) field types to subselect from. If none,
                        all fields are returned. E.g. types=[PDF_WIDGET_TYPE_TEXT]
                        will only yield text fields.
            """
            widget_xrefs = [a[0] for a in self.annot_xrefs() if a[1] == PDF_ANNOT_WIDGET]
            for xref in widget_xrefs:
                widget = self.load_widget(xref)
                if types == None or widget.field_type in types:
                    yield (widget)


        def __str__(self):
            CheckParent(self)
            x = self.parent.name
            if self.parent.stream is not None:
                x = "<memory, doc# %i>" % (self.parent._graft_id,)
            if x == "":
                x = "<new PDF, doc# %i>" % self.parent._graft_id
            return "page %s of %s" % (self.number, x)

        def __repr__(self):
            CheckParent(self)
            x = self.parent.name
            if self.parent.stream is not None:
                x = "<memory, doc# %i>" % (self.parent._graft_id,)
            if x == "":
                x = "<new PDF, doc# %i>" % self.parent._graft_id
            return "page %s of %s" % (self.number, x)

        def _forget_annot(self, annot):
            """Remove an annot from reference dictionary."""
            aid = id(annot)
            if aid in self._annot_refs:
                self._annot_refs[aid] = None

        def _reset_annot_refs(self):
            """Invalidate / delete all annots of this page."""
            for annot in self._annot_refs.values():
                if annot:
                    annot._erase()
            self._annot_refs.clear()

        @property
        def xref(self):
            """PDF xref number of page."""
            CheckParent(self)
            return self.parent.page_xref(self.number)

        def _erase(self):
            self._reset_annot_refs()
            self._image_infos = None
            try:
                self.parent._forget_page(self)
            except:
                pass
            if getattr(self, "thisown", False):
                self.__swig_destroy__(self)
            self.parent = None
            self.number = None


        def __del__(self):
            self._erase()


        def get_fonts(self, full=False):
            """List of fonts defined in the page object."""
            CheckParent(self)
            return self.parent.get_page_fonts(self.number, full=full)


        def get_images(self, full=False):
            """List of images defined in the page object."""
            CheckParent(self)
            return self.parent.get_page_images(self.number, full=full)


        def get_xobjects(self):
            """List of xobjects defined in the page object."""
            CheckParent(self)
            return self.parent.get_page_xobjects(self.number)


        def read_contents(self):
            """All /Contents streams concatenated to one bytes object."""
            return TOOLS._get_all_contents(self)


        @property
        def mediabox_size(self):
            return Point(self.mediabox.x1, self.mediabox.y1)
        %}
    }
};
%clearnodefaultctor;

//------------------------------------------------------------------------
// Pixmap
//------------------------------------------------------------------------
struct Pixmap
{
    %extend {
        ~Pixmap() {
            DEBUGMSG1("Pixmap");
            fz_pixmap *this_pix = (fz_pixmap *) $self;
            fz_drop_pixmap(gctx, this_pix);
            DEBUGMSG2;
        }
        FITZEXCEPTION(Pixmap, !result)
        %pythonprepend Pixmap
%{"""Pixmap(colorspace, irect, alpha) - empty pixmap.
Pixmap(colorspace, src) - copy changing colorspace.
Pixmap(src, width, height,[clip]) - scaled copy, float dimensions.
Pixmap(src, alpha=True) - copy adding / dropping alpha.
Pixmap(source, mask) - from a non-alpha and a mask pixmap.
Pixmap(file) - from an image file.
Pixmap(memory) - from an image in memory (bytes).
Pixmap(colorspace, width, height, samples, alpha) - from samples data.
Pixmap(PDFdoc, xref) - from an image xref in a PDF document.
"""%}
        //----------------------------------------------------------------
        // create empty pixmap with colorspace and IRect
        //----------------------------------------------------------------
        Pixmap(struct Colorspace *cs, PyObject *bbox, int alpha = 0)
        {
            fz_pixmap *pm = NULL;
            fz_try(gctx) {
                pm = fz_new_pixmap_with_bbox(gctx, (fz_colorspace *) cs, JM_irect_from_py(bbox), NULL, alpha);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) pm;
        }

        //----------------------------------------------------------------
        // copy pixmap, converting colorspace
        //----------------------------------------------------------------
        Pixmap(struct Colorspace *cs, struct Pixmap *spix)
        {
            fz_pixmap *pm = NULL;
            fz_try(gctx) {
                if (!fz_pixmap_colorspace(gctx, (fz_pixmap *) spix)) {
                    RAISEPY(gctx, "source colorspace must not be None", PyExc_ValueError);
                }
                fz_colorspace *cspace = NULL;
                if (cs) {
                    cspace = (fz_colorspace *) cs;
                }
                if (cspace) {
                    pm = fz_convert_pixmap(gctx, (fz_pixmap *) spix, cspace, NULL, NULL, fz_default_color_params, 1);
                } else {
                    pm = fz_new_pixmap_from_alpha_channel(gctx, (fz_pixmap *) spix);
                    if (!pm) {
                        RAISEPY(gctx, MSG_PIX_NOALPHA, PyExc_RuntimeError);
                    }
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) pm;
        }


        //----------------------------------------------------------------
        // add mask to a pixmap w/o alpha channel
        //----------------------------------------------------------------
        Pixmap(struct Pixmap *spix, struct Pixmap *mpix)
        {
            fz_pixmap *dst = NULL;
            fz_pixmap *spm = (fz_pixmap *) spix;
            fz_pixmap *mpm = (fz_pixmap *) mpix;
            fz_try(gctx) {
                if (!spix) {  // intercept NULL for spix: make alpha only pix
                    dst = fz_new_pixmap_from_alpha_channel(gctx, mpm);
                    if (!dst) {
                        RAISEPY(gctx, MSG_PIX_NOALPHA, PyExc_RuntimeError);
                    }
                } else {
                    dst = fz_new_pixmap_from_color_and_mask(gctx, spm, mpm);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) dst;
        }


        //----------------------------------------------------------------
        // create pixmap as scaled copy of another one
        //----------------------------------------------------------------
        Pixmap(struct Pixmap *spix, float w, float h, PyObject *clip=NULL)
        {
            fz_pixmap *pm = NULL;
            fz_pixmap *src_pix = (fz_pixmap *) spix;
            fz_try(gctx) {
                fz_irect bbox = JM_irect_from_py(clip);
                if (clip != Py_None && (fz_is_infinite_irect(bbox) || fz_is_empty_irect(bbox))) {
                    RAISEPY(gctx, "bad clip parameter", PyExc_ValueError);
                }
                if (!fz_is_infinite_irect(bbox)) {
                    pm = fz_scale_pixmap(gctx, src_pix, src_pix->x, src_pix->y, w, h, &bbox);
                } else {
                    pm = fz_scale_pixmap(gctx, src_pix, src_pix->x, src_pix->y, w, h, NULL);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) pm;
        }


        //----------------------------------------------------------------
        // copy pixmap & add / drop the alpha channel
        //----------------------------------------------------------------
        Pixmap(struct Pixmap *spix, int alpha=1)
        {
            fz_pixmap *pm = NULL, *src_pix = (fz_pixmap *) spix;
            int n, w, h, i;
            fz_separations *seps = NULL;
            fz_try(gctx) {
                if (!INRANGE(alpha, 0, 1)) {
                    RAISEPY(gctx, "bad alpha value", PyExc_ValueError);
                }
                fz_colorspace *cs = fz_pixmap_colorspace(gctx, src_pix);
                if (!cs && !alpha) {
                    RAISEPY(gctx, "cannot drop alpha for 'NULL' colorspace", PyExc_ValueError);
                }
                n = fz_pixmap_colorants(gctx, src_pix);
                w = fz_pixmap_width(gctx, src_pix);
                h = fz_pixmap_height(gctx, src_pix);
                pm = fz_new_pixmap(gctx, cs, w, h, seps, alpha);
                pm->x = src_pix->x;
                pm->y = src_pix->y;
                pm->xres = src_pix->xres;
                pm->yres = src_pix->yres;

                // copy samples data ------------------------------------------
                unsigned char *sptr = src_pix->samples;
                unsigned char *tptr = pm->samples;
                if (src_pix->alpha == pm->alpha) {  // identical samples
                    memcpy(tptr, sptr, w * h * (n + alpha));
                } else {
                    for (i = 0; i < w * h; i++) {
                        memcpy(tptr, sptr, n);
                        tptr += n;
                        if (pm->alpha) {
                            tptr[0] = 255;
                            tptr++;
                        }
                        sptr += n + src_pix->alpha;
                    }
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) pm;
        }

        //----------------------------------------------------------------
        // create pixmap from samples data
        //----------------------------------------------------------------
        Pixmap(struct Colorspace *cs, int w, int h, PyObject *samples, int alpha=0)
        {
            int n = fz_colorspace_n(gctx, (fz_colorspace *) cs);
            int stride = (n + alpha) * w;
            fz_separations *seps = NULL;
            fz_buffer *res = NULL;
            fz_pixmap *pm = NULL;
            fz_try(gctx) {
                size_t size = 0;
                unsigned char *c = NULL;
                res = JM_BufferFromBytes(gctx, samples);
                if (!res) {
                    RAISEPY(gctx, "bad samples data", PyExc_ValueError);
                }
                size = fz_buffer_storage(gctx, res, &c);
                if (stride * h != size) {
                    RAISEPY(gctx, "bad samples length", PyExc_ValueError);
                }
                pm = fz_new_pixmap(gctx, (fz_colorspace *) cs, w, h, seps, alpha);
                memcpy(pm->samples, c, size);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) pm;
        }


        //----------------------------------------------------------------
        // create pixmap from filename, file object, pathlib.Path or memory
        //----------------------------------------------------------------
        Pixmap(PyObject *imagedata)
        {
            fz_buffer *res = NULL;
            fz_image *img = NULL;
            fz_pixmap *pm = NULL;
            PyObject *fname = NULL;
            PyObject *name = PyUnicode_FromString("name");
            fz_try(gctx) {
                if (PyObject_HasAttrString(imagedata, "resolve")) {
                    fname = PyObject_CallMethod(imagedata, "__str__", NULL);
                    if (fname) {
                        img = fz_new_image_from_file(gctx, JM_StrAsChar(fname));
                    }
                } else if (PyObject_HasAttr(imagedata, name)) {
                    fname = PyObject_GetAttr(imagedata, name);
                    if (fname) {
                        img = fz_new_image_from_file(gctx, JM_StrAsChar(fname));
                    }
                } else if (PyUnicode_Check(imagedata)) {
                    img = fz_new_image_from_file(gctx, JM_StrAsChar(imagedata));
                } else {
                    res = JM_BufferFromBytes(gctx, imagedata);
                    if (!res || !fz_buffer_storage(gctx, res, NULL)) {
                        RAISEPY(gctx, "bad image data", PyExc_ValueError);
                    }
                    img = fz_new_image_from_buffer(gctx, res);
                }
                pm = fz_get_pixmap_from_image(gctx, img, NULL, NULL, NULL, NULL);
                int xres, yres;
                fz_image_resolution(img, &xres, &yres);
                pm->xres = xres;
                pm->yres = yres;
            }
            fz_always(gctx) {
                Py_CLEAR(fname);
                Py_CLEAR(name);
                fz_drop_image(gctx, img);
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) pm;
        }


        //----------------------------------------------------------------
        // Create pixmap from PDF image identified by XREF number
        //----------------------------------------------------------------
        Pixmap(struct Document *doc, int xref)
        {
            fz_image *img = NULL;
            fz_pixmap *pix = NULL;
            pdf_obj *ref = NULL;
            pdf_obj *type;
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) doc);
            fz_try(gctx) {
                ASSERT_PDF(pdf);
                int xreflen = pdf_xref_len(gctx, pdf);
                if (!INRANGE(xref, 1, xreflen-1)) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                ref = pdf_new_indirect(gctx, pdf, xref, 0);
                type = pdf_dict_get(gctx, ref, PDF_NAME(Subtype));
                if (!pdf_name_eq(gctx, type, PDF_NAME(Image)) &&
                    !pdf_name_eq(gctx, type, PDF_NAME(Alpha)) &&
                    !pdf_name_eq(gctx, type, PDF_NAME(Luminosity))) {
                    RAISEPY(gctx, MSG_IS_NO_IMAGE, PyExc_ValueError);
                }
                img = pdf_load_image(gctx, pdf, ref);
                pix = fz_get_pixmap_from_image(gctx, img, NULL, NULL, NULL, NULL);
            }
            fz_always(gctx) {
                fz_drop_image(gctx, img);
                pdf_drop_obj(gctx, ref);
            }
            fz_catch(gctx) {
                fz_drop_pixmap(gctx, pix);
                return NULL;
            }
            return (struct Pixmap *) pix;
        }


        //----------------------------------------------------------------
        // warp
        //----------------------------------------------------------------
        FITZEXCEPTION(warp, !result)
        %pythonprepend warp %{
        """Return pixmap from a warped quad."""
        EnsureOwnership(self)
        if not quad.is_convex: raise ValueError("quad must be convex")%}
        struct Pixmap *warp(PyObject *quad, int width, int height)
        {
            fz_point points[4];
            fz_quad q = JM_quad_from_py(quad);
            fz_pixmap *dst = NULL;
            points[0] = q.ul;
            points[1] = q.ur;
            points[2] = q.lr;
            points[3] = q.ll;

            fz_try(gctx) {
                dst = fz_warp_pixmap(gctx, (fz_pixmap *) $self, points, width, height);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) dst;
        }


        //----------------------------------------------------------------
        // shrink
        //----------------------------------------------------------------
        ENSURE_OWNERSHIP(shrink, """Divide width and height by 2**factor.
        E.g. factor=1 shrinks to 25% of original size (in place).""")
        void shrink(int factor)
        {
            if (factor < 1)
            {
                JM_Warning("ignoring shrink factor < 1");
                return;
            }
            fz_subsample_pixmap(gctx, (fz_pixmap *) $self, factor);
        }

        //----------------------------------------------------------------
        // apply gamma correction
        //----------------------------------------------------------------
        ENSURE_OWNERSHIP(gamma_with, """Apply correction with some float.
gamma=1 is a no-op.""")
        void gamma_with(float gamma)
        {
            if (!fz_pixmap_colorspace(gctx, (fz_pixmap *) $self))
            {
                JM_Warning("colorspace invalid for function");
                return;
            }
            fz_gamma_pixmap(gctx, (fz_pixmap *) $self, gamma);
        }

        //----------------------------------------------------------------
        // tint pixmap with color
        //----------------------------------------------------------------
        %pythonprepend tint_with
%{"""Tint colors with modifiers for black and white."""
EnsureOwnership(self)
if not self.colorspace or self.colorspace.n > 3:
    print("warning: colorspace invalid for function")
    return%}
        void tint_with(int black, int white)
        {
            fz_tint_pixmap(gctx, (fz_pixmap *) $self, black, white);
        }

        //-----------------------------------------------------------------
        // clear all of pixmap samples to 0x00 */
        //-----------------------------------------------------------------
        ENSURE_OWNERSHIP(clear_with, """Fill all color components with same value.""")
        void clear_with()
        {
            fz_clear_pixmap(gctx, (fz_pixmap *) $self);
        }

        //-----------------------------------------------------------------
        // clear total pixmap with value */
        //-----------------------------------------------------------------
        void clear_with(int value)
        {
            fz_clear_pixmap_with_value(gctx, (fz_pixmap *) $self, value);
        }

        //-----------------------------------------------------------------
        // clear pixmap rectangle with value
        //-----------------------------------------------------------------
        void clear_with(int value, PyObject *bbox)
        {
            JM_clear_pixmap_rect_with_value(gctx, (fz_pixmap *) $self, value, JM_irect_from_py(bbox));
        }

        //-----------------------------------------------------------------
        // copy pixmaps
        //-----------------------------------------------------------------
        FITZEXCEPTION(copy, !result)
        ENSURE_OWNERSHIP(copy, """Copy bbox from another Pixmap.""")
        PyObject *copy(struct Pixmap *src, PyObject *bbox)
        {
            fz_try(gctx) {
                fz_pixmap *pm = (fz_pixmap *) $self, *src_pix = (fz_pixmap *) src;
                if (!fz_pixmap_colorspace(gctx, src_pix)) {
                    RAISEPY(gctx, "cannot copy pixmap with NULL colorspace", PyExc_ValueError);
                }
                if (pm->alpha != src_pix->alpha) {
                    RAISEPY(gctx, "source and target alpha must be equal", PyExc_ValueError);
                }
                fz_copy_pixmap_rect(gctx, pm, src_pix, JM_irect_from_py(bbox), NULL);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //-----------------------------------------------------------------
        // set alpha values
        //-----------------------------------------------------------------
        FITZEXCEPTION(set_alpha, !result)
        ENSURE_OWNERSHIP(set_alpha, """Set alpha channel to values contained in a byte array.
If None, all alphas are 255.

Args:
    alphavalues: (bytes) with length (width * height) or 'None'.
    premultiply: (bool, True) premultiply colors with alpha values.
    opaque: (tuple, length colorspace.n) this color receives opacity 0.
    matte: (tuple, length colorspace.n)) preblending background color.
""")
        PyObject *set_alpha(PyObject *alphavalues=NULL, int premultiply=1, PyObject *opaque=NULL, PyObject *matte=NULL)
        {
            fz_buffer *res = NULL;
            fz_pixmap *pix = (fz_pixmap *) $self;
            unsigned char alpha = 0, m = 0;
            fz_try(gctx) {
                if (pix->alpha == 0) {
                    RAISEPY(gctx, MSG_PIX_NOALPHA, PyExc_ValueError);
                }
                size_t i, k, j;
                size_t n = fz_pixmap_colorants(gctx, pix);
                size_t w = (size_t) fz_pixmap_width(gctx, pix);
                size_t h = (size_t) fz_pixmap_height(gctx, pix);
                size_t balen = w * h * (n+1);
                int colors[4];  // make this color opaque
                int bgcolor[4];  // preblending background color
                int zero_out = 0, bground = 0;
                if (opaque && PySequence_Check(opaque) && PySequence_Size(opaque) == n) {
                    for (i = 0; i < n; i++) {
                        if (JM_INT_ITEM(opaque, i, &colors[i]) == 1) {
                            RAISEPY(gctx, "bad opaque components", PyExc_ValueError);
                        }
                    }
                    zero_out = 1;
                }
                if (matte && PySequence_Check(matte) && PySequence_Size(matte) == n) {
                    for (i = 0; i < n; i++) {
                        if (JM_INT_ITEM(matte, i, &bgcolor[i]) == 1) {
                            RAISEPY(gctx, "bad matte components", PyExc_ValueError);
                        }
                    }
                    bground = 1;
                }
                unsigned char *data = NULL;
                size_t data_len = 0;
                if (alphavalues && PyObject_IsTrue(alphavalues)) {
                    res = JM_BufferFromBytes(gctx, alphavalues);
                    data_len = fz_buffer_storage(gctx, res, &data);
                    if (data_len < w * h) {
                        RAISEPY(gctx, "bad alpha values", PyExc_ValueError);
                    }
                }
                i = k = j = 0;
                int data_fix = 255;
                while (i < balen) {
                    alpha = data[k];
                    if (zero_out) {
                        for (j = i; j < i+n; j++) {
                            if (pix->samples[j] != (unsigned char) colors[j - i]) {
                                data_fix = 255;
                                break;
                            } else {
                                data_fix = 0;
                            }
                        }
                    }
                    if (data_len) {
                        if (data_fix == 0) {
                            pix->samples[i+n] = 0;
                        } else {
                            pix->samples[i+n] = alpha;
                        }
                        if (premultiply && !bground) {
                            for (j = i; j < i+n; j++) {
                                pix->samples[j] = fz_mul255(pix->samples[j], alpha);
                            }
                        } else if (bground) {
                            for (j = i; j < i+n; j++) {
                                m = (unsigned char) bgcolor[j - i];
                                pix->samples[j] = m + fz_mul255((pix->samples[j] - m), alpha);
                            }
                        }
                    } else {
                        pix->samples[i+n] = data_fix;
                    }
                    i += n+1;
                    k += 1;
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //-----------------------------------------------------------------
        // Pixmap._tobytes
        //-----------------------------------------------------------------
        FITZEXCEPTION(_tobytes, !result)
        PyObject *_tobytes(int format)
        {
            fz_output *out = NULL;
            fz_buffer *res = NULL;
            PyObject *barray = NULL;
            fz_pixmap *pm = (fz_pixmap *) $self;
            fz_try(gctx) {
                size_t size = fz_pixmap_stride(gctx, pm) * pm->h;
                res = fz_new_buffer(gctx, size);
                out = fz_new_output_with_buffer(gctx, res);

                switch(format) {
                    case(1):
                        fz_write_pixmap_as_png(gctx, out, pm);
                        break;
                    case(2):
                        fz_write_pixmap_as_pnm(gctx, out, pm);
                        break;
                    case(3):
                        fz_write_pixmap_as_pam(gctx, out, pm);
                        break;
                    case(5):           // Adobe Photoshop Document
                        fz_write_pixmap_as_psd(gctx, out, pm);
                        break;
                    case(6):           // Postscript format
                        fz_write_pixmap_as_ps(gctx, out, pm);
                        break;
                    default:
                        fz_write_pixmap_as_png(gctx, out, pm);
                        break;
                }
                barray = JM_BinFromBuffer(gctx, res);
            }
            fz_always(gctx) {
                fz_drop_output(gctx, out);
                fz_drop_buffer(gctx, res);
            }

            fz_catch(gctx) {
                return NULL;
            }
            return barray;
        }

        %pythoncode %{
def tobytes(self, output="png"):
    """Convert to binary image stream of desired type.

    Can be used as input to GUI packages like tkinter.

    Args:
        output: (str) image type, default is PNG. Others are PNM, PGM, PPM,
                PBM, PAM, PSD, PS.
    Returns:
        Bytes object.
    """
    EnsureOwnership(self)
    valid_formats = {"png": 1, "pnm": 2, "pgm": 2, "ppm": 2, "pbm": 2,
                     "pam": 3, "tga": 4, "tpic": 4,
                     "psd": 5, "ps": 6}
    idx = valid_formats.get(output.lower(), 1)
    if self.alpha and idx in (2, 6):
        raise ValueError("'%s' cannot have alpha" % output)
    if self.colorspace and self.colorspace.n > 3 and idx in (1, 2, 4):
        raise ValueError("unsupported colorspace for '%s'" % output)
    barray = self._tobytes(idx)
    return barray
    %}


        //-----------------------------------------------------------------
        // output as PDF-OCR
        //-----------------------------------------------------------------
        FITZEXCEPTION(pdfocr_save, !result)
        %pythonprepend pdfocr_save %{
        """Save pixmap as an OCR-ed PDF page."""
        EnsureOwnership(self)
        if not TESSDATA_PREFIX:
            raise RuntimeError("No OCR support: TESSDATA_PREFIX not set")
        %}
        ENSURE_OWNERSHIP(pdfocr_save, )
        PyObject *pdfocr_save(PyObject *filename, int compress=1, char *language=NULL)
        {
            fz_pdfocr_options opts;
            memset(&opts, 0, sizeof opts);
            opts.compress = compress;
            if (language) {
                fz_strlcpy(opts.language, language, sizeof(opts.language));
            }
            fz_output *out = NULL;
            fz_pixmap *pix = (fz_pixmap *) $self;
            fz_try(gctx) {
                if (PyUnicode_Check(filename)) {
                    fz_save_pixmap_as_pdfocr(gctx, pix, (char *) PyUnicode_AsUTF8(filename), 0, &opts);
                } else {
                    out = JM_new_output_fileptr(gctx, filename);
                    fz_write_pixmap_as_pdfocr(gctx, out, pix, &opts);
                }
            }
            fz_always(gctx) {
                fz_drop_output(gctx, out);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        %pythoncode %{
        def pdfocr_tobytes(self, compress=True, language="eng"):
            """Save pixmap as an OCR-ed PDF page.

            Args:
                compress: (bool) compress, default 1 (True).
                language: (str) language(s) occurring on page, default "eng" (English),
                        multiples like "eng,ger" for English and German.
            Notes:
                On failure, make sure Tesseract is installed and you have set the
                environment variable "TESSDATA_PREFIX" to the folder containing your
                Tesseract's language support data.
            """
            if not TESSDATA_PREFIX:
                raise RuntimeError("No OCR support: TESSDATA_PREFIX not set")
            EnsureOwnership(self)
            from io import BytesIO
            bio = BytesIO()
            self.pdfocr_save(bio, compress=compress, language=language)
            return bio.getvalue()
        %}


        //-----------------------------------------------------------------
        // _writeIMG
        //-----------------------------------------------------------------
        FITZEXCEPTION(_writeIMG, !result)
        PyObject *_writeIMG(char *filename, int format)
        {
            fz_try(gctx) {
                fz_pixmap *pm = (fz_pixmap *) $self;
                switch(format) {
                    case(1):
                        fz_save_pixmap_as_png(gctx, pm, filename);
                        break;
                    case(2):
                        fz_save_pixmap_as_pnm(gctx, pm, filename);
                        break;
                    case(3):
                        fz_save_pixmap_as_pam(gctx, pm, filename);
                        break;
                    case(5): // Adobe Photoshop Document
                        fz_save_pixmap_as_psd(gctx, pm, filename);
                        break;
                    case(6): // Postscript
                        fz_save_pixmap_as_ps(gctx, pm, filename, 0);
                        break;
                    default:
                        fz_save_pixmap_as_png(gctx, pm, filename);
                        break;
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }
        %pythoncode %{
def save(self, filename, output=None):
    """Output as image in format determined by filename extension.

    Args:
        output: (str) only use to overrule filename extension. Default is PNG.
                Others are PNM, PGM, PPM, PBM, PAM, PSD, PS.
    """
    EnsureOwnership(self)
    valid_formats = {"png": 1, "pnm": 2, "pgm": 2, "ppm": 2, "pbm": 2,
                     "pam": 3, "tga": 4, "tpic": 4,
                     "psd": 5, "ps": 6}
    if type(filename) is str:
        pass
    elif hasattr(filename, "absolute"):
        filename = str(filename)
    elif hasattr(filename, "name"):
        filename = filename.name
    if output is None:
        _, ext = os.path.splitext(filename)
        output = ext[1:]

    idx = valid_formats.get(output.lower(), 1)

    if self.alpha and idx in (2, 6):
        raise ValueError("'%s' cannot have alpha" % output)
    if self.colorspace and self.colorspace.n > 3 and idx in (1, 2, 4):
        raise ValueError("unsupported colorspace for '%s'" % output)

    return self._writeIMG(filename, idx)

def pil_save(self, *args, **kwargs):
    """Write to image file using Pillow.

    Args are passed to Pillow's Image.save method, see their documentation.
    Use instead of save when other output formats are desired.
    """
    EnsureOwnership(self)
    try:
        from PIL import Image
    except ImportError:
        print("PIL/Pillow not installed")
        raise

    cspace = self.colorspace
    if cspace is None:
        mode = "L"
    elif cspace.n == 1:
        mode = "L" if self.alpha == 0 else "LA"
    elif cspace.n == 3:
        mode = "RGB" if self.alpha == 0 else "RGBA"
    else:
        mode = "CMYK"

    img = Image.frombytes(mode, (self.width, self.height), self.samples)

    if "dpi" not in kwargs.keys():
        kwargs["dpi"] = (self.xres, self.yres)

    img.save(*args, **kwargs)

def pil_tobytes(self, *args, **kwargs):
    """Convert to binary image stream using pillow.

    Args are passed to Pillow's Image.save method, see their documentation.
    Use instead of 'tobytes' when other output formats are needed.
    """
    EnsureOwnership(self)
    from io import BytesIO
    bytes_out = BytesIO()
    self.pil_save(bytes_out, *args, **kwargs)
    return bytes_out.getvalue()

        %}
        //-----------------------------------------------------------------
        // invert_irect
        //-----------------------------------------------------------------
        %pythonprepend invert_irect
        %{"""Invert the colors inside a bbox."""%}
        PyObject *invert_irect(PyObject *bbox = NULL)
        {
            fz_pixmap *pm = (fz_pixmap *) $self;
            if (!fz_pixmap_colorspace(gctx, pm))
                {
                    JM_Warning("ignored for stencil pixmap");
                    return JM_BOOL(0);
                }

            fz_irect r = JM_irect_from_py(bbox);
            if (fz_is_infinite_irect(r))
                r = fz_pixmap_bbox(gctx, pm);

            return JM_BOOL(JM_invert_pixmap_rect(gctx, pm, r));
        }

        //-----------------------------------------------------------------
        // get one pixel as a list
        //-----------------------------------------------------------------
        FITZEXCEPTION(pixel, !result)
        ENSURE_OWNERSHIP(pixel, """Get color tuple of pixel (x, y).
Includes alpha byte if applicable.""")
        PyObject *pixel(int x, int y)
        {
            PyObject *p = NULL;
            fz_try(gctx) {
                fz_pixmap *pm = (fz_pixmap *) $self;
                if (!INRANGE(x, 0, pm->w - 1) || !INRANGE(y, 0, pm->h - 1)) {
                    RAISEPY(gctx, MSG_PIXEL_OUTSIDE, PyExc_ValueError);
                }
                int n = pm->n;
                int stride = fz_pixmap_stride(gctx, pm);
                int j, i = stride * y + n * x;
                p = PyTuple_New(n);
                for (j = 0; j < n; j++) {
                    PyTuple_SET_ITEM(p, j, Py_BuildValue("i", pm->samples[i + j]));
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return p;
        }

        //-----------------------------------------------------------------
        // Set one pixel to a given color tuple
        //-----------------------------------------------------------------
        FITZEXCEPTION(set_pixel, !result)
        ENSURE_OWNERSHIP(set_pixel, """Set color of pixel (x, y).""")
        PyObject *set_pixel(int x, int y, PyObject *color)
        {
            fz_try(gctx) {
                fz_pixmap *pm = (fz_pixmap *) $self;
                if (!INRANGE(x, 0, pm->w - 1) || !INRANGE(y, 0, pm->h - 1)) {
                    RAISEPY(gctx, MSG_PIXEL_OUTSIDE, PyExc_ValueError);
                }
                int n = pm->n;
                if (!PySequence_Check(color) || PySequence_Size(color) != n) {
                    RAISEPY(gctx, MSG_BAD_COLOR_SEQ, PyExc_ValueError);
                }
                int i, j;
                unsigned char c[5];
                for (j = 0; j < n; j++) {
                    if (JM_INT_ITEM(color, j, &i) == 1) {
                        RAISEPY(gctx, MSG_BAD_COLOR_SEQ, PyExc_ValueError);
                    }
                    if (!INRANGE(i, 0, 255)) {
                        RAISEPY(gctx, MSG_BAD_COLOR_SEQ, PyExc_ValueError);
                    }
                    c[j] = (unsigned char) i;
                }
                int stride = fz_pixmap_stride(gctx, pm);
                i = stride * y + n * x;
                for (j = 0; j < n; j++) {
                    pm->samples[i + j] = c[j];
                }
            }
            fz_catch(gctx) {
                PyErr_Clear();
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //-----------------------------------------------------------------
        // Set Pixmap origin
        //-----------------------------------------------------------------
        ENSURE_OWNERSHIP(set_origin, """Set top-left coordinates.""")
        PyObject *set_origin(int x, int y)
        {
            fz_pixmap *pm = (fz_pixmap *) $self;
            pm->x = x;
            pm->y = y;
            Py_RETURN_NONE;
        }

        ENSURE_OWNERSHIP(set_dpi, """Set resolution in both dimensions.""")
        PyObject *set_dpi(int xres, int yres)
        {
            fz_pixmap *pm = (fz_pixmap *) $self;
            pm->xres = xres;
            pm->yres = yres;
            Py_RETURN_NONE;
        }

        //-----------------------------------------------------------------
        // Set a rect to a given color tuple
        //-----------------------------------------------------------------
        FITZEXCEPTION(set_rect, !result)
        ENSURE_OWNERSHIP(set_rect, """Set color of all pixels in bbox.""")
        PyObject *set_rect(PyObject *bbox, PyObject *color)
        {
            PyObject *rc = NULL;
            fz_try(gctx) {
                fz_pixmap *pm = (fz_pixmap *) $self;
                Py_ssize_t j, n = (Py_ssize_t) pm->n;
                if (!PySequence_Check(color) || PySequence_Size(color) != n) {
                    RAISEPY(gctx, MSG_BAD_COLOR_SEQ, PyExc_ValueError);
                }
                unsigned char c[5];
                int i;
                for (j = 0; j < n; j++) {
                    if (JM_INT_ITEM(color, j, &i) == 1) {
                        RAISEPY(gctx, MSG_BAD_COLOR_SEQ, PyExc_ValueError);
                    }
                    if (!INRANGE(i, 0, 255)) {
                        RAISEPY(gctx, MSG_BAD_COLOR_SEQ, PyExc_ValueError);
                    }
                    c[j] = (unsigned char) i;
                }
                i = JM_fill_pixmap_rect_with_color(gctx, pm, c, JM_irect_from_py(bbox));
                rc = JM_BOOL(i);
            }
            fz_catch(gctx) {
                PyErr_Clear();
                return NULL;
            }
            return rc;
        }

        //-----------------------------------------------------------------
        // check if monochrome
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(is_monochrome, """Check if pixmap is monochrome.""")
        PyObject *is_monochrome()
        {
            return JM_BOOL(fz_is_pixmap_monochrome(gctx, (fz_pixmap *) $self));
        }

        //-----------------------------------------------------------------
        // check if unicolor (only one color there)
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(is_unicolor, """Check if pixmap has only one color.""")
        PyObject *is_unicolor()
        {
            fz_pixmap *pm = (fz_pixmap *) $self;
            size_t i, n = pm->n, count = pm->w * pm->h * n;
            unsigned char *s = pm->samples;
            for (i = n; i < count; i += n) {
                if (memcmp(s, s + i, n) != 0) {
                    Py_RETURN_FALSE;
                }
            }
            Py_RETURN_TRUE;
        }


        //-----------------------------------------------------------------
        // count each pixmap color
        //-----------------------------------------------------------------
        FITZEXCEPTION(color_count, !result)
        ENSURE_OWNERSHIP(color_count, """Return count of each color.""")
        PyObject *color_count(int colors=0, PyObject *clip=NULL)
        {
            fz_pixmap *pm = (fz_pixmap *) $self;
            PyObject *rc = NULL;
            fz_try(gctx) {
                rc = JM_color_count(gctx, pm, clip);
                if (!rc) {
                    RAISEPY(gctx, MSG_COLOR_COUNT_FAILED, PyExc_RuntimeError);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            if (!colors) {
                Py_ssize_t len = PyDict_Size(rc);
                Py_DECREF(rc);
                return PyLong_FromSsize_t(len);
            }
            return rc;
        }

        %pythoncode %{
        def color_topusage(self, clip=None):
            """Return most frequent color and its usage ratio."""
            EnsureOwnership(self)
            allpixels = 0
            cnt = 0
            for pixel, count in self.color_count(colors=True,clip=clip).items():
                allpixels += count
                if count > cnt:
                    cnt = count
                    maxpixel = pixel
            return (cnt / allpixels, maxpixel)

        %}
        /*
        //-----------------------------------------------------------------
        // percentage of top color
        //-----------------------------------------------------------------
        FITZEXCEPTION(color_topusage, !result)
        %pythonprepend color_topusage %{"""Return most frequent color and its ratio."""%}
        PyObject *color_topusage(PyObject *clip=NULL)
        {
            fz_pixmap *pm = (fz_pixmap *) $self;
            PyObject *rc = NULL, *coloritems = NULL, *color=NULL;
            long items, maxcount=0, cnt;
            PyObject *result=NULL;
            fz_try(gctx) {
                char maxpixel[10];
                rc = JM_color_count(gctx, pm, clip);
                if (!rc) {
                    RAISEPY(gctx, MSG_COLOR_COUNT_FAILED, PyExc_RuntimeError);
                }
                fz_irect irect = fz_intersect_irect(fz_pixmap_bbox(gctx, pm),
                                 fz_round_rect(JM_rect_from_py(clip)));
                items = (long) (irect.x1 - irect.x0) * (irect.y1 - irect.y0);
                coloritems = PyDict_Items(rc);
                if (PyErr_Occurred()) {
                    RAISEPY(gctx, "get color items failed", PyExc_RuntimeError);
                }
                Py_ssize_t i, len = PyList_Size(coloritems);
                for (i = 0; i < len; i++) {
                    color = PyList_GetItem(coloritems, i);
                    cnt = PyLong_AsLong(PyTuple_GET_ITEM(color, 1));
                    if (cnt > maxcount) {
                        maxcount = cnt;
                        memcpy(maxpixel, PyBytes_AS_STRING(PyTuple_GET_ITEM(color, 0)), pm->n);
                    }
                }
                result = PyTuple_New(2);
                PyTuple_SET_ITEM(result, 0,
                                 PyFloat_FromDouble((double) maxcount / (double) items));
                PyTuple_SET_ITEM(result, 1,
                                 PyBytes_FromStringAndSize(maxpixel, pm->n));
            }
            fz_always(gctx) {
                Py_XDECREF(rc);
                Py_XDECREF(coloritems);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return result;
        }
        */

        //-----------------------------------------------------------------
        // MD5 digest of pixmap
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(digest, """MD5 digest of pixmap (bytes).""")
        PyObject *digest()
        {
            unsigned char digest[16];
            fz_md5_pixmap(gctx, (fz_pixmap *) $self, digest);
            return PyBytes_FromStringAndSize(digest, 16);
        }

        //-----------------------------------------------------------------
        // get length of one image row
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(stride, """Length of one image line (width * n).""")
        PyObject *stride()
        {
            return PyLong_FromSize_t((size_t) fz_pixmap_stride(gctx, (fz_pixmap *) $self));
        }

        //-----------------------------------------------------------------
        // x, y, width, height, xres, yres, n
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(xres, """Resolution in x direction.""")
        int xres()
        {
            fz_pixmap *this_pix = (fz_pixmap *) $self;
            return this_pix->xres;
        }

        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(yres, """Resolution in y direction.""")
        int yres()
        {
            fz_pixmap *this_pix = (fz_pixmap *) $self;
            return this_pix->yres;
        }

        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(w, """The width.""")
        PyObject *w()
        {
            return PyLong_FromSize_t((size_t) fz_pixmap_width(gctx, (fz_pixmap *) $self));
        }

        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(h, """The height.""")
        PyObject *h()
        {
            return PyLong_FromSize_t((size_t) fz_pixmap_height(gctx, (fz_pixmap *) $self));
        }

        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(x, """x component of Pixmap origin.""")
        int x()
        {
            return fz_pixmap_x(gctx, (fz_pixmap *) $self);
        }

        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(y, """y component of Pixmap origin.""")
        int y()
        {
            return fz_pixmap_y(gctx, (fz_pixmap *) $self);
        }

        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(n, """The size of one pixel.""")
        int n()
        {
            return fz_pixmap_components(gctx, (fz_pixmap *) $self);
        }

        //-----------------------------------------------------------------
        // check alpha channel
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(alpha, """Indicates presence of alpha channel.""")
        int alpha()
        {
            return fz_pixmap_alpha(gctx, (fz_pixmap *) $self);
        }

        //-----------------------------------------------------------------
        // get colorspace of pixmap
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(colorspace, """Pixmap Colorspace.""")
        struct Colorspace *colorspace()
        {
            return (struct Colorspace *) fz_pixmap_colorspace(gctx, (fz_pixmap *) $self);
        }

        //-----------------------------------------------------------------
        // return irect of pixmap
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(irect, """Pixmap bbox - an IRect object.""")
        %pythonappend irect %{val = IRect(val)%}
        PyObject *irect()
        {
            return JM_py_from_irect(fz_pixmap_bbox(gctx, (fz_pixmap *) $self));
        }

        //-----------------------------------------------------------------
        // return size of pixmap
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(size, """Pixmap size.""")
        PyObject *size()
        {
            return PyLong_FromSize_t(fz_pixmap_size(gctx, (fz_pixmap *) $self));
        }

        //-----------------------------------------------------------------
        // samples
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(samples_mv, """Pixmap samples memoryview.""")
        PyObject *samples_mv()
        {
            fz_pixmap *pm = (fz_pixmap *) $self;
            Py_ssize_t s = (Py_ssize_t) pm->w;
            s *= pm->h;
            s *= pm->n;
            return PyMemoryView_FromMemory((char *) pm->samples, s, PyBUF_READ);
        }


        %pythoncode %{@property%}
        ENSURE_OWNERSHIP(samples_ptr, """Pixmap samples pointer.""")
        PyObject *samples_ptr()
        {
            fz_pixmap *pm = (fz_pixmap *) $self;
            return PyLong_FromVoidPtr((void *) pm->samples);
        }

        %pythoncode %{
        @property
        def samples(self)->bytes:
            return bytes(self.samples_mv)

        width  = w
        height = h

        def __len__(self):
            return self.size

        def __repr__(self):
            EnsureOwnership(self)
            if not type(self) is Pixmap: return
            if self.colorspace:
                return "Pixmap(%s, %s, %s)" % (self.colorspace.name, self.irect, self.alpha)
            else:
                return "Pixmap(%s, %s, %s)" % ('None', self.irect, self.alpha)

        def __enter__(self):
            return self

        def __exit__(self, *args):
            if getattr(self, "thisown", False):
                self.__swig_destroy__(self)

        def __del__(self):
            if not type(self) is Pixmap:
                return
            if getattr(self, "thisown", False):
                self.__swig_destroy__(self)

        %}
    }
};

/* fz_colorspace */
struct Colorspace
{
    %extend {
        ~Colorspace()
        {
            DEBUGMSG1("Colorspace");
            fz_colorspace *this_cs = (fz_colorspace *) $self;
            fz_drop_colorspace(gctx, this_cs);
            DEBUGMSG2;
        }

        %pythonprepend Colorspace
        %{"""Supported are GRAY, RGB and CMYK."""%}
        Colorspace(int type)
        {
            fz_colorspace *cs = NULL;
            switch(type) {
                case CS_GRAY:
                    cs = fz_device_gray(gctx);
                    break;
                case CS_CMYK:
                    cs = fz_device_cmyk(gctx);
                    break;
                case CS_RGB:
                default:
                    cs = fz_device_rgb(gctx);
                    break;
            }
            return (struct Colorspace *) cs;
        }
        //-----------------------------------------------------------------
        // number of bytes to define color of one pixel
        //-----------------------------------------------------------------
        %pythoncode %{@property%}
        %pythonprepend n %{"""Size of one pixel."""%}
        PyObject *n()
        {
            return Py_BuildValue("i", fz_colorspace_n(gctx, (fz_colorspace *) $self));
        }

        //-----------------------------------------------------------------
        // name of colorspace
        //-----------------------------------------------------------------
        PyObject *_name()
        {
            return JM_UnicodeFromStr(fz_colorspace_name(gctx, (fz_colorspace *) $self));
        }

        %pythoncode %{
        @property
        def name(self):
            """Name of the Colorspace."""

            if self.n == 1:
                return csGRAY._name()
            elif self.n == 3:
                return csRGB._name()
            elif self.n == 4:
                return csCMYK._name()
            return self._name()

        def __repr__(self):
            x = ("", "GRAY", "", "RGB", "CMYK")[self.n]
            return "Colorspace(CS_%s) - %s" % (x, self.name)
        %}
    }
};


/* fz_device wrapper */
%rename(Device) DeviceWrapper;
struct DeviceWrapper
{
    %extend {
        FITZEXCEPTION(DeviceWrapper, !result)
        DeviceWrapper(struct Pixmap *pm, PyObject *clip) {
            struct DeviceWrapper *dw = NULL;
            fz_try(gctx) {
                dw = (struct DeviceWrapper *)calloc(1, sizeof(struct DeviceWrapper));
                fz_irect bbox = JM_irect_from_py(clip);
                if (fz_is_infinite_irect(bbox))
                    dw->device = fz_new_draw_device(gctx, fz_identity, (fz_pixmap *) pm);
                else
                    dw->device = fz_new_draw_device_with_bbox(gctx, fz_identity, (fz_pixmap *) pm, &bbox);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return dw;
        }
        DeviceWrapper(struct DisplayList *dl) {
            struct DeviceWrapper *dw = NULL;
            fz_try(gctx) {
                dw = (struct DeviceWrapper *)calloc(1, sizeof(struct DeviceWrapper));
                dw->device = fz_new_list_device(gctx, (fz_display_list *) dl);
                dw->list = (fz_display_list *) dl;
                fz_keep_display_list(gctx, (fz_display_list *) dl);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return dw;
        }
        DeviceWrapper(struct TextPage *tp, int flags = 0) {
            struct DeviceWrapper *dw = NULL;
            fz_try(gctx) {
                dw = (struct DeviceWrapper *)calloc(1, sizeof(struct DeviceWrapper));
                fz_stext_options opts = { 0 };
                opts.flags = flags;
                dw->device = fz_new_stext_device(gctx, (fz_stext_page *) tp, &opts);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return dw;
        }
        ~DeviceWrapper() {
            fz_display_list *list = $self->list;
            DEBUGMSG1("Device");
            fz_close_device(gctx, $self->device);
            fz_drop_device(gctx, $self->device);
            DEBUGMSG2;
            if(list)
            {
                DEBUGMSG1("DisplayList after Device");
                fz_drop_display_list(gctx, list);
                DEBUGMSG2;
            }
        }
    }
};

//------------------------------------------------------------------------
// fz_outline
//------------------------------------------------------------------------
%nodefaultctor;
struct Outline {
    %immutable;
    %extend {
        ~Outline()
        {
            DEBUGMSG1("Outline");
            fz_outline *this_ol = (fz_outline *) $self;
            fz_drop_outline(gctx, this_ol);
            DEBUGMSG2;
        }

        %pythoncode %{@property%}
        PyObject *uri()
        {
            fz_outline *ol = (fz_outline *) $self;
            return JM_UnicodeFromStr(ol->uri);
        }

        /* `%newobject foo;` is equivalent to wrapping C fn in python like:
            ret = _foo()
            ret.thisown=true
            return ret.
        */
        %newobject next;
        %pythoncode %{@property%}
        struct Outline *next()
        {
            fz_outline *ol = (fz_outline *) $self;
            fz_outline *next_ol = ol->next;
            if (!next_ol) return NULL;
            next_ol = fz_keep_outline(gctx, next_ol);
            return (struct Outline *) next_ol;
        }

        %newobject down;
        %pythoncode %{@property%}
        struct Outline *down()
        {
            fz_outline *ol = (fz_outline *) $self;
            fz_outline *down_ol = ol->down;
            if (!down_ol) return NULL;
            down_ol = fz_keep_outline(gctx, down_ol);
            return (struct Outline *) down_ol;
        }

        %pythoncode %{@property%}
        PyObject *is_external()
        {
            fz_outline *ol = (fz_outline *) $self;
            if (!ol->uri) Py_RETURN_FALSE;
            return JM_BOOL(fz_is_external_link(gctx, ol->uri));
        }

        %pythoncode %{@property%}
        int page()
        {
            fz_outline *ol = (fz_outline *) $self;
            return ol->page.page;
        }

        %pythoncode %{@property%}
        float x()
        {
            fz_outline *ol = (fz_outline *) $self;
            return ol->x;
        }

        %pythoncode %{@property%}
        float y()
        {
            fz_outline *ol = (fz_outline *) $self;
            return ol->y;
        }

        %pythoncode %{@property%}
        PyObject *title()
        {
            fz_outline *ol = (fz_outline *) $self;
            return JM_UnicodeFromStr(ol->title);
        }

        %pythoncode %{@property%}
        PyObject *is_open()
        {
            fz_outline *ol = (fz_outline *) $self;
            return JM_BOOL(ol->is_open);
        }

        %pythoncode %{
        @property
        def dest(self):
            '''outline destination details'''
            return linkDest(self, None)
        %}
    }
};
%clearnodefaultctor;


//------------------------------------------------------------------------
// Annotation
//------------------------------------------------------------------------
%nodefaultctor;
struct Annot
{
    %extend
    {
        ~Annot()
        {
            DEBUGMSG1("Annot");
            pdf_annot *this_annot = (pdf_annot *) $self;
            pdf_drop_annot(gctx, this_annot);
            DEBUGMSG2;
        }
        //----------------------------------------------------------------
        // annotation rectangle
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(rect, """annotation rectangle""")
        %pythonappend rect %{
        val = Rect(val)
        val *= self.parent.derotation_matrix
        %}
        PyObject *
        rect()
        {
            fz_rect r = pdf_bound_annot(gctx, (pdf_annot *) $self);
            return JM_py_from_rect(r);
        }

        //----------------------------------------------------------------
        // annotation get xref number
        //----------------------------------------------------------------
        PARENTCHECK(xref, """annotation xref""")
        %pythoncode %{@property%}
        PyObject *xref()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            return Py_BuildValue("i", pdf_to_num(gctx, annot_obj));
        }

        //----------------------------------------------------------------
        // annotation get IRT xref number
        //----------------------------------------------------------------
        PARENTCHECK(irt_xref, """annotation IRT xref""")
        %pythoncode %{@property%}
        PyObject *irt_xref()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            pdf_obj *irt = pdf_dict_get(gctx, annot_obj, PDF_NAME(IRT));
            if (!irt) return PyLong_FromLong(0);
            return PyLong_FromLong((long) pdf_to_num(gctx, irt));
        }

        //----------------------------------------------------------------
        // annotation set IRT xref number
        //----------------------------------------------------------------
        FITZEXCEPTION(set_irt_xref, !result)
        PARENTCHECK(set_irt_xref, """Set annotation IRT xref""")
        PyObject *set_irt_xref(int xref)
        {
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_page *page = pdf_annot_page(gctx, annot);
                if (!INRANGE(xref, 1, pdf_xref_len(gctx, page->doc) - 1)) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                pdf_obj *irt = pdf_new_indirect(gctx, page->doc, xref, 0);
                pdf_obj *subt = pdf_dict_get(gctx, irt, PDF_NAME(Subtype));
                int irt_subt = pdf_annot_type_from_string(gctx, pdf_to_name(gctx, subt));
                if (irt_subt < 0) {
                    pdf_drop_obj(gctx, irt);
                    RAISEPY(gctx, MSG_IS_NO_ANNOT, PyExc_ValueError);
                }
                pdf_dict_put_drop(gctx, annot_obj, PDF_NAME(IRT), irt);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------------------------------------
        // annotation get AP/N Matrix
        //----------------------------------------------------------------
        PARENTCHECK(apn_matrix, """annotation appearance matrix""")
        %pythonappend apn_matrix %{val = Matrix(val)%}
        %pythoncode %{@property%}
        PyObject *
        apn_matrix()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            pdf_obj *ap = pdf_dict_getl(gctx, annot_obj, PDF_NAME(AP),
                            PDF_NAME(N), NULL);
            if (!ap)
                return JM_py_from_matrix(fz_identity);
            fz_matrix mat = pdf_dict_get_matrix(gctx, ap, PDF_NAME(Matrix));
            return JM_py_from_matrix(mat);
        }


        //----------------------------------------------------------------
        // annotation get AP/N BBox
        //----------------------------------------------------------------
        PARENTCHECK(apn_bbox, """annotation appearance bbox""")
        %pythonappend apn_bbox %{
        val = Rect(val) * self.parent.transformation_matrix
        val *= self.parent.derotation_matrix%}
        %pythoncode %{@property%}
        PyObject *
        apn_bbox()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            pdf_obj *ap = pdf_dict_getl(gctx, annot_obj, PDF_NAME(AP),
                            PDF_NAME(N), NULL);
            if (!ap)
                return JM_py_from_rect(fz_infinite_rect);
            fz_rect rect = pdf_dict_get_rect(gctx, ap, PDF_NAME(BBox));
            return JM_py_from_rect(rect);
        }


        //----------------------------------------------------------------
        // annotation set AP/N Matrix
        //----------------------------------------------------------------
        FITZEXCEPTION(set_apn_matrix, !result)
        PARENTCHECK(set_apn_matrix, """Set annotation appearance matrix.""")
        PyObject *
        set_apn_matrix(PyObject *matrix)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            fz_try(gctx) {
                pdf_obj *ap = pdf_dict_getl(gctx, annot_obj, PDF_NAME(AP),
                                                PDF_NAME(N), NULL);
                if (!ap) {
                    RAISEPY(gctx, MSG_BAD_APN, PyExc_RuntimeError);
                }
                fz_matrix mat = JM_matrix_from_py(matrix);
                pdf_dict_put_matrix(gctx, ap, PDF_NAME(Matrix), mat);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation set AP/N BBox
        //----------------------------------------------------------------
        FITZEXCEPTION(set_apn_bbox, !result)
        %pythonprepend set_apn_bbox %{
        """Set annotation appearance bbox."""

        CheckParent(self)
        page = self.parent
        rot = page.rotation_matrix
        mat = page.transformation_matrix
        bbox *= rot * ~mat
        %}
        PyObject *
        set_apn_bbox(PyObject *bbox)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            fz_try(gctx) {
                pdf_obj *ap = pdf_dict_getl(gctx, annot_obj, PDF_NAME(AP),
                                                PDF_NAME(N), NULL);
                if (!ap) {
                    RAISEPY(gctx, MSG_BAD_APN, PyExc_RuntimeError);
                }
                fz_rect rect = JM_rect_from_py(bbox);
                pdf_dict_put_rect(gctx, ap, PDF_NAME(BBox), rect);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation show blend mode (/BM)
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(blendmode, """annotation BlendMode""")
        PyObject *blendmode()
        {
            PyObject *blend_mode = NULL;
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_obj *obj, *obj1, *obj2;
                obj = pdf_dict_get(gctx, annot_obj, PDF_NAME(BM));
                if (obj) {
                    blend_mode = JM_UnicodeFromStr(pdf_to_name(gctx, obj));
                    goto finished;
                }
                // loop through the /AP/N/Resources/ExtGState objects
                obj = pdf_dict_getl(gctx, annot_obj, PDF_NAME(AP),
                    PDF_NAME(N),
                    PDF_NAME(Resources),
                    PDF_NAME(ExtGState),
                    NULL);

                if (pdf_is_dict(gctx, obj)) {
                    int i, j, m, n = pdf_dict_len(gctx, obj);
                    for (i = 0; i < n; i++) {
                        obj1 = pdf_dict_get_val(gctx, obj, i);
                        if (pdf_is_dict(gctx, obj1)) {
                            m = pdf_dict_len(gctx, obj1);
                            for (j = 0; j < m; j++) {
                                obj2 = pdf_dict_get_key(gctx, obj1, j);
                                if (pdf_objcmp(gctx, obj2, PDF_NAME(BM)) == 0) {
                                    blend_mode = JM_UnicodeFromStr(pdf_to_name(gctx, pdf_dict_get_val(gctx, obj1, j)));
                                    goto finished;
                                }
                            }
                        }
                    }
                }
                finished:;
            }
            fz_catch(gctx) {
                Py_RETURN_NONE;
            }
            if (blend_mode) return blend_mode;
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation set blend mode (/BM)
        //----------------------------------------------------------------
        FITZEXCEPTION(set_blendmode, !result)
        PARENTCHECK(set_blendmode, """Set annotation BlendMode.""")
        PyObject *
        set_blendmode(char *blend_mode)
        {
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_dict_put_name(gctx, annot_obj, PDF_NAME(BM), blend_mode);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation get optional content
        //----------------------------------------------------------------
        FITZEXCEPTION(get_oc, !result)
        PARENTCHECK(get_oc, """Get annotation optional content reference.""")
        PyObject *get_oc()
        {
            int oc = 0;
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_obj *obj = pdf_dict_get(gctx, annot_obj, PDF_NAME(OC));
                if (obj) {
                    oc = pdf_to_num(gctx, obj);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", oc);
        }


        //----------------------------------------------------------------
        // annotation set open
        //----------------------------------------------------------------
        FITZEXCEPTION(set_open, !result)
        PARENTCHECK(set_open, """Set 'open' status of annotation or its Popup.""")
        PyObject *set_open(int is_open)
        {
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_set_annot_is_open(gctx, annot, is_open);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation inquiry: is open
        //----------------------------------------------------------------
        FITZEXCEPTION(is_open, !result)
        PARENTCHECK(is_open, """Get 'open' status of annotation or its Popup.""")
        %pythoncode %{@property%}
        PyObject *
        is_open()
        {
            int is_open;
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                is_open = pdf_annot_is_open(gctx, annot);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return JM_BOOL(is_open);
        }


        //----------------------------------------------------------------
        // annotation inquiry: has Popup
        //----------------------------------------------------------------
        FITZEXCEPTION(has_popup, !result)
        PARENTCHECK(has_popup, """Check if annotation has a Popup.""")
        %pythoncode %{@property%}
        PyObject *
        has_popup()
        {
            int has_popup = 0;
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_obj *obj = pdf_dict_get(gctx, annot_obj, PDF_NAME(Popup));
                if (obj) has_popup = 1;
            }
            fz_catch(gctx) {
                return NULL;
            }
            return JM_BOOL(has_popup);
        }


        //----------------------------------------------------------------
        // annotation set Popup
        //----------------------------------------------------------------
        FITZEXCEPTION(set_popup, !result)
        PARENTCHECK(set_popup, """Create annotation 'Popup' or update rectangle.""")
        PyObject *
        set_popup(PyObject *rect)
        {
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_page *pdfpage = pdf_annot_page(gctx, annot);
                fz_matrix rot = JM_rotate_page_matrix(gctx, pdfpage);
                fz_rect r = fz_transform_rect(JM_rect_from_py(rect), rot);
                pdf_set_annot_popup(gctx, annot, r);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------------------------------------
        // annotation Popup rectangle
        //----------------------------------------------------------------
        FITZEXCEPTION(popup_rect, !result)
        PARENTCHECK(popup_rect, """annotation 'Popup' rectangle""")
        %pythoncode %{@property%}
        %pythonappend popup_rect %{
        val = Rect(val) * self.parent.transformation_matrix
        val *= self.parent.derotation_matrix%}
        PyObject *
        popup_rect()
        {
            fz_rect rect = fz_infinite_rect;
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_obj *obj = pdf_dict_get(gctx, annot_obj, PDF_NAME(Popup));
                if (obj) {
                    rect = pdf_dict_get_rect(gctx, obj, PDF_NAME(Rect));
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return JM_py_from_rect(rect);
        }


        //----------------------------------------------------------------
        // annotation Popup xref
        //----------------------------------------------------------------
        FITZEXCEPTION(popup_xref, !result)
        PARENTCHECK(popup_xref, """annotation 'Popup' xref""")
        %pythoncode %{@property%}
        PyObject *
        popup_xref()
        {
            int xref = 0;
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_obj *obj = pdf_dict_get(gctx, annot_obj, PDF_NAME(Popup));
                if (obj) {
                    xref = pdf_to_num(gctx, obj);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", xref);
        }


        //----------------------------------------------------------------
        // annotation set optional content
        //----------------------------------------------------------------
        FITZEXCEPTION(set_oc, !result)
        PARENTCHECK(set_oc, """Set / remove annotation OC xref.""")
        PyObject *
        set_oc(int oc=0)
        {
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                if (!oc) {
                    pdf_dict_del(gctx, annot_obj, PDF_NAME(OC));
                } else {
                    JM_add_oc_object(gctx, pdf_get_bound_document(gctx, annot_obj), annot_obj, oc);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        %pythoncode%{@property%}
        %pythonprepend language %{"""annotation language"""%}
        PyObject *language()
        {
            pdf_annot *this_annot = (pdf_annot *) $self;
            fz_text_language lang = pdf_annot_language(gctx, this_annot);
            char buf[8];
            if (lang == FZ_LANG_UNSET) Py_RETURN_NONE;
            return Py_BuildValue("s", fz_string_from_text_language(buf, lang));
        }

        //----------------------------------------------------------------
        // annotation set language (/Lang)
        //----------------------------------------------------------------
        FITZEXCEPTION(set_language, !result)
        PARENTCHECK(set_language, """Set annotation language.""")
        PyObject *set_language(char *language=NULL)
        {
            pdf_annot *this_annot = (pdf_annot *) $self;
            fz_try(gctx) {
                fz_text_language lang;
                if (!language)
                    lang = FZ_LANG_UNSET;
                else
                    lang = fz_text_language_from_string(language);
                pdf_set_annot_language(gctx, this_annot, lang);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation get decompressed appearance stream source
        //----------------------------------------------------------------
        FITZEXCEPTION(_getAP, !result)
        PyObject *
        _getAP()
        {
            PyObject *r = NULL;
            fz_buffer *res = NULL;
            fz_var(res);
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_obj *ap = pdf_dict_getl(gctx, annot_obj, PDF_NAME(AP),
                                              PDF_NAME(N), NULL);

                if (pdf_is_stream(gctx, ap))  res = pdf_load_stream(gctx, ap);
                if (res) {
                    r = JM_BinFromBuffer(gctx, res);
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                Py_RETURN_NONE;
            }
            if (!r) Py_RETURN_NONE;
            return r;
        }

        //----------------------------------------------------------------
        // annotation update /AP stream
        //----------------------------------------------------------------
        FITZEXCEPTION(_setAP, !result)
        PyObject *
        _setAP(PyObject *buffer, int rect=0)
        {
            fz_buffer *res = NULL;
            fz_var(res);
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_page *page = pdf_annot_page(gctx, annot);
                pdf_obj *apobj = pdf_dict_getl(gctx, annot_obj, PDF_NAME(AP),
                                              PDF_NAME(N), NULL);
                if (!apobj) {
                    RAISEPY(gctx, MSG_BAD_APN, PyExc_RuntimeError);
                }
                if (!pdf_is_stream(gctx, apobj)) {
                    RAISEPY(gctx, MSG_BAD_APN, PyExc_RuntimeError);
                }
                res = JM_BufferFromBytes(gctx, buffer);
                if (!res) {
                    RAISEPY(gctx, MSG_BAD_BUFFER, PyExc_ValueError);
                }
                JM_update_stream(gctx, page->doc, apobj, res, 1);
                if (rect) {
                    fz_rect bbox = pdf_dict_get_rect(gctx, annot_obj, PDF_NAME(Rect));
                    pdf_dict_put_rect(gctx, apobj, PDF_NAME(BBox), bbox);
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // redaction annotation get values
        //----------------------------------------------------------------
        FITZEXCEPTION(_get_redact_values, !result)
        %pythonappend _get_redact_values %{
        if not val:
            return val
        val["rect"] = self.rect
        text_color, fontname, fontsize = TOOLS._parse_da(self)
        val["text_color"] = text_color
        val["fontname"] = fontname
        val["fontsize"] = fontsize
        fill = self.colors["fill"]
        val["fill"] = fill

        %}
        PyObject *
        _get_redact_values()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            if (pdf_annot_type(gctx, annot) != PDF_ANNOT_REDACT)
                Py_RETURN_NONE;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            PyObject *values = PyDict_New();
            pdf_obj *obj = NULL;
            const char *text = NULL;
            fz_try(gctx) {
                obj = pdf_dict_gets(gctx, annot_obj, "RO");
                if (obj) {
                    JM_Warning("Ignoring redaction key '/RO'.");
                    int xref = pdf_to_num(gctx, obj);
                    DICT_SETITEM_DROP(values, dictkey_xref, Py_BuildValue("i", xref));
                }
                obj = pdf_dict_gets(gctx, annot_obj, "OverlayText");
                if (obj) {
                    text = pdf_to_text_string(gctx, obj);
                    DICT_SETITEM_DROP(values, dictkey_text, JM_UnicodeFromStr(text));
                } else {
                    DICT_SETITEM_DROP(values, dictkey_text, Py_BuildValue("s", ""));
                }
                obj = pdf_dict_get(gctx, annot_obj, PDF_NAME(Q));
                int align = 0;
                if (obj) {
                    align = pdf_to_int(gctx, obj);
                }
                DICT_SETITEM_DROP(values, dictkey_align, Py_BuildValue("i", align));
            }
            fz_catch(gctx) {
                Py_DECREF(values);
                return NULL;
            }
            return values;
        }

        //----------------------------------------------------------------
        // annotation get TextPage
        //----------------------------------------------------------------
        FITZEXCEPTION(get_textpage, !result)
        PARENTCHECK(get_textpage, """Make annotation TextPage.""")
        struct TextPage *
        get_textpage(PyObject *clip=NULL, int flags = 0)
        {
            fz_stext_page *textpage=NULL;
            fz_stext_options options = { 0 };
            options.flags = flags;
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                textpage = pdf_new_stext_page_from_annot(gctx, annot, &options);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct TextPage *) textpage;
        }


        //----------------------------------------------------------------
        // annotation set name
        //----------------------------------------------------------------
        FITZEXCEPTION(set_name, !result)
        PARENTCHECK(set_name, """Set /Name (icon) of annotation.""")
        PyObject *
        set_name(char *name)
        {
            fz_try(gctx) {
                pdf_annot *annot = (pdf_annot *) $self;
                pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
                pdf_dict_put_name(gctx, annot_obj, PDF_NAME(Name), name);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation set rectangle
        //----------------------------------------------------------------
        PARENTCHECK(set_rect, """Set annotation rectangle.""")
        FITZEXCEPTION(set_rect, !result)
        PyObject *
        set_rect(PyObject *rect)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            int type = pdf_annot_type(gctx, annot);
            if (type == PDF_ANNOT_LINE || type == PDF_ANNOT_POLY_LINE ||
                type == PDF_ANNOT_POLYGON) {
                    fz_warn(gctx, "setting rectangle ignored for annot type %s", pdf_string_from_annot_type(gctx, type));
                    Py_RETURN_NONE;
                }
            fz_try(gctx) {
                pdf_page *pdfpage = pdf_annot_page(gctx, annot);
                fz_matrix rot = JM_rotate_page_matrix(gctx, pdfpage);
                fz_rect r = fz_transform_rect(JM_rect_from_py(rect), rot);
                if (fz_is_empty_rect(r) || fz_is_infinite_rect(r)) {
                    RAISEPY(gctx, MSG_BAD_RECT, PyExc_ValueError);
                }
                pdf_set_annot_rect(gctx, annot, r);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation set rotation
        //----------------------------------------------------------------
        PARENTCHECK(set_rotation, """Set annotation rotation.""")
        PyObject *
        set_rotation(int rotate=0)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            int type = pdf_annot_type(gctx, annot);
            switch (type)
            {
                case PDF_ANNOT_CARET: break;
                case PDF_ANNOT_CIRCLE: break;
                case PDF_ANNOT_FREE_TEXT: break;
                case PDF_ANNOT_FILE_ATTACHMENT: break;
                case PDF_ANNOT_INK: break;
                case PDF_ANNOT_LINE: break;
                case PDF_ANNOT_POLY_LINE: break;
                case PDF_ANNOT_POLYGON: break;
                case PDF_ANNOT_SQUARE: break;
                case PDF_ANNOT_STAMP: break;
                case PDF_ANNOT_TEXT: break;
                default: Py_RETURN_NONE;
            }
            int rot = rotate;
            while (rot < 0) rot += 360;
            while (rot >= 360) rot -= 360;
            if (type == PDF_ANNOT_FREE_TEXT && rot % 90 != 0)
                rot = 0;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            pdf_dict_put_int(gctx, annot_obj, PDF_NAME(Rotate), rot);
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation get rotation
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(rotation, """annotation rotation""")
        int rotation()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            pdf_obj *rotation = pdf_dict_get(gctx, annot_obj, PDF_NAME(Rotate));
            if (!rotation) return -1;
            return pdf_to_int(gctx, rotation);
        }


        //----------------------------------------------------------------
        // annotation vertices (for "Line", "Polgon", "Ink", etc.
        //----------------------------------------------------------------
        PARENTCHECK(vertices, """annotation vertex points""")
        %pythoncode %{@property%}
        PyObject *vertices()
        {
            PyObject *res = NULL, *res1 = NULL;
            pdf_obj *o, *o1;
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            pdf_page *page = pdf_annot_page(gctx, annot);
            int i, j;
            fz_point point;  // point object to work with
            fz_matrix page_ctm;  // page transformation matrix
            pdf_page_transform(gctx, page, NULL, &page_ctm);
            fz_matrix derot = JM_derotate_page_matrix(gctx, page);
            page_ctm = fz_concat(page_ctm, derot);

            //----------------------------------------------------------------
            // The following objects occur in different annotation types.
            // So we are sure that (!o) occurs at most once.
            // Every pair of floats is one point, that needs to be separately
            // transformed with the page transformation matrix.
            //----------------------------------------------------------------
            o = pdf_dict_get(gctx, annot_obj, PDF_NAME(Vertices));
            if (o) goto weiter;
            o = pdf_dict_get(gctx, annot_obj, PDF_NAME(L));
            if (o) goto weiter;
            o = pdf_dict_get(gctx, annot_obj, PDF_NAME(QuadPoints));
            if (o) goto weiter;
            o = pdf_dict_gets(gctx, annot_obj, "CL");
            if (o) goto weiter;
            o = pdf_dict_get(gctx, annot_obj, PDF_NAME(InkList));
            if (o) goto inklist;
            Py_RETURN_NONE;

            // handle lists with 1-level depth --------------------------------
            weiter:;
            res = PyList_New(0);  // create Python list
            for (i = 0; i < pdf_array_len(gctx, o); i += 2)
            {
                point.x = pdf_to_real(gctx, pdf_array_get(gctx, o, i));
                point.y = pdf_to_real(gctx, pdf_array_get(gctx, o, i+1));
                point = fz_transform_point(point, page_ctm);
                LIST_APPEND_DROP(res, Py_BuildValue("ff", point.x, point.y));
            }
            return res;

            // InkList has 2-level lists --------------------------------------
            inklist:;
            res = PyList_New(0);
            for (i = 0; i < pdf_array_len(gctx, o); i++)
            {
                res1 = PyList_New(0);
                o1 = pdf_array_get(gctx, o, i);
                for (j = 0; j < pdf_array_len(gctx, o1); j += 2)
                {
                    point.x = pdf_to_real(gctx, pdf_array_get(gctx, o1, j));
                    point.y = pdf_to_real(gctx, pdf_array_get(gctx, o1, j+1));
                    point = fz_transform_point(point, page_ctm);
                    LIST_APPEND_DROP(res1, Py_BuildValue("ff", point.x, point.y));
                }
                LIST_APPEND_DROP(res, res1);
            }
            return res;
        }

        //----------------------------------------------------------------
        // annotation colors
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(colors, """Color definitions.""")
        PyObject *colors()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            return JM_annot_colors(gctx, annot_obj);
        }

        //----------------------------------------------------------------
        // annotation update appearance
        //----------------------------------------------------------------
        PyObject *_update_appearance(float opacity=-1,
                    char *blend_mode=NULL,
                    PyObject *fill_color=NULL,
                    int rotate = -1)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            pdf_page *page = pdf_annot_page(gctx, annot);
            pdf_document *pdf = page->doc;
            int type = pdf_annot_type(gctx, annot);
            float fcol[4] = {1,1,1,1};  // std fill color: white
            int i, nfcol = 0;  // number of color components
            JM_color_FromSequence(fill_color, &nfcol, fcol);
            fz_try(gctx) {
                // remove fill color from unsupported annots
                // or if so requested
                if ((type != PDF_ANNOT_SQUARE
                    && type != PDF_ANNOT_CIRCLE
                    && type != PDF_ANNOT_LINE
                    && type != PDF_ANNOT_POLY_LINE
                    && type != PDF_ANNOT_POLYGON
                    )
                    || nfcol == 0
                    ) {
                    pdf_dict_del(gctx, annot_obj, PDF_NAME(IC));
                } else if (nfcol > 0) {
                    pdf_set_annot_interior_color(gctx, annot, nfcol, fcol);
                }

                int insert_rot = (rotate >= 0) ? 1 : 0;
                switch (type) {
                    case PDF_ANNOT_CARET:
                    case PDF_ANNOT_CIRCLE:
                    case PDF_ANNOT_FREE_TEXT:
                    case PDF_ANNOT_FILE_ATTACHMENT:
                    case PDF_ANNOT_INK:
                    case PDF_ANNOT_LINE:
                    case PDF_ANNOT_POLY_LINE:
                    case PDF_ANNOT_POLYGON:
                    case PDF_ANNOT_SQUARE:
                    case PDF_ANNOT_STAMP:
                    case PDF_ANNOT_TEXT: break;
                    default: insert_rot = 0;
                }

                if (insert_rot) {
                    pdf_dict_put_int(gctx, annot_obj, PDF_NAME(Rotate), rotate);
                }

                pdf_dirty_annot(gctx, annot);
                pdf_update_annot(gctx, annot);  // let MuPDF update
                pdf->resynth_required = 0;
                // insert fill color
                if (type == PDF_ANNOT_FREE_TEXT) {
                    if (nfcol > 0) {
                        pdf_set_annot_color(gctx, annot, nfcol, fcol);
                    }
                } else if (nfcol > 0) {
                    pdf_obj *col = pdf_new_array(gctx, page->doc, nfcol);
                    for (i = 0; i < nfcol; i++) {
                        pdf_array_push_real(gctx, col, fcol[i]);
                    }
                    pdf_dict_put_drop(gctx,annot_obj, PDF_NAME(IC), col);
                }
            }
            fz_catch(gctx) {
                PySys_WriteStderr("cannot update annot: '%s'\n", fz_caught_message(gctx));
                Py_RETURN_FALSE;
            }

            if ((opacity < 0 || opacity >= 1) && !blend_mode)  // no opacity, no blend_mode
                goto normal_exit;

            fz_try(gctx) {  // create or update /ExtGState
                pdf_obj *ap = pdf_dict_getl(gctx, annot_obj, PDF_NAME(AP),
                                        PDF_NAME(N), NULL);
                if (!ap)  { // should never happen
                    RAISEPY(gctx, MSG_BAD_APN, PyExc_RuntimeError);
                }

                pdf_obj *resources = pdf_dict_get(gctx, ap, PDF_NAME(Resources));
                if (!resources) {  // no Resources yet: make one
                    resources = pdf_dict_put_dict(gctx, ap, PDF_NAME(Resources), 2);
                }
                pdf_obj *alp0 = pdf_new_dict(gctx, page->doc, 3);
                if (opacity >= 0 && opacity < 1) {
                    pdf_dict_put_real(gctx, alp0, PDF_NAME(CA), (double) opacity);
                    pdf_dict_put_real(gctx, alp0, PDF_NAME(ca), (double) opacity);
                    pdf_dict_put_real(gctx, annot_obj, PDF_NAME(CA), (double) opacity);
                }
                if (blend_mode) {
                    pdf_dict_put_name(gctx, alp0, PDF_NAME(BM), blend_mode);
                    pdf_dict_put_name(gctx, annot_obj, PDF_NAME(BM), blend_mode);
                }
                pdf_obj *extg = pdf_dict_get(gctx, resources, PDF_NAME(ExtGState));
                if (!extg) {  // no ExtGState yet: make one
                    extg = pdf_dict_put_dict(gctx, resources, PDF_NAME(ExtGState), 2);
                }
                pdf_dict_put_drop(gctx, extg, PDF_NAME(H), alp0);
            }

            fz_catch(gctx) {
                PySys_WriteStderr("cannot set opacity or blend mode\n");
                Py_RETURN_FALSE;
            }
            normal_exit:;
            Py_RETURN_TRUE;
        }


        %pythoncode %{
        def update(self,
                   blend_mode: OptStr =None,
                   opacity: OptFloat =None,
                   fontsize: float =0,
                   fontname: OptStr =None,
                   text_color: OptSeq =None,
                   border_color: OptSeq =None,
                   fill_color: OptSeq =None,
                   cross_out: bool =True,
                   rotate: int =-1,
                   ):

            """Update annot appearance.

            Notes:
                Depending on the annot type, some parameters make no sense,
                while others are only available in this method to achieve the
                desired result. This is especially true for 'FreeText' annots.
            Args:
                blend_mode: set the blend mode, all annotations.
                opacity: set the opacity, all annotations.
                fontsize: set fontsize, 'FreeText' only.
                fontname: set the font, 'FreeText' only.
                border_color: set border color, 'FreeText' only.
                text_color: set text color, 'FreeText' only.
                fill_color: set fill color, all annotations.
                cross_out: draw diagonal lines, 'Redact' only.
                rotate: set rotation, 'FreeText' and some others.
            """
            CheckParent(self)
            def color_string(cs, code):
                """Return valid PDF color operator for a given color sequence.
                """
                cc = ColorCode(cs, code)
                if not cc:
                    return b""
                return (cc + "\n").encode()

            annot_type = self.type[0]  # get the annot type
            dt = self.border["dashes"]  # get the dashes spec
            bwidth = self.border["width"]  # get border line width
            stroke = self.colors["stroke"]  # get the stroke color
            if fill_color != None:  # change of fill color requested
                fill = fill_color
            else:  # put in current annot value
                fill = self.colors["fill"]

            rect = None  # self.rect  # prevent MuPDF fiddling with it
            apnmat = self.apn_matrix  # prevent MuPDF fiddling with it
            if rotate != -1:  # sanitize rotation value
                while rotate < 0:
                    rotate += 360
                while rotate >= 360:
                    rotate -= 360
                if annot_type == PDF_ANNOT_FREE_TEXT and rotate % 90 != 0:
                    rotate = 0

            #------------------------------------------------------------------
            # handle opacity and blend mode
            #------------------------------------------------------------------
            if blend_mode is None:
                blend_mode = self.blendmode
            if not hasattr(opacity, "__float__"):
                opacity = self.opacity

            if 0 <= opacity < 1 or blend_mode is not None:
                opa_code = "/H gs\n"  # then we must reference this 'gs'
            else:
                opa_code = ""

            if annot_type == PDF_ANNOT_FREE_TEXT:
                CheckColor(border_color)
                CheckColor(text_color)
                CheckColor(fill_color)
                tcol, fname, fsize = TOOLS._parse_da(self)

                # read and update default appearance as necessary
                update_default_appearance = False
                if fsize <= 0:
                    fsize = 12
                    update_default_appearance = True
                if text_color is not None:
                    tcol = text_color
                    update_default_appearance = True
                if fontname is not None:
                    fname = fontname
                    update_default_appearance = True
                if fontsize > 0:
                    fsize = fontsize
                    update_default_appearance = True

                if update_default_appearance:
                    da_str = ""
                    if len(tcol) == 3:
                        fmt = "{:g} {:g} {:g} rg /{f:s} {s:g} Tf"
                    elif len(tcol) == 1:
                        fmt = "{:g} g /{f:s} {s:g} Tf"
                    elif len(tcol) == 4:
                        fmt = "{:g} {:g} {:g} {:g} k /{f:s} {s:g} Tf"
                    da_str = fmt.format(*tcol, f=fname, s=fsize)
                    TOOLS._update_da(self, da_str)

            #------------------------------------------------------------------
            # now invoke MuPDF to update the annot appearance
            #------------------------------------------------------------------
            val = self._update_appearance(
                opacity=opacity,
                blend_mode=blend_mode,
                fill_color=fill,
                rotate=rotate,
            )
            if val == False:
                raise RuntimeError("Error updating annotation.")

            bfill = color_string(fill, "f")
            bstroke = color_string(stroke, "c")

            p_ctm = self.parent.transformation_matrix
            imat = ~p_ctm  # inverse page transf. matrix

            if dt:
                dashes = "[" + " ".join(map(str, dt)) + "] 0 d\n"
                dashes = dashes.encode("utf-8")
            else:
                dashes = None

            if self.line_ends:
                line_end_le, line_end_ri = self.line_ends
            else:
                line_end_le, line_end_ri = 0, 0  # init line end codes

            # read contents as created by MuPDF
            ap = self._getAP()
            ap_tab = ap.splitlines()  # split in single lines
            ap_updated = False  # assume we did nothing

            if annot_type == PDF_ANNOT_REDACT:
                if cross_out:  # create crossed-out rect
                    ap_updated = True
                    ap_tab = ap_tab[:-1]
                    _, LL, LR, UR, UL = ap_tab
                    ap_tab.append(LR)
                    ap_tab.append(LL)
                    ap_tab.append(UR)
                    ap_tab.append(LL)
                    ap_tab.append(UL)
                    ap_tab.append(b"S")

                if bwidth > 0 or bstroke != b"":
                    ap_updated = True
                    ntab = [b"%g w" % bwidth] if bwidth > 0 else []
                    for line in ap_tab:
                        if line.endswith(b"w"):
                            continue
                        if line.endswith(b"RG") and bstroke != b"":
                            line = bstroke[:-1]
                        ntab.append(line)
                    ap_tab = ntab

                ap = b"\n".join(ap_tab)

            if annot_type == PDF_ANNOT_FREE_TEXT:
                BT = ap.find(b"BT")
                ET = ap.find(b"ET") + 2
                ap = ap[BT:ET]
                w, h = self.rect.width, self.rect.height
                if rotate in (90, 270) or not (apnmat.b == apnmat.c == 0):
                    w, h = h, w
                re = b"0 0 %g %g re" % (w, h)
                ap = re + b"\nW\nn\n" + ap
                ope = None
                fill_string = color_string(fill, "f")
                if fill_string:
                    ope = b"f"
                stroke_string = color_string(border_color, "c")
                if stroke_string and bwidth > 0:
                    ope = b"S"
                    bwidth = b"%g w\n" % bwidth
                else:
                    bwidth = stroke_string = b""
                if fill_string and stroke_string:
                    ope = b"B"
                if ope != None:
                    ap = bwidth + fill_string + stroke_string + re + b"\n" + ope + b"\n" + ap

                if dashes != None:  # handle dashes
                    ap = dashes + b"\n" + ap
                    dashes = None

                ap_updated = True

            if annot_type in (PDF_ANNOT_POLYGON, PDF_ANNOT_POLY_LINE):
                ap = b"\n".join(ap_tab[:-1]) + b"\n"
                ap_updated = True
                if bfill != b"":
                    if annot_type == PDF_ANNOT_POLYGON:
                        ap = ap + bfill + b"b"  # close, fill, and stroke
                    elif annot_type == PDF_ANNOT_POLY_LINE:
                        ap = ap + b"S"  # stroke
                else:
                    if annot_type == PDF_ANNOT_POLYGON:
                        ap = ap + b"s"  # close and stroke
                    elif annot_type == PDF_ANNOT_POLY_LINE:
                        ap = ap + b"S"  # stroke

            if dashes is not None:  # handle dashes
                ap = dashes + ap
                # reset dashing - only applies for LINE annots with line ends given
                ap = ap.replace(b"\nS\n", b"\nS\n[] 0 d\n", 1)
                ap_updated = True

            if opa_code:
                ap = opa_code.encode("utf-8") + ap
                ap_updated = True

            ap = b"q\n" + ap + b"\nQ\n"
            #----------------------------------------------------------------------
            # the following handles line end symbols for 'Polygon' and 'Polyline'
            #----------------------------------------------------------------------
            if line_end_le + line_end_ri > 0 and annot_type in (PDF_ANNOT_POLYGON, PDF_ANNOT_POLY_LINE):

                le_funcs = (None, TOOLS._le_square, TOOLS._le_circle,
                            TOOLS._le_diamond, TOOLS._le_openarrow,
                            TOOLS._le_closedarrow, TOOLS._le_butt,
                            TOOLS._le_ropenarrow, TOOLS._le_rclosedarrow,
                            TOOLS._le_slash)
                le_funcs_range = range(1, len(le_funcs))
                d = 2 * max(1, self.border["width"])
                rect = self.rect + (-d, -d, d, d)
                ap_updated = True
                points = self.vertices
                if line_end_le in le_funcs_range:
                    p1 = Point(points[0]) * imat
                    p2 = Point(points[1]) * imat
                    left = le_funcs[line_end_le](self, p1, p2, False, fill_color)
                    ap += left.encode()
                if line_end_ri in le_funcs_range:
                    p1 = Point(points[-2]) * imat
                    p2 = Point(points[-1]) * imat
                    left = le_funcs[line_end_ri](self, p1, p2, True, fill_color)
                    ap += left.encode()

            if ap_updated:
                if rect:                        # rect modified here?
                    self.set_rect(rect)
                    self._setAP(ap, rect=1)
                else:
                    self._setAP(ap, rect=0)

            #-------------------------------
            # handle annotation rotations
            #-------------------------------
            if annot_type not in (  # only these types are supported
                PDF_ANNOT_CARET,
                PDF_ANNOT_CIRCLE,
                PDF_ANNOT_FILE_ATTACHMENT,
                PDF_ANNOT_INK,
                PDF_ANNOT_LINE,
                PDF_ANNOT_POLY_LINE,
                PDF_ANNOT_POLYGON,
                PDF_ANNOT_SQUARE,
                PDF_ANNOT_STAMP,
                PDF_ANNOT_TEXT,
                ):
                return

            rot = self.rotation  # get value from annot object
            if rot == -1:  # nothing to change
                return

            M = (self.rect.tl + self.rect.br) / 2  # center of annot rect

            if rot == 0:  # undo rotations
                if abs(apnmat - Matrix(1, 1)) < 1e-5:
                    return  # matrix already is a no-op
                quad = self.rect.morph(M, ~apnmat)  # derotate rect
                self.set_rect(quad.rect)
                self.set_apn_matrix(Matrix(1, 1))  # appearance matrix = no-op
                return

            mat = Matrix(rot)
            quad = self.rect.morph(M, mat)
            self.set_rect(quad.rect)
            self.set_apn_matrix(apnmat * mat)
        %}

        //----------------------------------------------------------------
        // annotation set colors
        //----------------------------------------------------------------
        %pythoncode %{
        def set_colors(self, colors=None, stroke=None, fill=None):
            """Set 'stroke' and 'fill' colors.

            Use either a dict or the direct arguments.
            """
            CheckParent(self)
            doc = self.parent.parent
            if type(colors) is not dict:
                colors = {"fill": fill, "stroke": stroke}
            fill = colors.get("fill")
            stroke = colors.get("stroke")
            fill_annots = (PDF_ANNOT_CIRCLE, PDF_ANNOT_SQUARE, PDF_ANNOT_LINE, PDF_ANNOT_POLY_LINE, PDF_ANNOT_POLYGON,
                           PDF_ANNOT_REDACT,)
            if stroke in ([], ()):
                doc.xref_set_key(self.xref, "C", "[]")
            elif stroke is not None:
                if hasattr(stroke, "__float__"):
                    stroke = [float(stroke)]
                CheckColor(stroke)
                if len(stroke) == 1:
                    s = "[%g]" % stroke[0]
                elif len(stroke) == 3:
                    s = "[%g %g %g]" % tuple(stroke)
                else:
                    s = "[%g %g %g %g]" % tuple(stroke)
                doc.xref_set_key(self.xref, "C", s)

            if fill and self.type[0] not in fill_annots:
                print("Warning: fill color ignored for annot type '%s'." % self.type[1])
                return
            if fill in ([], ()):
                doc.xref_set_key(self.xref, "IC", "[]")
            elif fill is not None:
                if hasattr(fill, "__float__"):
                    fill = [float(fill)]
                CheckColor(fill)
                if len(fill) == 1:
                    s = "[%g]" % fill[0]
                elif len(fill) == 3:
                    s = "[%g %g %g]" % tuple(fill)
                else:
                    s = "[%g %g %g %g]" % tuple(fill)
                doc.xref_set_key(self.xref, "IC", s)
        %}


        //----------------------------------------------------------------
        // annotation line_ends
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(line_ends, """Line end codes.""")
        PyObject *
        line_ends()
        {
            pdf_annot *annot = (pdf_annot *) $self;

            // return nothing for invalid annot types
            if (!pdf_annot_has_line_ending_styles(gctx, annot))
                Py_RETURN_NONE;

            int lstart = (int) pdf_annot_line_start_style(gctx, annot);
            int lend = (int) pdf_annot_line_end_style(gctx, annot);
            return Py_BuildValue("ii", lstart, lend);
        }


        //----------------------------------------------------------------
        // annotation set line ends
        //----------------------------------------------------------------
        PARENTCHECK(set_line_ends, """Set line end codes.""")
        void set_line_ends(int start, int end)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            if (pdf_annot_has_line_ending_styles(gctx, annot))
                pdf_set_annot_line_ending_styles(gctx, annot, start, end);
            else
                JM_Warning("bad annot type for line ends");
        }


        //----------------------------------------------------------------
        // annotation type
        //----------------------------------------------------------------
        PARENTCHECK(type, """annotation type""")
        %pythoncode %{@property%}
        PyObject *type()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            int type = pdf_annot_type(gctx, annot);
            const char *c = pdf_string_from_annot_type(gctx, type);
            pdf_obj *o = pdf_dict_gets(gctx, annot_obj, "IT");
            if (!o || !pdf_is_name(gctx, o))
                return Py_BuildValue("is", type, c);         // no IT entry
            const char *it = pdf_to_name(gctx, o);
            return Py_BuildValue("iss", type, c, it);
        }

        //----------------------------------------------------------------
        // annotation opacity
        //----------------------------------------------------------------
        PARENTCHECK(opacity, """Opacity.""")
        %pythoncode %{@property%}
        PyObject *opacity()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            double opy = -1;
            pdf_obj *ca = pdf_dict_get(gctx, annot_obj, PDF_NAME(CA));
            if (pdf_is_number(gctx, ca))
                opy = pdf_to_real(gctx, ca);
            return Py_BuildValue("f", opy);
        }

        //----------------------------------------------------------------
        // annotation set opacity
        //----------------------------------------------------------------
        PARENTCHECK(set_opacity, """Set opacity.""")
        void set_opacity(float opacity)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            if (!INRANGE(opacity, 0.0f, 1.0f))
            {
                pdf_set_annot_opacity(gctx, annot, 1);
                return;
            }
            pdf_set_annot_opacity(gctx, annot, opacity);
            if (opacity < 1.0f)
            {
                pdf_page *page = pdf_annot_page(gctx, annot);
                page->transparency = 1;
            }
        }


        //----------------------------------------------------------------
        // annotation get attached file info
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        FITZEXCEPTION(file_info, !result)
        PARENTCHECK(file_info, """Attached file information.""")
        PyObject *file_info()
        {
            PyObject *res = PyDict_New();  // create Python dict
            char *filename = NULL;
            char *desc = NULL;
            int length = -1, size = -1;
            pdf_obj *stream = NULL, *o = NULL, *fs = NULL;
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            fz_try(gctx) {
                int type = (int) pdf_annot_type(gctx, annot);
                if (type != PDF_ANNOT_FILE_ATTACHMENT) {
                    RAISEPY(gctx, MSG_BAD_ANNOT_TYPE, PyExc_TypeError);
                }
                stream = pdf_dict_getl(gctx, annot_obj, PDF_NAME(FS),
                                   PDF_NAME(EF), PDF_NAME(F), NULL);
                if (!stream) {
                    RAISEPY(gctx, "bad PDF: file entry not found", JM_Exc_FileDataError);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }

            fs = pdf_dict_get(gctx, annot_obj, PDF_NAME(FS));

            o = pdf_dict_get(gctx, fs, PDF_NAME(UF));
            if (o) {
                filename = (char *) pdf_to_text_string(gctx, o);
            } else {
                o = pdf_dict_get(gctx, fs, PDF_NAME(F));
                if (o) filename = (char *) pdf_to_text_string(gctx, o);
            }

            o = pdf_dict_get(gctx, fs, PDF_NAME(Desc));
            if (o) desc = (char *) pdf_to_text_string(gctx, o);

            o = pdf_dict_get(gctx, stream, PDF_NAME(Length));
            if (o) length = pdf_to_int(gctx, o);

            o = pdf_dict_getl(gctx, stream, PDF_NAME(Params),
                                PDF_NAME(Size), NULL);
            if (o) size = pdf_to_int(gctx, o);

            DICT_SETITEM_DROP(res, dictkey_filename, JM_EscapeStrFromStr(filename));
            DICT_SETITEM_DROP(res, dictkey_desc, JM_UnicodeFromStr(desc));
            DICT_SETITEM_DROP(res, dictkey_length, Py_BuildValue("i", length));
            DICT_SETITEM_DROP(res, dictkey_size, Py_BuildValue("i", size));
            return res;
        }


        //----------------------------------------------------------------
        // annotation get attached file content
        //----------------------------------------------------------------
        FITZEXCEPTION(get_file, !result)
        PARENTCHECK(get_file, """Retrieve attached file content.""")
        PyObject *
        get_file()
        {
            PyObject *res = NULL;
            pdf_obj *stream = NULL;
            fz_buffer *buf = NULL;
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            fz_var(buf);
            fz_try(gctx) {
                int type = (int) pdf_annot_type(gctx, annot);
                if (type != PDF_ANNOT_FILE_ATTACHMENT) {
                    RAISEPY(gctx, MSG_BAD_ANNOT_TYPE, PyExc_TypeError);
                }
                stream = pdf_dict_getl(gctx, annot_obj, PDF_NAME(FS),
                                   PDF_NAME(EF), PDF_NAME(F), NULL);
                if (!stream) {
                    RAISEPY(gctx, "bad PDF: file entry not found", JM_Exc_FileDataError);
                }
                buf = pdf_load_stream(gctx, stream);
                res = JM_BinFromBuffer(gctx, buf);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, buf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return res;
        }


        //----------------------------------------------------------------
        // annotation get attached sound stream
        //----------------------------------------------------------------
        FITZEXCEPTION(get_sound, !result)
        PARENTCHECK(get_sound, """Retrieve sound stream.""")
        PyObject *
        get_sound()
        {
            PyObject *res = NULL;
            PyObject *stream = NULL;
            fz_buffer *buf = NULL;
            pdf_obj *obj = NULL;
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            fz_var(buf);
            fz_try(gctx) {
                int type = (int) pdf_annot_type(gctx, annot);
                pdf_obj *sound = pdf_dict_get(gctx, annot_obj, PDF_NAME(Sound));
                if (type != PDF_ANNOT_SOUND || !sound) {
                    RAISEPY(gctx, MSG_BAD_ANNOT_TYPE, PyExc_TypeError);
                }
                if (pdf_dict_get(gctx, sound, PDF_NAME(F))) {
                    RAISEPY(gctx, "unsupported sound stream", JM_Exc_FileDataError);
                }
                res = PyDict_New();
                obj = pdf_dict_get(gctx, sound, PDF_NAME(R));
                if (obj) {
                    DICT_SETITEMSTR_DROP(res, "rate",
                            Py_BuildValue("f", pdf_to_real(gctx, obj)));
                }
                obj = pdf_dict_get(gctx, sound, PDF_NAME(C));
                if (obj) {
                    DICT_SETITEMSTR_DROP(res, "channels",
                            Py_BuildValue("i", pdf_to_int(gctx, obj)));
                }
                obj = pdf_dict_get(gctx, sound, PDF_NAME(B));
                if (obj) {
                    DICT_SETITEMSTR_DROP(res, "bps",
                            Py_BuildValue("i", pdf_to_int(gctx, obj)));
                }
                obj = pdf_dict_get(gctx, sound, PDF_NAME(E));
                if (obj) {
                    DICT_SETITEMSTR_DROP(res, "encoding",
                            Py_BuildValue("s", pdf_to_name(gctx, obj)));
                }
                obj = pdf_dict_gets(gctx, sound, "CO");
                if (obj) {
                    DICT_SETITEMSTR_DROP(res, "compression",
                            Py_BuildValue("s", pdf_to_name(gctx, obj)));
                }
                buf = pdf_load_stream(gctx, sound);
                stream = JM_BinFromBuffer(gctx, buf);
                DICT_SETITEMSTR_DROP(res, "stream", stream);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, buf);
            }
            fz_catch(gctx) {
                Py_CLEAR(res);
                return NULL;
            }
            return res;
        }


        //----------------------------------------------------------------
        // annotation update attached file
        //----------------------------------------------------------------
        FITZEXCEPTION(update_file, !result)
        %pythonprepend update_file
%{"""Update attached file."""
CheckParent(self)%}

        PyObject *
        update_file(PyObject *buffer=NULL, char *filename=NULL, char *ufilename=NULL, char *desc=NULL)
        {
            pdf_document *pdf = NULL;       // to be filled in
            fz_buffer *res = NULL;          // for compressed content
            pdf_obj *stream = NULL, *fs = NULL;
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            fz_try(gctx) {
                pdf = pdf_get_bound_document(gctx, annot_obj);  // the owning PDF
                int type = (int) pdf_annot_type(gctx, annot);
                if (type != PDF_ANNOT_FILE_ATTACHMENT) {
                    RAISEPY(gctx, MSG_BAD_ANNOT_TYPE, PyExc_TypeError);
                }
                stream = pdf_dict_getl(gctx, annot_obj, PDF_NAME(FS),
                                   PDF_NAME(EF), PDF_NAME(F), NULL);
                // the object for file content
                if (!stream) {
                    RAISEPY(gctx, "bad PDF: no /EF object", JM_Exc_FileDataError);
                }

                fs = pdf_dict_get(gctx, annot_obj, PDF_NAME(FS));

                // file content given
                res = JM_BufferFromBytes(gctx, buffer);
                if (buffer && !res) {
                    RAISEPY(gctx, MSG_BAD_BUFFER, PyExc_ValueError);
                }
                if (res) {
                    JM_update_stream(gctx, pdf, stream, res, 1);
                    // adjust /DL and /Size parameters
                    int64_t len = (int64_t) fz_buffer_storage(gctx, res, NULL);
                    pdf_obj *l = pdf_new_int(gctx, len);
                    pdf_dict_put(gctx, stream, PDF_NAME(DL), l);
                    pdf_dict_putl(gctx, stream, l, PDF_NAME(Params), PDF_NAME(Size), NULL);
                }

                if (filename) {
                    pdf_dict_put_text_string(gctx, stream, PDF_NAME(F), filename);
                    pdf_dict_put_text_string(gctx, fs, PDF_NAME(F), filename);
                    pdf_dict_put_text_string(gctx, stream, PDF_NAME(UF), filename);
                    pdf_dict_put_text_string(gctx, fs, PDF_NAME(UF), filename);
                    pdf_dict_put_text_string(gctx, annot_obj, PDF_NAME(Contents), filename);
                }

                if (ufilename) {
                    pdf_dict_put_text_string(gctx, stream, PDF_NAME(UF), ufilename);
                    pdf_dict_put_text_string(gctx, fs, PDF_NAME(UF), ufilename);
                }

                if (desc) {
                    pdf_dict_put_text_string(gctx, stream, PDF_NAME(Desc), desc);
                    pdf_dict_put_text_string(gctx, fs, PDF_NAME(Desc), desc);
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation info
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(info, """Various information details.""")
        PyObject *info()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            PyObject *res = PyDict_New();
            pdf_obj *o;

            DICT_SETITEM_DROP(res, dictkey_content,
                          JM_UnicodeFromStr(pdf_annot_contents(gctx, annot)));

            o = pdf_dict_get(gctx, annot_obj, PDF_NAME(Name));
            DICT_SETITEM_DROP(res, dictkey_name, JM_UnicodeFromStr(pdf_to_name(gctx, o)));

            // Title (= author)
            o = pdf_dict_get(gctx, annot_obj, PDF_NAME(T));
            DICT_SETITEM_DROP(res, dictkey_title, JM_UnicodeFromStr(pdf_to_text_string(gctx, o)));

            // CreationDate
            o = pdf_dict_gets(gctx, annot_obj, "CreationDate");
            DICT_SETITEM_DROP(res, dictkey_creationDate,
                          JM_UnicodeFromStr(pdf_to_text_string(gctx, o)));

            // ModDate
            o = pdf_dict_get(gctx, annot_obj, PDF_NAME(M));
            DICT_SETITEM_DROP(res, dictkey_modDate, JM_UnicodeFromStr(pdf_to_text_string(gctx, o)));

            // Subj
            o = pdf_dict_gets(gctx, annot_obj, "Subj");
            DICT_SETITEM_DROP(res, dictkey_subject,
                          Py_BuildValue("s",pdf_to_text_string(gctx, o)));

            // Identification (PDF key /NM)
            o = pdf_dict_gets(gctx, annot_obj, "NM");
            DICT_SETITEM_DROP(res, dictkey_id,
                          JM_UnicodeFromStr(pdf_to_text_string(gctx, o)));

            return res;
        }

        //----------------------------------------------------------------
        // annotation set information
        //----------------------------------------------------------------
        FITZEXCEPTION(set_info, !result)
        %pythonprepend set_info %{
        """Set various properties."""
        CheckParent(self)
        if type(info) is dict:  # build the args from the dictionary
            content = info.get("content", None)
            title = info.get("title", None)
            creationDate = info.get("creationDate", None)
            modDate = info.get("modDate", None)
            subject = info.get("subject", None)
            info = None
        %}
        PyObject *
        set_info(PyObject *info=NULL, char *content=NULL, char *title=NULL,
                          char *creationDate=NULL, char *modDate=NULL, char *subject=NULL)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            // use this to indicate a 'markup' annot type
            int is_markup = pdf_annot_has_author(gctx, annot);
            fz_try(gctx) {
                // contents
                if (content)
                    pdf_set_annot_contents(gctx, annot, content);

                if (is_markup) {
                    // title (= author)
                    if (title)
                        pdf_set_annot_author(gctx, annot, title);

                    // creation date
                    if (creationDate)
                        pdf_dict_put_text_string(gctx, annot_obj,
                                                 PDF_NAME(CreationDate), creationDate);

                    // mod date
                    if (modDate)
                        pdf_dict_put_text_string(gctx, annot_obj,
                                                 PDF_NAME(M), modDate);

                    // subject
                    if (subject)
                        pdf_dict_puts_drop(gctx, annot_obj, "Subj",
                                           pdf_new_text_string(gctx, subject));
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // annotation border
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(border, """Border information.""")
        PyObject *border()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            return JM_annot_border(gctx, annot_obj);
        }

        //----------------------------------------------------------------
        // set annotation border
        //----------------------------------------------------------------
        %pythonprepend set_border %{
        """Set border properties.

        Either a dict, or direct arguments width, style and dashes."""
        CheckParent(self)
        if type(border) is not dict:
            border = {"width": width, "style": style, "dashes": dashes}
        %}
        PyObject *
        set_border(PyObject *border=NULL, float width=0, char *style=NULL, PyObject *dashes=NULL)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            pdf_document *pdf = pdf_get_bound_document(gctx, annot_obj);
            return JM_annot_set_border(gctx, border, pdf, annot_obj);
        }


        //----------------------------------------------------------------
        // annotation flags
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        PARENTCHECK(flags, """Flags field.""")
        int flags()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            return pdf_annot_flags(gctx, annot);
        }

        //----------------------------------------------------------------
        // annotation clean contents
        //----------------------------------------------------------------
        FITZEXCEPTION(clean_contents, !result)
        PARENTCHECK(clean_contents, """Clean appearance contents stream.""")
        PyObject *clean_contents(int sanitize=1)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_document *pdf = pdf_get_bound_document(gctx, pdf_annot_obj(gctx, annot));
            pdf_filter_options filter = {
                NULL,  // opaque
                NULL,  // image filter
                NULL,  // text filter
                NULL,  // after text
                NULL,  // end page
                1,     // recurse: true
                1,     // instance forms
                1,     // sanitize,
                0      // do not ascii-escape binary data
                };
            filter.sanitize = sanitize;
            fz_try(gctx) {
                pdf_filter_annot_contents(gctx, pdf, annot, &filter);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        //----------------------------------------------------------------
        // set annotation flags
        //----------------------------------------------------------------
        PARENTCHECK(set_flags, """Set annotation flags.""")
        void
        set_flags(int flags)
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_set_annot_flags(gctx, annot, flags);
        }


        //----------------------------------------------------------------
        // annotation delete responses
        //----------------------------------------------------------------
        FITZEXCEPTION(delete_responses, !result)
        PARENTCHECK(delete_responses, """Delete 'Popup' and responding annotations.""")
        PyObject *
        delete_responses()
        {
            pdf_annot *annot = (pdf_annot *) $self;
            pdf_obj *annot_obj = pdf_annot_obj(gctx, annot);
            pdf_page *page = pdf_annot_page(gctx, annot);
            pdf_annot *irt_annot = NULL;
            fz_try(gctx) {
                while (1) {
                    irt_annot = JM_find_annot_irt(gctx, annot);
                    if (!irt_annot)
                        break;
                    pdf_delete_annot(gctx, page, irt_annot);
                }
                pdf_dict_del(gctx, annot_obj, PDF_NAME(Popup));
                
                pdf_obj *annots = pdf_dict_get(gctx, page->obj, PDF_NAME(Annots));
                int i, n = pdf_array_len(gctx, annots), found = 0;
                for (i = n - 1; i >= 0; i--) {
                    pdf_obj *o = pdf_array_get(gctx, annots, i);
                    pdf_obj *p = pdf_dict_get(gctx, o, PDF_NAME(Parent));
                    if (!p)
                        continue;
                    if (!pdf_objcmp(gctx, p, annot_obj)) {
                        pdf_array_delete(gctx, annots, i);
                        found = 1;
                    }
                }
                if (found > 0) {
                    pdf_dict_put(gctx, page->obj, PDF_NAME(Annots), annots);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------------------------------------
        // next annotation
        //----------------------------------------------------------------
        PARENTCHECK(next, """Next annotation.""")
        %pythonappend next %{
        if not val:
            return None
        val.thisown = True
        val.parent = self.parent  # copy owning page object from previous annot
        val.parent._annot_refs[id(val)] = val

        if val.type[0] == PDF_ANNOT_WIDGET:
            widget = Widget()
            TOOLS._fill_widget(val, widget)
            val = widget
        %}
        %pythoncode %{@property%}
        struct Annot *next()
        {
            pdf_annot *this_annot = (pdf_annot *) $self;
            int type = pdf_annot_type(gctx, this_annot);
            pdf_annot *annot;

            if (type != PDF_ANNOT_WIDGET) {
                annot = pdf_next_annot(gctx, this_annot);
            } else {
                annot = pdf_next_widget(gctx, this_annot);
            }

            if (annot)
                pdf_keep_annot(gctx, annot);
            return (struct Annot *) annot;
        }


        //----------------------------------------------------------------
        // annotation pixmap
        //----------------------------------------------------------------
        FITZEXCEPTION(get_pixmap, !result)
        %pythonprepend get_pixmap
%{"""annotation Pixmap"""

CheckParent(self)
cspaces = {"gray": csGRAY, "rgb": csRGB, "cmyk": csCMYK}
if type(colorspace) is str:
    colorspace = cspaces.get(colorspace.lower(), None)
if dpi:
    matrix = Matrix(dpi / 72, dpi / 72)
%}
        %pythonappend get_pixmap
%{
        val.thisown = True
        if dpi:
            val.set_dpi(dpi, dpi)
%}
        struct Pixmap *
        get_pixmap(PyObject *matrix = NULL, PyObject *dpi=NULL, struct Colorspace *colorspace = NULL, int alpha = 0)
        {
            fz_matrix ctm = JM_matrix_from_py(matrix);
            fz_colorspace *cs = (fz_colorspace *) colorspace;
            fz_pixmap *pix = NULL;
            if (!cs) {
                cs = fz_device_rgb(gctx);
            }

            fz_try(gctx) {
                pix = pdf_new_pixmap_from_annot(gctx, (pdf_annot *) $self, ctm, cs, NULL, alpha);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) pix;
        }
        %pythoncode %{
        def _erase(self):
            try:
                self.parent._forget_annot(self)
            except:
                return
            self.__swig_destroy__(self)
            self.parent = None

        def __str__(self):
            CheckParent(self)
            return "'%s' annotation on %s" % (self.type[1], str(self.parent))

        def __repr__(self):
            CheckParent(self)
            return "'%s' annotation on %s" % (self.type[1], str(self.parent))

        def __del__(self):
            if self.parent is None:
                return
            self._erase()%}
    }
};
%clearnodefaultctor;

//------------------------------------------------------------------------
// fz_link
//------------------------------------------------------------------------
%nodefaultctor;
struct Link
{
    %immutable;
    %extend {
        ~Link() {
            DEBUGMSG1("Link");
            fz_link *this_link = (fz_link *) $self;
            fz_drop_link(gctx, this_link);
            DEBUGMSG2;
        }

        PyObject *_border(struct Document *doc, int xref)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) doc);
            if (!pdf) Py_RETURN_NONE;
            pdf_obj *link_obj = pdf_new_indirect(gctx, pdf, xref, 0);
            if (!link_obj) Py_RETURN_NONE;
            PyObject *b = JM_annot_border(gctx, link_obj);
            pdf_drop_obj(gctx, link_obj);
            return b;
        }

        PyObject *_setBorder(PyObject *border, struct Document *doc, int xref)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) doc);
            if (!pdf) Py_RETURN_NONE;
            pdf_obj *link_obj = pdf_new_indirect(gctx, pdf, xref, 0);
            if (!link_obj) Py_RETURN_NONE;
            PyObject *b = JM_annot_set_border(gctx, border, pdf, link_obj);
            pdf_drop_obj(gctx, link_obj);
            return b;
        }

        FITZEXCEPTION(_colors, !result)
        PyObject *_colors(struct Document *doc, int xref)
        {
            pdf_document *pdf = pdf_specifics(gctx, (fz_document *) doc);
            if (!pdf) Py_RETURN_NONE;
            PyObject *b = NULL;
            pdf_obj *link_obj;
            fz_try(gctx) {
                link_obj = pdf_new_indirect(gctx, pdf, xref, 0);
                if (!link_obj) {
                    RAISEPY(gctx, MSG_BAD_XREF, PyExc_ValueError);
                }
                b = JM_annot_colors(gctx, link_obj);
            }
            fz_always(gctx) {
                pdf_drop_obj(gctx, link_obj);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return b;
        }


        %pythoncode %{
        @property
        def border(self):
            return self._border(self.parent.parent.this, self.xref)

        @property
        def flags(self)->int:
            CheckParent(self)
            doc = self.parent.parent
            if not doc.is_pdf:
                return 0
            f = doc.xref_get_key(self.xref, "F")
            if f[1] != "null":
                return int(f[1])
            return 0

        def set_flags(self, flags):
            CheckParent(self)
            doc = self.parent.parent
            if not doc.is_pdf:
                raise ValueError("is no PDF")
            if not type(flags) is int:
                raise ValueError("bad 'flags' value")
            doc.xref_set_key(self.xref, "F", str(flags))
            return None

        def set_border(self, border=None, width=0, dashes=None, style=None):
            if type(border) is not dict:
                border = {"width": width, "style": style, "dashes": dashes}
            return self._setBorder(border, self.parent.parent.this, self.xref)

        @property
        def colors(self):
            return self._colors(self.parent.parent.this, self.xref)

        def set_colors(self, colors=None, stroke=None, fill=None):
            """Set border colors."""
            CheckParent(self)
            doc = self.parent.parent
            if type(colors) is not dict:
                colors = {"fill": fill, "stroke": stroke}
            fill = colors.get("fill")
            stroke = colors.get("stroke")
            if fill is not None:
                print("warning: links have no fill color")
            if stroke in ([], ()):
                doc.xref_set_key(self.xref, "C", "[]")
                return
            if hasattr(stroke, "__float__"):
                stroke = [float(stroke)]
            CheckColor(stroke)
            if len(stroke) == 1:
                s = "[%g]" % stroke[0]
            elif len(stroke) == 3:
                s = "[%g %g %g]" % tuple(stroke)
            else:
                s = "[%g %g %g %g]" % tuple(stroke)
            doc.xref_set_key(self.xref, "C", s)
        %}
        %pythoncode %{@property%}
        PARENTCHECK(uri, """Uri string.""")
        PyObject *uri()
        {
            fz_link *this_link = (fz_link *) $self;
            return JM_UnicodeFromStr(this_link->uri);
        }

        %pythoncode %{@property%}
        PARENTCHECK(is_external, """Flag the link as external.""")
        PyObject *is_external()
        {
            fz_link *this_link = (fz_link *) $self;
            if (!this_link->uri) Py_RETURN_FALSE;
            return JM_BOOL(fz_is_external_link(gctx, this_link->uri));
        }

        %pythoncode
        %{
        page = -1
        @property
        def dest(self):
            """Create link destination details."""
            if hasattr(self, "parent") and self.parent is None:
                raise ValueError("orphaned object: parent is None")
            if self.parent.parent.is_closed or self.parent.parent.is_encrypted:
                raise ValueError("document closed or encrypted")
            doc = self.parent.parent

            if self.is_external or self.uri.startswith("#"):
                uri = None
            else:
                uri = doc.resolve_link(self.uri)

            return linkDest(self, uri)
        %}

        PARENTCHECK(rect, """Rectangle ('hot area').""")
        %pythoncode %{@property%}
        %pythonappend rect %{val = Rect(val)%}
        PyObject *rect()
        {
            fz_link *this_link = (fz_link *) $self;
            return JM_py_from_rect(this_link->rect);
        }

        //----------------------------------------------------------------
        // next link
        //----------------------------------------------------------------
        // we need to increase the link refs number
        // so that it will not be freed when the head is dropped
        PARENTCHECK(next, """Next link.""")
        %pythonappend next %{
            if val:
                val.thisown = True
                val.parent = self.parent  # copy owning page from prev link
                val.parent._annot_refs[id(val)] = val
                if self.xref > 0:  # prev link has an xref
                    link_xrefs = [x[0] for x in self.parent.annot_xrefs() if x[1] == PDF_ANNOT_LINK]
                    link_ids = [x[2] for x in self.parent.annot_xrefs() if x[1] == PDF_ANNOT_LINK]
                    idx = link_xrefs.index(self.xref)
                    val.xref = link_xrefs[idx + 1]
                    val.id = link_ids[idx + 1]
                else:
                    val.xref = 0
                    val.id = ""
        %}
        %pythoncode %{@property%}
        struct Link *next()
        {
            fz_link *this_link = (fz_link *) $self;
            fz_link *next_link = this_link->next;
            if (!next_link) return NULL;
            next_link = fz_keep_link(gctx, next_link);
            return (struct Link *) next_link;
        }

        %pythoncode %{
        def _erase(self):
            try:
                self.parent._forget_annot(self)
            except:
                pass
            self.__swig_destroy__(self)
            self.parent = None

        def __str__(self):
            CheckParent(self)
            return "link on " + str(self.parent)

        def __repr__(self):
            CheckParent(self)
            return "link on " + str(self.parent)

        def __del__(self):
            self._erase()%}
    }
};
%clearnodefaultctor;

//------------------------------------------------------------------------
// fz_display_list
//------------------------------------------------------------------------
struct DisplayList {
    %extend
    {
        ~DisplayList() {
            DEBUGMSG1("DisplayList");
            fz_display_list *this_dl = (fz_display_list *) $self;
            fz_drop_display_list(gctx, this_dl);
            DEBUGMSG2;
        }
        FITZEXCEPTION(DisplayList, !result)
        DisplayList(PyObject *mediabox)
        {
            fz_display_list *dl = NULL;
            fz_try(gctx) {
                dl = fz_new_display_list(gctx, JM_rect_from_py(mediabox));
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct DisplayList *) dl;
        }

        FITZEXCEPTION(run, !result)
        PyObject *run(struct DeviceWrapper *dw, PyObject *m, PyObject *area) {
            fz_try(gctx) {
                fz_run_display_list(gctx, (fz_display_list *) $self, dw->device,
                    JM_matrix_from_py(m), JM_rect_from_py(area), NULL);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------------------------------------
        // DisplayList.rect
        //----------------------------------------------------------------
        %pythoncode%{@property%}
        %pythonappend rect %{val = Rect(val)%}
        PyObject *rect()
        {
            return JM_py_from_rect(fz_bound_display_list(gctx, (fz_display_list *) $self));
        }

        //----------------------------------------------------------------
        // DisplayList.get_pixmap
        //----------------------------------------------------------------
        FITZEXCEPTION(get_pixmap, !result)
        %pythonappend get_pixmap %{val.thisown = True%}
        struct Pixmap *get_pixmap(PyObject *matrix=NULL,
                                      struct Colorspace *colorspace=NULL,
                                      int alpha=0,
                                      PyObject *clip=NULL)
        {
            fz_colorspace *cs = NULL;
            fz_pixmap *pix = NULL;

            if (colorspace) cs = (fz_colorspace *) colorspace;
            else cs = fz_device_rgb(gctx);

            fz_try(gctx) {
                pix = JM_pixmap_from_display_list(gctx,
                          (fz_display_list *) $self, matrix, cs,
                           alpha, clip, NULL);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Pixmap *) pix;
        }

        //----------------------------------------------------------------
        // DisplayList.get_textpage
        //----------------------------------------------------------------
        FITZEXCEPTION(get_textpage, !result)
        %pythonappend get_textpage %{val.thisown = True%}
        struct TextPage *get_textpage(int flags = 3)
        {
            fz_display_list *this_dl = (fz_display_list *) $self;
            fz_stext_page *tp = NULL;
            fz_try(gctx) {
                fz_stext_options stext_options = { 0 };
                stext_options.flags = flags;
                tp = fz_new_stext_page_from_display_list(gctx, this_dl, &stext_options);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct TextPage *) tp;
        }
        %pythoncode %{
        def __del__(self):
            if not type(self) is DisplayList:
                return
            if getattr(self, "thisown", False):
                self.__swig_destroy__(self)
        %}
    }
};

//------------------------------------------------------------------------
// fz_stext_page
//------------------------------------------------------------------------
struct TextPage {
    %extend {
        ~TextPage()
        {
            DEBUGMSG1("TextPage");
            fz_stext_page *this_tp = (fz_stext_page *) $self;
            fz_drop_stext_page(gctx, this_tp);
            DEBUGMSG2;
        }

        FITZEXCEPTION(TextPage, !result)
        %pythonappend TextPage %{self.thisown=True%}
        TextPage(PyObject *mediabox)
        {
            fz_stext_page *tp = NULL;
            fz_try(gctx) {
                tp = fz_new_stext_page(gctx, JM_rect_from_py(mediabox));
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct TextPage *) tp;
        }

        //----------------------------------------------------------------
        // method search()
        //----------------------------------------------------------------
        FITZEXCEPTION(search, !result)
        %pythonprepend search
        %{"""Locate 'needle' returning rects or quads."""%}
        %pythonappend search %{
        if not val:
            return val
        items = len(val)
        for i in range(items):  # change entries to quads or rects
            q = Quad(val[i])
            if quads:
                val[i] = q
            else:
                val[i] = q.rect
        if quads:
            return val
        i = 0  # join overlapping rects on the same line
        while i < items - 1:
            v1 = val[i]
            v2 = val[i + 1]
            if v1.y1 != v2.y1 or (v1 & v2).is_empty:
                i += 1
                continue  # no overlap on same line
            val[i] = v1 | v2  # join rectangles
            del val[i + 1]  # remove v2
            items -= 1  # reduce item count
        %}
        PyObject *search(const char *needle, int hit_max=0, int quads=1)
        {
            PyObject *liste = NULL;
            fz_try(gctx) {
                liste = JM_search_stext_page(gctx, (fz_stext_page *) $self, needle);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return liste;
        }


        //----------------------------------------------------------------
        // Get list of all blocks with block type and bbox as a Python list
        //----------------------------------------------------------------
        FITZEXCEPTION(_getNewBlockList, !result)
        PyObject *
        _getNewBlockList(PyObject *page_dict, int raw)
        {
            fz_try(gctx) {
                JM_make_textpage_dict(gctx, (fz_stext_page *) $self, page_dict, raw);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        %pythoncode %{
        def _textpage_dict(self, raw=False):
            page_dict = {"width": self.rect.width, "height": self.rect.height}
            self._getNewBlockList(page_dict, raw)
            return page_dict
        %}


        //----------------------------------------------------------------
        // Get image meta information as a Python dictionary
        //----------------------------------------------------------------
        FITZEXCEPTION(extractIMGINFO, !result)
        %pythonprepend extractIMGINFO
        %{"""Return a list with image meta information."""%}
        PyObject *
        extractIMGINFO(int hashes=0)
        {
            fz_stext_block *block;
            int block_n = -1;
            fz_stext_page *this_tpage = (fz_stext_page *) $self;
            PyObject *rc = NULL, *block_dict = NULL;
            fz_pixmap *pix = NULL;
            fz_try(gctx) {
                rc = PyList_New(0);
                for (block = this_tpage->first_block; block; block = block->next) {
                    block_n++;
                    if (block->type == FZ_STEXT_BLOCK_TEXT) {
                        continue;
                    }
                    unsigned char digest[16];
                    fz_image *img = block->u.i.image;
                    if (hashes) {
                        pix = fz_get_pixmap_from_image(gctx, img, NULL, NULL, NULL, NULL);
                        fz_md5_pixmap(gctx, pix, digest);
                        fz_drop_pixmap(gctx, pix);
                        pix = NULL;
                    }
                    fz_colorspace *cs = img->colorspace;
                    block_dict = PyDict_New();
                    DICT_SETITEM_DROP(block_dict, dictkey_number, Py_BuildValue("i", block_n));
                    DICT_SETITEM_DROP(block_dict, dictkey_bbox,
                                    JM_py_from_rect(block->bbox));
                    DICT_SETITEM_DROP(block_dict, dictkey_matrix,
                                    JM_py_from_matrix(block->u.i.transform));
                    DICT_SETITEM_DROP(block_dict, dictkey_width,
                                    Py_BuildValue("i", img->w));
                    DICT_SETITEM_DROP(block_dict, dictkey_height,
                                    Py_BuildValue("i", img->h));
                    DICT_SETITEM_DROP(block_dict, dictkey_colorspace,
                                    Py_BuildValue("i",
                                    fz_colorspace_n(gctx, cs)));
                    DICT_SETITEM_DROP(block_dict, dictkey_cs_name,
                                    Py_BuildValue("s",
                                    fz_colorspace_name(gctx, cs)));
                    DICT_SETITEM_DROP(block_dict, dictkey_xres,
                                    Py_BuildValue("i", img->xres));
                    DICT_SETITEM_DROP(block_dict, dictkey_yres,
                                    Py_BuildValue("i", img->xres));
                    DICT_SETITEM_DROP(block_dict, dictkey_bpc,
                                    Py_BuildValue("i", (int) img->bpc));
                    DICT_SETITEM_DROP(block_dict, dictkey_size,
                                    Py_BuildValue("n", (Py_ssize_t) fz_image_size(gctx, img)));
                    if (hashes) {
                        DICT_SETITEMSTR_DROP(block_dict, "digest",
                                    PyBytes_FromStringAndSize(digest, 16));
                    }
                    LIST_APPEND_DROP(rc, block_dict);
                }
            }
            fz_always(gctx) {
            }
            fz_catch(gctx) {
                Py_CLEAR(rc);
                Py_CLEAR(block_dict);
                fz_drop_pixmap(gctx, pix);
                return NULL;
            }
            return rc;
        }


        //----------------------------------------------------------------
        // Get text blocks with their bbox and concatenated lines
        // as a Python list
        //----------------------------------------------------------------
        FITZEXCEPTION(extractBLOCKS, !result)
        %pythonprepend extractBLOCKS
        %{"""Return a list with text block information."""%}
        PyObject *
        extractBLOCKS()
        {
            fz_stext_block *block;
            fz_stext_line *line;
            fz_stext_char *ch;
            int block_n = -1;
            PyObject *text = NULL, *litem;
            fz_buffer *res = NULL;
            fz_var(res);
            fz_stext_page *this_tpage = (fz_stext_page *) $self;
            fz_rect tp_rect = this_tpage->mediabox;
            PyObject *lines = NULL;
            fz_try(gctx) {
                res = fz_new_buffer(gctx, 1024);
                lines = PyList_New(0);
                for (block = this_tpage->first_block; block; block = block->next) {
                    block_n++;
                    fz_rect blockrect = fz_empty_rect;
                    if (block->type == FZ_STEXT_BLOCK_TEXT) {
                        fz_clear_buffer(gctx, res);  // set text buffer to empty
                        int line_n = -1;
                        int last_char = 0;
                        for (line = block->u.t.first_line; line; line = line->next) {
                            line_n++;
                            fz_rect linerect = fz_empty_rect;
                            for (ch = line->first_char; ch; ch = ch->next) {
                                fz_rect cbbox = JM_char_bbox(gctx, line, ch);
                                if (!fz_contains_rect(tp_rect, cbbox) &&
                                    !fz_is_infinite_rect(tp_rect)) {
                                    continue;
                                }
                                JM_append_rune(gctx, res, ch->c);
                                last_char = ch->c;
                                linerect = fz_union_rect(linerect, cbbox);
                            }
                            if (last_char != 10 && !fz_is_empty_rect(linerect)) {
                                fz_append_byte(gctx, res, 10);
                            }
                            blockrect = fz_union_rect(blockrect, linerect);
                        }
                        text = JM_EscapeStrFromBuffer(gctx, res);
                    } else if (fz_contains_rect(tp_rect, block->bbox) || fz_is_infinite_rect(tp_rect)) {
                        fz_image *img = block->u.i.image;
                        fz_colorspace *cs = img->colorspace;
                        text = PyUnicode_FromFormat("<image: %s, width: %d, height: %d, bpc: %d>", fz_colorspace_name(gctx, cs), img->w, img->h, img->bpc);
                        blockrect = fz_union_rect(blockrect, block->bbox);
                    }
                    if (!fz_is_empty_rect(blockrect)) {
                        litem = PyTuple_New(7);
                        PyTuple_SET_ITEM(litem, 0, Py_BuildValue("f", blockrect.x0));
                        PyTuple_SET_ITEM(litem, 1, Py_BuildValue("f", blockrect.y0));
                        PyTuple_SET_ITEM(litem, 2, Py_BuildValue("f", blockrect.x1));
                        PyTuple_SET_ITEM(litem, 3, Py_BuildValue("f", blockrect.y1));
                        PyTuple_SET_ITEM(litem, 4, Py_BuildValue("O", text));
                        PyTuple_SET_ITEM(litem, 5, Py_BuildValue("i", block_n));
                        PyTuple_SET_ITEM(litem, 6, Py_BuildValue("i", block->type));
                        LIST_APPEND_DROP(lines, litem);
                    }
                    Py_CLEAR(text);
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
                PyErr_Clear();
            }
            fz_catch(gctx) {
                Py_CLEAR(lines);
                return NULL;
            }
            return lines;
        }

        //----------------------------------------------------------------
        // Get text words with their bbox
        //----------------------------------------------------------------
        FITZEXCEPTION(extractWORDS, !result)
        %pythonprepend extractWORDS
        %{"""Return a list with text word information."""%}
        PyObject *
        extractWORDS()
        {
            fz_stext_block *block;
            fz_stext_line *line;
            fz_stext_char *ch;
            fz_buffer *buff = NULL;
            fz_var(buff);
            size_t buflen = 0;
            int block_n = -1, line_n, word_n;
            fz_rect wbbox = fz_empty_rect;  // word bbox
            fz_stext_page *this_tpage = (fz_stext_page *) $self;
            fz_rect tp_rect = this_tpage->mediabox;

            PyObject *lines = NULL;
            fz_try(gctx) {
                buff = fz_new_buffer(gctx, 64);
                lines = PyList_New(0);
                for (block = this_tpage->first_block; block; block = block->next) {
                    block_n++;
                    if (block->type != FZ_STEXT_BLOCK_TEXT) {
                        continue;
                    }
                    line_n = -1;
                    for (line = block->u.t.first_line; line; line = line->next) {
                        line_n++;
                        word_n = 0;                       // word counter per line
                        fz_clear_buffer(gctx, buff);      // reset word buffer
                        buflen = 0;                       // reset char counter
                        for (ch = line->first_char; ch; ch = ch->next) {
                            fz_rect cbbox = JM_char_bbox(gctx, line, ch);
                            if (!fz_contains_rect(tp_rect, cbbox) &&
                                !fz_is_infinite_rect(tp_rect)) {
                                continue;
                            }
                            if (ch->c == 32 && buflen == 0)
                                continue;  // skip spaces at line start
                            if (ch->c == 32) {
                                if (!fz_is_empty_rect(wbbox)) {
                                    word_n = JM_append_word(gctx, lines, buff, &wbbox,
                                                        block_n, line_n, word_n);
                                }
                                fz_clear_buffer(gctx, buff);
                                buflen = 0;  // reset char counter
                                continue;
                            }
                            // append one unicode character to the word
                            JM_append_rune(gctx, buff, ch->c);
                            buflen++;
                            // enlarge word bbox
                            wbbox = fz_union_rect(wbbox, JM_char_bbox(gctx, line, ch));
                        }
                        if (buflen && !fz_is_empty_rect(wbbox)) {
                            word_n = JM_append_word(gctx, lines, buff, &wbbox,
                                                    block_n, line_n, word_n);
                        }
                        fz_clear_buffer(gctx, buff);
                        buflen = 0;
                    }
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, buff);
                PyErr_Clear();
            }
            fz_catch(gctx) {
                return NULL;
            }
            return lines;
        }

        //----------------------------------------------------------------
        // TextPage poolsize
        //----------------------------------------------------------------
        %pythonprepend poolsize
        %{"""TextPage current poolsize."""%}
        PyObject *poolsize()
        {
            fz_stext_page *tpage = (fz_stext_page *) $self;
            size_t size = fz_pool_size(gctx, tpage->pool);
            return PyLong_FromSize_t(size);
        }

        //----------------------------------------------------------------
        // TextPage rectangle
        //----------------------------------------------------------------
        %pythoncode %{@property%}
        %pythonprepend rect
        %{"""TextPage rectangle."""%}
        %pythonappend rect %{val = Rect(val)%}
        PyObject *rect()
        {
            fz_stext_page *this_tpage = (fz_stext_page *) $self;
            fz_rect mediabox = this_tpage->mediabox;
            return JM_py_from_rect(mediabox);
        }

        //----------------------------------------------------------------
        // method _extractText()
        //----------------------------------------------------------------
        FITZEXCEPTION(_extractText, !result)
        %newobject _extractText;
        PyObject *_extractText(int format)
        {
            fz_buffer *res = NULL;
            fz_output *out = NULL;
            PyObject *text = NULL;
            fz_var(res);
            fz_var(out);
            fz_stext_page *this_tpage = (fz_stext_page *) $self;
            fz_try(gctx) {
                res = fz_new_buffer(gctx, 1024);
                out = fz_new_output_with_buffer(gctx, res);
                switch(format) {
                    case(1):
                        fz_print_stext_page_as_html(gctx, out, this_tpage, 0);
                        break;
                    case(3):
                        fz_print_stext_page_as_xml(gctx, out, this_tpage, 0);
                        break;
                    case(4):
                        fz_print_stext_page_as_xhtml(gctx, out, this_tpage, 0);
                        break;
                    default:
                        JM_print_stext_page_as_text(gctx, out, this_tpage);
                        break;
                }
                text = JM_UnicodeFromBuffer(gctx, res);

            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
                fz_drop_output(gctx, out);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return text;
        }


        //----------------------------------------------------------------
        // method extractRect()
        //----------------------------------------------------------------
        PyObject *extractTextbox(PyObject *rect)
        {
            fz_stext_page *this_tpage = (fz_stext_page *) $self;
            fz_rect area = JM_rect_from_py(rect);
            PyObject *rc = NULL;
            char *found = NULL;
            fz_try(gctx) {
                char *found = JM_copy_rectangle(gctx, this_tpage, area);
                if (found) {
                    rc = JM_UnicodeFromStr(found);
                    JM_Free(found);
                } else {
                    rc = EMPTY_STRING;
                }
            }
            fz_catch(gctx) {
                if (found) JM_Free(found);
                return EMPTY_STRING;
            }

            return rc;
        }

        //----------------------------------------------------------------
        // method extractSelection()
        //----------------------------------------------------------------
        PyObject *extractSelection(PyObject *pointa, PyObject *pointb)
        {
            fz_stext_page *this_tpage = (fz_stext_page *) $self;
            fz_point a = JM_point_from_py(pointa);
            fz_point b = JM_point_from_py(pointb);
            char *found = fz_copy_selection(gctx, this_tpage, a, b, 0);
            PyObject *rc = NULL;
            if (found) {
                rc = PyUnicode_FromString(found);
                JM_Free(found);
            } else {
                rc = EMPTY_STRING;
            }
            return rc;
        }

        %pythoncode %{
            def extractText(self, sort=False) -> str:
                """Return simple, bare text on the page."""
                if sort is False:
                    return self._extractText(0)
                blocks = self.extractBLOCKS()[:]
                blocks.sort(key=lambda b: (b[3], b[0]))
                return "".join([b[4] for b in blocks])

            def extractHTML(self) -> str:
                """Return page content as a HTML string."""
                return self._extractText(1)

            def extractJSON(self, cb=None, sort=False) -> str:
                """Return 'extractDICT' converted to JSON format."""
                import base64, json
                val = self._textpage_dict(raw=False)

                class b64encode(json.JSONEncoder):
                    def default(self, s):
                        if type(s) in (bytes, bytearray):
                            return base64.b64encode(s).decode()

                if cb is not None:
                    val["width"] = cb.width
                    val["height"] = cb.height
                if sort is True:
                    blocks = val["blocks"]
                    blocks.sort(key=lambda b: (b["bbox"][3], b["bbox"][0]))
                    val["blocks"] = blocks
                val = json.dumps(val, separators=(",", ":"), cls=b64encode, indent=1)
                return val

            def extractRAWJSON(self, cb=None, sort=False) -> str:
                """Return 'extractRAWDICT' converted to JSON format."""
                import base64, json
                val = self._textpage_dict(raw=True)

                class b64encode(json.JSONEncoder):
                    def default(self,s):
                        if type(s) in (bytes, bytearray):
                            return base64.b64encode(s).decode()

                if cb is not None:
                    val["width"] = cb.width
                    val["height"] = cb.height
                if sort is True:
                    blocks = val["blocks"]
                    blocks.sort(key=lambda b: (b["bbox"][3], b["bbox"][0]))
                    val["blocks"] = blocks
                val = json.dumps(val, separators=(",", ":"), cls=b64encode, indent=1)
                return val

            def extractXML(self) -> str:
                """Return page content as a XML string."""
                return self._extractText(3)

            def extractXHTML(self) -> str:
                """Return page content as a XHTML string."""
                return self._extractText(4)

            def extractDICT(self, cb=None, sort=False) -> dict:
                """Return page content as a Python dict of images and text spans."""
                val = self._textpage_dict(raw=False)
                if cb is not None:
                    val["width"] = cb.width
                    val["height"] = cb.height
                if sort is True:
                    blocks = val["blocks"]
                    blocks.sort(key=lambda b: (b["bbox"][3], b["bbox"][0]))
                    val["blocks"] = blocks
                return val

            def extractRAWDICT(self, cb=None, sort=False) -> dict:
                """Return page content as a Python dict of images and text characters."""
                val =  self._textpage_dict(raw=True)
                if cb is not None:
                    val["width"] = cb.width
                    val["height"] = cb.height
                if sort is True:
                    blocks = val["blocks"]
                    blocks.sort(key=lambda b: (b["bbox"][3], b["bbox"][0]))
                    val["blocks"] = blocks
                return val

            def __del__(self):
                if not type(self) is TextPage:
                    return
                if getattr(self, "thisown", False):
                    self.__swig_destroy__(self)
        %}
    }
};

//------------------------------------------------------------------------
// Graftmap - only used internally for inter-PDF object copy operations
//------------------------------------------------------------------------
struct Graftmap
{
    %extend
    {
        ~Graftmap()
        {
            DEBUGMSG1("Graftmap");
            pdf_graft_map *this_gm = (pdf_graft_map *) $self;
            pdf_drop_graft_map(gctx, this_gm);
            DEBUGMSG2;
        }

        FITZEXCEPTION(Graftmap, !result)
        Graftmap(struct Document *doc)
        {
            pdf_graft_map *map = NULL;
            fz_try(gctx) {
                pdf_document *dst = pdf_specifics(gctx, (fz_document *) doc);
                ASSERT_PDF(dst);
                map = pdf_new_graft_map(gctx, dst);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Graftmap *) map;
        }

        %pythoncode %{
        def __del__(self):
            if not type(self) is Graftmap:
                return
            if getattr(self, "thisown", False):
                self.__swig_destroy__(self)
        %}
    }
};


//------------------------------------------------------------------------
// TextWriter
//------------------------------------------------------------------------
struct TextWriter
{
    %extend {
        ~TextWriter()
        {
            DEBUGMSG1("TextWriter");
            fz_text *this_tw = (fz_text *) $self;
            fz_drop_text(gctx, this_tw);
            DEBUGMSG2;
        }

        FITZEXCEPTION(TextWriter, !result)
        %pythonprepend TextWriter
        %{"""Stores text spans for later output on compatible PDF pages."""%}
        %pythonappend TextWriter %{
        self.opacity = opacity
        self.color = color
        self.rect = Rect(page_rect)
        self.ctm = Matrix(1, 0, 0, -1, 0, self.rect.height)
        self.ictm = ~self.ctm
        self.last_point = Point()
        self.last_point.__doc__ = "Position following last text insertion."
        self.text_rect = Rect()

        self.text_rect.__doc__ = "Accumulated area of text spans."
        self.used_fonts = set()
        self.thisown = True
        %}
        TextWriter(PyObject *page_rect, float opacity=1, PyObject *color=NULL )
        {
            fz_text *text = NULL;
            fz_try(gctx) {
                text = fz_new_text(gctx);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct TextWriter *) text;
        }

        FITZEXCEPTION(append, !result)
        %pythonprepend append %{
        """Store 'text' at point 'pos' using 'font' and 'fontsize'."""

        pos = Point(pos) * self.ictm
        if font is None:
            font = Font("helv")
        if not font.is_writable:
            raise ValueError("Unsupported font '%s'." % font.name)
        if right_to_left:
            text = self.clean_rtl(text)
            text = "".join(reversed(text))
            right_to_left = 0
        %}
        %pythonappend append %{
        self.last_point = Point(val[-2:]) * self.ctm
        self.text_rect = self._bbox * self.ctm
        val = self.text_rect, self.last_point
        if font.flags["mono"] == 1:
            self.used_fonts.add(font)
        %}
        PyObject *
        append(PyObject *pos, char *text, struct Font *font=NULL, float fontsize=11, char *language=NULL, int right_to_left=0, int small_caps=0)
        {
            fz_text_language lang = fz_text_language_from_string(language);
            fz_point p = JM_point_from_py(pos);
            fz_matrix trm = fz_make_matrix(fontsize, 0, 0, fontsize, p.x, p.y);
            int markup_dir = 0, wmode = 0;
            fz_try(gctx) {
                if (small_caps == 0) {
                    trm = fz_show_string(gctx, (fz_text *) $self, (fz_font *) font,
                                trm, text, wmode, right_to_left, markup_dir, lang);
                } else {
                    trm = JM_show_string_cs(gctx, (fz_text *) $self, (fz_font *) font,
                                trm, text, wmode, right_to_left, markup_dir, lang);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            return JM_py_from_matrix(trm);
        }

        %pythoncode %{
        def appendv(self, pos, text, font=None, fontsize=11,
            language=None, small_caps=False):
            """Append text in vertical write mode."""
            lheight = fontsize * 1.2
            for c in text:
                self.append(pos, c, font=font, fontsize=fontsize,
                    language=language, small_caps=small_caps)
                pos.y += lheight
            return self.text_rect, self.last_point


        def clean_rtl(self, text):
            """Revert the sequence of Latin text parts.

            Text with right-to-left writing direction (Arabic, Hebrew) often
            contains Latin parts, which are written in left-to-right: numbers, names,
            etc. For output as PDF text we need *everything* in right-to-left.
            E.g. an input like "<arabic> ABCDE FG HIJ <arabic> KL <arabic>" will be
            converted to "<arabic> JIH GF EDCBA <arabic> LK <arabic>". The Arabic
            parts remain untouched.

            Args:
                text: str
            Returns:
                Massaged string.
            """
            if not text:
                return text
            # split into words at space boundaries
            words = text.split(" ")
            idx = []
            for i in range(len(words)):
                w = words[i]
                # revert character sequence for Latin only words
                if not (len(w) < 2 or max([ord(c) for c in w]) > 255):
                    words[i] = "".join(reversed(w))
                    idx.append(i)  # stored index of Latin word

            # adjacent Latin words must revert their sequence, too
            idx2 = []  # store indices of adjacent Latin words
            for i in range(len(idx)):
                if idx2 == []:  # empty yet?
                    idx2.append(idx[i]) # store Latin word number

                elif idx[i] > idx2[-1] + 1:  # large gap to last?
                    if len(idx2) > 1:  # at least two consecutives?
                        words[idx2[0] : idx2[-1] + 1] = reversed(
                            words[idx2[0] : idx2[-1] + 1]
                        )  # revert their sequence
                    idx2 = [idx[i]]  # re-initialize

                elif idx[i] == idx2[-1] + 1:  # new adjacent Latin word
                    idx2.append(idx[i])

            text = " ".join(words)
            return text
        %}


        %pythoncode %{@property%}
        %pythonappend _bbox%{val = Rect(val)%}
        PyObject *_bbox()
        {
            return JM_py_from_rect(fz_bound_text(gctx, (fz_text *) $self, NULL, fz_identity));
        }

        FITZEXCEPTION(write_text, !result)
        %pythonprepend write_text%{
        """Write the text to a PDF page having the TextWriter's page size.

        Args:
            page: a PDF page having same size.
            color: override text color.
            opacity: override transparency.
            overlay: put in foreground or background.
            morph: tuple(Point, Matrix), apply a matrix with a fixpoint.
            matrix: Matrix to be used instead of 'morph' argument.
            render_mode: (int) PDF render mode operator 'Tr'.
        """

        CheckParent(page)
        if abs(self.rect - page.rect) > 1e-3:
            raise ValueError("incompatible page rect")
        if morph != None:
            if (type(morph) not in (tuple, list)
                or type(morph[0]) is not Point
                or type(morph[1]) is not Matrix
                ):
                raise ValueError("morph must be (Point, Matrix) or None")
        if matrix != None and morph != None:
            raise ValueError("only one of matrix, morph is allowed")
        if getattr(opacity, "__float__", None) is None or opacity == -1:
            opacity = self.opacity
        if color is None:
            color = self.color
        %}

        %pythonappend write_text%{
        max_nums = val[0]
        content = val[1]
        max_alp, max_font = max_nums
        old_cont_lines = content.splitlines()

        optcont = page._get_optional_content(oc)
        if optcont != None:
            bdc = "/OC /%s BDC" % optcont
            emc = "EMC"
        else:
            bdc = emc = ""

        new_cont_lines = ["q"]
        if bdc:
            new_cont_lines.append(bdc)

        cb = page.cropbox_position
        if bool(cb):
            new_cont_lines.append("1 0 0 1 %g %g cm" % (cb.x, cb.y))

        if morph:
            p = morph[0] * self.ictm
            delta = Matrix(1, 1).pretranslate(p.x, p.y)
            matrix = ~delta * morph[1] * delta
        if morph or matrix:
            new_cont_lines.append("%g %g %g %g %g %g cm" % JM_TUPLE(matrix))

        for line in old_cont_lines:
            if line.endswith(" cm"):
                continue
            if line == "BT":
                new_cont_lines.append(line)
                new_cont_lines.append("%i Tr" % render_mode)
                continue
            if line.endswith(" gs"):
                alp = int(line.split()[0][4:]) + max_alp
                line = "/Alp%i gs" % alp
            elif line.endswith(" Tf"):
                temp = line.split()
                fsize = float(temp[1])
                if render_mode != 0:
                    w = fsize * 0.05
                else:
                    w = 1
                new_cont_lines.append("%g w" % w)
                font = int(temp[0][2:]) + max_font
                line = " ".join(["/F%i" % font] + temp[1:])
            elif line.endswith(" rg"):
                new_cont_lines.append(line.replace("rg", "RG"))
            elif line.endswith(" g"):
                new_cont_lines.append(line.replace(" g", " G"))
            elif line.endswith(" k"):
                new_cont_lines.append(line.replace(" k", " K"))
            new_cont_lines.append(line)
        if emc:
            new_cont_lines.append(emc)
        new_cont_lines.append("Q\n")
        content = "\n".join(new_cont_lines).encode("utf-8")
        TOOLS._insert_contents(page, content, overlay=overlay)
        val = None
        for font in self.used_fonts:
            repair_mono_font(page, font)
        %}
        PyObject *write_text(struct Page *page, PyObject *color=NULL, float opacity=-1, int overlay=1,
                    PyObject *morph=NULL, PyObject *matrix=NULL, int render_mode=0, int oc=0)
        {
            pdf_page *pdfpage = pdf_page_from_fz_page(gctx, (fz_page *) page);
            pdf_obj *resources = NULL;
            fz_buffer *contents = NULL;
            fz_device *dev = NULL;
            PyObject *result = NULL, *max_nums, *cont_string;
            float alpha = 1;
            if (opacity >= 0 && opacity < 1)
                alpha = opacity;
            fz_colorspace *colorspace;
            int ncol = 1;
            float dev_color[4] = {0, 0, 0, 0};
            if (EXISTS(color)) {
                JM_color_FromSequence(color, &ncol, dev_color);
            }
            switch(ncol) {
                case 3: colorspace = fz_device_rgb(gctx); break;
                case 4: colorspace = fz_device_cmyk(gctx); break;
                default: colorspace = fz_device_gray(gctx); break;
            }

            fz_var(contents);
            fz_var(resources);
            fz_var(dev);
            fz_try(gctx) {
                ASSERT_PDF(pdfpage);
                resources = pdf_new_dict(gctx, pdfpage->doc, 5);
                contents = fz_new_buffer(gctx, 1024);
                dev = pdf_new_pdf_device(gctx, pdfpage->doc, fz_identity,
                                         resources, contents);
                fz_fill_text(gctx, dev, (fz_text *) $self, fz_identity,
                    colorspace, dev_color, alpha, fz_default_color_params);
                fz_close_device(gctx, dev);

                // copy generated resources into the one of the page
                max_nums = JM_merge_resources(gctx, pdfpage, resources);
                cont_string = JM_EscapeStrFromBuffer(gctx, contents);
                result = Py_BuildValue("OO", max_nums, cont_string);
                Py_DECREF(cont_string);
                Py_DECREF(max_nums);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, contents);
                pdf_drop_obj(gctx, resources);
                fz_drop_device(gctx, dev);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return result;
        }
        %pythoncode %{
        def __del__(self):
            if not type(self) is TextWriter:
                return
            if getattr(self, "thisown", False):
                self.__swig_destroy__(self)
        %}
    }
};


//------------------------------------------------------------------------
// Font
//------------------------------------------------------------------------
struct Font
{
    %extend
    {
        ~Font()
        {
            DEBUGMSG1("Font");
            fz_font *this_font = (fz_font *) $self;
            fz_drop_font(gctx, this_font);
            DEBUGMSG2;
        }

        FITZEXCEPTION(Font, !result)
        %pythonprepend Font %{
        if fontbuffer:
            if hasattr(fontbuffer, "getvalue"):
                fontbuffer = fontbuffer.getvalue()
            elif type(fontbuffer) is bytearray:
                fontbuffer = bytes(fontbuffer)
            if type(fontbuffer) is not bytes:
                raise ValueError("bad type: 'fontbuffer'")

        if fontname:
            if "/" in fontname or "\\" in fontname or "." in fontname:
                print("Warning: did you mean a fontfile?")

            if fontname.lower() in ("china-t", "china-s", "japan", "korea","china-ts", "china-ss", "japan-s", "korea-s", "cjk"):
                ordering = 0

            elif fontname.lower() in fitz_fontdescriptors.keys():
                import pymupdf_fonts  # optional fonts
                fontbuffer = pymupdf_fonts.myfont(fontname)  # make a copy
                fontname = None  # ensure using fontbuffer only
                del pymupdf_fonts  # remove package again

            elif ordering < 0:
                fontname = Base14_fontdict.get(fontname.lower(), fontname)
        %}
        %pythonappend Font %{self.thisown = True%}
        Font(char *fontname=NULL, char *fontfile=NULL,
             PyObject *fontbuffer=NULL, int script=0,
             char *language=NULL, int ordering=-1, int is_bold=0,
             int is_italic=0, int is_serif=0)
        {
            fz_font *font = NULL;
            fz_try(gctx) {
                fz_text_language lang = fz_text_language_from_string(language);
                font = JM_get_font(gctx, fontname, fontfile,
                           fontbuffer, script, lang, ordering,
                           is_bold, is_italic, is_serif);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Font *) font;
        }


        %pythonprepend glyph_advance
        %{"""Return the glyph width of a unicode (font size 1)."""%}
        PyObject *glyph_advance(int chr, char *language=NULL, int script=0, int wmode=0, int small_caps=0)
        {
            fz_font *font, *thisfont = (fz_font *) $self;
            int gid;
            fz_text_language lang = fz_text_language_from_string(language);
            if (small_caps) {
                gid = fz_encode_character_sc(gctx, thisfont, chr);
                if (gid >= 0) font = thisfont;
            } else {
                gid = fz_encode_character_with_fallback(gctx, thisfont, chr, script, lang, &font);
            }
            return PyFloat_FromDouble((double) fz_advance_glyph(gctx, font, gid, wmode));
        }
        

        FITZEXCEPTION(text_length, !result)
        %pythonprepend text_length
        %{"""Return length of unicode 'text' under a fontsize."""%}
        PyObject *text_length(PyObject *text, double fontsize=11, char *language=NULL, int script=0, int wmode=0, int small_caps=0)
        {
            fz_font *font=NULL, *thisfont = (fz_font *) $self;
            fz_text_language lang = fz_text_language_from_string(language);
            double rc = 0;
            int gid;
            fz_try(gctx) {
                if (!PyUnicode_Check(text) || PyUnicode_READY(text) != 0) {
                    RAISEPY(gctx, MSG_BAD_TEXT, PyExc_TypeError);
                }
                Py_ssize_t i, len = PyUnicode_GET_LENGTH(text);
                int kind = PyUnicode_KIND(text);
                void *data = PyUnicode_DATA(text);
                for (i = 0; i < len; i++) {
                    int c = PyUnicode_READ(kind, data, i);
                    if (small_caps) {
                        gid = fz_encode_character_sc(gctx, thisfont, c);
                        if (gid >= 0) font = thisfont;
                    } else {
                        gid = fz_encode_character_with_fallback(gctx,thisfont, c, script, lang, &font);
                    }
                    rc += (double) fz_advance_glyph(gctx, font, gid, wmode);
                }
            }
            fz_catch(gctx) {
                PyErr_Clear();
                return NULL;
            }
            rc *= fontsize;
            return PyFloat_FromDouble(rc);
        }


        FITZEXCEPTION(char_lengths, !result)
        %pythonprepend char_lengths
        %{"""Return tuple of char lengths of unicode 'text' under a fontsize."""%}
        PyObject *char_lengths(PyObject *text, double fontsize=11, char *language=NULL, int script=0, int wmode=0, int small_caps=0)
        {
            fz_font *font, *thisfont = (fz_font *) $self;
            fz_text_language lang = fz_text_language_from_string(language);
            PyObject *rc = NULL;
            int gid;
            fz_try(gctx) {
                if (!PyUnicode_Check(text) || PyUnicode_READY(text) != 0) {
                    RAISEPY(gctx, MSG_BAD_TEXT, PyExc_TypeError);
                }
                Py_ssize_t i, len = PyUnicode_GET_LENGTH(text);
                int kind = PyUnicode_KIND(text);
                void *data = PyUnicode_DATA(text);
                rc = PyTuple_New(len);
                for (i = 0; i < len; i++) {
                    int c = PyUnicode_READ(kind, data, i);
                    if (small_caps) {
                        gid = fz_encode_character_sc(gctx, thisfont, c);
                        if (gid >= 0) font = thisfont;
                    } else {
                        gid = fz_encode_character_with_fallback(gctx,thisfont, c, script, lang, &font);
                    }
                    PyTuple_SET_ITEM(rc, i,
                        PyFloat_FromDouble(fontsize * (double) fz_advance_glyph(gctx, font, gid, wmode)));
                }
            }
            fz_catch(gctx) {
                PyErr_Clear();
                Py_CLEAR(rc);
                return NULL;
            }
            return rc;
        }


        %pythonprepend glyph_bbox
        %{"""Return the glyph bbox of a unicode (font size 1)."""%}
        %pythonappend glyph_bbox %{val = Rect(val)%}
        PyObject *glyph_bbox(int chr, char *language=NULL, int script=0, int small_caps=0)
        {
            fz_font *font, *thisfont = (fz_font *) $self;
            int gid;
            fz_text_language lang = fz_text_language_from_string(language);
            if (small_caps) {
                gid = fz_encode_character_sc(gctx, thisfont, chr);
                if (gid >= 0) font = thisfont;
            } else {
                gid = fz_encode_character_with_fallback(gctx, thisfont, chr, script, lang, &font);
            }
            return JM_py_from_rect(fz_bound_glyph(gctx, font, gid, fz_identity));
        }

        %pythonprepend has_glyph
        %{"""Check whether font has a glyph for this unicode."""%}
        PyObject *has_glyph(int chr, char *language=NULL, int script=0, int fallback=0, int small_caps=0)
        {
            fz_font *font, *thisfont = (fz_font *) $self;
            fz_text_language lang;
            int gid = 0;
            if (fallback) {
                lang = fz_text_language_from_string(language);
                gid = fz_encode_character_with_fallback(gctx, (fz_font *) $self, chr, script, lang, &font);
            } else {
                if (!small_caps) {
                    gid = fz_encode_character(gctx, thisfont, chr);
                } else {
                    gid = fz_encode_character_sc(gctx, thisfont, chr);
                }
            }
            return Py_BuildValue("i", gid);
        }


        %pythoncode %{
        def valid_codepoints(self):
            from array import array
            gc = self.glyph_count
            cp = array("l", (0,) * gc)
            arr = cp.buffer_info()
            self._valid_unicodes(arr)
            return array("l", sorted(set(cp))[1:])
        %}
        void _valid_unicodes(PyObject *arr)
        {
            fz_font *font = (fz_font *) $self;
            PyObject *temp = PySequence_ITEM(arr, 0);
            void *ptr = PyLong_AsVoidPtr(temp);
            JM_valid_chars(gctx, font, ptr);
            Py_DECREF(temp);
        }


        %pythoncode %{@property%}
        PyObject *flags()
        {
            fz_font_flags_t *f = fz_font_flags((fz_font *) $self);
            if (!f) Py_RETURN_NONE;
            return Py_BuildValue("{s:i,s:i,s:i,s:i,s:i,s:i,s:i,s:i,s:i,s:i}",
            "mono", f->is_mono, "serif", f->is_serif, "bold", f->is_bold,
            "italic", f->is_italic, "substitute", f->ft_substitute,
            "stretch", f->ft_stretch, "fake-bold", f->fake_bold,
            "fake-italic", f->fake_italic, "opentype", f->has_opentype,
            "invalid-bbox", f->invalid_bbox);
        }


        %pythoncode %{@property%}
        PyObject *is_bold()
        {
            fz_font *font = (fz_font *) $self;
            if (fz_font_is_bold(gctx,font)) {
                Py_RETURN_TRUE;
            }
            Py_RETURN_FALSE;
        }


        %pythoncode %{@property%}
        PyObject *is_serif()
        {
            fz_font *font = (fz_font *) $self;
            if (fz_font_is_serif(gctx,font)) {
                Py_RETURN_TRUE;
            }
            Py_RETURN_FALSE;
        }


        %pythoncode %{@property%}
        PyObject *is_italic()
        {
            fz_font *font = (fz_font *) $self;
            if (fz_font_is_italic(gctx,font)) {
                Py_RETURN_TRUE;
            }
            Py_RETURN_FALSE;
        }


        %pythoncode %{@property%}
        PyObject *is_monospaced()
        {
            fz_font *font = (fz_font *) $self;
            if (fz_font_is_monospaced(gctx,font)) {
                Py_RETURN_TRUE;
            }
            Py_RETURN_FALSE;
        }


        %pythoncode %{@property%}
        PyObject *is_writable()
        {
            fz_font *font = (fz_font *) $self;
            if (fz_font_t3_procs(gctx, font) ||
                fz_font_flags(font)->ft_substitute ||
                !pdf_font_writing_supported(font)) {
                Py_RETURN_FALSE;
            }
            Py_RETURN_TRUE;
        }

        %pythoncode %{@property%}
        PyObject *name()
        {
            return JM_UnicodeFromStr(fz_font_name(gctx, (fz_font *) $self));
        }

        %pythoncode %{@property%}
        int glyph_count()
        {
            fz_font *this_font = (fz_font *) $self;
            return this_font->glyph_count;
        }

        %pythoncode %{@property%}
        PyObject *buffer()
        {
            fz_font *this_font = (fz_font *) $self;
            unsigned char *data = NULL;
            size_t len = fz_buffer_storage(gctx, this_font->buffer, &data);
            return JM_BinFromCharSize(data, len);
        }

        %pythoncode %{@property%}
        %pythonappend bbox%{val = Rect(val)%}
        PyObject *bbox()
        {
            fz_font *this_font = (fz_font *) $self;
            return JM_py_from_rect(fz_font_bbox(gctx, this_font));
        }

        %pythoncode %{@property%}
        %pythonprepend ascender
        %{"""Return the glyph ascender value."""%}
        float ascender()
        {
            return fz_font_ascender(gctx, (fz_font *) $self);
        }


        %pythoncode %{@property%}
        %pythonprepend descender
        %{"""Return the glyph descender value."""%}
        float descender()
        {
            return fz_font_descender(gctx, (fz_font *) $self);
        }


        %pythoncode %{
            def glyph_name_to_unicode(self, name):
                """Return the unicode for a glyph name."""
                return glyph_name_to_unicode(name)

            def unicode_to_glyph_name(self, ch):
                """Return the glyph name for a unicode."""
                return unicode_to_glyph_name(ch)

            def __repr__(self):
                return "Font('%s')" % self.name

            def __del__(self):
                if not type(self) is Font:
                    return
                if getattr(self, "thisown", False):
                    self.__swig_destroy__(self)
        %}
    }
};


//------------------------------------------------------------------------
// DocumentWriter
//------------------------------------------------------------------------

struct DocumentWriter
{
    %extend
    {
        ~DocumentWriter()
        {
            // need this structure to free any fz_output the writer may have
            typedef struct { // copied from pdf_write.c
                fz_document_writer super;
                pdf_document *pdf;
                pdf_write_options opts;
                fz_output *out;
                fz_rect mediabox;
                pdf_obj *resources;
                fz_buffer *contents;
            } pdf_writer;

            fz_document_writer *writer_fz = (fz_document_writer *) $self;
            fz_output *out = NULL;
            pdf_writer *writer_pdf = (pdf_writer *) writer_fz;
            if (writer_pdf) {
                out = writer_pdf->out;
                if (out) {
                    DEBUGMSG1("Output of DocumentWriter");
                    fz_drop_output(gctx, out);
                    writer_pdf->out = NULL;
                    DEBUGMSG2;
                }
            }
            DEBUGMSG1("DocumentWriter");
            fz_drop_document_writer( gctx, writer_fz);
            DEBUGMSG2;
        }
        
        FITZEXCEPTION(DocumentWriter, !result)
        %pythonprepend DocumentWriter
        %{
            if type(path) is str:
                pass
            elif hasattr(path, "absolute"):
                path = str(path)
            elif hasattr(path, "name"):
                path = path.name
            if options==None:
                options=""
        %}
        %pythonappend DocumentWriter
        %{
        %}
        DocumentWriter( PyObject* path, const char* options=NULL)
        {
            fz_output *out = NULL;
            fz_document_writer* ret=NULL;
            fz_try(gctx) {
            if (PyUnicode_Check(path)) {
                ret = fz_new_pdf_writer( gctx, PyUnicode_AsUTF8(path), options);
            } else {
                out = JM_new_output_fileptr(gctx, path);
                ret = fz_new_pdf_writer_with_output(gctx, out, options);
            }
            }

            fz_catch(gctx) {
                return NULL;
            }
            return (struct DocumentWriter*) ret;
        }
        
        struct DeviceWrapper* begin_page( PyObject* mediabox)
        {
            fz_rect mediabox2 = JM_rect_from_py(mediabox);
            fz_device* device = fz_begin_page( gctx, (fz_document_writer*) $self, mediabox2);
            struct DeviceWrapper* device_wrapper
                = (struct DeviceWrapper*) calloc(1, sizeof(struct DeviceWrapper))
                ;
            device_wrapper->device = device;
            device_wrapper->list = NULL;
            return device_wrapper;
        }
        
        void end_page()
        {
            fz_end_page( gctx, (fz_document_writer*) $self);
        }
        
        void close()
        {
            fz_document_writer *writer = (fz_document_writer*) $self;
            fz_close_document_writer( gctx, writer);
        }
        %pythoncode
        %{
            def __del__(self):
                if not type(self) is DocumentWriter:
                    return
                if getattr(self, "thisown", False):
                    self.__swig_destroy__(self)
        %}
    }
};

//------------------------------------------------------------------------
// Archive
//------------------------------------------------------------------------
struct Archive
{
    %extend
    {
        ~Archive()
        {
            DEBUGMSG1("Archive");
            fz_drop_archive( gctx, (fz_archive *) $self);
            DEBUGMSG2;
        }
        FITZEXCEPTION(Archive, !result)
        %pythonprepend Archive %{
        self._subarchives = []
        %}
        %pythonappend Archive %{
        self.thisown = True
        if args != ():
            self.add(*args)
        %}

        //---------------------------------------
        // new empty archive
        //---------------------------------------
        Archive(struct Archive *a0=NULL, const char *path=NULL)
        {
            fz_archive *arch=NULL;
            fz_try(gctx) {
                arch = fz_new_multi_archive(gctx);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Archive *) arch;
        }

        Archive(PyObject *a0=NULL, const char *path=NULL)
        {
            fz_archive *arch=NULL;
            fz_try(gctx) {
                arch = fz_new_multi_archive(gctx);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Archive *) arch;
        }

        FITZEXCEPTION(has_entry, !result)
        PyObject *has_entry(const char *name)
        {
            fz_archive *arch = (fz_archive *) $self;
            int ret = 0;
            fz_try(gctx) {
                ret = fz_has_archive_entry(gctx, arch, name);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return JM_BOOL(ret);
        }

        FITZEXCEPTION(read_entry, !result)
        PyObject *read_entry(const char *name)
        {
            fz_archive *arch = (fz_archive *) $self;
            PyObject *ret = NULL;
            fz_buffer *buff = NULL;
            fz_try(gctx) {
                buff = fz_read_archive_entry(gctx, arch, name);
                ret = JM_BinFromBuffer(gctx, buff);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, buff);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return ret;
        }

        //--------------------------------------
        // add dir
        //--------------------------------------
        FITZEXCEPTION(_add_dir, !result)
        PyObject *_add_dir(const char *folder, const char *path=NULL)
        {
            fz_archive *arch = (fz_archive *) $self;
            fz_archive *sub = NULL;
            fz_try(gctx) {
                sub = fz_open_directory(gctx, folder);
                fz_mount_multi_archive(gctx, arch, sub, path);
            }
            fz_always(gctx) {
                fz_drop_archive(gctx, sub);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------
        // add archive
        //----------------------------------
        FITZEXCEPTION(_add_arch, !result)
        PyObject *_add_arch(struct Archive *subarch, const char *path=NULL)
        {
            fz_archive *arch = (fz_archive *) $self;
            fz_archive *sub = (fz_archive *) subarch;
            fz_try(gctx) {
                fz_mount_multi_archive(gctx, arch, sub, path);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------
        // add ZIP/TAR from file
        //----------------------------------
        FITZEXCEPTION(_add_ziptarfile, !result)
        PyObject *_add_ziptarfile(const char *filepath, int type, const char *path=NULL)
        {
            fz_archive *arch = (fz_archive *) $self;
            fz_archive *sub = NULL;
            fz_try(gctx) {
                if (type==1) {
                    sub = fz_open_zip_archive(gctx, filepath);
                } else {
                    sub = fz_open_tar_archive(gctx, filepath);
                }
                fz_mount_multi_archive(gctx, arch, sub, path);
            }
            fz_always(gctx) {
                fz_drop_archive(gctx, sub);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------
        // add ZIP/TAR from memory
        //----------------------------------
        FITZEXCEPTION(_add_ziptarmemory, !result)
        PyObject *_add_ziptarmemory(PyObject *memory, int type, const char *path=NULL)
        {
            fz_archive *arch = (fz_archive *) $self;
            fz_archive *sub = NULL;
            fz_stream *stream = NULL;
            fz_buffer *buff = NULL;
            fz_try(gctx) {
                buff = JM_BufferFromBytes(gctx, memory);
                stream = fz_open_buffer(gctx, buff);
                if (type==1) {
                    sub = fz_open_zip_archive_with_stream(gctx, stream);
                } else {
                    sub = fz_open_tar_archive_with_stream(gctx, stream);
                }
                fz_mount_multi_archive(gctx, arch, sub, path);
            }
            fz_always(gctx) {
                fz_drop_stream(gctx, stream);
                fz_drop_buffer(gctx, buff);
                fz_drop_archive(gctx, sub);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        //----------------------------------
        // add "tree" item
        //----------------------------------
        FITZEXCEPTION(_add_treeitem, !result)
        PyObject *_add_treeitem(PyObject *memory, const char *name, const char *path=NULL)
        {
            fz_archive *arch = (fz_archive *) $self;
            fz_archive *sub = NULL;
            fz_buffer *buff = NULL;
            int drop_sub = 0;
            fz_try(gctx) {
                buff = JM_BufferFromBytes(gctx, memory);
                sub = JM_last_tree(gctx, arch, path);
                if (!sub) {
                    sub = fz_new_tree_archive(gctx, NULL);
                    drop_sub = 1;
                }
                fz_tree_archive_add_buffer(gctx, sub, name, buff);
                if (drop_sub) {
                    fz_mount_multi_archive(gctx, arch, sub, path);
                }
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, buff);
                if (drop_sub) {
                    fz_drop_archive(gctx, sub);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        %pythoncode %{
        def add(self, content, path=None):
            """Add a sub-archive.

            Args:
                content: content to be added. May be one of Archive, folder
                     name, file name, raw bytes (bytes, bytearray), zipfile,
                     tarfile, or a sequence of any of these types.
                path: (str) a "virtual" path name, under which the elements
                    of content can be retrieved. Use it to e.g. cope with
                    duplicate element names.
            """
            bin_ok = lambda x: isinstance(x, (bytes, bytearray, io.BytesIO))

            entries = []
            mount = None
            fmt = None

            def make_subarch():
                subarch = {"fmt": fmt, "entries": entries, "path": mount}
                if fmt != "tree" or self._subarchives == []:
                    self._subarchives.append(subarch)
                else:
                    ltree = self._subarchives[-1]
                    if ltree["fmt"] != "tree" or ltree["path"] != subarch["path"]:
                        self._subarchives.append(subarch)
                    else:
                        ltree["entries"].extend(subarch["entries"])
                        self._subarchives[-1] = ltree
                return

            if isinstance(content, zipfile.ZipFile):
                fmt = "zip"
                entries = content.namelist()
                mount = path
                filename = getattr(content, "filename", None)
                fp = getattr(content, "fp", None)
                if filename:
                    self._add_ziptarfile(filename, 1, path)
                else:
                    self._add_ziptarmemory(fp.getvalue(), 1, path)
                return make_subarch()
            
            if isinstance(content, tarfile.TarFile):
                fmt = "tar"
                entries = content.getnames()
                mount = path
                filename = getattr(content.fileobj, "name", None)
                fp = content.fileobj
                if not isinstance(fp, io.BytesIO) and not filename:
                    fp = fp.fileobj
                if filename:
                    self._add_ziptarfile(filename, 0, path)
                else:
                    self._add_ziptarmemory(fp.getvalue(), 0, path)
                return make_subarch()

            if isinstance(content, Archive):
                fmt = "multi"
                mount = path
                self._add_arch(content, path)
                return make_subarch()

            if bin_ok(content):
                if not (path and type(path) is str):
                    raise ValueError("need name for binary content")
                fmt = "tree"
                mount = None
                entries = [path]
                self._add_treeitem(content, path)
                return make_subarch()

            if hasattr(content, "name"):
                content = content.name
            elif isinstance(content, pathlib.Path):
                content = str(content)
            
            if os.path.isdir(str(content)):
                a0 = str(content)
                fmt = "dir"
                mount = path
                entries = os.listdir(a0)
                self._add_dir(a0, path)
                return make_subarch()
            
            if os.path.isfile(str(content)):
                if not (path and type(path) is str):
                    raise ValueError("need name for binary content")
                a0 = str(content)
                _ = open(a0, "rb")
                ff = _.read()
                _.close()
                fmt = "tree"
                mount = None
                entries = [path]
                self._add_treeitem(ff, path)
                return make_subarch()
            
            if type(content) is str or not getattr(content, "__getitem__", None):
                raise ValueError("bad archive content")

            #----------------------------------------
            # handling sequence types here
            #----------------------------------------

            if len(content) == 2: # covers the tree item plus path
                data, name = content
                if bin_ok(data) or os.path.isfile(str(data)):
                    if not type(name) is str:
                        raise ValueError(f"bad item name {name}")
                    mount = path
                    fmt = "tree"
                    if bin_ok(data):
                        self._add_treeitem(data, name, path=mount)
                    else:
                        _ = open(str(data), "rb")
                        ff = _.read()
                        _.close()
                        seld._add_treeitem(ff, name, path=mount)
                    entries = [name]
                    return make_subarch()

            # deal with sequence of disparate items
            for item in content:
                self.add(item, path)

        __doc__ = """Archive(dirname [, path]) - from folder
        Archive(file [, path]) - from file name or object
        Archive(data, name) - from memory item
        Archive() - empty archive
        Archive(archive [, path]) - from archive
        """

        @property
        def entry_list(self):
            """List of sub archives."""
            return self._subarchives

        def __repr__(self):
            return f"Archive, sub-archives: {len(self._subarchives)}"

        def __del__(self):
            if not type(self) is Archive:
                return
            if getattr(self, "thisown", False):
                self.__swig_destroy__(self)
        %}
    }
};
//------------------------------------------------------------------------
// Xml
//------------------------------------------------------------------------
struct Xml
{
    %extend
    {
        ~Xml()
        {
            DEBUGMSG1("Xml");
            fz_drop_xml( gctx, (fz_xml*) $self);
            DEBUGMSG2;
        }
        
        FITZEXCEPTION(Xml, !result)
        Xml(fz_xml* xml)
        {
            fz_keep_xml( gctx, xml);
            return (struct Xml*) xml;
        }

        Xml(const char *html)
        {
            fz_buffer *buff = NULL;
            fz_xml *ret = NULL;
            fz_try(gctx) {
                buff = fz_new_buffer_from_copied_data(gctx, html, strlen(html)+1);
                ret = fz_parse_xml_from_html5(gctx, buff);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, buff);
            }
            fz_catch(gctx) {
                return NULL;
            }
            fz_keep_xml(gctx, ret);
            return (struct Xml*) ret;
        }

        %pythoncode %{@property%}
        FITZEXCEPTION (root, !result)
        struct Xml* root()
        {
            fz_xml* ret = NULL;
            fz_try(gctx) {
                ret = fz_xml_root((fz_xml_doc *) $self);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Xml*) ret;
        }

        FITZEXCEPTION (bodytag, !result)
        struct Xml* bodytag()
        {
            fz_xml* ret = NULL;
            fz_try(gctx) {
                ret = fz_keep_xml( gctx, fz_dom_body( gctx, (fz_xml *) $self));
            }
            fz_catch(gctx) {
                return NULL;
            }
            return (struct Xml*) ret;
        }

        FITZEXCEPTION (append_child, !result)
        PyObject *append_child( struct Xml* child)
        {
            fz_try(gctx) {
                fz_dom_append_child( gctx, (fz_xml *) $self, (fz_xml *) child);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        FITZEXCEPTION (create_text_node, !result)
        struct Xml* create_text_node( const char *text)
        {
            fz_xml* ret = NULL;
            fz_try(gctx) {
                ret = fz_dom_create_text_node( gctx,(fz_xml *) $self, text);
            }
            fz_catch(gctx) {
                return NULL;
            }
            fz_keep_xml( gctx, ret);
            return (struct Xml*) ret;
        }

        FITZEXCEPTION (create_element, !result)
        struct Xml* create_element( const char *tag)
        {
            fz_xml* ret = NULL;
            fz_try(gctx) {
                ret = fz_dom_create_element( gctx, (fz_xml *)$self, tag);
            }
            fz_catch(gctx) {
                return NULL;
            }
            fz_keep_xml( gctx, ret);
            return (struct Xml*) ret;
        }

        struct Xml *find(const char *tag, const char *att, const char *match)
        {
            fz_xml* ret=NULL;
            ret = fz_dom_find( gctx, (fz_xml *)$self, tag, att, match);
            if (!ret) {
                return NULL;
            }
            fz_keep_xml( gctx, ret);
            return (struct Xml*) ret;
        }

        struct Xml *find_next( const char *tag, const char *att, const char *match)
        {
            fz_xml* ret=NULL;
            ret = fz_dom_find_next( gctx, (fz_xml *)$self, tag, att, match);
            if (!ret) {
                return NULL;
            }
            fz_keep_xml( gctx, ret);
            return (struct Xml*) ret;
        }

        %pythoncode %{@property%}
        struct Xml *next()
        {
            fz_xml* ret=NULL;
            ret = fz_dom_next( gctx, (fz_xml *)$self);
            if (!ret) {
                return NULL;
            }
            fz_keep_xml( gctx, ret);
            return (struct Xml*) ret;
        }

        %pythoncode %{@property%}
        struct Xml *previous()
        {
            fz_xml* ret=NULL;
            ret = fz_dom_previous( gctx, (fz_xml *)$self);
            if (!ret) {
                return NULL;
            }
            fz_keep_xml( gctx, ret);
            return (struct Xml*) ret;
        }

        FITZEXCEPTION (set_attribute, !result)
        PyObject *set_attribute(const char *key, const char *value)
        {
            fz_try(gctx) {
                if (strlen(key)==0) {
                    RAISEPY(gctx, "key must not be empty", PyExc_ValueError);
                }
                fz_dom_add_attribute(gctx, (fz_xml *)$self, key, value);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        FITZEXCEPTION (remove_attribute, !result)
        PyObject *remove_attribute(const char *key)
        {
            fz_try(gctx) {
                if (strlen(key)==0) {
                    RAISEPY(gctx, "key must not be empty", PyExc_ValueError);
                }
                fz_xml *elt = (fz_xml *)$self;
                fz_dom_remove_attribute(gctx, elt, key);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION (get_attribute_value, !result)
        PyObject *get_attribute_value(const char *key)
        {
            const char *ret=NULL;
            fz_try(gctx) {
                if (strlen(key)==0) {
                    RAISEPY(gctx, "key must not be empty", PyExc_ValueError);
                }
                fz_xml *elt = (fz_xml *)$self;
                ret=fz_dom_attribute(gctx, elt, key);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("s", ret);
        }


        FITZEXCEPTION (get_attributes, !result)
        PyObject *get_attributes()
        {
            fz_xml *this = (fz_xml *) $self;
            if (fz_xml_text(this)) { // text node has none
                Py_RETURN_NONE;
            }
            PyObject *result=PyDict_New();
            fz_try(gctx) {
                int i=0;
                const char *key=NULL;
                const char *val=NULL;
                while (1) {
                    val = fz_dom_get_attribute(gctx, this, i, &key);
                    if (!val || !key) {
                        break;
                    }
                    PyObject *temp = Py_BuildValue("s",val);
                    PyDict_SetItemString(result, key, temp);
                    Py_DECREF(temp);
                    i += 1;
                }
            }
            fz_catch(gctx) {
                Py_DECREF(result);
                return NULL;
            }
            return result;
        }


        FITZEXCEPTION (insert_before, !result)
        PyObject *insert_before(struct Xml *node)
        {
            fz_xml *existing = (fz_xml *) $self;
            fz_xml *what = (fz_xml *) node;
            fz_try(gctx)
            {
                fz_dom_insert_before(gctx, existing, what);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        FITZEXCEPTION (insert_after, !result)
        PyObject *insert_after(struct Xml *node)
        {
            fz_xml *existing = (fz_xml *) $self;
            fz_xml *what = (fz_xml *) node;
            fz_try(gctx)
            {
                fz_dom_insert_after(gctx, existing, what);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        FITZEXCEPTION (clone, !result)
        struct Xml* clone()
        {
            fz_xml* ret = NULL;
            fz_try(gctx) {
                ret = fz_dom_clone( gctx, (fz_xml *)$self);
            }
            fz_catch(gctx) {
                return NULL;
            }
            fz_keep_xml( gctx, ret);
            return (struct Xml*) ret;
        }

        %pythoncode %{@property%}
        struct Xml *parent()
        {
            fz_xml* ret = NULL;
            ret = fz_dom_parent( gctx, (fz_xml *)$self);
            if (!ret) {
                return NULL;
            }
            fz_keep_xml( gctx, ret);
            return (struct Xml*) ret;
        }

        %pythoncode %{@property%}
        struct Xml *first_child()
        {
            fz_xml* ret = NULL;
            fz_xml *this = (fz_xml *)$self;
            if (fz_xml_text(this)) { // a text node has no child
                return NULL;
            }
            ret = fz_dom_first_child( gctx, (fz_xml *)$self);
            if (!ret) {
                return NULL;
            }
            fz_keep_xml( gctx, ret);
            return (struct Xml*) ret;
        }


        FITZEXCEPTION (remove, !result)
        PyObject *remove()
        {
            fz_try(gctx) {
                fz_dom_remove( gctx, (fz_xml *)$self);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        %pythoncode %{@property%}
        PyObject *text()
        {
            return Py_BuildValue("s", fz_xml_text((fz_xml *)$self));
        }

        %pythoncode %{@property%}
        PyObject *tagname()
        {
            return Py_BuildValue("s", fz_xml_tag((fz_xml *)$self));
        }


        %pythoncode %{
        def _get_node_tree(self):
            def show_node(node, items, shift):
                while node != None:
                    if node.is_text:
                        items.append((shift, f'"{node.text}"'))
                        node = node.next
                        continue
                    items.append((shift, f"({node.tagname}"))
                    for k, v in node.get_attributes().items():
                        items.append((shift, f"={k} '{v}'"))
                    child = node.first_child
                    if child:
                        items = show_node(child, items, shift + 1)
                    items.append((shift, f"){node.tagname}"))
                    node = node.next
                return items

            shift = 0
            items = []
            items = show_node(self, items, shift)
            return items

        def debug(self):
            """Print a list of the node tree below self."""
            items = self._get_node_tree()
            for item in items:
                print("  " * item[0] + item[1].replace("\n", "\\n"))

        @property
        def is_text(self):
            """Check if this is a text node."""
            return self.text != None

        @property
        def last_child(self):
            """Return last child node."""
            child = self.first_child
            if child==None:
                return None
            while True:
                if child.next == None:
                    return child
                child = child.next

        @staticmethod
        def color_text(color):
            if type(color) is str:
                return color
            if type(color) is int:
                return f"rgb({sRGB_to_rgb(color)})"
            if type(color) in (tuple, list):
                return f"rgb{tuple(color)}"
            return color

        def add_number_list(self, start=1, numtype=None):
            """Add numbered list ("ol" tag)"""
            child = self.create_element("ol")
            if start > 1:
                child.set_attribute("start", str(start))
            if numtype != None:
                child.set_attribute("type", numtype)
            self.append_child(child)
            return child

        def add_description_list(self):
            """Add description list ("dl" tag)"""
            child = self.create_element("dl")
            self.append_child(child)
            return child

        def add_image(self, name, width=None, height=None, imgfloat=None, align=None):
            """Add image node (tag "img")."""
            child = self.create_element("img")
            if width != None:
                child.set_attribute("width", f"{width}")
            if height != None:
                child.set_attribute("height", f"{height}")
            if imgfloat != None:
                child.set_attribute("style", f"float: {imgfloat}")
            if align != None:
                child.set_attribute("align", f"{align}")
            child.set_attribute("src", f"{name}")
            self.append_child(child)
            return child

        def add_bullet_list(self):
            """Add bulleted list ("ul" tag)"""
            child = self.create_element("ul")
            self.append_child(child)
            return child

        def add_list_item(self):
            """Add item ("li" tag) under a (numbered or bulleted) list."""
            if self.tagname not in ("ol", "ul"):
                raise ValueError("cannot add list item to", self.tagname)
            child = self.create_element("li")
            self.append_child(child)
            return child

        def add_span(self):
            child = self.create_element("span")
            self.append_child(child)
            return child

        def add_paragraph(self):
            """Add "p" tag"""
            child = self.create_element("p")
            if self.tagname != "p":
                self.append_child(child)
            else:
                self.parent.append_child(child)
            return child

        def add_header(self, level=1):
            """Add header tag"""
            if level not in range(1, 7):
                raise ValueError("Header level must be in [1, 6]")
            this_tag = self.tagname
            new_tag = f"h{level}"
            child = self.create_element(new_tag)
            prev = self
            if this_tag not in ("h1", "h2", "h3", "h4", "h5", "h6", "p"):
                self.append_child(child)
                return child
            self.parent.append_child(child)
            return child

        def add_division(self):
            """Add "div" tag"""
            child = self.create_element("div")
            self.append_child(child)
            return child

        def add_horizontal_line(self):
            """Add horizontal line ("hr" tag)"""
            child = self.create_element("hr")
            self.append_child(child)
            return child

        def add_link(self, href, text=None):
            """Add a hyperlink ("a" tag)"""
            child = self.create_element("a")
            if not isinstance(text, str):
                text = href
            child.set_attribute("href", href)
            child.append_child(self.create_text_node(text)) 
            prev = self.span_bottom()
            if prev == None:
                prev = self
            prev.append_child(child)
            return self

        def add_code(self, text=None):
            """Add a "code" tag"""
            child = self.create_element("code")
            if type(text) is str:
               child.append_child(self.create_text_node(text)) 
            prev = self.span_bottom()
            if prev == None:
                prev = self
            prev.append_child(child)
            return self

        add_var = add_code
        add_samp = add_code
        add_kbd = add_code

        def add_superscript(self, text=None):
            """Add a superscript ("sup" tag)"""
            child = self.create_element("sup")
            if type(text) is str:
               child.append_child(self.create_text_node(text)) 
            prev = self.span_bottom()
            if prev == None:
                prev = self
            prev.append_child(child)
            return self

        def add_subscript(self, text=None):
            """Add a subscript ("sub" tag)"""
            child = self.create_element("sub")
            if type(text) is str:
               child.append_child(self.create_text_node(text)) 
            prev = self.span_bottom()
            if prev == None:
                prev = self
            prev.append_child(child)
            return self

        def add_codeblock(self):
            """Add monospaced lines ("pre" node)"""
            child = self.create_element("pre")
            self.append_child(child)
            return child

        def span_bottom(self):
            """Find deepest level in stacked spans."""
            parent = self
            child = self.last_child
            if child == None:
                return None
            while child.is_text:
                child = child.previous
                if child == None:
                    break
            if child == None or child.tagname != "span":
                return None

            while True:
                if child == None:
                    return parent
                if child.tagname in ("a", "sub","sup","body") or child.is_text:
                    child = child.next
                    continue
                if child.tagname == "span":
                    parent = child
                    child = child.first_child
                else:
                    return parent

        def append_styled_span(self, style):
            span = self.create_element("span")
            span.add_style(style)
            prev = self.span_bottom()
            if prev == None:
                prev = self
            prev.append_child(span)
            return prev

        def set_margins(self, val):
            """Set margin values via CSS style"""
            text = "margins: %s" % val
            self.append_styled_span(text)
            return self

        def set_font(self, font):
            """Set font-family name via CSS style"""
            text = "font-family: %s" % font
            self.append_styled_span(text)
            return self

        def set_color(self, color):
            """Set text color via CSS style"""
            text = f"color: %s" % self.color_text(color)
            self.append_styled_span(text)
            return self

        def set_columns(self, cols):
            """Set number of text columns via CSS style"""
            text = f"columns: {cols}"
            self.append_styled_span(text)
            return self

        def set_bgcolor(self, color):
            """Set background color via CSS style"""
            text = f"background-color: %s" % self.color_text(color)
            self.add_style(text)  # does not work on span level
            return self

        def set_opacity(self, opacity):
            """Set opacity via CSS style"""
            text = f"opacity: {opacity}"
            self.append_styled_span(text)
            return self

        def set_align(self, align):
            """Set text alignment via CSS style"""
            text = "text-align: %s"
            if isinstance( align, str):
                t = align
            elif align == TEXT_ALIGN_LEFT:
                t = "left"
            elif align == TEXT_ALIGN_CENTER:
                t = "center"
            elif align == TEXT_ALIGN_RIGHT:
                t = "right"
            elif align == TEXT_ALIGN_JUSTIFY:
                t = "justify"
            else:
                raise ValueError(f"Unrecognised align={align}")
            text = text % t
            self.add_style(text)
            return self

        def set_underline(self, val="underline"):
            text = "text-decoration: %s" % val
            self.append_styled_span(text)
            return self

        def set_pagebreak_before(self):
            """Insert a page break before this node."""
            text = "page-break-before: always"
            self.add_style(text)
            return self

        def set_pagebreak_after(self):
            """Insert a page break after this node."""
            text = "page-break-after: always"
            self.add_style(text)
            return self

        def set_fontsize(self, fontsize):
            """Set font size name via CSS style"""
            if type(fontsize) is str:
                px=""
            else:
                px="px"
            text = f"font-size: {fontsize}{px}"
            self.append_styled_span(text)
            return self

        def set_lineheight(self, lineheight):
            """Set line height name via CSS style - block-level only."""
            text = f"line-height: {lineheight}"
            self.add_style(text)
            return self

        def set_leading(self, leading):
            """Set inter-line spacing value via CSS style - block-level only."""
            text = f"-mupdf-leading: {leading}"
            self.add_style(text)
            return self

        def set_word_spacing(self, spacing):
            """Set inter-word spacing value via CSS style"""
            text = f"word-spacing: {spacing}"
            self.append_styled_span(text)
            return self

        def set_letter_spacing(self, spacing):
            """Set inter-letter spacing value via CSS style"""
            text = f"letter-spacing: {spacing}"
            self.append_styled_span(text)
            return self

        def set_text_indent(self, indent):
            """Set text indentation name via CSS style - block-level only."""
            text = f"text-indent: {indent}"
            self.add_style(text)
            return self

        def set_bold(self, val=True):
            """Set bold on / off via CSS style"""
            if val:
                val="bold"
            else:
                val="normal"
            text = "font-weight: %s" % val
            self.append_styled_span(text)
            return self

        def set_italic(self, val=True):
            """Set italic on / off via CSS style"""
            if val:
                val="italic"
            else:
                val="normal"
            text = "font-style: %s" % val
            self.append_styled_span(text)
            return self

        def set_properties(
            self,
            align=None,
            bgcolor=None,
            bold=None,
            color=None,
            columns=None,
            font=None,
            fontsize=None,
            indent=None,
            italic=None,
            leading=None,
            letter_spacing=None,
            lineheight=None,
            margins=None,
            pagebreak_after=None,
            pagebreak_before=None,
            word_spacing=None,
            unqid=None,
            cls=None,
        ):
            """Set any or all properties of a node.
            
            To be used for existing nodes preferrably.
            """
            root = self.root
            temp = root.add_division()
            if align is not None:
                temp.set_align(align)
            if bgcolor is not None:
                temp.set_bgcolor(bgcolor)
            if bold is not None:
                temp.set_bold(bold)
            if color is not None:
                temp.set_color(color)
            if columns is not None:
                temp.set_columns(columns)
            if font is not None:
                temp.set_font(font)
            if fontsize is not None:
                temp.set_fontsize(fontsize)
            if indent is not None:
                temp.set_text_indent(indent)
            if italic is not None:
                temp.set_italic(italic)
            if leading is not None:
                temp.set_leading(leading)
            if letter_spacing is not None:
                temp.set_letter_spacing(letter_spacing)
            if lineheight is not None:
                temp.set_lineheight(lineheight)
            if margins is not None:
                temp.set_margins(margins)
            if pagebreak_after is not None:
                temp.set_pagebreak_after()
            if pagebreak_before is not None:
                temp.set_pagebreak_before()
            if word_spacing is not None:
                temp.set_word_spacing(word_spacing)
            if unqid is not None:
                self.set_id(unqid)
            if cls is not None:
                self.add_class(cls)

            styles = []
            top_style = temp.get_attribute_value("style")
            if top_style is not None:
                styles.append(top_style)
            child = temp.first_child
            while child:
                styles.append(child.get_attribute_value("style"))
                child = child.first_child
            self.set_attribute("style", ";".join(styles))
            temp.remove()
            return self

        def set_id(self, unique):
            """Set a unique id."""
            # check uniqueness
            tagname = self.tagname
            root = self.root
            if root.find(None, "id", unique):
                raise ValueError(f"id '{unique}' already exists")
            self.set_attribute("id", unique)
            return self

        def add_text(self, text):
            """Add text. Line breaks are honored."""
            lines = text.splitlines()
            line_count = len(lines)
            prev = self.span_bottom()
            if prev == None:
                prev = self

            for i, line in enumerate(lines):
                prev.append_child(self.create_text_node(line))
                if i < line_count - 1:
                    prev.append_child(self.create_element("br"))
            return self

        def add_style(self, text):
            """Set some style via CSS style. Replaces complete style spec."""
            style = self.get_attribute_value("style")
            if style != None and text in style:
                return self
            self.remove_attribute("style")
            if style == None:
                style = text
            else:
                style += ";" + text
            self.set_attribute("style", style)
            return self

        def add_class(self, text):
            """Set some class via CSS. Replaces complete class spec."""
            cls = self.get_attribute_value("class")
            if cls != None and text in cls:
                return self
            self.remove_attribute("class")
            if cls == None:
                cls = text
            else:
                cls += " " + text
            self.set_attribute("class", cls)
            return self

        def insert_text(self, text):
            lines = text.splitlines()
            line_count = len(lines)
            for i, line in enumerate(lines):
                self.append_child(self.create_text_node(line))
                if i < line_count - 1:
                    self.append_child(self.create_element("br"))
            return self

        def __enter__(self):
            return self

        def __exit__(self, *args):
            pass

        def __del__(self):
            if not type(self) is Xml:
                return
            if getattr(self, "thisown", False):
                self.__swig_destroy__(self)
        %}
    }
};

//------------------------------------------------------------------------
// Story
//------------------------------------------------------------------------
struct Story
{
    %extend
    {
        ~Story()
        {
            DEBUGMSG1("Story");
            fz_story *this_story = (fz_story *) $self;
            fz_drop_story(gctx, this_story);
            DEBUGMSG2;
        }

        FITZEXCEPTION(Story, !result)
        %pythonprepend Story %{
        if archive != None and isinstance(archive, Archive) == False:
            archive = Archive(archive)
        %}
        Story(const char* html=NULL, const char *user_css=NULL, double em=12, struct Archive *archive=NULL)
        {
            fz_story* story = NULL;
            fz_buffer *buffer = NULL;
            fz_archive* arch = NULL;
            fz_var(story);
            fz_var(buffer);
            const char *html2="";
            if (html) {
                html2=html;
            }

            fz_try(gctx)
            {
                buffer = fz_new_buffer_from_copied_data(gctx, html2, strlen(html2)+1);
                if (archive) {
                    arch = (fz_archive *) archive;
                }
                story = fz_new_story(gctx, buffer, user_css, em, arch);
            }
            fz_always(gctx)
            {
                fz_drop_buffer(gctx, buffer);
            }
            fz_catch(gctx)
            {
                return NULL;
            }
            struct Story* ret = (struct Story *) story;
            return ret;
        }
        
        PyObject* reset()
        {
            fz_reset_story(gctx, (fz_story *)$self);
            Py_RETURN_NONE;
        }
        
        PyObject* place( PyObject* where)
        {
            fz_rect where2 = JM_rect_from_py(where);
            fz_rect filled;
            int more = fz_place_story( gctx, (fz_story*) $self, where2, &filled);
            PyObject* ret = PyTuple_New(2);
            PyTuple_SET_ITEM( ret, 0, Py_BuildValue( "i", more));
            PyTuple_SET_ITEM( ret, 1, JM_py_from_rect( filled));
            return ret;
        }
        

        void draw( struct DeviceWrapper* device, PyObject* matrix=NULL)
        {
            fz_matrix ctm2 = JM_matrix_from_py( matrix);
            fz_device *dev = (device) ? device->device : NULL;
            fz_draw_story( gctx, (fz_story*) $self, dev, ctm2);
        }

        FITZEXCEPTION(document, !result)
        struct Xml* document()
        {
            fz_xml* dom=NULL;
            fz_try(gctx) {
                dom = fz_story_document( gctx, (fz_story*) $self);
            }
            fz_catch(gctx) {
                return NULL;
            }
            fz_keep_xml( gctx, dom);
            return (struct Xml*) dom;
        }

        FITZEXCEPTION(element_positions, !result)
        %pythonprepend element_positions %{
        if type(args) is dict:
            for k in args.keys():
                if not (type(k) is str and k.isidentifier()):
                    raise ValueError(f"invalid key '{k}'")
        else:
            args = {}
        %}
        PyObject* element_positions(PyObject *function, PyObject *args)
        {
            PyObject *callarg=NULL;
            fz_try(gctx) {
                callarg = Py_BuildValue("OO", function, args);
                fz_story_positions(gctx, (fz_story *) $self, Story_Callback, callarg);
            }
            fz_always(gctx) {
                Py_DECREF(callarg);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }

        %pythoncode
        %{
            def write(self, writer, rectfn, positionfn=None, pagefn=None):
                dev = None
                page_num = 0
                rect_num = 0
                filled = Rect(0, 0, 0, 0)
                while 1:
                    mediabox, rect, ctm = rectfn(rect_num, filled)
                    rect_num += 1
                    if mediabox:
                        # new page.
                        page_num += 1
                    more, filled = self.place( rect)
                    #print(f"write(): positionfn={positionfn}")
                    if positionfn:
                        def positionfn2(position):
                            # We add a `.page_num` member to the
                            # `ElementPosition` instance.
                            position.page_num = page_num
                            #print(f"write(): position={position}")
                            positionfn(position)
                        self.element_positions(positionfn2, {})
                    if writer:
                        if mediabox:
                            # new page.
                            if dev:
                                if pagefn:
                                    pagefn(page_num, medibox, dev, 1)
                                writer.end_page()
                            dev = writer.begin_page( mediabox)
                            if pagefn:
                                pagefn(page_num, mediabox, dev, 0)
                        self.draw( dev, ctm)
                        if not more:
                            if pagefn:
                                pagefn( page_num, mediabox, dev, 1)
                            writer.end_page()
                    else:
                        self.draw(None, ctm)
                    if not more:
                        break

            @staticmethod
            def write_stabilized(writer, contentfn, rectfn, user_css=None, em=12, positionfn=None, pagefn=None, archive=None, add_header_ids=True):
                positions = list()
                content = None
                # Iterate until stable.
                while 1:
                    content_prev = content
                    content = contentfn( positions)
                    stable = False
                    if content == content_prev:
                        stable = True
                    content2 = content
                    story = Story(content2, user_css, em, archive)

                    if add_header_ids:
                        story.add_header_ids()

                    positions = list()
                    def positionfn2(position):
                        #print(f"write_stabilized(): stable={stable} positionfn={positionfn} position={position}")
                        positions.append(position)
                        if stable and positionfn:
                            positionfn(position)
                    story.write(
                            writer if stable else None,
                            rectfn,
                            positionfn2,
                            pagefn,
                            )
                    if stable:
                        break

            def add_header_ids(self):
                '''
                Look for `<h1..6>` items in `self` and adds unique `id`
                attributes if not already present.
                '''
                dom = self.body
                i = 0
                x = dom.find(None, None, None)
                while x:
                    name = x.tagname
                    if len(name) == 2 and name[0]=="h" and name[1] in "123456":
                        attr = x.get_attribute_value("id")
                        if not attr:
                            id_ = f"h_id_{i}"
                            #print(f"name={name}: setting id={id_}")
                            x.set_attribute("id", id_)
                            i += 1
                    x = x.find_next(None, None, None)

            def write_with_links(self, rectfn, positionfn=None, pagefn=None):
                #print("write_with_links()")
                stream = io.BytesIO()
                writer = DocumentWriter(stream)
                positions = []
                def positionfn2(position):
                    #print(f"write_with_links(): position={position}")
                    positions.append(position)
                    if positionfn:
                        positionfn(position)
                self.write(writer, rectfn, positionfn=positionfn2, pagefn=pagefn)
                writer.close()
                stream.seek(0)
                return Story.add_pdf_links(stream, positions)

            @staticmethod
            def write_stabilized_with_links(contentfn, rectfn, user_css=None, em=12, positionfn=None, pagefn=None, archive=None, add_header_ids=True):
                #print("write_stabilized_with_links()")
                stream = io.BytesIO()
                writer = DocumentWriter(stream)
                positions = []
                def positionfn2(position):
                    #print(f"write_stabilized_with_links(): position={position}")
                    positions.append(position)
                    if positionfn:
                        positionfn(position)
                Story.write_stabilized(writer, contentfn, rectfn, user_css, em, positionfn2, pagefn, archive, add_header_ids)
                writer.close()
                stream.seek(0)
                return Story.add_pdf_links(stream, positions)

            @staticmethod
            def add_pdf_links(document_or_stream, positions):
                """
                Adds links to PDF document.
                Args:
                    document_or_stream:
                        A PDF `Document` or raw PDF content, for example an
                        `io.BytesIO` instance.
                    positions:
                        List of `ElementPosition`'s for `document_or_stream`,
                        typically from Story.element_positions(). We raise an
                        exception if two or more positions have same id.
                Returns:
                    `document_or_stream` if a `Document` instance, otherwise a
                    new `Document` instance.
                We raise an exception if an `href` in `positions` refers to an
                internal position `#<name>` but no item in `postions` has `id =
                name`.
                """
                if isinstance(document_or_stream, Document):
                    document = document_or_stream
                else:
                    document = Document("pdf", document_or_stream)

                # Create dict from id to position, which we will use to find
                # link destinations.
                #
                id_to_position = dict()
                #print(f"positions: {positions}")
                for position in positions:
                    #print(f"add_pdf_links(): position: {position}")
                    if (position.open_close & 1) and position.id:
                        #print(f"add_pdf_links(): position with id: {position}")
                        if position.id in id_to_position:
                            #print(f"Ignoring duplicate positions with id={position.id!r}")
                            pass
                        else:
                            id_to_position[ position.id] = position

                # Insert links for all positions that have an `href` starting
                # with '#'.
                #
                for position_from in positions:
                    if ((position_from.open_close & 1)
                            and position_from.href
                            and position_from.href.startswith("#")
                            ):
                        # This is a `<a href="#...">...</a>` internal link.
                        #print(f"add_pdf_links(): position with href: {position}")
                        target_id = position_from.href[1:]
                        try:
                            position_to = id_to_position[ target_id]
                        except Exception as e:
                            raise RuntimeError(f"No destination with id={target_id}, required by position_from: {position_from}")
                        # Make link from `position_from`'s rect to top-left of
                        # `position_to`'s rect.
                        if 0:
                            print(f"add_pdf_links(): making link from:")
                            print(f"add_pdf_links():    {position_from}")
                            print(f"add_pdf_links(): to:")
                            print(f"add_pdf_links():    {position_to}")
                        link = dict()
                        link["kind"] = LINK_GOTO
                        link["from"] = Rect(position_from.rect)
                        x0, y0, x1, y1 = position_to.rect
                        # This appears to work well with viewers which scroll
                        # to make destination point top-left of window.
                        link["to"] = Point(x0, y0)
                        link["page"] = position_to.page_num - 1
                        document[position_from.page_num - 1].insert_link(link)
                return document

            @property
            def body(self):
                dom = self.document()
                return dom.bodytag()

            def __del__(self):
                if not type(self) is Story:
                    return
                if getattr(self, "thisown", False):
                    self.__swig_destroy__(self)
        %}
    }
};


//------------------------------------------------------------------------
// Tools - a collection of tools and utilities
//------------------------------------------------------------------------
struct Tools
{
    %extend
    {
        Tools()
        {
            /* It looks like global objects are never destructed when running
            with SWIG, so we use Memento_startLeaking()/Memento_stopLeaking().
            */
            Memento_startLeaking();
            void* p = malloc( sizeof(struct Tools));
            Memento_stopLeaking();
            //fprintf(stderr, "Tools constructor p=%p\n", p);
            return (struct Tools*) p;
        }

        ~Tools()
        {
            /* This is not called. */
            struct Tools* p = (struct Tools*) $self;
            //fprintf(stderr, "~Tools() p=%p\n", p);
            free(p);
        }

        %pythonprepend gen_id
        %{"""Return a unique positive integer."""%}
        PyObject *gen_id()
        {
            JM_UNIQUE_ID += 1;
            if (JM_UNIQUE_ID < 0) JM_UNIQUE_ID = 1;
            return Py_BuildValue("i", JM_UNIQUE_ID);
        }


        FITZEXCEPTION(set_icc, !result)
        %pythonprepend set_icc
        %{"""Set ICC color handling on or off."""%}
        PyObject *set_icc(int on=0)
        {
            fz_try(gctx) {
                if (on) {
                    if (FZ_ENABLE_ICC)
                        fz_enable_icc(gctx);
                    else {
                        RAISEPY(gctx, "MuPDF built w/o ICC support",PyExc_ValueError);
                    }
                } else if (FZ_ENABLE_ICC) {
                    fz_disable_icc(gctx);
                }
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        %pythonprepend set_annot_stem
        %{"""Get / set id prefix for annotations."""%}
        char *set_annot_stem(char *stem=NULL)
        {
            if (!stem) {
                return JM_annot_id_stem;
            }
            size_t len = strlen(stem) + 1;
            if (len > 50) len = 50;
            memcpy(&JM_annot_id_stem, stem, len);
            return JM_annot_id_stem;
        }


        %pythonprepend set_small_glyph_heights
        %{"""Set / unset small glyph heights."""%}
        PyObject *set_small_glyph_heights(PyObject *on=NULL)
        {
            if (!on || on == Py_None) {
                return JM_BOOL(small_glyph_heights);
            }
            if (PyObject_IsTrue(on)) {
                small_glyph_heights = 1;
            } else {
                small_glyph_heights = 0;
            }
            return JM_BOOL(small_glyph_heights);
        }


        %pythonprepend set_subset_fontnames
        %{"""Set / unset returning fontnames with their subset prefix."""%}
        PyObject *set_subset_fontnames(PyObject *on=NULL)
        {
            if (!on || on == Py_None) {
                return JM_BOOL(subset_fontnames);
            }
            if (PyObject_IsTrue(on)) {
                subset_fontnames = 1;
            } else {
                subset_fontnames = 0;
            }
            return JM_BOOL(subset_fontnames);
        }


        %pythonprepend set_low_memory
        %{"""Set / unset MuPDF device caching."""%}
        PyObject *set_low_memory(PyObject *on=NULL)
        {
            if (!on || on == Py_None) {
                return JM_BOOL(no_device_caching);
            }
            if (PyObject_IsTrue(on)) {
                no_device_caching = 1;
            } else {
                no_device_caching = 0;
            }
            return JM_BOOL(no_device_caching);
        }


        %pythonprepend unset_quad_corrections
        %{"""Set ascender / descender corrections on or off."""%}
        PyObject *unset_quad_corrections(PyObject *on=NULL)
        {
            if (!on || on == Py_None) {
                return JM_BOOL(skip_quad_corrections);
            }
            if (PyObject_IsTrue(on)) {
                skip_quad_corrections = 1;
            } else {
                skip_quad_corrections = 0;
            }
            return JM_BOOL(skip_quad_corrections);
        }


        %pythonprepend store_shrink
        %{"""Free 'percent' of current store size."""%}
        PyObject *store_shrink(int percent)
        {
            if (percent >= 100) {
                fz_empty_store(gctx);
                return Py_BuildValue("i", 0);
            }
            if (percent > 0) fz_shrink_store(gctx, 100 - percent);
            return Py_BuildValue("i", (int) gctx->store->size);
        }


        %pythoncode%{@property%}
        %pythonprepend store_size
        %{"""MuPDF current store size."""%}
        PyObject *store_size()
        {
            return Py_BuildValue("i", (int) gctx->store->size);
        }


        %pythoncode%{@property%}
        %pythonprepend store_maxsize
        %{"""MuPDF store size limit."""%}
        PyObject *store_maxsize()
        {
            return Py_BuildValue("i", (int) gctx->store->max);
        }


        %pythonprepend show_aa_level
        %{"""Show anti-aliasing values."""%}
        %pythonappend show_aa_level %{
        temp = {"graphics": val[0], "text": val[1], "graphics_min_line_width": val[2]}
        val = temp%}
        PyObject *show_aa_level()
        {
            return Py_BuildValue("iif",
                fz_graphics_aa_level(gctx),
                fz_text_aa_level(gctx),
                fz_graphics_min_line_width(gctx));
        }


        %pythonprepend set_aa_level
        %{"""Set anti-aliasing level."""%}
        void set_aa_level(int level)
        {
            fz_set_aa_level(gctx, level);
        }


        %pythonprepend set_graphics_min_line_width
        %{"""Set the graphics minimum line width."""%}
        void set_graphics_min_line_width(float min_line_width)
        {
            fz_set_graphics_min_line_width(gctx, min_line_width);
        }


        FITZEXCEPTION(image_profile, !result)
        %pythonprepend image_profile
        %{"""Metadata of an image binary stream."""%}
        PyObject *image_profile(PyObject *stream, int keep_image=0)
        {
            PyObject *rc = NULL;
            fz_try(gctx) {
                rc = JM_image_profile(gctx, stream, keep_image);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return rc;
        }


        PyObject *_rotate_matrix(struct Page *page)
        {
            pdf_page *pdfpage = pdf_page_from_fz_page(gctx, (fz_page *) page);
            if (!pdfpage) return JM_py_from_matrix(fz_identity);
            return JM_py_from_matrix(JM_rotate_page_matrix(gctx, pdfpage));
        }


        PyObject *_derotate_matrix(struct Page *page)
        {
            pdf_page *pdfpage = pdf_page_from_fz_page(gctx, (fz_page *) page);
            if (!pdfpage) return JM_py_from_matrix(fz_identity);
            return JM_py_from_matrix(JM_derotate_page_matrix(gctx, pdfpage));
        }


        %pythoncode%{@property%}
        %pythonprepend fitz_config
        %{"""PyMuPDF configuration parameters."""%}
        PyObject *fitz_config()
        {
            return JM_fitz_config();
        }


        %pythonprepend glyph_cache_empty
        %{"""Empty the glyph cache."""%}
        void glyph_cache_empty()
        {
            fz_purge_glyph_cache(gctx);
        }


        FITZEXCEPTION(_fill_widget, !result)
        %pythonappend _fill_widget %{
            widget.rect = Rect(annot.rect)
            widget.xref = annot.xref
            widget.parent = annot.parent
            widget._annot = annot  # backpointer to annot object
            if not widget.script:
                widget.script = None
            if not widget.script_stroke:
                widget.script_stroke = None
            if not widget.script_format:
                widget.script_format = None
            if not widget.script_change:
                widget.script_change = None
            if not widget.script_calc:
                widget.script_calc = None
        %}
        PyObject *_fill_widget(struct Annot *annot, PyObject *widget)
        {
            fz_try(gctx) {
                JM_get_widget_properties(gctx, (pdf_annot *) annot, widget);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(_save_widget, !result)
        PyObject *_save_widget(struct Annot *annot, PyObject *widget)
        {
            fz_try(gctx) {
                JM_set_widget_properties(gctx, (pdf_annot *) annot, widget);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(_reset_widget, !result)
        PyObject *_reset_widget(struct Annot *annot)
        {
            fz_try(gctx) {
                pdf_annot *this_annot = (pdf_annot *) annot;
                pdf_obj *this_annot_obj = pdf_annot_obj(gctx, this_annot);
                pdf_document *pdf = pdf_get_bound_document(gctx, this_annot_obj);
                pdf_field_reset(gctx, pdf, this_annot_obj);
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(_parse_da, !result)
        %pythonappend _parse_da %{
        if not val:
            return ((0,), "", 0)
        font = "Helv"
        fsize = 12
        col = (0, 0, 0)
        dat = val.split()  # split on any whitespace
        for i, item in enumerate(dat):
            if item == "Tf":
                font = dat[i - 2][1:]
                fsize = float(dat[i - 1])
                dat[i] = dat[i-1] = dat[i-2] = ""
                continue
            if item == "g":            # unicolor text
                col = [(float(dat[i - 1]))]
                dat[i] = dat[i-1] = ""
                continue
            if item == "rg":           # RGB colored text
                col = [float(f) for f in dat[i - 3:i]]
                dat[i] = dat[i-1] = dat[i-2] = dat[i-3] = ""
                continue
            if item == "k":           # CMYK colored text
                col = [float(f) for f in dat[i - 4:i]]
                dat[i] = dat[i-1] = dat[i-2] = dat[i-3] = dat[i-4] = ""
                continue

        val = (col, font, fsize)
        %}
        PyObject *_parse_da(struct Annot *annot)
        {
            char *da_str = NULL;
            pdf_annot *this_annot = (pdf_annot *) annot;
            pdf_obj *this_annot_obj = pdf_annot_obj(gctx, this_annot);
            pdf_document *pdf = pdf_get_bound_document(gctx, this_annot_obj);
            fz_try(gctx) {
                pdf_obj *da = pdf_dict_get_inheritable(gctx, this_annot_obj,
                                                       PDF_NAME(DA));
                if (!da) {
                    pdf_obj *trailer = pdf_trailer(gctx, pdf);
                    da = pdf_dict_getl(gctx, trailer, PDF_NAME(Root),
                                       PDF_NAME(AcroForm),
                                       PDF_NAME(DA),
                                       NULL);
                }
                da_str = (char *) pdf_to_text_string(gctx, da);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return JM_UnicodeFromStr(da_str);
        }


        FITZEXCEPTION(_update_da, !result)
        PyObject *_update_da(struct Annot *annot, char *da_str)
        {
            fz_try(gctx) {
                pdf_annot *this_annot = (pdf_annot *) annot;
                pdf_obj *this_annot_obj = pdf_annot_obj(gctx, this_annot);
                pdf_dict_put_text_string(gctx, this_annot_obj, PDF_NAME(DA), da_str);
                pdf_dict_del(gctx, this_annot_obj, PDF_NAME(DS)); /* not supported */
                pdf_dict_del(gctx, this_annot_obj, PDF_NAME(RC)); /* not supported */
            }
            fz_catch(gctx) {
                return NULL;
            }
            Py_RETURN_NONE;
        }


        FITZEXCEPTION(_get_all_contents, !result)
        %pythonprepend _get_all_contents
        %{"""Concatenate all /Contents objects of a page into a bytes object."""%}
        PyObject *_get_all_contents(struct Page *fzpage)
        {
            pdf_page *page = pdf_page_from_fz_page(gctx, (fz_page *) fzpage);
            fz_buffer *res = NULL;
            PyObject *result = NULL;
            fz_try(gctx) {
                ASSERT_PDF(page);
                res = JM_read_contents(gctx, page->obj);
                result = JM_BinFromBuffer(gctx, res);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, res);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return result;
        }


        FITZEXCEPTION(_insert_contents, !result)
        %pythonprepend _insert_contents
        %{"""Add bytes as a new /Contents object for a page, and return its xref."""%}
        PyObject *_insert_contents(struct Page *page, PyObject *newcont, int overlay=1)
        {
            fz_buffer *contbuf = NULL;
            int xref = 0;
            pdf_page *pdfpage = pdf_page_from_fz_page(gctx, (fz_page *) page);
            fz_try(gctx) {
                ASSERT_PDF(pdfpage);
                ENSURE_OPERATION(gctx, pdfpage->doc);
                contbuf = JM_BufferFromBytes(gctx, newcont);
                xref = JM_insert_contents(gctx, pdfpage->doc, pdfpage->obj, contbuf, overlay);
            }
            fz_always(gctx) {
                fz_drop_buffer(gctx, contbuf);
            }
            fz_catch(gctx) {
                return NULL;
            }
            return Py_BuildValue("i", xref);
        }

        %pythonprepend mupdf_version
        %{"""Get version of MuPDF binary build."""%}
        PyObject *mupdf_version()
        {
            return Py_BuildValue("s", FZ_VERSION);
        }

        %pythonprepend mupdf_warnings
        %{"""Get the MuPDF warnings/errors with optional reset (default)."""%}
        %pythonappend mupdf_warnings %{
        val = "\n".join(val)
        if reset:
            self.reset_mupdf_warnings()%}
        PyObject *mupdf_warnings(int reset=1)
        {
            Py_INCREF(JM_mupdf_warnings_store);
            return JM_mupdf_warnings_store;
        }

        int _int_from_language(char *language)
        {
            return fz_text_language_from_string(language);
        }

        %pythonprepend reset_mupdf_warnings
        %{"""Empty the MuPDF warnings/errors store."""%}
        void reset_mupdf_warnings()
        {
            Py_CLEAR(JM_mupdf_warnings_store);
            JM_mupdf_warnings_store = PyList_New(0);
        }

        %pythonprepend mupdf_display_errors
        %{"""Set MuPDF error display to True or False."""%}
        PyObject *mupdf_display_errors(PyObject *on=NULL)
        {
            if (!on || on == Py_None) {
                return JM_BOOL(JM_mupdf_show_errors);
            }
            if (PyObject_IsTrue(on)) {
                JM_mupdf_show_errors = 1;
            } else {
                JM_mupdf_show_errors = 0;
            }
            return JM_BOOL(JM_mupdf_show_errors);
        }

        %pythonprepend mupdf_display_warnings
        %{"""Set MuPDF warnings display to True or False."""%}
        PyObject *mupdf_display_warnings(PyObject *on=NULL)
        {
            if (!on || on == Py_None) {
                return JM_BOOL(JM_mupdf_show_warnings);
            }
            if (PyObject_IsTrue(on)) {
                JM_mupdf_show_warnings = 1;
            } else {
                JM_mupdf_show_warnings = 0;
            }
            return JM_BOOL(JM_mupdf_show_warnings);
        }

        %pythoncode %{
def _le_annot_parms(self, annot, p1, p2, fill_color):
    """Get common parameters for making annot line end symbols.

    Returns:
        m: matrix that maps p1, p2 to points L, P on the x-axis
        im: its inverse
        L, P: transformed p1, p2
        w: line width
        scol: stroke color string
        fcol: fill color store_shrink
        opacity: opacity string (gs command)
    """
    w = annot.border["width"]  # line width
    sc = annot.colors["stroke"]  # stroke color
    if not sc:  # black if missing
        sc = (0,0,0)
    scol = " ".join(map(str, sc)) + " RG\n"
    if fill_color:
        fc = fill_color
    else:
        fc = annot.colors["fill"]  # fill color
    if not fc:
        fc = (1,1,1)  # white if missing
    fcol = " ".join(map(str, fc)) + " rg\n"
    # nr = annot.rect
    np1 = p1                   # point coord relative to annot rect
    np2 = p2                   # point coord relative to annot rect
    m = Matrix(util_hor_matrix(np1, np2))  # matrix makes the line horizontal
    im = ~m                            # inverted matrix
    L = np1 * m                        # converted start (left) point
    R = np2 * m                        # converted end (right) point
    if 0 <= annot.opacity < 1:
        opacity = "/H gs\n"
    else:
        opacity = ""
    return m, im, L, R, w, scol, fcol, opacity

def _oval_string(self, p1, p2, p3, p4):
    """Return /AP string defining an oval within a 4-polygon provided as points
    """
    def bezier(p, q, r):
        f = "%f %f %f %f %f %f c\n"
        return f % (p.x, p.y, q.x, q.y, r.x, r.y)

    kappa = 0.55228474983              # magic number
    ml = p1 + (p4 - p1) * 0.5          # middle points ...
    mo = p1 + (p2 - p1) * 0.5          # for each ...
    mr = p2 + (p3 - p2) * 0.5          # polygon ...
    mu = p4 + (p3 - p4) * 0.5          # side
    ol1 = ml + (p1 - ml) * kappa       # the 8 bezier
    ol2 = mo + (p1 - mo) * kappa       # helper points
    or1 = mo + (p2 - mo) * kappa
    or2 = mr + (p2 - mr) * kappa
    ur1 = mr + (p3 - mr) * kappa
    ur2 = mu + (p3 - mu) * kappa
    ul1 = mu + (p4 - mu) * kappa
    ul2 = ml + (p4 - ml) * kappa
    # now draw, starting from middle point of left side
    ap = "%f %f m\n" % (ml.x, ml.y)
    ap += bezier(ol1, ol2, mo)
    ap += bezier(or1, or2, mr)
    ap += bezier(ur1, ur2, mu)
    ap += bezier(ul1, ul2, ml)
    return ap

def _le_diamond(self, annot, p1, p2, lr, fill_color):
    """Make stream commands for diamond line end symbol. "lr" denotes left (False) or right point.
    """
    m, im, L, R, w, scol, fcol, opacity = self._le_annot_parms(annot, p1, p2, fill_color)
    shift = 2.5             # 2*shift*width = length of square edge
    d = shift * max(1, w)
    M = R - (d/2., 0) if lr else L + (d/2., 0)
    r = Rect(M, M) + (-d, -d, d, d)         # the square
    # the square makes line longer by (2*shift - 1)*width
    p = (r.tl + (r.bl - r.tl) * 0.5) * im
    ap = "q\n%s%f %f m\n" % (opacity, p.x, p.y)
    p = (r.tl + (r.tr - r.tl) * 0.5) * im
    ap += "%f %f l\n"   % (p.x, p.y)
    p = (r.tr + (r.br - r.tr) * 0.5) * im
    ap += "%f %f l\n"   % (p.x, p.y)
    p = (r.br + (r.bl - r.br) * 0.5) * im
    ap += "%f %f l\n"   % (p.x, p.y)
    ap += "%g w\n" % w
    ap += scol + fcol + "b\nQ\n"
    return ap

def _le_square(self, annot, p1, p2, lr, fill_color):
    """Make stream commands for square line end symbol. "lr" denotes left (False) or right point.
    """
    m, im, L, R, w, scol, fcol, opacity = self._le_annot_parms(annot, p1, p2, fill_color)
    shift = 2.5             # 2*shift*width = length of square edge
    d = shift * max(1, w)
    M = R - (d/2., 0) if lr else L + (d/2., 0)
    r = Rect(M, M) + (-d, -d, d, d)         # the square
    # the square makes line longer by (2*shift - 1)*width
    p = r.tl * im
    ap = "q\n%s%f %f m\n" % (opacity, p.x, p.y)
    p = r.tr * im
    ap += "%f %f l\n"   % (p.x, p.y)
    p = r.br * im
    ap += "%f %f l\n"   % (p.x, p.y)
    p = r.bl * im
    ap += "%f %f l\n"   % (p.x, p.y)
    ap += "%g w\n" % w
    ap += scol + fcol + "b\nQ\n"
    return ap

def _le_circle(self, annot, p1, p2, lr, fill_color):
    """Make stream commands for circle line end symbol. "lr" denotes left (False) or right point.
    """
    m, im, L, R, w, scol, fcol, opacity = self._le_annot_parms(annot, p1, p2, fill_color)
    shift = 2.5             # 2*shift*width = length of square edge
    d = shift * max(1, w)
    M = R - (d/2., 0) if lr else L + (d/2., 0)
    r = Rect(M, M) + (-d, -d, d, d)         # the square
    ap = "q\n" + opacity + self._oval_string(r.tl * im, r.tr * im, r.br * im, r.bl * im)
    ap += "%g w\n" % w
    ap += scol + fcol + "b\nQ\n"
    return ap

def _le_butt(self, annot, p1, p2, lr, fill_color):
    """Make stream commands for butt line end symbol. "lr" denotes left (False) or right point.
    """
    m, im, L, R, w, scol, fcol, opacity = self._le_annot_parms(annot, p1, p2, fill_color)
    shift = 3
    d = shift * max(1, w)
    M = R if lr else L
    top = (M + (0, -d/2.)) * im
    bot = (M + (0, d/2.)) * im
    ap = "\nq\n%s%f %f m\n" % (opacity, top.x, top.y)
    ap += "%f %f l\n" % (bot.x, bot.y)
    ap += "%g w\n" % w
    ap += scol + "s\nQ\n"
    return ap

def _le_slash(self, annot, p1, p2, lr, fill_color):
    """Make stream commands for slash line end symbol. "lr" denotes left (False) or right point.
    """
    m, im, L, R, w, scol, fcol, opacity = self._le_annot_parms(annot, p1, p2, fill_color)
    rw = 1.1547 * max(1, w) * 1.0         # makes rect diagonal a 30 deg inclination
    M = R if lr else L
    r = Rect(M.x - rw, M.y - 2 * w, M.x + rw, M.y + 2 * w)
    top = r.tl * im
    bot = r.br * im
    ap = "\nq\n%s%f %f m\n" % (opacity, top.x, top.y)
    ap += "%f %f l\n" % (bot.x, bot.y)
    ap += "%g w\n" % w
    ap += scol + "s\nQ\n"
    return ap

def _le_openarrow(self, annot, p1, p2, lr, fill_color):
    """Make stream commands for open arrow line end symbol. "lr" denotes left (False) or right point.
    """
    m, im, L, R, w, scol, fcol, opacity = self._le_annot_parms(annot, p1, p2, fill_color)
    shift = 2.5
    d = shift * max(1, w)
    p2 = R + (d/2., 0) if lr else L - (d/2., 0)
    p1 = p2 + (-2*d, -d) if lr else p2 + (2*d, -d)
    p3 = p2 + (-2*d, d) if lr else p2 + (2*d, d)
    p1 *= im
    p2 *= im
    p3 *= im
    ap = "\nq\n%s%f %f m\n" % (opacity, p1.x, p1.y)
    ap += "%f %f l\n" % (p2.x, p2.y)
    ap += "%f %f l\n" % (p3.x, p3.y)
    ap += "%g w\n" % w
    ap += scol + "S\nQ\n"
    return ap

def _le_closedarrow(self, annot, p1, p2, lr, fill_color):
    """Make stream commands for closed arrow line end symbol. "lr" denotes left (False) or right point.
    """
    m, im, L, R, w, scol, fcol, opacity = self._le_annot_parms(annot, p1, p2, fill_color)
    shift = 2.5
    d = shift * max(1, w)
    p2 = R + (d/2., 0) if lr else L - (d/2., 0)
    p1 = p2 + (-2*d, -d) if lr else p2 + (2*d, -d)
    p3 = p2 + (-2*d, d) if lr else p2 + (2*d, d)
    p1 *= im
    p2 *= im
    p3 *= im
    ap = "\nq\n%s%f %f m\n" % (opacity, p1.x, p1.y)
    ap += "%f %f l\n" % (p2.x, p2.y)
    ap += "%f %f l\n" % (p3.x, p3.y)
    ap += "%g w\n" % w
    ap += scol + fcol + "b\nQ\n"
    return ap

def _le_ropenarrow(self, annot, p1, p2, lr, fill_color):
    """Make stream commands for right open arrow line end symbol. "lr" denotes left (False) or right point.
    """
    m, im, L, R, w, scol, fcol, opacity = self._le_annot_parms(annot, p1, p2, fill_color)
    shift = 2.5
    d = shift * max(1, w)
    p2 = R - (d/3., 0) if lr else L + (d/3., 0)
    p1 = p2 + (2*d, -d) if lr else p2 + (-2*d, -d)
    p3 = p2 + (2*d, d) if lr else p2 + (-2*d, d)
    p1 *= im
    p2 *= im
    p3 *= im
    ap = "\nq\n%s%f %f m\n" % (opacity, p1.x, p1.y)
    ap += "%f %f l\n" % (p2.x, p2.y)
    ap += "%f %f l\n" % (p3.x, p3.y)
    ap += "%g w\n" % w
    ap += scol + fcol + "S\nQ\n"
    return ap

def _le_rclosedarrow(self, annot, p1, p2, lr, fill_color):
    """Make stream commands for right closed arrow line end symbol. "lr" denotes left (False) or right point.
    """
    m, im, L, R, w, scol, fcol, opacity = self._le_annot_parms(annot, p1, p2, fill_color)
    shift = 2.5
    d = shift * max(1, w)
    p2 = R - (2*d, 0) if lr else L + (2*d, 0)
    p1 = p2 + (2*d, -d) if lr else p2 + (-2*d, -d)
    p3 = p2 + (2*d, d) if lr else p2 + (-2*d, d)
    p1 *= im
    p2 *= im
    p3 *= im
    ap = "\nq\n%s%f %f m\n" % (opacity, p1.x, p1.y)
    ap += "%f %f l\n" % (p2.x, p2.y)
    ap += "%f %f l\n" % (p3.x, p3.y)
    ap += "%g w\n" % w
    ap += scol + fcol + "b\nQ\n"
    return ap

def __del__(self):
    if not type(self) is Tools:
        return
    if getattr(self, "thisown", False):
        self.__swig_destroy__(self)
        %}
    }
};







PyMuPDF-1.21.1/fitz/helper-annot.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
//------------------------------------------------------------------------
// return pdf_obj "border style" from Python str
//------------------------------------------------------------------------
pdf_obj *JM_get_border_style(fz_context *ctx, PyObject *style)
{
    pdf_obj *val = PDF_NAME(S);
    if (!style) return val;
    char *s = JM_StrAsChar(style);
    JM_PyErr_Clear;
    if (!s) return val;
    if      (!strncmp(s, "b", 1) || !strncmp(s, "B", 1)) val = PDF_NAME(B);
    else if (!strncmp(s, "d", 1) || !strncmp(s, "D", 1)) val = PDF_NAME(D);
    else if (!strncmp(s, "i", 1) || !strncmp(s, "I", 1)) val = PDF_NAME(I);
    else if (!strncmp(s, "u", 1) || !strncmp(s, "U", 1)) val = PDF_NAME(U);
    return val;
}

//------------------------------------------------------------------------
// Make /DA string of annotation
//------------------------------------------------------------------------
const char *JM_expand_fname(const char **name)
{
    if (!*name) return "Helv";
    if (!strncmp(*name, "Co", 2)) return "Cour";
    if (!strncmp(*name, "co", 2)) return "Cour";
    if (!strncmp(*name, "Ti", 2)) return "TiRo";
    if (!strncmp(*name, "ti", 2)) return "TiRo";
    if (!strncmp(*name, "Sy", 2)) return "Symb";
    if (!strncmp(*name, "sy", 2)) return "Symb";
    if (!strncmp(*name, "Za", 2)) return "ZaDb";
    if (!strncmp(*name, "za", 2)) return "ZaDb";
    return "Helv";
}

void JM_make_annot_DA(fz_context *ctx, pdf_annot *annot, int ncol, float col[4], const char *fontname, float fontsize)
{
    fz_buffer *buf = NULL;
    fz_try(ctx)
    {
        buf = fz_new_buffer(ctx, 50);
       if (ncol <= 1)
            fz_append_printf(ctx, buf, "%g g ", col[0]);
        else if (ncol < 4)
            fz_append_printf(ctx, buf, "%g %g %g rg ", col[0], col[1], col[2]);
        else
            fz_append_printf(ctx, buf, "%g %g %g %g k ", col[0], col[1], col[2], col[3]);
        fz_append_printf(ctx, buf, "/%s %g Tf", JM_expand_fname(&fontname), fontsize);
        unsigned char *da = NULL;
        size_t len = fz_buffer_storage(ctx, buf, &da);
        pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
        pdf_dict_put_string(ctx, annot_obj, PDF_NAME(DA), (const char *) da, len);
    }
    fz_always(ctx) fz_drop_buffer(ctx, buf);
    fz_catch(ctx) fz_rethrow(ctx);
    return;
}

//------------------------------------------------------------------------
// refreshes the link and annotation tables of a page
//------------------------------------------------------------------------
void JM_refresh_links(fz_context *ctx, pdf_page *page)
{
    if (!page) return;
    fz_try(ctx)
    {
		pdf_obj *obj = pdf_dict_get(ctx, page->obj, PDF_NAME(Annots));
		if (obj)
		{
			pdf_document *pdf = page->doc;
            int number = pdf_lookup_page_number(ctx, pdf, page->obj);
            fz_rect page_mediabox;
			fz_matrix page_ctm;
			pdf_page_transform(ctx, page, &page_mediabox, &page_ctm);
			page->links = pdf_load_link_annots(ctx, pdf, page, obj, number, page_ctm);
		}
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return;
}


PyObject *JM_annot_border(fz_context *ctx, pdf_obj *annot_obj)
{
    PyObject *res = PyDict_New();
    PyObject *dash_py   = PyList_New(0);
    PyObject *effect_py = PyList_New(0);
    PyObject *val;
    int i;
    char *effect2 = NULL, *style = NULL;
    float width = -1.0f;
    int effect1 = -1;

    pdf_obj *o = pdf_dict_get(ctx, annot_obj, PDF_NAME(Border));
    if (pdf_is_array(ctx, o)) {
        width = pdf_to_real(ctx, pdf_array_get(ctx, o, 2));
        if (pdf_array_len(ctx, o) == 4) {
            pdf_obj *dash = pdf_array_get(ctx, o, 3);
            for (i = 0; i < pdf_array_len(ctx, dash); i++) {
                val = Py_BuildValue("i", pdf_to_int(ctx, pdf_array_get(ctx, dash, i)));
                LIST_APPEND_DROP(dash_py, val);
            }
        }
    }

    pdf_obj *bs_o = pdf_dict_get(ctx, annot_obj, PDF_NAME(BS));
    if (bs_o)
    {
        o = pdf_dict_get(ctx, bs_o, PDF_NAME(W));
        if (o) width = pdf_to_real(ctx, o);
        o = pdf_dict_get(ctx, bs_o, PDF_NAME(S));
        if (o) style = (char *) pdf_to_name(ctx, o);
        o = pdf_dict_get(ctx, bs_o, PDF_NAME(D));
        if (o) {
            for (i = 0; i < pdf_array_len(ctx, o); i++) {
                val = Py_BuildValue("i", pdf_to_int(ctx, pdf_array_get(ctx, o, i)));
                LIST_APPEND_DROP(dash_py, val);
            }
        }
    }

    pdf_obj *be_o = pdf_dict_gets(ctx, annot_obj, "BE");
    if (be_o) {
        o = pdf_dict_get(ctx, be_o, PDF_NAME(S));
        if (o) effect2 = (char *) pdf_to_name(ctx, o);
        o = pdf_dict_get(ctx, be_o, PDF_NAME(I));
        if (o) effect1 = pdf_to_int(ctx, o);
    }

    LIST_APPEND_DROP(effect_py, Py_BuildValue("i", effect1));
    LIST_APPEND_DROP(effect_py, Py_BuildValue("s", effect2));
    DICT_SETITEM_DROP(res, dictkey_width, Py_BuildValue("f", width));
    DICT_SETITEM_DROP(res, dictkey_dashes, dash_py);
    DICT_SETITEM_DROP(res, dictkey_style, Py_BuildValue("s", style));
    if (effect1 > -1) PyDict_SetItem(res, dictkey_effect, effect_py);
    Py_CLEAR(effect_py);
    return res;
}

PyObject *JM_annot_set_border(fz_context *ctx, PyObject *border, pdf_document *doc, pdf_obj *annot_obj)
{
    if (!PyDict_Check(border)) {
        JM_Warning("arg must be a dict");
        Py_RETURN_NONE;     // not a dict
    }

    double nwidth = -1;                       // new width
    double owidth = -1;                       // old width
    PyObject *ndashes = NULL;                 // new dashes
    PyObject *odashes = NULL;                 // old dashes
    PyObject *nstyle  = NULL;                 // new style
    PyObject *ostyle  = NULL;                 // old style

    nwidth = PyFloat_AsDouble(PyDict_GetItem(border, dictkey_width));
    ndashes = PyDict_GetItem(border, dictkey_dashes);
    nstyle  = PyDict_GetItem(border, dictkey_style);

    // first get old border properties
    PyObject *oborder = JM_annot_border(ctx, annot_obj);
    owidth = PyFloat_AsDouble(PyDict_GetItem(oborder, dictkey_width));
    odashes = PyDict_GetItem(oborder, dictkey_dashes);
    ostyle = PyDict_GetItem(oborder, dictkey_style);

    // then delete any relevant entries
    pdf_dict_del(ctx, annot_obj, PDF_NAME(BS));
    pdf_dict_del(ctx, annot_obj, PDF_NAME(BE));
    pdf_dict_del(ctx, annot_obj, PDF_NAME(Border));

    Py_ssize_t i, n;
    int d;
    // populate new border array
    if (nwidth < 0) nwidth = owidth;     // no new width: take current
    if (nwidth < 0) nwidth = 0.0f;       // default if no width given
    if (!ndashes) ndashes = odashes;     // no new dashes: take old
    if (!nstyle)  nstyle  = ostyle;      // no new style: take old

    if (ndashes && PySequence_Check(ndashes) && PySequence_Size(ndashes) > 0) {
        n = PySequence_Size(ndashes);
        pdf_obj *darr = pdf_new_array(ctx, doc, n);
        for (i = 0; i < n; i++) {
            d = (int) PyInt_AsLong(PySequence_ITEM(ndashes, i));
            pdf_array_push_int(ctx, darr, (int64_t) d);
        }
        pdf_dict_putl_drop(ctx, annot_obj, darr, PDF_NAME(BS), PDF_NAME(D), NULL);
        nstyle = PyUnicode_FromString("D");
    }

    pdf_dict_putl_drop(ctx, annot_obj, pdf_new_real(ctx, nwidth),
                               PDF_NAME(BS), PDF_NAME(W), NULL);

    pdf_obj *val = JM_get_border_style(ctx, nstyle);

    pdf_dict_putl_drop(ctx, annot_obj, val,
                               PDF_NAME(BS), PDF_NAME(S), NULL);

    PyErr_Clear();
    Py_RETURN_NONE;
}

PyObject *JM_annot_colors(fz_context *ctx, pdf_obj *annot_obj)
{
    PyObject *res = PyDict_New();
    PyObject *color = NULL;
    int i, n;
    float col;
    pdf_obj *o = NULL;
    
    o = pdf_dict_get(ctx, annot_obj, PDF_NAME(C));
    if (pdf_is_array(ctx, o)) {
        n = pdf_array_len(ctx, o);
        color = PyTuple_New((Py_ssize_t) n);
        for (i = 0; i < n; i++) {
            col = pdf_to_real(ctx, pdf_array_get(ctx, o, i));
            PyTuple_SET_ITEM(color, i, Py_BuildValue("f", col));
        }
        DICT_SETITEM_DROP(res, dictkey_stroke, color);
    } else {
        DICT_SETITEM_DROP(res, dictkey_stroke, Py_BuildValue("s", NULL));
    }

    o = pdf_dict_get(ctx, annot_obj, PDF_NAME(IC));
    if (pdf_is_array(ctx, o)) {
        n = pdf_array_len(ctx, o);
        color = PyTuple_New((Py_ssize_t) n);
        for (i = 0; i < n; i++) {
            col = pdf_to_real(ctx, pdf_array_get(ctx, o, i));
            PyTuple_SET_ITEM(color, i, Py_BuildValue("f", col));
        }
        DICT_SETITEM_DROP(res, dictkey_fill, color);
    } else {
        DICT_SETITEM_DROP(res, dictkey_fill, Py_BuildValue("s", NULL));
    }

    return res;
}


//------------------------------------------------------------------------
// Return the first annotation whose /IRT key ("In Response To") points to
// annot. Used to remove the response chain of a given annotation.
//------------------------------------------------------------------------
pdf_annot *JM_find_annot_irt(fz_context *ctx, pdf_annot *annot)
{
    pdf_annot *irt_annot = NULL;  // returning this
    pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
    pdf_obj *o = NULL;
    int found = 0;
    fz_try(ctx) {   // loop thru MuPDF's internal annots array
        pdf_page *page = pdf_annot_page(ctx, annot);
        irt_annot = pdf_first_annot(ctx, page);
        while (irt_annot) {
            pdf_obj *irt_annot_obj = pdf_annot_obj(ctx, irt_annot);
            o = pdf_dict_gets(ctx, irt_annot_obj, "IRT");
            if (o) {
                if (!pdf_objcmp(ctx, o, annot_obj)) {
                    found = 1;
                    break;
                }
            }
            irt_annot = pdf_next_annot(ctx, irt_annot);
        }
    }
    fz_catch(ctx) {;}
    if (found) return pdf_keep_annot(ctx, irt_annot);
    return NULL;
}

//------------------------------------------------------------------------
// return the annotation names (list of /NM entries)
//------------------------------------------------------------------------
PyObject *JM_get_annot_id_list(fz_context *ctx, pdf_page *page)
{
    PyObject *names = PyList_New(0);
    pdf_obj *annot_obj = NULL;
    pdf_obj *annots = pdf_dict_get(ctx, page->obj, PDF_NAME(Annots));
    pdf_obj *name = NULL;
    if (!annots) return names;
    fz_try(ctx) {
        int i, n = pdf_array_len(ctx, annots);
        for (i = 0; i < n; i++) {
            annot_obj = pdf_array_get(ctx, annots, i);
            name = pdf_dict_gets(ctx, annot_obj, "NM");
            if (name) {
                LIST_APPEND_DROP(names, Py_BuildValue("s", pdf_to_text_string(ctx, name)));
            }
        }
    }
    fz_catch(ctx) {
        return names;
    }
    return names;
}


//------------------------------------------------------------------------
// return the xrefs and /NM ids of a page's annots, links and fields
//------------------------------------------------------------------------
PyObject *JM_get_annot_xref_list(fz_context *ctx, pdf_obj *page_obj)
{
    PyObject *names = PyList_New(0);
    pdf_obj *id, *subtype, *annots, *annot_obj;
    int xref, type, i, n;
    fz_try(ctx) {
        annots = pdf_dict_get(ctx, page_obj, PDF_NAME(Annots));
        n = pdf_array_len(ctx, annots);
        for (i = 0; i < n; i++) {
            annot_obj = pdf_array_get(ctx, annots, i);
            xref = pdf_to_num(ctx, annot_obj);
            subtype = pdf_dict_get(ctx, annot_obj, PDF_NAME(Subtype));
            if (!subtype) {
                continue;  // subtype is required
            }
            type = pdf_annot_type_from_string(ctx, pdf_to_name(ctx, subtype));
            if (type == PDF_ANNOT_UNKNOWN) {
                continue;  // only accept valid annot types
            }
            id = pdf_dict_gets(ctx, annot_obj, "NM");
            LIST_APPEND_DROP(names, Py_BuildValue("iis", xref, type, pdf_to_text_string(ctx, id)));
        }
    }
    fz_catch(ctx) {
        return names;
    }
    return names;
}


//------------------------------------------------------------------------
// Add a unique /NM key to an annotation or widget.
// Append a number to 'stem' such that the result is a unique name.
//------------------------------------------------------------------------
static char JM_annot_id_stem[50] = "fitz";
void JM_add_annot_id(fz_context *ctx, pdf_annot *annot, char *stem)
{
    fz_try(ctx) {
        PyObject *names = NULL;
        pdf_page *page = pdf_annot_page(ctx, annot);
        pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
        names = JM_get_annot_id_list(ctx, page);
        int i = 0;
        PyObject *stem_id = NULL;
        while (1) {
            stem_id = PyUnicode_FromFormat("%s-%s%d", JM_annot_id_stem, stem, i);
            if (!PySequence_Contains(names, stem_id)) break;
            i += 1;
            Py_DECREF(stem_id);
        }
        char *response = JM_StrAsChar(stem_id);
        pdf_obj *name = pdf_new_string(ctx, (const char *) response, strlen(response));
        pdf_dict_puts_drop(ctx, annot_obj, "NM", name);
        Py_CLEAR(stem_id);
        Py_CLEAR(names);
        page->doc->resynth_required = 0;
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
}

//------------------------------------------------------------------------
// retrieve annot by name (/NM key)
//------------------------------------------------------------------------
pdf_annot *JM_get_annot_by_name(fz_context *ctx, pdf_page *page, char *name)
{
    if (!name || strlen(name) == 0) {
        return NULL;
    }
    pdf_annot *annot = NULL;
    int found = 0;
    size_t len = 0;

    fz_try(ctx) {   // loop thru MuPDF's internal annots and widget arrays
        annot = pdf_first_annot(ctx, page);
        while (annot) {
            pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
            const char *response = pdf_to_string(ctx, pdf_dict_gets(ctx, annot_obj, "NM"), &len);
            if (strcmp(name, response) == 0) {
                found = 1;
                break;
            }
            annot = pdf_next_annot(ctx, annot);
        }
        if (!found) {
            fz_throw(ctx, FZ_ERROR_GENERIC, "'%s' is not an annot of this page", name);
        }
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return pdf_keep_annot(ctx, annot);
}

//------------------------------------------------------------------------
// retrieve annot by its xref
//------------------------------------------------------------------------
pdf_annot *JM_get_annot_by_xref(fz_context *ctx, pdf_page *page, int xref)
{
    pdf_annot *annot = NULL;
    int found = 0;

    fz_try(ctx) {   // loop thru MuPDF's internal annots array
        annot = pdf_first_annot(ctx, page);
        while (annot) {
            pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
            if (xref == pdf_to_num(ctx, annot_obj)) {
                found = 1;
                break;
            }
            annot = pdf_next_annot(ctx, annot);
        }
        if (!found) {
            fz_throw(ctx, FZ_ERROR_GENERIC, "xref %d is not an annot of this page", xref);
        }
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return pdf_keep_annot(ctx, annot);
}

//------------------------------------------------------------------------
// retrieve widget by its xref
//------------------------------------------------------------------------
pdf_annot *JM_get_widget_by_xref(fz_context *ctx, pdf_page *page, int xref)
{
    pdf_annot *annot = NULL;
    int found = 0;

    fz_try(ctx) {   // loop thru MuPDF's internal annots array
        annot = pdf_first_widget(ctx, page);
        while (annot) {
            pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
            if (xref == pdf_to_num(ctx, annot_obj)) {
                found = 1;
                break;
            }
            annot = pdf_next_widget(ctx, annot);
        }
        if (!found) {
            fz_throw(ctx, FZ_ERROR_GENERIC, "xref %d is not a widget of this page", xref);
        }
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return pdf_keep_annot(ctx, annot);
}

%}







PyMuPDF-1.21.1/fitz/helper-convert.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
//-----------------------------------------------------------------------------
// Convert any MuPDF document to a PDF
// Returns bytes object containing the PDF, created via 'write' function.
//-----------------------------------------------------------------------------
PyObject *JM_convert_to_pdf(fz_context *ctx, fz_document *doc, int fp, int tp, int rotate)
{
    pdf_document *pdfout = pdf_create_document(ctx);  // new PDF document
    int i, incr = 1, s = fp, e = tp;
    if (fp > tp) {
        incr = -1;           // count backwards
        s = tp;              // adjust ...
        e = fp;              // ... range
    }
    fz_rect mediabox;
    int rot = JM_norm_rotation(rotate);
    fz_device *dev = NULL;
    fz_buffer *contents = NULL;
    pdf_obj *resources = NULL;
    fz_page *page=NULL;
    fz_var(dev);
    fz_var(contents);
    fz_var(resources);
    fz_var(page);
    for (i = fp; INRANGE(i, s, e); i += incr) {  // interpret & write document pages as PDF pages
        fz_try(ctx) {
            page = fz_load_page(ctx, doc, i);
            mediabox = fz_bound_page(ctx, page);
            dev = pdf_page_write(ctx, pdfout, mediabox, &resources, &contents);
            fz_run_page(ctx, page, dev, fz_identity, NULL);
            fz_close_device(ctx, dev);
            fz_drop_device(ctx, dev);
            dev = NULL;
            pdf_obj *page_obj = pdf_add_page(ctx, pdfout, mediabox, rot, resources, contents);
            pdf_insert_page(ctx, pdfout, -1, page_obj);
            pdf_drop_obj(ctx, page_obj);
        }
        fz_always(ctx) {
            pdf_drop_obj(ctx, resources);
            fz_drop_buffer(ctx, contents);
            fz_drop_device(ctx, dev);
            fz_drop_page(ctx, page);
            page = NULL;
            dev = NULL;
            contents = NULL;
            resources = NULL;
        }
        fz_catch(ctx) {
            fz_rethrow(ctx);
        }
    }
    // PDF created - now write it to Python bytearray
    PyObject *r = NULL;
    fz_output *out = NULL;
    fz_buffer *res = NULL;
    // prepare write options structure
    pdf_write_options opts = { 0 };
    opts.do_garbage         = 4;
    opts.do_compress        = 1;
    opts.do_compress_images = 1;
    opts.do_compress_fonts  = 1;
    opts.do_sanitize        = 1;
    opts.do_incremental     = 0;
    opts.do_ascii           = 0;
    opts.do_decompress      = 0;
    opts.do_linear          = 0;
    opts.do_clean           = 1;
    opts.do_pretty          = 0;

    fz_try(ctx) {
        res = fz_new_buffer(ctx, 8192);
        out = fz_new_output_with_buffer(ctx, res);
        pdf_write_document(ctx, pdfout, out, &opts);
        unsigned char *c = NULL;
        size_t len = fz_buffer_storage(ctx, res, &c);
        r = PyBytes_FromStringAndSize((const char *) c, (Py_ssize_t) len);
    }
    fz_always(ctx) {
        pdf_drop_document(ctx, pdfout);
        fz_drop_output(ctx, out);
        fz_drop_buffer(ctx, res);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return r;
}
%}







PyMuPDF-1.21.1/fitz/helper-defines.i

%inline %{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
//----------------------------------------------------------------------------
// general
//----------------------------------------------------------------------------
#define EPSILON 1e-5

//----------------------------------------------------------------------------
// annotation types
//----------------------------------------------------------------------------
#define PDF_ANNOT_TEXT 0
#define PDF_ANNOT_LINK 1
#define PDF_ANNOT_FREE_TEXT 2
#define PDF_ANNOT_LINE 3
#define PDF_ANNOT_SQUARE 4
#define PDF_ANNOT_CIRCLE 5
#define PDF_ANNOT_POLYGON 6
#define PDF_ANNOT_POLY_LINE 7
#define PDF_ANNOT_HIGHLIGHT 8
#define PDF_ANNOT_UNDERLINE 9
#define PDF_ANNOT_SQUIGGLY 10
#define PDF_ANNOT_STRIKE_OUT 11
#define PDF_ANNOT_REDACT 12
#define PDF_ANNOT_STAMP 13
#define PDF_ANNOT_CARET 14
#define PDF_ANNOT_INK 15
#define PDF_ANNOT_POPUP 16
#define PDF_ANNOT_FILE_ATTACHMENT 17
#define PDF_ANNOT_SOUND 18
#define PDF_ANNOT_MOVIE 19
#define PDF_ANNOT_RICH_MEDIA 20
#define PDF_ANNOT_WIDGET 21
#define PDF_ANNOT_SCREEN 22
#define PDF_ANNOT_PRINTER_MARK 23
#define PDF_ANNOT_TRAP_NET 24
#define PDF_ANNOT_WATERMARK 25
#define PDF_ANNOT_3D 26
#define PDF_ANNOT_PROJECTION 27
#define PDF_ANNOT_UNKNOWN -1

//------------------------
// redaction annot options
//------------------------
#define PDF_REDACT_IMAGE_NONE 0
#define PDF_REDACT_IMAGE_REMOVE 1
#define PDF_REDACT_IMAGE_PIXELS 2

//----------------------------------------------------------------------------
// annotation flag bits
//----------------------------------------------------------------------------
#define PDF_ANNOT_IS_INVISIBLE 1 << (1-1)
#define PDF_ANNOT_IS_HIDDEN 1 << (2-1)
#define PDF_ANNOT_IS_PRINT 1 << (3-1)
#define PDF_ANNOT_IS_NO_ZOOM 1 << (4-1)
#define PDF_ANNOT_IS_NO_ROTATE 1 << (5-1)
#define PDF_ANNOT_IS_NO_VIEW 1 << (6-1)
#define PDF_ANNOT_IS_READ_ONLY 1 << (7-1)
#define PDF_ANNOT_IS_LOCKED 1 << (8-1)
#define PDF_ANNOT_IS_TOGGLE_NO_VIEW 1 << (9-1)
#define PDF_ANNOT_IS_LOCKED_CONTENTS 1 << (10-1)


//----------------------------------------------------------------------------
// annotation line ending styles
//----------------------------------------------------------------------------
#define PDF_ANNOT_LE_NONE 0
#define PDF_ANNOT_LE_SQUARE 1
#define PDF_ANNOT_LE_CIRCLE 2
#define PDF_ANNOT_LE_DIAMOND 3
#define PDF_ANNOT_LE_OPEN_ARROW 4
#define PDF_ANNOT_LE_CLOSED_ARROW 5
#define PDF_ANNOT_LE_BUTT 6
#define PDF_ANNOT_LE_R_OPEN_ARROW 7
#define PDF_ANNOT_LE_R_CLOSED_ARROW 8
#define PDF_ANNOT_LE_SLASH 9


//----------------------------------------------------------------------------
// annotation field (widget) types
//----------------------------------------------------------------------------
#define PDF_WIDGET_TYPE_UNKNOWN 0
#define PDF_WIDGET_TYPE_BUTTON 1
#define PDF_WIDGET_TYPE_CHECKBOX 2
#define PDF_WIDGET_TYPE_COMBOBOX 3
#define PDF_WIDGET_TYPE_LISTBOX 4
#define PDF_WIDGET_TYPE_RADIOBUTTON 5
#define PDF_WIDGET_TYPE_SIGNATURE 6
#define PDF_WIDGET_TYPE_TEXT 7


//----------------------------------------------------------------------------
// annotation text widget subtypes
//----------------------------------------------------------------------------
#define PDF_WIDGET_TX_FORMAT_NONE 0
#define PDF_WIDGET_TX_FORMAT_NUMBER 1
#define PDF_WIDGET_TX_FORMAT_SPECIAL 2
#define PDF_WIDGET_TX_FORMAT_DATE 3
#define PDF_WIDGET_TX_FORMAT_TIME 4


//----------------------------------------------------------------------------
// annotation widget flags
//----------------------------------------------------------------------------
// Common to all field types
#define PDF_FIELD_IS_READ_ONLY 1
#define PDF_FIELD_IS_REQUIRED 1 << 1
#define PDF_FIELD_IS_NO_EXPORT 1 << 2


// Text fields
#define PDF_TX_FIELD_IS_MULTILINE  1 << 12
#define PDF_TX_FIELD_IS_PASSWORD  1 << 13
#define PDF_TX_FIELD_IS_FILE_SELECT  1 << 20
#define PDF_TX_FIELD_IS_DO_NOT_SPELL_CHECK  1 << 22
#define PDF_TX_FIELD_IS_DO_NOT_SCROLL  1 << 23
#define PDF_TX_FIELD_IS_COMB  1 << 24
#define PDF_TX_FIELD_IS_RICH_TEXT  1 << 25


// Button fields
#define PDF_BTN_FIELD_IS_NO_TOGGLE_TO_OFF  1 << 14
#define PDF_BTN_FIELD_IS_RADIO  1 << 15
#define PDF_BTN_FIELD_IS_PUSHBUTTON  1 << 16
#define PDF_BTN_FIELD_IS_RADIOS_IN_UNISON  1 << 25


// Choice fields
#define PDF_CH_FIELD_IS_COMBO  1 << 17
#define PDF_CH_FIELD_IS_EDIT  1 << 18
#define PDF_CH_FIELD_IS_SORT  1 << 19
#define PDF_CH_FIELD_IS_MULTI_SELECT  1 << 21
#define PDF_CH_FIELD_IS_DO_NOT_SPELL_CHECK  1 << 22
#define PDF_CH_FIELD_IS_COMMIT_ON_SEL_CHANGE  1 << 25


// Signature fields errors
#define PDF_SIGNATURE_ERROR_OKAY 0
#define PDF_SIGNATURE_ERROR_NO_SIGNATURES 1
#define PDF_SIGNATURE_ERROR_NO_CERTIFICATE 2
#define PDF_SIGNATURE_ERROR_DIGEST_FAILURE 3
#define PDF_SIGNATURE_ERROR_SELF_SIGNED 4
#define PDF_SIGNATURE_ERROR_SELF_SIGNED_IN_CHAIN 5
#define PDF_SIGNATURE_ERROR_NOT_TRUSTED 6
#define PDF_SIGNATURE_ERROR_UNKNOWN 7

// Signature appearances

#define PDF_SIGNATURE_SHOW_LABELS 1
#define PDF_SIGNATURE_SHOW_DN 2
#define PDF_SIGNATURE_SHOW_DATE 4
#define PDF_SIGNATURE_SHOW_TEXT_NAME 8
#define PDF_SIGNATURE_SHOW_GRAPHIC_NAME 16
#define PDF_SIGNATURE_SHOW_LOGO 32
#define PDF_SIGNATURE_DEFAULT_APPEARANCE ( \
	PDF_SIGNATURE_SHOW_LABELS | \
	PDF_SIGNATURE_SHOW_DN | \
	PDF_SIGNATURE_SHOW_DATE | \
	PDF_SIGNATURE_SHOW_TEXT_NAME | \
	PDF_SIGNATURE_SHOW_GRAPHIC_NAME | \
	PDF_SIGNATURE_SHOW_LOGO )

//----------------------------------------------------------------------------
// colorspace identifiers
//----------------------------------------------------------------------------
#define CS_RGB  1
#define CS_GRAY 2
#define CS_CMYK 3

//----------------------------------------------------------------------------
// PDF encryption algorithms
//----------------------------------------------------------------------------
#define PDF_ENCRYPT_KEEP 0
#define PDF_ENCRYPT_NONE 1
#define PDF_ENCRYPT_RC4_40 2
#define PDF_ENCRYPT_RC4_128 3
#define PDF_ENCRYPT_AES_128 4
#define PDF_ENCRYPT_AES_256 5
#define PDF_ENCRYPT_UNKNOWN 6

//----------------------------------------------------------------------------
// PDF permission codes
//----------------------------------------------------------------------------
#define PDF_PERM_PRINT 1 << 2
#define PDF_PERM_MODIFY 1 << 3
#define PDF_PERM_COPY 1 << 4
#define PDF_PERM_ANNOTATE 1 << 5
#define PDF_PERM_FORM 1 << 8
#define PDF_PERM_ACCESSIBILITY 1 << 9
#define PDF_PERM_ASSEMBLE 1 << 10
#define PDF_PERM_PRINT_HQ 1 << 11

//----------------------------------------------------------------------------
// PDF Blend Modes
//----------------------------------------------------------------------------
#define PDF_BM_Color "Color"
#define PDF_BM_ColorBurn "ColorBurn"
#define PDF_BM_ColorDodge "ColorDodge"
#define PDF_BM_Darken "Darken"
#define PDF_BM_Difference "Difference"
#define PDF_BM_Exclusion "Exclusion"
#define PDF_BM_HardLight "HardLight"
#define PDF_BM_Hue "Hue"
#define PDF_BM_Lighten "Lighten"
#define PDF_BM_Luminosity "Luminosity"
#define PDF_BM_Multiply "Multiply"
#define PDF_BM_Normal "Normal"
#define PDF_BM_Overlay "Overlay"
#define PDF_BM_Saturation "Saturation"
#define PDF_BM_Screen "Screen"
#define PDF_BM_SoftLight "Softlight"


// General text flags
#define TEXT_FONT_SUPERSCRIPT 1
#define TEXT_FONT_ITALIC 2
#define TEXT_FONT_SERIFED 4
#define TEXT_FONT_MONOSPACED 8
#define TEXT_FONT_BOLD 16

// UCDN Script codes
#define UCDN_SCRIPT_COMMON 0
#define UCDN_SCRIPT_LATIN 1
#define UCDN_SCRIPT_GREEK 2
#define UCDN_SCRIPT_CYRILLIC 3
#define UCDN_SCRIPT_ARMENIAN 4
#define UCDN_SCRIPT_HEBREW 5
#define UCDN_SCRIPT_ARABIC 6
#define UCDN_SCRIPT_SYRIAC 7
#define UCDN_SCRIPT_THAANA 8
#define UCDN_SCRIPT_DEVANAGARI 9
#define UCDN_SCRIPT_BENGALI 10
#define UCDN_SCRIPT_GURMUKHI 11
#define UCDN_SCRIPT_GUJARATI 12
#define UCDN_SCRIPT_ORIYA 13
#define UCDN_SCRIPT_TAMIL 14
#define UCDN_SCRIPT_TELUGU 15
#define UCDN_SCRIPT_KANNADA 16
#define UCDN_SCRIPT_MALAYALAM 17
#define UCDN_SCRIPT_SINHALA 18
#define UCDN_SCRIPT_THAI 19
#define UCDN_SCRIPT_LAO 20
#define UCDN_SCRIPT_TIBETAN 21
#define UCDN_SCRIPT_MYANMAR 22
#define UCDN_SCRIPT_GEORGIAN 23
#define UCDN_SCRIPT_HANGUL 24
#define UCDN_SCRIPT_ETHIOPIC 25
#define UCDN_SCRIPT_CHEROKEE 26
#define UCDN_SCRIPT_CANADIAN_ABORIGINAL 27
#define UCDN_SCRIPT_OGHAM 28
#define UCDN_SCRIPT_RUNIC 29
#define UCDN_SCRIPT_KHMER 30
#define UCDN_SCRIPT_MONGOLIAN 31
#define UCDN_SCRIPT_HIRAGANA 32
#define UCDN_SCRIPT_KATAKANA 33
#define UCDN_SCRIPT_BOPOMOFO 34
#define UCDN_SCRIPT_HAN 35
#define UCDN_SCRIPT_YI 36
#define UCDN_SCRIPT_OLD_ITALIC 37
#define UCDN_SCRIPT_GOTHIC 38
#define UCDN_SCRIPT_DESERET 39
#define UCDN_SCRIPT_INHERITED 40
#define UCDN_SCRIPT_TAGALOG 41
#define UCDN_SCRIPT_HANUNOO 42
#define UCDN_SCRIPT_BUHID 43
#define UCDN_SCRIPT_TAGBANWA 44
#define UCDN_SCRIPT_LIMBU 45
#define UCDN_SCRIPT_TAI_LE 46
#define UCDN_SCRIPT_LINEAR_B 47
#define UCDN_SCRIPT_UGARITIC 48
#define UCDN_SCRIPT_SHAVIAN 49
#define UCDN_SCRIPT_OSMANYA 50
#define UCDN_SCRIPT_CYPRIOT 51
#define UCDN_SCRIPT_BRAILLE 52
#define UCDN_SCRIPT_BUGINESE 53
#define UCDN_SCRIPT_COPTIC 54
#define UCDN_SCRIPT_NEW_TAI_LUE 55
#define UCDN_SCRIPT_GLAGOLITIC 56
#define UCDN_SCRIPT_TIFINAGH 57
#define UCDN_SCRIPT_SYLOTI_NAGRI 58
#define UCDN_SCRIPT_OLD_PERSIAN 59
#define UCDN_SCRIPT_KHAROSHTHI 60
#define UCDN_SCRIPT_BALINESE 61
#define UCDN_SCRIPT_CUNEIFORM 62
#define UCDN_SCRIPT_PHOENICIAN 63
#define UCDN_SCRIPT_PHAGS_PA 64
#define UCDN_SCRIPT_NKO 65
#define UCDN_SCRIPT_SUNDANESE 66
#define UCDN_SCRIPT_LEPCHA 67
#define UCDN_SCRIPT_OL_CHIKI 68
#define UCDN_SCRIPT_VAI 69
#define UCDN_SCRIPT_SAURASHTRA 70
#define UCDN_SCRIPT_KAYAH_LI 71
#define UCDN_SCRIPT_REJANG 72
#define UCDN_SCRIPT_LYCIAN 73
#define UCDN_SCRIPT_CARIAN 74
#define UCDN_SCRIPT_LYDIAN 75
#define UCDN_SCRIPT_CHAM 76
#define UCDN_SCRIPT_TAI_THAM 77
#define UCDN_SCRIPT_TAI_VIET 78
#define UCDN_SCRIPT_AVESTAN 79
#define UCDN_SCRIPT_EGYPTIAN_HIEROGLYPHS 80
#define UCDN_SCRIPT_SAMARITAN 81
#define UCDN_SCRIPT_LISU 82
#define UCDN_SCRIPT_BAMUM 83
#define UCDN_SCRIPT_JAVANESE 84
#define UCDN_SCRIPT_MEETEI_MAYEK 85
#define UCDN_SCRIPT_IMPERIAL_ARAMAIC 86
#define UCDN_SCRIPT_OLD_SOUTH_ARABIAN 87
#define UCDN_SCRIPT_INSCRIPTIONAL_PARTHIAN 88
#define UCDN_SCRIPT_INSCRIPTIONAL_PAHLAVI 89
#define UCDN_SCRIPT_OLD_TURKIC 90
#define UCDN_SCRIPT_KAITHI 91
#define UCDN_SCRIPT_BATAK 92
#define UCDN_SCRIPT_BRAHMI 93
#define UCDN_SCRIPT_MANDAIC 94
#define UCDN_SCRIPT_CHAKMA 95
#define UCDN_SCRIPT_MEROITIC_CURSIVE 96
#define UCDN_SCRIPT_MEROITIC_HIEROGLYPHS 97
#define UCDN_SCRIPT_MIAO 98
#define UCDN_SCRIPT_SHARADA 99
#define UCDN_SCRIPT_SORA_SOMPENG 100
#define UCDN_SCRIPT_TAKRI 101
#define UCDN_SCRIPT_UNKNOWN 102
#define UCDN_SCRIPT_BASSA_VAH 103
#define UCDN_SCRIPT_CAUCASIAN_ALBANIAN 104
#define UCDN_SCRIPT_DUPLOYAN 105
#define UCDN_SCRIPT_ELBASAN 106
#define UCDN_SCRIPT_GRANTHA 107
#define UCDN_SCRIPT_KHOJKI 108
#define UCDN_SCRIPT_KHUDAWADI 109
#define UCDN_SCRIPT_LINEAR_A 110
#define UCDN_SCRIPT_MAHAJANI 111
#define UCDN_SCRIPT_MANICHAEAN 112
#define UCDN_SCRIPT_MENDE_KIKAKUI 113
#define UCDN_SCRIPT_MODI 114
#define UCDN_SCRIPT_MRO 115
#define UCDN_SCRIPT_NABATAEAN 116
#define UCDN_SCRIPT_OLD_NORTH_ARABIAN 117
#define UCDN_SCRIPT_OLD_PERMIC 118
#define UCDN_SCRIPT_PAHAWH_HMONG 119
#define UCDN_SCRIPT_PALMYRENE 120
#define UCDN_SCRIPT_PAU_CIN_HAU 121
#define UCDN_SCRIPT_PSALTER_PAHLAVI 122
#define UCDN_SCRIPT_SIDDHAM 123
#define UCDN_SCRIPT_TIRHUTA 124
#define UCDN_SCRIPT_WARANG_CITI 125
#define UCDN_SCRIPT_AHOM 126
#define UCDN_SCRIPT_ANATOLIAN_HIEROGLYPHS 127
#define UCDN_SCRIPT_HATRAN 128
#define UCDN_SCRIPT_MULTANI 129
#define UCDN_SCRIPT_OLD_HUNGARIAN 130
#define UCDN_SCRIPT_SIGNWRITING 131
#define UCDN_SCRIPT_ADLAM 132
#define UCDN_SCRIPT_BHAIKSUKI 133
#define UCDN_SCRIPT_MARCHEN 134
#define UCDN_SCRIPT_NEWA 135
#define UCDN_SCRIPT_OSAGE 136
#define UCDN_SCRIPT_TANGUT 137
#define UCDN_SCRIPT_MASARAM_GONDI 138
#define UCDN_SCRIPT_NUSHU 139
#define UCDN_SCRIPT_SOYOMBO 140
#define UCDN_SCRIPT_ZANABAZAR_SQUARE 141
#define UCDN_SCRIPT_DOGRA 142
#define UCDN_SCRIPT_GUNJALA_GONDI 143
#define UCDN_SCRIPT_HANIFI_ROHINGYA 144
#define UCDN_SCRIPT_MAKASAR 145
#define UCDN_SCRIPT_MEDEFAIDRIN 146
#define UCDN_SCRIPT_OLD_SOGDIAN 147
#define UCDN_SCRIPT_SOGDIAN 148
#define UCDN_SCRIPT_ELYMAIC 149
#define UCDN_SCRIPT_NANDINAGARI 150
#define UCDN_SCRIPT_NYIAKENG_PUACHUE_HMONG 151
#define UCDN_SCRIPT_WANCHO 152


// exceptions
PyObject *_set_FileDataError(PyObject *value)
{
	if (!value) {
		Py_RETURN_FALSE;
	}
	JM_Exc_FileDataError = value;
	Py_RETURN_TRUE;
}

// minor tools
PyObject *util_sine_between(PyObject *C, PyObject *P, PyObject *Q)
{
	// for points C, P, Q compute the sine between lines CP and QP
	fz_point c = JM_point_from_py(C);
	fz_point p = JM_point_from_py(P);
	fz_point q = JM_point_from_py(Q);
	fz_point s = JM_normalize_vector(q.x - p.x, q.y - p.y);
	fz_matrix m1 = fz_make_matrix(1, 0, 0, 1, -p.x, -p.y);
	fz_matrix m2 = fz_make_matrix(s.x, -s.y, s.y, s.x, 0, 0);
	m1 = fz_concat(m1, m2);
	c = fz_transform_point(c, m1);
	c = JM_normalize_vector(c.x, c.y);
	return Py_BuildValue("f", c.y);
}


// Return matrix that maps point C to (0,0) and point P to the
// x-axis such that abs(x) equals abs(P - C).
PyObject *util_hor_matrix(PyObject *C, PyObject *P)
{
	fz_point c = JM_point_from_py(C);
	fz_point p = JM_point_from_py(P);

	// compute (cosine, sine) of vector P-C with double precision:
	fz_point s = JM_normalize_vector(p.x - c.x, p.y - c.y);

	fz_matrix m1 = fz_make_matrix(1, 0, 0, 1, -c.x, -c.y);
	fz_matrix m2 = fz_make_matrix(s.x, -s.y, s.y, s.x, 0, 0);
	return JM_py_from_matrix(fz_concat(m1, m2));
}


//-----------------------------------------------------------
// Compute Rect coordinates using different alternatives
//-----------------------------------------------------------
PyObject *util_make_rect(PyObject *a)
{
	Py_ssize_t i, n = PyTuple_GET_SIZE(a);
	PyObject *p1, *p2, *l = a;
	char *msg = "Rect: bad args";
	double c[4] = { 0, 0, 0, 0 };
	switch (n) {
		case 0: goto exit_normal;
		case 1: goto size1;
		case 2: goto size2;
		case 3: goto size31;
		case 4: goto size4;
		default:
			msg = "Rect: bad seq len";
			goto exit_error;
	}

	size4:;
		for (i = 0; i < 4; i++) {
			if (JM_FLOAT_ITEM(l, i, &c[i]) == 1) {
				goto exit_error;
			}
		}
		goto exit_normal;

	size1:;
		l = PyTuple_GET_ITEM(a, 0);
		if (!PySequence_Check(l) || PySequence_Size(l) != 4) {
			msg = "Rect: bad seq len";
			goto exit_error;
		}
		goto size4;

	size2:;
		msg = "Rect: bad args";
		p1 = PyTuple_GET_ITEM(a, 0);
		p2 = PyTuple_GET_ITEM(a, 1);
		if (!PySequence_Check(p1) || PySequence_Size(p1) != 2) {
			goto exit_error;
		}
		if (!PySequence_Check(p2) || PySequence_Size(p2) != 2) {
			goto exit_error;
		}
		if (JM_FLOAT_ITEM(p1, 0, &c[0]) == 1) goto exit_error;
		if (JM_FLOAT_ITEM(p1, 1, &c[1]) == 1) goto exit_error;
		if (JM_FLOAT_ITEM(p2, 0, &c[2]) == 1) goto exit_error;
		if (JM_FLOAT_ITEM(p2, 1, &c[3]) == 1) goto exit_error;
		goto exit_normal;

	size31:;
		p1 = PyTuple_GET_ITEM(a, 0);
		if (PySequence_Check(p1)) goto size32;
		if (JM_FLOAT_ITEM(a, 0, &c[0]) == 1) goto exit_error;
		if (JM_FLOAT_ITEM(a, 1, &c[1]) == 1) goto exit_error;
		p2 = PyTuple_GET_ITEM(a, 2);
		if (!PySequence_Check(p2) || PySequence_Size(p2) != 2) {
			goto exit_error;
		}
		if (JM_FLOAT_ITEM(p2, 0, &c[2]) == 1) goto exit_error;
		if (JM_FLOAT_ITEM(p2, 1, &c[3]) == 1) goto exit_error;
		goto exit_normal;

	size32:;
		if (PySequence_Size(p1) != 2) goto exit_error;
		if (JM_FLOAT_ITEM(p1, 0, &c[0]) == 1) goto exit_error;
		if (JM_FLOAT_ITEM(p1, 1, &c[1]) == 1) goto exit_error;
		if (JM_FLOAT_ITEM(a, 1, &c[2]) == 1) goto exit_error;
		if (JM_FLOAT_ITEM(a, 2, &c[3]) == 1) goto exit_error;
		goto exit_normal;

	exit_normal:;
		for (i = 0; i < 4; i++) {
			if (c[i] < FZ_MIN_INF_RECT) c[i] = FZ_MIN_INF_RECT;
			if (c[i] > FZ_MAX_INF_RECT) c[i] = FZ_MAX_INF_RECT;
		}
		return Py_BuildValue("dddd", c[0], c[1], c[2], c[3]);

	exit_error:;
		PyErr_SetString(PyExc_ValueError, msg);
		return NULL;
}


//-----------------------------------------------------------
// Compute IRect coordinates using different alternatives
//-----------------------------------------------------------
PyObject *util_make_irect(PyObject *a)
{
	Py_ssize_t i, n = PyTuple_GET_SIZE(a);
	PyObject *p1, *p2, *l = a;
	char *msg = "IRect: bad args";
	int c[4] = { 0, 0, 0, 0 };
	switch (n) {
		case 0: goto exit_normal;
		case 1: goto size1;
		case 2: goto size2;
		case 3: goto size31;
		case 4: goto size4;
		default:
			msg = "IRect: bad seq len";
			goto exit_error;
	}

	size4:;
		for (i = 0; i < 4; i++) {
			if (JM_INT_ITEM(l, i, &c[i]) == 1) {
				goto exit_error;
			}
		}
		goto exit_normal;

	size1:;
		l = PyTuple_GET_ITEM(a, 0);
		if (!PySequence_Check(l) || PySequence_Size(l) != 4) {
			msg = "IRect: bad seq len";
			goto exit_error;
		}
		goto size4;

	size2:;
		p1 = PyTuple_GET_ITEM(a, 0);
		p2 = PyTuple_GET_ITEM(a, 1);
		if (!PySequence_Check(p1) || PySequence_Size(p1) != 2) {
			goto exit_error;
		}
		if (!PySequence_Check(p2) || PySequence_Size(p2) != 2) {
			goto exit_error;
		}
		msg = "IRect: bad int values";
		if (JM_INT_ITEM(p1, 0, &c[0]) == 1) goto exit_error;
		if (JM_INT_ITEM(p1, 1, &c[1]) == 1) goto exit_error;
		if (JM_INT_ITEM(p2, 0, &c[2]) == 1) goto exit_error;
		if (JM_INT_ITEM(p2, 1, &c[3]) == 1) goto exit_error;
		goto exit_normal;

	size31:;
		p1 = PyTuple_GET_ITEM(a, 0);
		if (PySequence_Check(p1)) goto size32;
		if (JM_INT_ITEM(a, 0, &c[0]) == 1) goto exit_error;
		if (JM_INT_ITEM(a, 1, &c[1]) == 1) goto exit_error;
		p2 = PyTuple_GET_ITEM(a, 2);
		if (!PySequence_Check(p2) || PySequence_Size(p2) != 2) {
			goto exit_error;
		}
		if (JM_INT_ITEM(p2, 0, &c[2]) == 1) goto exit_error;
		if (JM_INT_ITEM(p2, 1, &c[3]) == 1) goto exit_error;
		goto exit_normal;

	size32:;
		if (PySequence_Size(p1) != 2) goto exit_error;
		if (JM_INT_ITEM(p1, 0, &c[0]) == 1) goto exit_error;
		if (JM_INT_ITEM(p1, 1, &c[1]) == 1) goto exit_error;
		if (JM_INT_ITEM(a, 1, &c[2]) == 1) goto exit_error;
		if (JM_INT_ITEM(a, 2, &c[3]) == 1) goto exit_error;
		goto exit_normal;

	exit_normal:;
		for (i = 0; i < 4; i++) {
			if (c[i] < FZ_MIN_INF_RECT) c[i] = FZ_MIN_INF_RECT;
			if (c[i] > FZ_MAX_INF_RECT) c[i] = FZ_MAX_INF_RECT;
		}
		return Py_BuildValue("iiii", c[0], c[1], c[2], c[3]);

	exit_error:;
		PyErr_SetString(PyExc_ValueError, msg);
		return NULL;
}


PyObject *util_round_rect(PyObject *rect)
{
	return JM_py_from_irect(fz_round_rect(JM_rect_from_py(rect)));
}


PyObject *util_transform_rect(PyObject *rect, PyObject *matrix)
{
	return JM_py_from_rect(fz_transform_rect(JM_rect_from_py(rect), JM_matrix_from_py(matrix)));
}


PyObject *util_intersect_rect(PyObject *r1, PyObject *r2)
{
	return JM_py_from_rect(fz_intersect_rect(JM_rect_from_py(r1),
												JM_rect_from_py(r2)));
}


PyObject *util_is_point_in_rect(PyObject *p, PyObject *r)
{
	return JM_BOOL(fz_is_point_inside_rect(JM_point_from_py(p), JM_rect_from_py(r)));
}


PyObject *util_include_point_in_rect(PyObject *r, PyObject *p)
{
	return JM_py_from_rect(fz_include_point_in_rect(JM_rect_from_py(r),
												JM_point_from_py(p)));
}


PyObject *util_point_in_quad(PyObject *P, PyObject *Q)
{
	fz_point p = JM_point_from_py(P);
	fz_quad q = JM_quad_from_py(Q);
	return JM_BOOL(fz_is_point_inside_quad(p, q));
}


PyObject *util_transform_point(PyObject *point, PyObject *matrix)
{
	return JM_py_from_point(fz_transform_point(JM_point_from_py(point), JM_matrix_from_py(matrix)));
}


PyObject *util_union_rect(PyObject *r1, PyObject *r2)
{
	return JM_py_from_rect(fz_union_rect(JM_rect_from_py(r1),
											JM_rect_from_py(r2)));
}


PyObject *util_concat_matrix(PyObject *m1, PyObject *m2)
{
	return JM_py_from_matrix(fz_concat(JM_matrix_from_py(m1),
										JM_matrix_from_py(m2)));
}


PyObject *util_invert_matrix(PyObject *matrix)
{
	fz_matrix src = JM_matrix_from_py(matrix);
	float a = src.a;
	float det = a * src.d - src.b * src.c;
	if (det < -FLT_EPSILON || det > FLT_EPSILON)
	{
		fz_matrix dst;
		float rdet = 1 / det;
		dst.a = src.d * rdet;
		dst.b = -src.b * rdet;
		dst.c = -src.c * rdet;
		dst.d = a * rdet;
		a = -src.e * dst.a - src.f * dst.c;
		dst.f = -src.e * dst.b - src.f * dst.d;
		dst.e = a;
		return Py_BuildValue("iN", 0, JM_py_from_matrix(dst));
	}
	return Py_BuildValue("(i, ())", 1);
}


PyObject *util_measure_string(const char *text, const char *fontname, double fontsize, int encoding)
{
	double w = 0;
	fz_font *font = NULL;
	fz_try(gctx) {
		font = fz_new_base14_font(gctx, fontname);
		while (*text)
		{
			int c, g;
			text += fz_chartorune(&c, text);
			switch (encoding)
			{
				case PDF_SIMPLE_ENCODING_GREEK:
					c = fz_iso8859_7_from_unicode(c); break;
				case PDF_SIMPLE_ENCODING_CYRILLIC:
					c = fz_windows_1251_from_unicode(c); break;
				default:
					c = fz_windows_1252_from_unicode(c); break;
			}
			if (c < 0) c = 0xB7;
			g = fz_encode_character(gctx, font, c);
			w += (double) fz_advance_glyph(gctx, font, g, 0);
		}
	}
	fz_always(gctx) {
		fz_drop_font(gctx, font);
	}
	fz_catch(gctx) {
		return PyFloat_FromDouble(0);
	}
	return PyFloat_FromDouble(w * fontsize);
}

%}

%{
// Global Constants - Python dictionary keys
PyObject *dictkey_align;
PyObject *dictkey_ascender;
PyObject *dictkey_bbox;
PyObject *dictkey_blocks;
PyObject *dictkey_bpc;
PyObject *dictkey_c;
PyObject *dictkey_chars;
PyObject *dictkey_color;
PyObject *dictkey_colorspace;
PyObject *dictkey_content;
PyObject *dictkey_creationDate;
PyObject *dictkey_cs_name;
PyObject *dictkey_da;
PyObject *dictkey_dashes;
PyObject *dictkey_desc;
PyObject *dictkey_descender;
PyObject *dictkey_dir;
PyObject *dictkey_effect;
PyObject *dictkey_ext;
PyObject *dictkey_filename;
PyObject *dictkey_fill;
PyObject *dictkey_flags;
PyObject *dictkey_font;
PyObject *dictkey_glyph;
PyObject *dictkey_height;
PyObject *dictkey_id;
PyObject *dictkey_image;
PyObject *dictkey_items;
PyObject *dictkey_length;
PyObject *dictkey_lines;
PyObject *dictkey_matrix;
PyObject *dictkey_modDate;
PyObject *dictkey_name;
PyObject *dictkey_number;
PyObject *dictkey_origin;
PyObject *dictkey_rect;
PyObject *dictkey_size;
PyObject *dictkey_smask;
PyObject *dictkey_spans;
PyObject *dictkey_stroke;
PyObject *dictkey_style;
PyObject *dictkey_subject;
PyObject *dictkey_text;
PyObject *dictkey_title;
PyObject *dictkey_type;
PyObject *dictkey_ufilename;
PyObject *dictkey_width;
PyObject *dictkey_wmode;
PyObject *dictkey_xref;
PyObject *dictkey_xres;
PyObject *dictkey_yres;
%}







PyMuPDF-1.21.1/fitz/helper-devices.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
typedef struct
{
	fz_device super;
	PyObject *out;
	size_t seqno;
} jm_tracedraw_device;

static PyObject *dev_pathdict = NULL;
static float dev_linewidth = 0;  // border width if present
static fz_matrix trace_device_ptm;  // page transformation matrix
static fz_matrix trace_device_ctm;  // trace device matrix
static fz_matrix trace_device_rot;
static fz_point dev_lastpoint = {0, 0};
static fz_rect dev_pathrect;
static float dev_pathfactor = 0;
static int dev_linecount = 0;
static int path_type = 0;
#define FILL_PATH 1
#define STROKE_PATH 2


static void
jm_increase_seqno(fz_context *ctx, fz_device *dev_, ...)
{
	jm_tracedraw_device *dev = (jm_tracedraw_device *) dev_;
	dev->seqno += 1;
}


/*
--------------------------------------------------------------------------
Check whether the last 4 lines represent a rectangle or quad.
Because of how we count, the lines are a polyline already.
So we check for a polygon (last line's end point equals start point).
If not true, we reduce dev_linecount by 1 and return.
If lines 1 / 3 resp 2 / 4 are parallel to the axes, we have a rect.
--------------------------------------------------------------------------
*/
static int
jm_checkquad()
{
	PyObject *items = PyDict_GetItem(dev_pathdict, dictkey_items);
	Py_ssize_t i, len = PyList_Size(items);
	float f[8];
	fz_point temp, lp;
	PyObject *rect;
	PyObject *line;
	for (i = 0; i < 4; i++) {  // store line start points
		line = PyList_GET_ITEM(items, len - 4 + i);
		temp = JM_point_from_py(PyTuple_GET_ITEM(line, 1));
		f[i * 2] = temp.x;
		f[i * 2 + 1] = temp.y;
		lp = JM_point_from_py(PyTuple_GET_ITEM(line, 2));
	}
	if (lp.x != f[0] || lp.y != f[1]) {
		// not a polygon!
		//dev_linecount -= 1;
		return 0;
	}
	dev_linecount = 0;  // reset this

	rect = PyTuple_New(2);
	PyTuple_SET_ITEM(rect, 0, PyUnicode_FromString("qu"));
	/* ----------------------------------------------------
	* relationship of float array to quad points:
	* (0, 1) = ul, (2, 3) = ll, (6, 7) = ur, (4, 5) = lr
	---------------------------------------------------- */
	fz_quad q = fz_make_quad(f[0], f[1], f[6], f[7], f[2], f[3], f[4], f[5]);
	PyTuple_SET_ITEM(rect, 1, JM_py_from_quad(q));
	PyList_SetItem(items, len - 4, rect); // replace item -4 by rect
	PyList_SetSlice(items, len - 3, len, NULL); // delete remaining 3 items
	return 1;
}


/*
--------------------------------------------------------------------------
Check whether the last 3 path items represent a rectangle
The following conditions must be true. Note that the 3 lines already are
guaranteed to be a polyline, because of the way we are counting.
Line 1 and 3 must be horizontal, line 2 must be vertical.
If all is true, modify the path accordngly.
If the lines are not parallel to axes, generate a quad.
Returns 1 if we have modified the path, otherwise 0.
--------------------------------------------------------------------------
*/
static int
jm_checkrect()
{
	dev_linecount = 0; // reset line count
	long orientation = 0;
	fz_point ll, lr, ur, ul;
	fz_rect r;
	PyObject *rect;
	PyObject *line0, *line2;
	PyObject *items = PyDict_GetItem(dev_pathdict, dictkey_items);
	Py_ssize_t len = PyList_Size(items);

	line0 = PyList_GET_ITEM(items, len - 3);
	ll = JM_point_from_py(PyTuple_GET_ITEM(line0, 1));
	lr = JM_point_from_py(PyTuple_GET_ITEM(line0, 2));
	// no need to extract "line1"!
	line2 = PyList_GET_ITEM(items, len - 1);
	ur = JM_point_from_py(PyTuple_GET_ITEM(line2, 1));
	ul = JM_point_from_py(PyTuple_GET_ITEM(line2, 2));

	/*
	---------------------------------------------------------------------
	Assumption:
	For decomposing rects, MuPDF always starts with a horizontal line,
	followed by a vertical line, followed by a horizontal line.
	We will also check orientation of the enclosed area and add this info
	as '+1' for anti-clockwise, '-1' for clockwise orientation.
	---------------------------------------------------------------------
	*/
	if (ll.y != lr.y ||
		ll.x != ul.x ||
		ur.y != ul.y ||
		ur.x != lr.x) {
		goto drop_out;  // not a rectangle
	}

	// we have a rect, replace last 3 "l" items by one "re" item.
	if (ul.y < lr.y) {
		r = fz_make_rect(ul.x, ul.y, lr.x, lr.y);
		orientation = 1;
	} else {
		r = fz_make_rect(ll.x, ll.y, ur.x, ur.y);
		orientation = -1;
	}
	rect = PyTuple_New(3);
	PyTuple_SET_ITEM(rect, 0, PyUnicode_FromString("re"));
	PyTuple_SET_ITEM(rect, 1, JM_py_from_rect(r));
	PyTuple_SET_ITEM(rect, 2, PyLong_FromLong(orientation));
	PyList_SetItem(items, len - 3, rect); // replace item -3 by rect
	PyList_SetSlice(items, len - 2, len, NULL); // delete remaining 2 items
	return 1;
	drop_out:;
	return 0;
}

static PyObject *
jm_tracedraw_color(fz_context *ctx, fz_colorspace *colorspace, const float *color)
{
	float rgb[3];
	if (colorspace) {
		fz_convert_color(ctx, colorspace, color, fz_device_rgb(ctx),
		                 rgb, NULL, fz_default_color_params);
		return Py_BuildValue("fff", rgb[0], rgb[1], rgb[2]);
	}
	return PyTuple_New(0);
}

static void
trace_moveto(fz_context *ctx, void *dev_, float x, float y)
{
	dev_lastpoint = fz_transform_point(fz_make_point(x, y), trace_device_ctm);
	if (fz_is_infinite_rect(dev_pathrect)) {
		dev_pathrect = fz_make_rect(dev_lastpoint.x, dev_lastpoint.y,
		                            dev_lastpoint.x, dev_lastpoint.y);
	}
	dev_linecount = 0;  // reset # of consec. lines
}

static void
trace_lineto(fz_context *ctx, void *dev_, float x, float y)
{
	fz_point p1 = fz_transform_point(fz_make_point(x, y), trace_device_ctm);
	dev_pathrect = fz_include_point_in_rect(dev_pathrect, p1);
    PyObject *list = PyTuple_New(3);
	PyTuple_SET_ITEM(list, 0, PyUnicode_FromString("l"));
	PyTuple_SET_ITEM(list, 1, JM_py_from_point(dev_lastpoint));
	PyTuple_SET_ITEM(list, 2, JM_py_from_point(p1));
	dev_lastpoint = p1;
	PyObject *items = PyDict_GetItem(dev_pathdict, dictkey_items);
	LIST_APPEND_DROP(items, list);
	dev_linecount += 1;  // counts consecutive lines
	if (dev_linecount == 4 && path_type != FILL_PATH) {  // shrink to "re" or "qu" item
		jm_checkquad();
	}
}

static void
trace_curveto(fz_context *ctx, void *dev_, float x1, float y1, float x2, float y2, float x3, float y3)
{
	dev_linecount = 0;  // reset # of consec. lines
	fz_point p1 = fz_make_point(x1, y1);
	fz_point p2 = fz_make_point(x2, y2);
	fz_point p3 = fz_make_point(x3, y3);
	p1 = fz_transform_point(p1, trace_device_ctm);
	p2 = fz_transform_point(p2, trace_device_ctm);
	p3 = fz_transform_point(p3, trace_device_ctm);
	dev_pathrect = fz_include_point_in_rect(dev_pathrect, p1);
	dev_pathrect = fz_include_point_in_rect(dev_pathrect, p2);
	dev_pathrect = fz_include_point_in_rect(dev_pathrect, p3);

	PyObject *list = PyTuple_New(5);
	PyTuple_SET_ITEM(list, 0, PyUnicode_FromString("c"));
	PyTuple_SET_ITEM(list, 1, JM_py_from_point(dev_lastpoint));
	PyTuple_SET_ITEM(list, 2, JM_py_from_point(p1));
	PyTuple_SET_ITEM(list, 3, JM_py_from_point(p2));
	PyTuple_SET_ITEM(list, 4, JM_py_from_point(p3));
	dev_lastpoint = p3;
	PyObject *items = PyDict_GetItem(dev_pathdict, dictkey_items);
	LIST_APPEND_DROP(items, list);
}

static void
trace_close(fz_context *ctx, void *dev_)
{
	if (dev_linecount == 3) {
		if (jm_checkrect()) {
			return;
		}
	}
	DICT_SETITEMSTR_DROP(dev_pathdict, "closePath", JM_BOOL(1));
	dev_linecount = 0;  // reset # of consec. lines
}

static const fz_path_walker trace_path_walker =
	{
		trace_moveto,
		trace_lineto,
		trace_curveto,
		trace_close
	};

static void
jm_tracedraw_path(fz_context *ctx, jm_tracedraw_device *dev, const fz_path *path)
{
	dev_pathrect = fz_infinite_rect;
	dev_linecount = 0;
	dev_lastpoint = fz_make_point(0, 0);
	if (dev_pathdict) {
		Py_CLEAR(dev_pathdict);
	}
	dev_pathdict = PyDict_New();
	DICT_SETITEM_DROP(dev_pathdict, dictkey_items, PyList_New(0));
	fz_walk_path(ctx, path, &trace_path_walker, dev);
	// Check if any items were added ...
	if (!PyList_Size(PyDict_GetItem(dev_pathdict, dictkey_items))) {
		Py_CLEAR(dev_pathdict);
	}
}

//---------------------------------------------------------------------------
// Append current path to list or merge into last path of list.
// (1) Append if first path, different item list or not 'stroke' version of
//     previous
// (2) If new path has the same items, merge its content into previous path
//     and indicate this via path["type"] = "fs".
//---------------------------------------------------------------------------
static void
jm_append_merge(PyObject *out)
{
	Py_ssize_t len = PyList_Size(out);
	if (len == 0) {  // 1st path
		goto append;
	}
	const char *thistype = PyUnicode_AsUTF8(PyDict_GetItem(dev_pathdict, dictkey_type));
	if (strcmp(thistype, "f") != 0 && strcmp(thistype, "s") != 0) {
		goto append;
	}
	PyObject *prev = PyList_GET_ITEM(out, len - 1);  // get prev path
	const char *prevtype = PyUnicode_AsUTF8(PyDict_GetItem(prev, dictkey_type));
	if ((strcmp(prevtype, "f") != 0 && strcmp(prevtype, "s") != 0)
		|| strcmp(prevtype, thistype) == 0) {
		goto append;
	}
	PyObject *previtems = PyDict_GetItem(prev, dictkey_items);
	PyObject *thisitems = PyDict_GetItem(dev_pathdict, dictkey_items);
	if (PyObject_RichCompareBool(previtems, thisitems, Py_NE)) {
		goto append;
	}
	int rc = PyDict_Merge(dev_pathdict, prev, 0);  // merge, do not override
	if (rc == 0) {
		DICT_SETITEM_DROP(dev_pathdict, dictkey_type, PyUnicode_FromString("fs"));
		Py_XINCREF( dev_pathdict);  // PyList_SetItem() does not increment refcount.
		PyList_SetItem(out, len - 1, dev_pathdict);
		return;
	} else {
		PySys_WriteStderr("could not merge stroke and fill path");
		goto append;
	}
	append:;
	PyList_Append(out, dev_pathdict);
	Py_CLEAR(dev_pathdict);
}


static void
jm_tracedraw_fill_path(fz_context *ctx, fz_device *dev_, const fz_path *path,
				int even_odd, fz_matrix ctm, fz_colorspace *colorspace,
				const float *color, float alpha, fz_color_params color_params)
{
	jm_tracedraw_device *dev = (jm_tracedraw_device *) dev_;
	PyObject *out = dev->out;
	trace_device_ctm = ctm; //fz_concat(ctm, trace_device_ptm);
	path_type = FILL_PATH;
	jm_tracedraw_path(ctx, dev, path);
	if (!dev_pathdict) {
		return;
	}
	DICT_SETITEM_DROP(dev_pathdict, dictkey_type, PyUnicode_FromString("f"));
	DICT_SETITEMSTR_DROP(dev_pathdict, "even_odd", JM_BOOL(even_odd));
	DICT_SETITEMSTR_DROP(dev_pathdict, "fill_opacity", Py_BuildValue("f", alpha));
	DICT_SETITEMSTR_DROP(dev_pathdict, "closePath", JM_BOOL(0));
	DICT_SETITEMSTR_DROP(dev_pathdict, "fill", jm_tracedraw_color(ctx, colorspace, color));
	DICT_SETITEM_DROP(dev_pathdict, dictkey_rect, JM_py_from_rect(dev_pathrect));
	DICT_SETITEMSTR_DROP(dev_pathdict, "seqno", PyLong_FromSize_t(dev->seqno));
	jm_append_merge(out);
	dev->seqno += 1;
}

static void
jm_tracedraw_stroke_path(fz_context *ctx, fz_device *dev_, const fz_path *path,
				const fz_stroke_state *stroke, fz_matrix ctm,
				fz_colorspace *colorspace, const float *color, float alpha,
				fz_color_params color_params)
{
	jm_tracedraw_device *dev = (jm_tracedraw_device *)dev_;
	PyObject *out = dev->out;
	int i;
	dev_pathfactor = 1;
	if (fz_abs(ctm.a) == fz_abs(ctm.d)) {
		dev_pathfactor = fz_abs(ctm.a);
	}
	trace_device_ctm = ctm; // fz_concat(ctm, trace_device_ptm);
	path_type = STROKE_PATH;

	DICT_SETITEMSTR_DROP(dev_pathdict, "closePath", JM_BOOL(0));
	jm_tracedraw_path(ctx, dev, path);
	if (!dev_pathdict) {
		return;
	}
	DICT_SETITEM_DROP(dev_pathdict, dictkey_type, PyUnicode_FromString("s"));
	DICT_SETITEMSTR_DROP(dev_pathdict, "stroke_opacity", Py_BuildValue("f", alpha));
	DICT_SETITEMSTR_DROP(dev_pathdict, "color", jm_tracedraw_color(ctx, colorspace, color));
	DICT_SETITEM_DROP(dev_pathdict, dictkey_width, Py_BuildValue("f", dev_pathfactor * stroke->linewidth));
	DICT_SETITEMSTR_DROP(dev_pathdict, "lineCap", Py_BuildValue("iii", stroke->start_cap, stroke->dash_cap, stroke->end_cap));
	DICT_SETITEMSTR_DROP(dev_pathdict, "lineJoin", Py_BuildValue("f", dev_pathfactor * stroke->linejoin));

	if (stroke->dash_len) {
		fz_buffer *buff = fz_new_buffer(ctx, 50);
		fz_append_string(ctx, buff, "[ ");
		for (i = 0; i < stroke->dash_len; i++) {
			fz_append_printf(ctx, buff, "%g ", dev_pathfactor * stroke->dash_list[i]);
		}
		fz_append_printf(ctx, buff, "] %g", dev_pathfactor * stroke->dash_phase);
		DICT_SETITEMSTR_DROP(dev_pathdict, "dashes", JM_EscapeStrFromBuffer(ctx, buff));
		fz_drop_buffer(ctx, buff);
	} else {
		DICT_SETITEMSTR_DROP(dev_pathdict, "dashes", PyUnicode_FromString("[] 0"));
	}
	DICT_SETITEM_DROP(dev_pathdict, dictkey_rect, JM_py_from_rect(dev_pathrect));
	DICT_SETITEMSTR_DROP(dev_pathdict, "seqno", PyLong_FromSize_t(dev->seqno));
	jm_append_merge(out);
	dev->seqno += 1;
}


static void
jm_dev_linewidth(fz_context *ctx, fz_device *dev_, const fz_path *path, const fz_stroke_state *stroke, fz_matrix ctm, fz_colorspace *colorspace, const float *color, float alpha, fz_color_params color_params)
{
	dev_linewidth = stroke->linewidth;
	jm_increase_seqno(ctx, dev_);
}


static void
jm_trace_text_span(fz_context *ctx, PyObject *out, fz_text_span *span, int type, fz_matrix ctm, fz_colorspace *colorspace, const float *color, float alpha, size_t seqno)
{
	fz_font *out_font = NULL;
	int i;
	const char *fontname = JM_font_name(ctx, span->font);
	float rgb[3];
	PyObject *chars = PyTuple_New(span->len);
	fz_matrix join = fz_concat(span->trm, ctm);
	fz_point dir = fz_transform_vector(fz_make_point(1, 0), join);
	double fsize = sqrt(fabs((double) join.a * (double) join.d));
	double linewidth, adv, asc, dsc;
	double space_adv = 0;
	float x0, y0, x1, y1;
	asc = (double) JM_font_ascender(ctx, span->font);
	dsc = (double) JM_font_descender(ctx, span->font);
	if (asc < 1e-3) {  // probably Tesseract font
		dsc = -0.1;
		asc = 0.9;
	}

	double ascsize = asc * fsize / (asc - dsc);
	double dscsize = dsc * fsize / (asc - dsc);
	int fflags = 0;
	int mono = fz_font_is_monospaced(ctx, span->font);
	fflags += mono * TEXT_FONT_MONOSPACED;
	fflags += fz_font_is_italic(ctx, span->font) * TEXT_FONT_ITALIC;
	fflags += fz_font_is_serif(ctx, span->font) * TEXT_FONT_SERIFED;
	fflags += fz_font_is_bold(ctx, span->font) * TEXT_FONT_BOLD;
	fz_matrix mat = trace_device_ptm;
	fz_matrix ctm_rot = fz_concat(ctm, trace_device_rot);
	mat = fz_concat(mat, ctm_rot);

	if (dev_linewidth > 0) {
		linewidth = (double) dev_linewidth;
	} else {
		linewidth = fsize * 0.05;
	}
	fz_point char_orig;
	double last_adv = 0;

	// walk through characters of span
	fz_rect span_bbox;
	dir = fz_normalize_vector(dir);
	fz_matrix rot = fz_make_matrix(dir.x, dir.y, -dir.y, dir.x, 0, 0);
	if (dir.x == -1) {  // left-right flip
		rot.d = 1;
	}

	for (i = 0; i < span->len; i++) {
		adv = 0;
		if (span->items[i].gid >= 0) {
			adv = (double) fz_advance_glyph(ctx, span->font, span->items[i].gid, span->wmode);
		}
		adv *= fsize;
		last_adv = adv;
		if (span->items[i].ucs == 32) {
			space_adv = adv;
		}
		char_orig = fz_make_point(span->items[i].x, span->items[i].y);
		char_orig.y = trace_device_ptm.f - char_orig.y;
		char_orig = fz_transform_point(char_orig, mat);
		fz_matrix m1 = fz_make_matrix(1, 0, 0, 1, -char_orig.x, -char_orig.y);
		m1 = fz_concat(m1, rot);
		m1 = fz_concat(m1, fz_make_matrix(1, 0, 0, 1, char_orig.x, char_orig.y));
		x0 = char_orig.x;
		x1 = x0 + adv;
		if (dir.x == 1 && span->trm.d < 0) {  // up-down flip
			y0 = char_orig.y + dscsize;
			y1 = char_orig.y + ascsize;
		} else {
			y0 = char_orig.y - ascsize;
			y1 = char_orig.y - dscsize;
		}
		fz_rect char_bbox = fz_make_rect(x0, y0, x1, y1);
		char_bbox = fz_transform_rect(char_bbox, m1);
		PyTuple_SET_ITEM(chars, (Py_ssize_t) i, Py_BuildValue("ii(ff)(ffff)",
			span->items[i].ucs, span->items[i].gid,
			char_orig.x, char_orig.y, char_bbox.x0, char_bbox.y0, char_bbox.x1, char_bbox.y1));
		if (i > 0) {
			span_bbox = fz_union_rect(span_bbox, char_bbox);
		} else {
			span_bbox = char_bbox;
		}
	}
	if (!space_adv) {
		if (!mono) {
			space_adv = fz_advance_glyph(ctx, span->font,
			fz_encode_character_with_fallback(ctx, span->font, 32, 0, 0, &out_font),
			span->wmode);
			space_adv *= fsize;
			if (!space_adv) {
				space_adv = last_adv;
			}
		} else {
			space_adv = last_adv; // for mono fonts this suffices
		}
	}
	// make the span dictionary
	PyObject *span_dict = PyDict_New();
	DICT_SETITEMSTR_DROP(span_dict, "dir", JM_py_from_point(dir));
	DICT_SETITEM_DROP(span_dict, dictkey_font, JM_EscapeStrFromStr(fontname));
	DICT_SETITEM_DROP(span_dict, dictkey_wmode, PyLong_FromLong((long) span->wmode));
	DICT_SETITEM_DROP(span_dict, dictkey_flags, PyLong_FromLong((long) fflags));
	DICT_SETITEMSTR_DROP(span_dict, "bidi_lvl", PyLong_FromLong((long) span->bidi_level));
	DICT_SETITEMSTR_DROP(span_dict, "bidi_dir", PyLong_FromLong((long) span->markup_dir));
	DICT_SETITEM_DROP(span_dict, dictkey_ascender, PyFloat_FromDouble(asc));
	DICT_SETITEM_DROP(span_dict, dictkey_descender, PyFloat_FromDouble(dsc));
	if (colorspace) {
		fz_convert_color(ctx, colorspace, color, fz_device_rgb(ctx),
						 rgb, NULL, fz_default_color_params);
		DICT_SETITEM_DROP(span_dict, dictkey_colorspace, PyLong_FromLong(3));
		DICT_SETITEM_DROP(span_dict, dictkey_color, Py_BuildValue("fff", rgb[0], rgb[1], rgb[2]));
	} else {
		DICT_SETITEM_DROP(span_dict, dictkey_colorspace, PyLong_FromLong(1));
		DICT_SETITEM_DROP(span_dict, dictkey_color, PyFloat_FromDouble(1));
	}
	DICT_SETITEM_DROP(span_dict, dictkey_size, PyFloat_FromDouble(fsize));
	DICT_SETITEMSTR_DROP(span_dict, "opacity", PyFloat_FromDouble((double) alpha));
	DICT_SETITEMSTR_DROP(span_dict, "linewidth", PyFloat_FromDouble((double) linewidth));
	DICT_SETITEMSTR_DROP(span_dict, "spacewidth", PyFloat_FromDouble(space_adv));
	DICT_SETITEM_DROP(span_dict, dictkey_type, PyLong_FromLong((long) type));
	DICT_SETITEM_DROP(span_dict, dictkey_chars, chars);
	DICT_SETITEM_DROP(span_dict, dictkey_bbox, JM_py_from_rect(span_bbox));
	DICT_SETITEMSTR_DROP(span_dict, "seqno", PyLong_FromSize_t(seqno));
	LIST_APPEND_DROP(out, span_dict);
}

static void
jm_trace_text(fz_context *ctx, PyObject *out, const fz_text *text, int type, fz_matrix ctm, fz_colorspace *colorspace, const float *color, float alpha, size_t seqno)
{
	fz_text_span *span;
	for (span = text->head; span; span = span->next)
		jm_trace_text_span(ctx, out, span, type, ctm, colorspace, color, alpha, seqno);
}

/*---------------------------------------------------------
There are 3 text trace types:
0 - fill text (PDF Tr 0)
1 - stroke text (PDF Tr 1)
3 - ignore text (PDF Tr 3)
---------------------------------------------------------*/
static void
jm_tracedraw_fill_text(fz_context *ctx, fz_device *dev_, const fz_text *text, fz_matrix ctm, fz_colorspace *colorspace, const float *color, float alpha, fz_color_params color_params)
{
	jm_tracedraw_device *dev = (jm_tracedraw_device *)dev_;
	PyObject *out = dev->out;
	jm_trace_text(ctx, out, text, 0, ctm, colorspace, color, alpha, dev->seqno);
	dev->seqno += 1;
}

static void
jm_tracedraw_stroke_text(fz_context *ctx, fz_device *dev_, const fz_text *text, const fz_stroke_state *stroke, fz_matrix ctm, fz_colorspace *colorspace, const float *color, float alpha, fz_color_params color_params)
{
	jm_tracedraw_device *dev = (jm_tracedraw_device *)dev_;
	PyObject *out = dev->out;
	jm_trace_text(ctx, out, text, 1, ctm, colorspace, color, alpha, dev->seqno);
	dev->seqno += 1;
}


static void
jm_tracedraw_ignore_text(fz_context *ctx, fz_device *dev_, const fz_text *text, fz_matrix ctm)
{
	jm_tracedraw_device *dev = (jm_tracedraw_device *)dev_;
	PyObject *out = dev->out;
	jm_trace_text(ctx, out, text, 3, ctm, NULL, NULL, 1, dev->seqno);
	dev->seqno += 1;
}

static void jm_tracedraw_drop_device(fz_context *ctx, fz_device *dev_)
{
	jm_tracedraw_device *dev = (jm_tracedraw_device *)dev_;
	Py_CLEAR(dev->out);
	dev->out = NULL;
}

fz_device *JM_new_tracedraw_device(fz_context *ctx, PyObject *out)
{
	jm_tracedraw_device *dev = fz_new_derived_device(ctx, jm_tracedraw_device);

	dev->super.close_device = NULL;    
	dev->super.drop_device = jm_tracedraw_drop_device;    
	dev->super.fill_path = jm_tracedraw_fill_path;
	dev->super.stroke_path = jm_tracedraw_stroke_path;
	dev->super.clip_path = NULL;
	dev->super.clip_stroke_path = NULL;

	dev->super.fill_text = jm_increase_seqno;
	dev->super.stroke_text = jm_increase_seqno;
	dev->super.clip_text = NULL;
	dev->super.clip_stroke_text = NULL;
	dev->super.ignore_text = jm_increase_seqno;

	dev->super.fill_shade = jm_increase_seqno;
	dev->super.fill_image = jm_increase_seqno;
	dev->super.fill_image_mask = jm_increase_seqno;
	dev->super.clip_image_mask = NULL;

	dev->super.pop_clip = NULL;

	dev->super.begin_mask = NULL;
	dev->super.end_mask = NULL;
	dev->super.begin_group = NULL;
	dev->super.end_group = NULL;

	dev->super.begin_tile = NULL;
	dev->super.end_tile = NULL;

	dev->super.begin_layer = NULL;
	dev->super.end_layer = NULL;

	dev->super.render_flags = NULL;
	dev->super.set_default_colorspaces = NULL;

	Py_XINCREF(out);
	dev->out = out;
	dev->seqno = 0;
	return (fz_device *)dev;
}

fz_device *JM_new_tracetext_device(fz_context *ctx, PyObject *out)
{
	jm_tracedraw_device *dev = fz_new_derived_device(ctx, jm_tracedraw_device);

	dev->super.close_device = NULL;    
	dev->super.drop_device = jm_tracedraw_drop_device;    
	dev->super.fill_path = jm_increase_seqno;
	dev->super.stroke_path = jm_dev_linewidth;
	dev->super.clip_path = NULL;
	dev->super.clip_stroke_path = NULL;

	dev->super.fill_text = jm_tracedraw_fill_text;
	dev->super.stroke_text = jm_tracedraw_stroke_text;
	dev->super.clip_text = NULL;
	dev->super.clip_stroke_text = NULL;
	dev->super.ignore_text = jm_tracedraw_ignore_text;

	dev->super.fill_shade = jm_increase_seqno;
	dev->super.fill_image = jm_increase_seqno;
	dev->super.fill_image_mask = jm_increase_seqno;
	dev->super.clip_image_mask = NULL;

	dev->super.pop_clip = NULL;

	dev->super.begin_mask = NULL;
	dev->super.end_mask = NULL;
	dev->super.begin_group = NULL;
	dev->super.end_group = NULL;

	dev->super.begin_tile = NULL;
	dev->super.end_tile = NULL;

	dev->super.begin_layer = NULL;
	dev->super.end_layer = NULL;

	dev->super.render_flags = NULL;
	dev->super.set_default_colorspaces = NULL;

	Py_XINCREF(out);
	dev->out = out;
	dev->seqno = 0;
	return (fz_device *)dev;
}
typedef struct jm_bbox_device_s
{
	fz_device super;
	PyObject *result;
} jm_bbox_device;

static void
jm_bbox_add_rect(fz_context *ctx, fz_device *dev, fz_rect rect, char *code)
{
	jm_bbox_device *bdev = (jm_bbox_device *)dev;
	LIST_APPEND_DROP(bdev->result, Py_BuildValue("sN", code, JM_py_from_rect(rect)));
}

static void
jm_bbox_fill_path(fz_context *ctx, fz_device *dev, const fz_path *path, int even_odd, fz_matrix ctm,
				  fz_colorspace *colorspace, const float *color, float alpha, fz_color_params color_params)
{
	jm_bbox_add_rect(ctx, dev, fz_bound_path(ctx, path, NULL, ctm), "fill-path");
}

static void
jm_bbox_stroke_path(fz_context *ctx, fz_device *dev, const fz_path *path, const fz_stroke_state *stroke,
					fz_matrix ctm, fz_colorspace *colorspace, const float *color, float alpha, fz_color_params color_params)
{
	jm_bbox_add_rect(ctx, dev, fz_bound_path(ctx, path, stroke, ctm), "stroke-path");
}

static void
jm_bbox_fill_text(fz_context *ctx, fz_device *dev, const fz_text *text, fz_matrix ctm, ...)
{
	jm_bbox_add_rect(ctx, dev, fz_bound_text(ctx, text, NULL, ctm), "fill-text");
}

static void
jm_bbox_ignore_text(fz_context *ctx, fz_device *dev, const fz_text *text, fz_matrix ctm)
{
	jm_bbox_add_rect(ctx, dev, fz_bound_text(ctx, text, NULL, ctm), "ignore-text");
}

static void
jm_bbox_stroke_text(fz_context *ctx, fz_device *dev, const fz_text *text, const fz_stroke_state *stroke, fz_matrix ctm, ...)
{
	jm_bbox_add_rect(ctx, dev, fz_bound_text(ctx, text, stroke, ctm), "stroke-text");
}

static void
jm_bbox_fill_shade(fz_context *ctx, fz_device *dev, fz_shade *shade, fz_matrix ctm, float alpha, fz_color_params color_params)
{
	jm_bbox_add_rect(ctx, dev, fz_bound_shade(ctx, shade, ctm), "fill-shade");
}

static void
jm_bbox_fill_image(fz_context *ctx, fz_device *dev, fz_image *image, fz_matrix ctm, float alpha, fz_color_params color_params)
{
	jm_bbox_add_rect(ctx, dev, fz_transform_rect(fz_unit_rect, ctm), "fill-image");
}

static void
jm_bbox_fill_image_mask(fz_context *ctx, fz_device *dev, fz_image *image, fz_matrix ctm,
						fz_colorspace *colorspace, const float *color, float alpha, fz_color_params color_params)
{
	jm_bbox_add_rect(ctx, dev, fz_transform_rect(fz_unit_rect, ctm), "fill-imgmask");
}

fz_device *
JM_new_bbox_device(fz_context *ctx, PyObject *result)
{
	jm_bbox_device *dev = fz_new_derived_device(ctx, jm_bbox_device);

	dev->super.fill_path = jm_bbox_fill_path;
	dev->super.stroke_path = jm_bbox_stroke_path;
	dev->super.clip_path = NULL;
	dev->super.clip_stroke_path = NULL;

	dev->super.fill_text = jm_bbox_fill_text;
	dev->super.stroke_text = jm_bbox_stroke_text;
	dev->super.clip_text = NULL;
	dev->super.clip_stroke_text = NULL;
	dev->super.ignore_text = jm_bbox_ignore_text;

	dev->super.fill_shade = jm_bbox_fill_shade;
	dev->super.fill_image = jm_bbox_fill_image;
	dev->super.fill_image_mask = jm_bbox_fill_image_mask;
	dev->super.clip_image_mask = NULL;

	dev->super.pop_clip = NULL;

	dev->super.begin_mask = NULL;
	dev->super.end_mask = NULL;
	dev->super.begin_group = NULL;
	dev->super.end_group = NULL;

	dev->super.begin_tile = NULL;
	dev->super.end_tile = NULL;

	dev->super.begin_layer = NULL;
	dev->super.end_layer = NULL;

	dev->super.render_flags = NULL;
	dev->super.set_default_colorspaces = NULL;

	dev->result = result;

	return (fz_device *)dev;
}



%}







PyMuPDF-1.21.1/fitz/helper-fields.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
#define SETATTR(a, v) PyObject_SetAttrString(Widget, a, v)
#define GETATTR(a) PyObject_GetAttrString(Widget, a)
#define CALLATTR(m, p) PyObject_CallMethod(Widget, m, p)

static void
SETATTR_DROP(PyObject *mod, const char *attr, PyObject *value)
{
    if (!value)
        PyObject_DelAttrString(mod, attr);
    else
    {
        PyObject_SetAttrString(mod, attr, value);
        Py_DECREF(value);
    }
}

//-----------------------------------------------------------------------------
// Functions dealing with PDF form fields (widgets)
//-----------------------------------------------------------------------------
enum
{
	SigFlag_SignaturesExist = 1,
	SigFlag_AppendOnly = 2
};


// make new PDF action object from JavaScript source
// Parameters are a PDF document and a Python string.
// Returns a PDF action object.
//-----------------------------------------------------------------------------
pdf_obj *
JM_new_javascript(fz_context *ctx, pdf_document *pdf, PyObject *value)
{
    fz_buffer *res = NULL;
    if (!PyObject_IsTrue(value))  // no argument given
        return NULL;

    char *data = JM_StrAsChar(value);
    if (!data)  // not convertible to char*
        return NULL;

    res = fz_new_buffer_from_copied_data(ctx, data, strlen(data));
    pdf_obj *source = pdf_add_stream(ctx, pdf, res, NULL, 0);
    pdf_obj *newaction = pdf_add_new_dict(ctx, pdf, 4);
    pdf_dict_put(ctx, newaction, PDF_NAME(S), pdf_new_name(ctx, "JavaScript"));
    pdf_dict_put(ctx, newaction, PDF_NAME(JS), source);
    fz_drop_buffer(ctx, res);
    return pdf_keep_obj(ctx, newaction);
}


// JavaScript extractor
// Returns either the script source or None. Parameter is a PDF action
// dictionary, which must have keys /S and /JS. The value of /S must be
// '/JavaScript'. The value of /JS is returned.
//-----------------------------------------------------------------------------
PyObject *
JM_get_script(fz_context *ctx, pdf_obj *key)
{
    pdf_obj *js = NULL;
    fz_buffer *res = NULL;
    PyObject *script = NULL;
    if (!key) Py_RETURN_NONE;

    if (!strcmp(pdf_to_name(ctx,
                pdf_dict_get(ctx, key, PDF_NAME(S))), "JavaScript")) {
        js = pdf_dict_get(ctx, key, PDF_NAME(JS));
    }
    if (!js) Py_RETURN_NONE;

    if (pdf_is_string(ctx, js)) {
        script = JM_UnicodeFromStr(pdf_to_text_string(ctx, js));
    } else if (pdf_is_stream(ctx, js)) {
        res = pdf_load_stream(ctx, js);
        script = JM_EscapeStrFromBuffer(ctx, res);
        fz_drop_buffer(ctx, res);
    } else {
        Py_RETURN_NONE;
    }
    if (PyObject_IsTrue(script)) { // do not return an empty script
        return script;
    }
    Py_CLEAR(script);
    Py_RETURN_NONE;
}


// Create a JavaScript PDF action.
// Usable for all object types which support PDF actions, even if the
// argument name suggests annotations. Up to 2 key values can be specified, so
// JavaScript actions can be stored for '/A' and '/AA/?' keys.
//-----------------------------------------------------------------------------
void JM_put_script(fz_context *ctx, pdf_obj *annot_obj, pdf_obj *key1, pdf_obj *key2, PyObject *value)
{
    PyObject *script = NULL;
    pdf_obj *key1_obj = pdf_dict_get(ctx, annot_obj, key1);
    pdf_document *pdf = pdf_get_bound_document(ctx, annot_obj);  // owning PDF

    // if no new script given, just delete corresponding key
    if (!value || !PyObject_IsTrue(value)) {
        if (!key2) {
            pdf_dict_del(ctx, annot_obj, key1);
        } else if (key1_obj) {
            pdf_dict_del(ctx, key1_obj, key2);
        }
        return;
    }

    // read any existing script as a PyUnicode string
    if (!key2 || !key1_obj) {
        script = JM_get_script(ctx, key1_obj);
    } else {
        script = JM_get_script(ctx, pdf_dict_get(ctx, key1_obj, key2));
    }

    // replace old script, if different from new one
    if (!PyObject_RichCompareBool(value, script, Py_EQ)) {
        pdf_obj *newaction = JM_new_javascript(ctx, pdf, value);
        if (!key2) {
            pdf_dict_put_drop(ctx, annot_obj, key1, newaction);
        } else {
            pdf_dict_putl_drop(ctx, annot_obj, newaction, key1, key2, NULL);
        }
    }
    Py_XDECREF(script);
    return;
}

/*
// Execute a JavaScript action for annot or field.
//-----------------------------------------------------------------------------
PyObject *
JM_exec_script(fz_context *ctx, pdf_obj *annot_obj, pdf_obj *key1, pdf_obj *key2)
{
    PyObject *script = NULL;
    char *code = NULL;
    fz_try(ctx) {
        pdf_document *pdf = pdf_get_bound_document(ctx, annot_obj);
        char buf[100];
        if (!key2) {
            script = JM_get_script(ctx, key1_obj);
        } else {
            script = JM_get_script(ctx, pdf_dict_get(ctx, key1_obj, key2));
        }
        code = JM_StrAsChar(script);
        fz_snprintf(buf, sizeof buf, "%d/A", pdf_to_num(ctx, annot_obj));
        pdf_js_execute(pdf->js, buf, code);
    }
    fz_always(ctx) {
        Py_XDECREF(string);
    }
    fz_catch(ctx) {
        Py_RETURN_FALSE;
    }
    Py_RETURN_TRUE;
}
*/

// String from widget type
//-----------------------------------------------------------------------------
char *JM_field_type_text(int wtype)
{
    switch(wtype) {
        case(PDF_WIDGET_TYPE_BUTTON):
            return "Button";
        case(PDF_WIDGET_TYPE_CHECKBOX):
            return "CheckBox";
        case(PDF_WIDGET_TYPE_RADIOBUTTON):
            return "RadioButton";
        case(PDF_WIDGET_TYPE_TEXT):
            return "Text";
        case(PDF_WIDGET_TYPE_LISTBOX):
            return "ListBox";
        case(PDF_WIDGET_TYPE_COMBOBOX):
            return "ComboBox";
        case(PDF_WIDGET_TYPE_SIGNATURE):
            return "Signature";
        default:
            return "unknown";
    }
}

// Set the field type
//-----------------------------------------------------------------------------
void JM_set_field_type(fz_context *ctx, pdf_document *doc, pdf_obj *obj, int type)
{
	int setbits = 0;
	int clearbits = 0;
	pdf_obj *typename = NULL;

	switch(type) {
	case PDF_WIDGET_TYPE_BUTTON:
		typename = PDF_NAME(Btn);
		setbits = PDF_BTN_FIELD_IS_PUSHBUTTON;
		break;
	case PDF_WIDGET_TYPE_RADIOBUTTON:
		typename = PDF_NAME(Btn);
		clearbits = PDF_BTN_FIELD_IS_PUSHBUTTON;
		setbits = PDF_BTN_FIELD_IS_RADIO;
		break;
	case PDF_WIDGET_TYPE_CHECKBOX:
		typename = PDF_NAME(Btn);
		clearbits = (PDF_BTN_FIELD_IS_PUSHBUTTON|PDF_BTN_FIELD_IS_RADIO);
		break;
	case PDF_WIDGET_TYPE_TEXT:
		typename = PDF_NAME(Tx);
		break;
	case PDF_WIDGET_TYPE_LISTBOX:
		typename = PDF_NAME(Ch);
		clearbits = PDF_CH_FIELD_IS_COMBO;
		break;
	case PDF_WIDGET_TYPE_COMBOBOX:
		typename = PDF_NAME(Ch);
		setbits = PDF_CH_FIELD_IS_COMBO;
		break;
	case PDF_WIDGET_TYPE_SIGNATURE:
		typename = PDF_NAME(Sig);
		break;
	}

	if (typename)
		pdf_dict_put_drop(ctx, obj, PDF_NAME(FT), typename);

	if (setbits != 0 || clearbits != 0) {
		int bits = pdf_dict_get_int(ctx, obj, PDF_NAME(Ff));
		bits &= ~clearbits;
		bits |= setbits;
		pdf_dict_put_int(ctx, obj, PDF_NAME(Ff), bits);
	}
}

// Copied from MuPDF v1.14
// Create widget.
// Returns a kept reference to a pdf_annot - caller must drop it.
//-----------------------------------------------------------------------------
pdf_annot *JM_create_widget(fz_context *ctx, pdf_document *doc, pdf_page *page, int type, char *fieldname)
{
	pdf_obj *form = NULL;
	int old_sigflags = pdf_to_int(ctx, pdf_dict_getp(ctx, pdf_trailer(ctx, doc), "Root/AcroForm/SigFlags"));
	pdf_annot *annot = pdf_create_annot_raw(ctx, page, PDF_ANNOT_WIDGET);   // returns a kept reference.
    pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
	fz_try(ctx) {
		JM_set_field_type(ctx, doc, annot_obj, type);
		pdf_dict_put_text_string(ctx, annot_obj, PDF_NAME(T), fieldname);

		if (type == PDF_WIDGET_TYPE_SIGNATURE) {
			int sigflags = (old_sigflags | (SigFlag_SignaturesExist|SigFlag_AppendOnly));
			pdf_dict_putl_drop(ctx, pdf_trailer(ctx, doc), pdf_new_int(ctx, sigflags), PDF_NAME(Root), PDF_NAME(AcroForm), PDF_NAME(SigFlags), NULL);
		}

		/*
		pdf_create_annot will have linked the new widget into the page's
		annot array. We also need it linked into the document's form
		*/
		form = pdf_dict_getp(ctx, pdf_trailer(ctx, doc), "Root/AcroForm/Fields");
		if (!form) {
			form = pdf_new_array(ctx, doc, 1);
			pdf_dict_putl_drop(ctx, pdf_trailer(ctx, doc),
                               form,
                               PDF_NAME(Root),
                               PDF_NAME(AcroForm),
                               PDF_NAME(Fields),
                               NULL);
		}

		pdf_array_push(ctx, form, annot_obj); // Cleanup relies on this statement being last
	}
	fz_catch(ctx) {
		pdf_delete_annot(ctx, page, annot);

		if (type == PDF_WIDGET_TYPE_SIGNATURE) {
			pdf_dict_putl_drop(ctx, pdf_trailer(ctx, doc), pdf_new_int(ctx, old_sigflags), PDF_NAME(Root), PDF_NAME(AcroForm), PDF_NAME(SigFlags), NULL);
        }

		fz_rethrow(ctx);
	}

	return annot;
}



// PushButton get state
//-----------------------------------------------------------------------------
PyObject *JM_pushbtn_state(fz_context *ctx, pdf_annot *annot)
{   // pushed buttons do not reflect status changes in the PDF
    // always reflect them as untouched
    Py_RETURN_FALSE;
}

// CheckBox get state
//-----------------------------------------------------------------------------
PyObject *JM_checkbox_state(fz_context *ctx, pdf_annot *annot)
{
    pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
    pdf_obj *leafv = pdf_dict_get_inheritable(ctx, annot_obj, PDF_NAME(V));
    pdf_obj *leafas = pdf_dict_get_inheritable(ctx, annot_obj, PDF_NAME(AS));
    if (!leafv) Py_RETURN_FALSE;
    if (leafv == PDF_NAME(Off)) Py_RETURN_FALSE;
    if (leafv == pdf_new_name(ctx, "Yes"))
        Py_RETURN_TRUE;
    if (pdf_is_string(ctx, leafv) && !strcmp(pdf_to_text_string(ctx, leafv), "Off"))
        Py_RETURN_FALSE;
    if (pdf_is_string(ctx, leafv) && !strcmp(pdf_to_text_string(ctx, leafv), "Yes"))
        Py_RETURN_TRUE;
    if (leafas && leafas == PDF_NAME(Off)) Py_RETURN_FALSE;
    Py_RETURN_TRUE;
}

// RadioBox get state
//-----------------------------------------------------------------------------
PyObject *JM_radiobtn_state(fz_context *ctx, pdf_annot *annot)
{   // MuPDF treats radio buttons like check boxes - hence so do we
    return JM_checkbox_state(ctx, annot);
}

// Text field retrieve value
//-----------------------------------------------------------------------------
PyObject *JM_text_value(fz_context *ctx, pdf_annot *annot)
{
    const char *text = NULL;
    fz_var(text);
    fz_try(ctx) {
        pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
        text = pdf_field_value(ctx, annot_obj);
    }
    fz_catch(ctx) Py_RETURN_NONE;
    return JM_UnicodeFromStr(text);
}

// ListBox retrieve value
//-----------------------------------------------------------------------------
PyObject *JM_listbox_value(fz_context *ctx, pdf_annot *annot)
{
    int i = 0, n = 0;
    // may be single value or array
    pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
    pdf_obj *optarr = pdf_dict_get(ctx, annot_obj, PDF_NAME(V));
    if (pdf_is_string(ctx, optarr))         // a single string
        return PyString_FromString(pdf_to_text_string(ctx, optarr));

    // value is an array (may have len 0)
    n = pdf_array_len(ctx, optarr);
    PyObject *liste = PyList_New(0);

    // extract a list of strings
    // each entry may again be an array: take second entry then
    for (i = 0; i < n; i++) {
        pdf_obj *elem = pdf_array_get(ctx, optarr, i);
        if (pdf_is_array(ctx, elem))
            elem = pdf_array_get(ctx, elem, 1);
        LIST_APPEND_DROP(liste, JM_UnicodeFromStr(pdf_to_text_string(ctx, elem)));
    }
    return liste;
}

// ComboBox retrieve value
//-----------------------------------------------------------------------------
PyObject *JM_combobox_value(fz_context *ctx, pdf_annot *annot)
{   // combobox treated like listbox
    return JM_listbox_value(ctx, annot);
}

// Signature field retrieve value
PyObject *JM_signature_value(fz_context *ctx, pdf_annot *annot)
{   // signatures are currently not supported
    Py_RETURN_NONE;
}

// retrieve ListBox / ComboBox choice values
//-----------------------------------------------------------------------------
PyObject *JM_choice_options(fz_context *ctx, pdf_annot *annot)
{   // return list of choices for list or combo boxes
    pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
    PyObject *val;
    int n = pdf_choice_widget_options(ctx, annot, 0, NULL);
    if (n == 0) Py_RETURN_NONE;                     // wrong widget type

    pdf_obj *optarr = pdf_dict_get(ctx, annot_obj, PDF_NAME(Opt));
    int i, m;
    PyObject *liste = PyList_New(0);

    for (i = 0; i < n; i++) {
        m = pdf_array_len(ctx, pdf_array_get(ctx, optarr, i));
        if (m == 2) {
            val = Py_BuildValue("ss",
            pdf_to_text_string(ctx, pdf_array_get(ctx, pdf_array_get(ctx, optarr, i), 0)),
            pdf_to_text_string(ctx, pdf_array_get(ctx, pdf_array_get(ctx, optarr, i), 1)));
            LIST_APPEND_DROP(liste, val);
        } else {
            val = JM_UnicodeFromStr(pdf_to_text_string(ctx, pdf_array_get(ctx, optarr, i)));
            LIST_APPEND_DROP(liste, val);
        }
    }
    return liste;
}


// set ListBox / ComboBox values
//-----------------------------------------------------------------------------
void JM_set_choice_options(fz_context *ctx, pdf_annot *annot, PyObject *liste)
{
    if (!liste) return;
    if (!PySequence_Check(liste)) return;
    Py_ssize_t i, n = PySequence_Size(liste);
    if (n < 1) return;
    PyObject *tuple = PySequence_Tuple(liste);
    pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
    pdf_document *pdf = pdf_get_bound_document(ctx, annot_obj);
    const char *opt = NULL, *opt1 = NULL, *opt2 = NULL;
    pdf_obj *optarr = pdf_new_array(ctx, pdf, n);
    pdf_obj *optarrsub = NULL;
    PyObject *val = NULL;
    for (i = 0; i < n; i++) {
        val = PyTuple_GET_ITEM(tuple, i);
        opt = PyUnicode_AsUTF8(val);
        if (opt) {
            pdf_array_push_text_string(ctx, optarr, opt);
        } else {
            opt1 = PyUnicode_AsUTF8(PyTuple_GetItem(val, 0));
            opt2 = PyUnicode_AsUTF8(PyTuple_GetItem(val, 1));
            if (!opt1 || !opt2) return;
            optarrsub = pdf_array_push_array(ctx, optarr, 2);
            pdf_array_push_text_string(ctx, optarrsub, opt1);
            pdf_array_push_text_string(ctx, optarrsub, opt2);
        }
    }
    Py_DECREF(tuple);
    pdf_dict_put_drop(ctx, annot_obj, PDF_NAME(Opt), optarr);
    return;
}


//-----------------------------------------------------------------------------
// Populate a Python Widget object with the values from a PDF form field.
// Called by "Page.firstWidget" and "Widget.next".
//-----------------------------------------------------------------------------
void JM_get_widget_properties(fz_context *ctx, pdf_annot *annot, PyObject *Widget)
{
    pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
    pdf_page *page = pdf_annot_page(ctx, annot);
    pdf_document *pdf = page->doc;
    pdf_annot *tw = annot;
    pdf_obj *obj = NULL;
    Py_ssize_t i = 0, n = 0;
    fz_try(ctx) {
        int field_type = pdf_widget_type(ctx, tw);
        SETATTR_DROP(Widget, "field_type", Py_BuildValue("i", field_type));
        if (field_type == PDF_WIDGET_TYPE_SIGNATURE) {
            if (pdf_signature_is_signed(ctx, pdf, annot_obj)) {
                SETATTR("is_signed", Py_True);
            } else {
                SETATTR("is_signed", Py_False);
            }
        } else {
            SETATTR("is_signed", Py_None);
        }
        SETATTR_DROP(Widget, "border_style",
                JM_UnicodeFromStr(pdf_field_border_style(ctx, annot_obj)));
        SETATTR_DROP(Widget, "field_type_string",
                JM_UnicodeFromStr(JM_field_type_text(field_type)));

        char *field_name = pdf_field_name(ctx, annot_obj);
        SETATTR_DROP(Widget, "field_name", JM_UnicodeFromStr(field_name));
        JM_Free(field_name);

        const char *label = NULL;
        obj = pdf_dict_get(ctx, annot_obj, PDF_NAME(TU));
        if (obj) label = pdf_to_text_string(ctx, obj);
        SETATTR_DROP(Widget, "field_label", JM_UnicodeFromStr(label));

        SETATTR_DROP(Widget, "field_value",
                JM_UnicodeFromStr(pdf_field_value(ctx, annot_obj)));

        SETATTR_DROP(Widget, "field_display",
                Py_BuildValue("i", pdf_field_display(ctx, annot_obj)));

        float border_width = pdf_to_real(ctx, pdf_dict_getl(ctx, annot_obj,
                                PDF_NAME(BS), PDF_NAME(W), NULL));
        if (border_width == 0) border_width = 1;
        SETATTR_DROP(Widget, "border_width",
                Py_BuildValue("f", border_width));

        obj = pdf_dict_getl(ctx, annot_obj,
                                PDF_NAME(BS), PDF_NAME(D), NULL);
        if (pdf_is_array(ctx, obj)) {
            n = (Py_ssize_t) pdf_array_len(ctx, obj);
            PyObject *d = PyList_New(n);
            for (i = 0; i < n; i++) {
                PyList_SET_ITEM(d, i, Py_BuildValue("i", pdf_to_int(ctx,
                                pdf_array_get(ctx, obj, (int) i))));
            }
            SETATTR_DROP(Widget, "border_dashes", d);
        }

        SETATTR_DROP(Widget, "text_maxlen",
                Py_BuildValue("i", pdf_text_widget_max_len(ctx, tw)));

        SETATTR_DROP(Widget, "text_format",
                Py_BuildValue("i", pdf_text_widget_format(ctx, tw)));

        obj = pdf_dict_getl(ctx, annot_obj, PDF_NAME(MK), PDF_NAME(BG), NULL);
        if (pdf_is_array(ctx, obj)) {
            n = (Py_ssize_t) pdf_array_len(ctx, obj);
            PyObject *col = PyList_New(n);
            for (i = 0; i < n; i++) {
                PyList_SET_ITEM(col, i, Py_BuildValue("f",
                pdf_to_real(ctx, pdf_array_get(ctx, obj, (int) i))));
            }
            SETATTR_DROP(Widget, "fill_color", col);
        }

        obj = pdf_dict_getl(ctx, annot_obj, PDF_NAME(MK), PDF_NAME(BC), NULL);
        if (pdf_is_array(ctx, obj)) {
            n = (Py_ssize_t) pdf_array_len(ctx, obj);
            PyObject *col = PyList_New(n);
            for (i = 0; i < n; i++) {
                PyList_SET_ITEM(col, i, Py_BuildValue("f",
                pdf_to_real(ctx, pdf_array_get(ctx, obj, (int) i))));
            }
            SETATTR_DROP(Widget, "border_color", col);
        }

        SETATTR_DROP(Widget, "choice_values", JM_choice_options(ctx, annot));

        const char *da = pdf_to_text_string(ctx, pdf_dict_get_inheritable(ctx,
                                        annot_obj, PDF_NAME(DA)));
        SETATTR_DROP(Widget, "_text_da", JM_UnicodeFromStr(da));

        obj = pdf_dict_getl(ctx, annot_obj, PDF_NAME(MK), PDF_NAME(CA), NULL);
        if (obj) {
            SETATTR_DROP(Widget, "button_caption",
                    JM_UnicodeFromStr((char *)pdf_to_text_string(ctx, obj)));
        }

        SETATTR_DROP(Widget, "field_flags",
                Py_BuildValue("i", pdf_field_flags(ctx, annot_obj)));

        // call Py method to reconstruct text color, font name, size
        PyObject *call = CALLATTR("_parse_da", NULL);
        Py_XDECREF(call);

        // extract JavaScript action texts
        SETATTR_DROP(Widget, "script",
            JM_get_script(ctx, pdf_dict_get(ctx, annot_obj, PDF_NAME(A))));

        SETATTR_DROP(Widget, "script_stroke",
            JM_get_script(ctx, pdf_dict_getl(ctx, annot_obj, PDF_NAME(AA), PDF_NAME(K), NULL)));

        SETATTR_DROP(Widget, "script_format",
            JM_get_script(ctx, pdf_dict_getl(ctx, annot_obj, PDF_NAME(AA), PDF_NAME(F), NULL)));

        SETATTR_DROP(Widget, "script_change",
            JM_get_script(ctx, pdf_dict_getl(ctx, annot_obj, PDF_NAME(AA), PDF_NAME(V), NULL)));

        SETATTR_DROP(Widget, "script_calc",
            JM_get_script(ctx, pdf_dict_getl(ctx, annot_obj, PDF_NAME(AA), PDF_NAME(C), NULL)));
    }
    fz_always(ctx) PyErr_Clear();
    fz_catch(ctx) fz_rethrow(ctx);
    return;
}


//-----------------------------------------------------------------------------
// Update the PDF form field with the properties from a Python Widget object.
// Called by "Page.addWidget" and "Annot.updateWidget".
//-----------------------------------------------------------------------------
void JM_set_widget_properties(fz_context *ctx, pdf_annot *annot, PyObject *Widget)
{
    pdf_page *page = pdf_annot_page(ctx, annot);
    pdf_obj *annot_obj = pdf_annot_obj(ctx, annot);
    pdf_document *pdf = page->doc;
    fz_rect rect;
    pdf_obj *fill_col = NULL, *border_col = NULL;
    pdf_obj *dashes = NULL;
    Py_ssize_t i, n = 0;
    int d;
    PyObject *value = GETATTR("field_type");
    int field_type = (int) PyInt_AsLong(value);
    Py_DECREF(value);

    // rectangle --------------------------------------------------------------
    value = GETATTR("rect");
    rect = JM_rect_from_py(value);
    Py_XDECREF(value);
    fz_matrix rot_mat = JM_rotate_page_matrix(ctx, page);
    rect = fz_transform_rect(rect, rot_mat);
    pdf_set_annot_rect(ctx, annot, rect);

    // fill color -------------------------------------------------------------
    value = GETATTR("fill_color");
    if (value && PySequence_Check(value)) {
        n = PySequence_Size(value);
        fill_col = pdf_new_array(ctx, pdf, n);
        double col = 0;
        for (i = 0; i < n; i++) {
            JM_FLOAT_ITEM(value, i, &col);
            pdf_array_push_real(ctx, fill_col, col);
        }
        pdf_field_set_fill_color(ctx, annot_obj, fill_col);
        pdf_drop_obj(ctx, fill_col);
    }
    Py_XDECREF(value);

    // dashes -----------------------------------------------------------------
    value = GETATTR("border_dashes");
    if (value && PySequence_Check(value)) {
        n = PySequence_Size(value);
        dashes = pdf_new_array(ctx, pdf, n);
        for (i = 0; i < n; i++) {
            pdf_array_push_int(ctx, dashes,
                               (int64_t) PyInt_AsLong(PySequence_ITEM(value, i)));
        }
        pdf_dict_putl_drop(ctx, annot_obj, dashes,
                                PDF_NAME(BS),
                                PDF_NAME(D),
                                NULL);
    }
    Py_XDECREF(value);

    // border color -----------------------------------------------------------
    value = GETATTR("border_color");
    if (value && PySequence_Check(value)) {
        n = PySequence_Size(value);
        border_col = pdf_new_array(ctx, pdf, n);
        double col = 0;
        for (i = 0; i < n; i++) {
            JM_FLOAT_ITEM(value, i, &col);
            pdf_array_push_real(ctx, border_col, col);
        }
        pdf_dict_putl_drop(ctx, annot_obj, border_col,
                                PDF_NAME(MK),
                                PDF_NAME(BC),
                                NULL);
    }
    Py_XDECREF(value);

    // entry ignored - may be used later
    /*
    int text_format = (int) PyInt_AsLong(GETATTR("text_format"));
    */

    // field label -----------------------------------------------------------
    value = GETATTR("field_label");
    if (value != Py_None) {
        char *label = JM_StrAsChar(value);
        pdf_dict_put_text_string(ctx, annot_obj, PDF_NAME(TU), label);
    }
    Py_XDECREF(value);

    // field name -------------------------------------------------------------
    value = GETATTR("field_name");
    if (value != Py_None) {
        char *name = JM_StrAsChar(value);
        char *old_name = pdf_field_name(ctx, annot_obj);
        if (strcmp(name, old_name) != 0) {
            pdf_dict_put_text_string(ctx, annot_obj, PDF_NAME(T), name);
        }
        JM_Free(old_name);
    }
    Py_XDECREF(value);

    // max text len -----------------------------------------------------------
    if (field_type == PDF_WIDGET_TYPE_TEXT)
    {
        value = GETATTR("text_maxlen");
        int text_maxlen = (int) PyInt_AsLong(value);
        if (text_maxlen) {
            pdf_dict_put_int(ctx, annot_obj, PDF_NAME(MaxLen), text_maxlen);
        }
        Py_XDECREF(value);
    }
    value = GETATTR("field_display");
    d = (int) PyInt_AsLong(value);
    Py_XDECREF(value);
    pdf_field_set_display(ctx, annot_obj, d);

    // choice values ----------------------------------------------------------
    if (field_type == PDF_WIDGET_TYPE_LISTBOX ||
        field_type == PDF_WIDGET_TYPE_COMBOBOX) {
        value = GETATTR("choice_values");
        JM_set_choice_options(ctx, annot, value);
        Py_XDECREF(value);
    }

    // border style -----------------------------------------------------------
    value = GETATTR("border_style");
    pdf_obj *val = JM_get_border_style(ctx, value);
    Py_XDECREF(value);
    pdf_dict_putl_drop(ctx, annot_obj, val,
                            PDF_NAME(BS),
                            PDF_NAME(S),
                            NULL);

    // border width -----------------------------------------------------------
    value = GETATTR("border_width");
    float border_width = (float) PyFloat_AsDouble(value);
    Py_XDECREF(value);
    pdf_dict_putl_drop(ctx, annot_obj, pdf_new_real(ctx, border_width),
                            PDF_NAME(BS),
                            PDF_NAME(W),
                            NULL);

    // /DA string -------------------------------------------------------------
    value = GETATTR("_text_da");
    char *da = JM_StrAsChar(value);
    Py_XDECREF(value);
    pdf_dict_put_text_string(ctx, annot_obj, PDF_NAME(DA), da);
    pdf_dict_del(ctx, annot_obj, PDF_NAME(DS)); /* not supported by MuPDF */
    pdf_dict_del(ctx, annot_obj, PDF_NAME(RC)); /* not supported by MuPDF */

    // field flags ------------------------------------------------------------
    int field_flags = 0, Ff = 0;
    if (field_type != PDF_WIDGET_TYPE_CHECKBOX &&
        field_type != PDF_WIDGET_TYPE_BUTTON &&
        field_type != PDF_WIDGET_TYPE_RADIOBUTTON) {
        value = GETATTR("field_flags");
        field_flags = (int) PyInt_AsLong(value);
        if (!PyErr_Occurred()) {
            Ff = pdf_field_flags(ctx, annot_obj);
            Ff |= field_flags;
        }
        Py_XDECREF(value);
    }
    pdf_dict_put_int(ctx, annot_obj, PDF_NAME(Ff), Ff);

    // button caption ---------------------------------------------------------
    value = GETATTR("button_caption");
    char *ca = JM_StrAsChar(value);
    if (ca) {
        pdf_field_set_button_caption(ctx, annot_obj, ca);
    }
    Py_XDECREF(value);

    // script (/A) -------------------------------------------------------
    value = GETATTR("script");
    JM_put_script(ctx, annot_obj, PDF_NAME(A), NULL, value);
    Py_CLEAR(value);

    // script (/AA/K) -------------------------------------------------------
    value = GETATTR("script_stroke");
    JM_put_script(ctx, annot_obj, PDF_NAME(AA), PDF_NAME(K), value);
    Py_CLEAR(value);

    // script (/AA/F) -------------------------------------------------------
    value = GETATTR("script_format");
    JM_put_script(ctx, annot_obj, PDF_NAME(AA), PDF_NAME(F), value);
    Py_CLEAR(value);

    // script (/AA/V) -------------------------------------------------------
    value = GETATTR("script_change");
    JM_put_script(ctx, annot_obj, PDF_NAME(AA), PDF_NAME(V), value);
    Py_CLEAR(value);

    // script (/AA/C) -------------------------------------------------------
    value = GETATTR("script_calc");
    JM_put_script(ctx, annot_obj, PDF_NAME(AA), PDF_NAME(C), value);
    Py_CLEAR(value);

    // field value ------------------------------------------------------------
    value = GETATTR("field_value");
    char *text = NULL;
    switch(field_type)
    {
    case PDF_WIDGET_TYPE_CHECKBOX:
    case PDF_WIDGET_TYPE_RADIOBUTTON:
        if (PyObject_RichCompareBool(value, Py_True, Py_EQ)) {
            pdf_obj *onstate = pdf_button_field_on_state(ctx, annot_obj);
            const char *on = pdf_to_name(ctx, onstate);
            pdf_set_field_value(ctx, pdf, annot_obj, on, 1);
        } else {
            pdf_set_field_value(ctx, pdf, annot_obj, "Off", 1);
        }
        break;
    default:
        text = JM_StrAsChar(value);
        if (text) {
            pdf_set_field_value(ctx, pdf, annot_obj, (const char *)text, 1);
            if (field_type == PDF_WIDGET_TYPE_COMBOBOX || field_type == PDF_WIDGET_TYPE_LISTBOX) {
                pdf_dict_del(ctx, annot_obj, PDF_NAME(I));
            }
        }
    }
    Py_CLEAR(value);
    PyErr_Clear();
    pdf_dirty_annot(ctx, annot);
    pdf_set_annot_hot(ctx, annot, 1);
    pdf_set_annot_active(ctx, annot, 1);
    pdf_update_annot(ctx, annot);
}
#undef SETATTR
#undef GETATTR
#undef CALLATTR
%}

%pythoncode %{
#------------------------------------------------------------------------------
# Class describing a PDF form field ("widget")
#------------------------------------------------------------------------------
class Widget(object):
    def __init__(self):
        self.thisown = True
        self.border_color = None
        self.border_style = "S"
        self.border_width = 0
        self.border_dashes = None
        self.choice_values = None  # choice fields only

        self.field_name = None  # field name
        self.field_label = None  # field label
        self.field_value = None
        self.field_flags = 0
        self.field_display = 0
        self.field_type = 0  # valid range 1 through 7
        self.field_type_string = None  # field type as string

        self.fill_color = None
        self.button_caption = None  # button caption
        self.is_signed = None  # True / False if signature
        self.text_color = (0, 0, 0)
        self.text_font = "Helv"
        self.text_fontsize = 0
        self.text_maxlen = 0  # text fields only
        self.text_format = 0  # text fields only
        self._text_da = ""  # /DA = default apparance

        self.script = None  # JavaScript (/A)
        self.script_stroke = None  # JavaScript (/AA/K)
        self.script_format = None  # JavaScript (/AA/F)
        self.script_change = None  # JavaScript (/AA/V)
        self.script_calc = None  # JavaScript (/AA/C)

        self.rect = None  # annot value
        self.xref = 0  # annot value


    def _validate(self):
        """Validate the class entries.
        """
        if (self.rect.is_infinite
            or self.rect.is_empty
           ):
            raise ValueError("bad rect")

        if not self.field_name:
            raise ValueError("field name missing")

        if self.field_label == "Unnamed":
            self.field_label = None
        CheckColor(self.border_color)
        CheckColor(self.fill_color)
        if not self.text_color:
            self.text_color = (0, 0, 0)
        CheckColor(self.text_color)

        if not self.border_width:
            self.border_width = 0

        if not self.text_fontsize:
            self.text_fontsize = 0

        self.border_style = self.border_style.upper()[0:1]

        # standardize content of JavaScript entries
        btn_type = self.field_type in (
            PDF_WIDGET_TYPE_BUTTON,
            PDF_WIDGET_TYPE_CHECKBOX,
            PDF_WIDGET_TYPE_RADIOBUTTON
        )
        if not self.script:
            self.script = None
        elif type(self.script) is not str:
            raise ValueError("script content must be string")

        # buttons cannot have the following script actions
        if btn_type or not self.script_calc:
            self.script_calc = None
        elif type(self.script_calc) is not str:
            raise ValueError("script_calc content must be string")

        if btn_type or not self.script_change:
            self.script_change = None
        elif type(self.script_change) is not str:
            raise ValueError("script_change content must be string")

        if btn_type or not self.script_format:
            self.script_format = None
        elif type(self.script_format) is not str:
            raise ValueError("script_format content must be string")

        if btn_type or not self.script_stroke:
            self.script_stroke = None
        elif type(self.script_stroke) is not str:
            raise ValueError("script_stroke content must be string")

        self._checker()  # any field_type specific checks


    def _adjust_font(self):
        """Ensure text_font is correctly spelled if empty or from our list.

        Otherwise assume the font is in an existing field.
        """
        if not self.text_font:
            self.text_font = "Helv"
            return
        doc = self.parent.parent
        for f in doc.FormFonts + ["Cour", "TiRo", "Helv", "ZaDb"]:
            if self.text_font.lower() == f.lower():
                self.text_font = f
                return
        self.text_font = "Helv"
        return


    def _parse_da(self):
        """Extract font name, size and color from default appearance string (/DA object).

        Equivalent to 'pdf_parse_default_appearance' function in MuPDF's 'pdf-annot.c'.
        """
        if not self._text_da:
            return
        font = "Helv"
        fsize = 0
        col = (0, 0, 0)
        dat = self._text_da.split()  # split on any whitespace
        for i, item in enumerate(dat):
            if item == "Tf":
                font = dat[i - 2][1:]
                fsize = float(dat[i - 1])
                dat[i] = dat[i-1] = dat[i-2] = ""
                continue
            if item == "g":  # unicolor text
                col = [(float(dat[i - 1]))]
                dat[i] = dat[i-1] = ""
                continue
            if item == "rg":  # RGB colored text
                col = [float(f) for f in dat[i - 3:i]]
                dat[i] = dat[i-1] = dat[i-2] = dat[i-3] = ""
                continue
        self.text_font = font
        self.text_fontsize = fsize
        self.text_color = col
        self._text_da = ""
        return


    def _checker(self):
        """Any widget type checks.
        """
        if self.field_type not in range(1, 8):
            raise ValueError("bad field type")


    def update(self):
        """Reflect Python object in the PDF.
        """
        doc = self.parent.parent
        self._validate()

        self._adjust_font()  # ensure valid text_font name

        # now create the /DA string
        self._text_da = ""
        if   len(self.text_color) == 3:
            fmt = "{:g} {:g} {:g} rg /{f:s} {s:g} Tf" + self._text_da
        elif len(self.text_color) == 1:
            fmt = "{:g} g /{f:s} {s:g} Tf" + self._text_da
        elif len(self.text_color) == 4:
            fmt = "{:g} {:g} {:g} {:g} k /{f:s} {s:g} Tf" + self._text_da
        self._text_da = fmt.format(*self.text_color, f=self.text_font,
                                    s=self.text_fontsize)
        # finally update the widget

        TOOLS._save_widget(self._annot, self)
        self._text_da = ""


    def button_states(self):
        """Return the on/off state names for button widgets.

        A button may have 'normal' or 'pressed down' appearances. While the 'Off'
        state is usually called like this, the 'On' state is often given a name
        relating to the functional context.
        """
        if self.field_type not in (1, 2, 3, 5):
            return None  # no button type
        doc = self.parent.parent
        xref = self.xref
        states = {"normal": None, "down": None}
        APN = doc.xref_get_key(xref, "AP/N")
        if APN[0] == "dict":
            nstates = []
            APN = APN[1][2:-2]
            apnt = APN.split("/")[1:]
            for x in apnt:
                nstates.append(x.split()[0])
            states["normal"] = nstates
        APD = doc.xref_get_key(xref, "AP/D")
        if APD[0] == "dict":
            dstates = []
            APD = APD[1][2:-2]
            apdt = APD.split("/")[1:]
            for x in apdt:
                dstates.append(x.split()[0])
            states["down"] = dstates
        return states


    def reset(self):
        """Reset the field value to its default.
        """
        TOOLS._reset_widget(self._annot)

    def __repr__(self):
        return "'%s' widget on %s" % (self.field_type_string, str(self.parent))

    def __del__(self):
        if hasattr(self, "_annot"):
            del self._annot

    @property
    def next(self):
        return self._annot.next
%}







PyMuPDF-1.21.1/fitz/helper-fileobj.i

%{
//-------------------------------------
// fz_output for Python file objects
//-------------------------------------
static void
JM_bytesio_write(fz_context *ctx, void *opaque, const void *data, size_t len)
{  // bio.write(bytes object)
    PyObject *bio = opaque, *b, *name, *rc;
    fz_try(ctx){
        b = PyBytes_FromStringAndSize((const char *) data, (Py_ssize_t) len);
        name = PyUnicode_FromString("write");
        PyObject_CallMethodObjArgs(bio, name, b, NULL);
        rc = PyErr_Occurred();
        if (rc) {
            RAISEPY(ctx, "could not write to Py file obj", rc);
        }
    }
    fz_always(ctx) {
        Py_XDECREF(b);
        Py_XDECREF(name);
        Py_XDECREF(rc);
        PyErr_Clear();
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
}

static void
JM_bytesio_truncate(fz_context *ctx, void *opaque)
{  // bio.truncate(bio.tell()) !!!
    PyObject *bio = opaque, *trunc = NULL, *tell = NULL, *rctell= NULL, *rc = NULL;
    fz_try(ctx) {
        trunc = PyUnicode_FromString("truncate");
        tell = PyUnicode_FromString("tell");
        rctell = PyObject_CallMethodObjArgs(bio, tell, NULL);
        PyObject_CallMethodObjArgs(bio, trunc, rctell, NULL);
        rc = PyErr_Occurred();
        if (rc) {
            RAISEPY(ctx, "could not truncate Py file obj", rc);
        }
    }
    fz_always(ctx) {
        Py_XDECREF(tell);
        Py_XDECREF(trunc);
        Py_XDECREF(rc);
        Py_XDECREF(rctell);
        PyErr_Clear();
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
}

static int64_t
JM_bytesio_tell(fz_context *ctx, void *opaque)
{  // returns bio.tell() -> int
    PyObject *bio = opaque, *rc = NULL, *name = NULL;
    int64_t pos = 0;
    fz_try(ctx) {
        name = PyUnicode_FromString("tell");
        rc = PyObject_CallMethodObjArgs(bio, name, NULL);
        if (!rc) {
            RAISEPY(ctx, "could not tell Py file obj", PyErr_Occurred());
        }
        pos = (int64_t) PyLong_AsUnsignedLongLong(rc);
    }
    fz_always(ctx) {
        Py_XDECREF(name);
        Py_XDECREF(rc);
        PyErr_Clear();
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return pos;
}


static void
JM_bytesio_seek(fz_context *ctx, void *opaque, int64_t off, int whence)
{  // bio.seek(off, whence=0)
    PyObject *bio = opaque, *rc = NULL, *name = NULL, *pos = NULL;
    fz_try(ctx) {
        name = PyUnicode_FromString("seek");
        pos = PyLong_FromUnsignedLongLong((unsigned long long) off);
        PyObject_CallMethodObjArgs(bio, name, pos, whence, NULL);
        rc = PyErr_Occurred();
        if (rc) {
            RAISEPY(ctx, "could not seek Py file obj", rc);
        }
    }
    fz_always(ctx) {
        Py_XDECREF(rc);
        Py_XDECREF(name);
        Py_XDECREF(pos);
        PyErr_Clear();
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
}

fz_output *
JM_new_output_fileptr(fz_context *ctx, PyObject *bio)
{
    fz_output *out = fz_new_output(ctx, 0, bio, JM_bytesio_write, NULL, NULL);
    out->seek = JM_bytesio_seek;
    out->tell = JM_bytesio_tell;
    out->truncate = JM_bytesio_truncate;
    return out;
}
%}







PyMuPDF-1.21.1/fitz/helper-geo-c.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
//-----------------------------------------------------------------------------
// Functions converting betwenn PySequences and fitz geometry objects
//-----------------------------------------------------------------------------
static int
JM_INT_ITEM(PyObject *obj, Py_ssize_t idx, int *result)
{
    PyObject *temp = PySequence_ITEM(obj, idx);
    if (!temp) return 1;
    if (PyLong_Check(temp)) {
        *result = (int) PyLong_AsLong(temp);
        Py_DECREF(temp);
    } else if (PyFloat_Check(temp)) {
        *result = (int) PyFloat_AsDouble(temp);
        Py_DECREF(temp);
    } else {
        Py_DECREF(temp);
        return 1;
    }
    if (PyErr_Occurred()) {
        PyErr_Clear();
        return 1;
    }
    return 0;
}

static int
JM_FLOAT_ITEM(PyObject *obj, Py_ssize_t idx, double *result)
{
    PyObject *temp = PySequence_ITEM(obj, idx);
    if (!temp) return 1;
    *result = PyFloat_AsDouble(temp);
    Py_DECREF(temp);
    if (PyErr_Occurred()) {
        PyErr_Clear();
        return 1;
    }
    return 0;
}


static fz_point
JM_normalize_vector(float x, float y)
{
    double px = x, py = y, len = (double) (x * x + y * y);

    if (len != 0) {
        len = sqrt(len);
        px /= len;
        py /= len;
    }
    return fz_make_point((float) px, (float) py);
}


//-----------------------------------------------------------------------------
// PySequence to fz_rect. Default: infinite rect
//-----------------------------------------------------------------------------
static fz_rect
JM_rect_from_py(PyObject *r)
{
    if (!r || !PySequence_Check(r) || PySequence_Size(r) != 4)
        return fz_infinite_rect;
    Py_ssize_t i;
    double f[4];

    for (i = 0; i < 4; i++) {
        if (JM_FLOAT_ITEM(r, i, &f[i]) == 1) return fz_infinite_rect;
        if (f[i] < FZ_MIN_INF_RECT) f[i] = FZ_MIN_INF_RECT;
        if (f[i] > FZ_MAX_INF_RECT) f[i] = FZ_MAX_INF_RECT;
    }

    return fz_make_rect((float) f[0], (float) f[1], (float) f[2], (float) f[3]);
}

//-----------------------------------------------------------------------------
// PySequence from fz_rect
//-----------------------------------------------------------------------------
static PyObject *
JM_py_from_rect(fz_rect r)
{
    return Py_BuildValue("ffff", r.x0, r.y0, r.x1, r.y1);
}

//-----------------------------------------------------------------------------
// PySequence to fz_irect. Default: infinite irect
//-----------------------------------------------------------------------------
static fz_irect
JM_irect_from_py(PyObject *r)
{
    if (!r || !PySequence_Check(r) || PySequence_Size(r) != 4)
        return fz_infinite_irect;
    int x[4];
    Py_ssize_t i;

    for (i = 0; i < 4; i++) {
        if (JM_INT_ITEM(r, i, &x[i]) == 1) return fz_infinite_irect;
        if (x[i] < FZ_MIN_INF_RECT) x[i] = FZ_MIN_INF_RECT;
        if (x[i] > FZ_MAX_INF_RECT) x[i] = FZ_MAX_INF_RECT;
    }

    return fz_make_irect(x[0], x[1], x[2], x[3]);
}

//-----------------------------------------------------------------------------
// PySequence from fz_irect
//-----------------------------------------------------------------------------
static PyObject *
JM_py_from_irect(fz_irect r)
{
    return Py_BuildValue("iiii", r.x0, r.y0, r.x1, r.y1);
}


//-----------------------------------------------------------------------------
// PySequence to fz_point. Default: (FZ_MIN_INF_RECT, FZ_MIN_INF_RECT)
//-----------------------------------------------------------------------------
static fz_point
JM_point_from_py(PyObject *p)
{
    fz_point p0 = fz_make_point(FZ_MIN_INF_RECT, FZ_MIN_INF_RECT);
    double x, y;

    if (!p || !PySequence_Check(p) || PySequence_Size(p) != 2)
        return p0;

    if (JM_FLOAT_ITEM(p, 0, &x) == 1) return p0;
    if (JM_FLOAT_ITEM(p, 1, &y) == 1) return p0;
    if (x < FZ_MIN_INF_RECT) x = FZ_MIN_INF_RECT;
    if (y < FZ_MIN_INF_RECT) y = FZ_MIN_INF_RECT;
    if (x > FZ_MAX_INF_RECT) x = FZ_MAX_INF_RECT;
    if (y > FZ_MAX_INF_RECT) y = FZ_MAX_INF_RECT;

    return fz_make_point((float) x, (float) y);
}

//-----------------------------------------------------------------------------
// PySequence from fz_point
//-----------------------------------------------------------------------------
static PyObject *
JM_py_from_point(fz_point p)
{
    return Py_BuildValue("ff", p.x, p.y);
}


//-----------------------------------------------------------------------------
// PySequence to fz_matrix. Default: fz_identity
//-----------------------------------------------------------------------------
static fz_matrix
JM_matrix_from_py(PyObject *m)
{
    Py_ssize_t i;
    double a[6];

    if (!m || !PySequence_Check(m) || PySequence_Size(m) != 6)
        return fz_identity;

    for (i = 0; i < 6; i++)
        if (JM_FLOAT_ITEM(m, i, &a[i]) == 1) return fz_identity;

    return fz_make_matrix((float) a[0], (float) a[1], (float) a[2], (float) a[3], (float) a[4], (float) a[5]);
}

//-----------------------------------------------------------------------------
// PySequence from fz_matrix
//-----------------------------------------------------------------------------
static PyObject *
JM_py_from_matrix(fz_matrix m)
{
    return Py_BuildValue("ffffff", m.a, m.b, m.c, m.d, m.e, m.f);
}

//-----------------------------------------------------------------------------
// fz_quad from PySequence. Four floats are treated as rect.
// Else must be four pairs of floats.
//-----------------------------------------------------------------------------
static fz_quad
JM_quad_from_py(PyObject *r)
{
    fz_quad q = fz_make_quad(FZ_MIN_INF_RECT, FZ_MIN_INF_RECT,
                             FZ_MAX_INF_RECT, FZ_MIN_INF_RECT,
                             FZ_MIN_INF_RECT, FZ_MAX_INF_RECT,
                             FZ_MAX_INF_RECT, FZ_MAX_INF_RECT);
    fz_point p[4];
    double test, x, y;
    Py_ssize_t i;
    PyObject *obj = NULL;

    if (!r || !PySequence_Check(r) || PySequence_Size(r) != 4)
        return q;

    if (JM_FLOAT_ITEM(r, 0, &test) == 0)
        return fz_quad_from_rect(JM_rect_from_py(r));

    for (i = 0; i < 4; i++) {
        obj = PySequence_ITEM(r, i);  // next point item
        if (!obj || !PySequence_Check(obj) || PySequence_Size(obj) != 2)
            goto exit_result;  // invalid: cancel the rest

        if (JM_FLOAT_ITEM(obj, 0, &x) == 1) goto exit_result;
        if (JM_FLOAT_ITEM(obj, 1, &y) == 1) goto exit_result;
        if (x < FZ_MIN_INF_RECT) x = FZ_MIN_INF_RECT;
        if (y < FZ_MIN_INF_RECT) y = FZ_MIN_INF_RECT;
        if (x > FZ_MAX_INF_RECT) x = FZ_MAX_INF_RECT;
        if (y > FZ_MAX_INF_RECT) y = FZ_MAX_INF_RECT;
        p[i] = fz_make_point((float) x, (float) y);

        Py_CLEAR(obj);
    }
    q.ul = p[0];
    q.ur = p[1];
    q.ll = p[2];
    q.lr = p[3];
    return q;

    exit_result:;
    Py_CLEAR(obj);
    return q;
}

//-----------------------------------------------------------------------------
// PySequence from fz_quad.
//-----------------------------------------------------------------------------
static PyObject *
JM_py_from_quad(fz_quad q)
{
    return Py_BuildValue("((f,f),(f,f),(f,f),(f,f))",
                          q.ul.x, q.ul.y, q.ur.x, q.ur.y,
                          q.ll.x, q.ll.y, q.lr.x, q.lr.y);
}

%}







PyMuPDF-1.21.1/fitz/helper-geo-py.i

%pythoncode %{

# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------

# largest 32bit integers surviving C float conversion roundtrips
# used by MuPDF to define infinite rectangles
FZ_MIN_INF_RECT = -0x80000000
FZ_MAX_INF_RECT = 0x7fffff80


class Matrix(object):
    """Matrix() - all zeros
    Matrix(a, b, c, d, e, f)
    Matrix(zoom-x, zoom-y) - zoom
    Matrix(shear-x, shear-y, 1) - shear
    Matrix(degree) - rotate
    Matrix(Matrix) - new copy
    Matrix(sequence) - from 'sequence'"""
    def __init__(self, *args):
        if not args:
            self.a = self.b = self.c = self.d = self.e = self.f = 0.0
            return None
        if len(args) > 6:
            raise ValueError("Matrix: bad seq len")
        if len(args) == 6:  # 6 numbers
            self.a, self.b, self.c, self.d, self.e, self.f = map(float, args)
            return None
        if len(args) == 1:  # either an angle or a sequ
            if hasattr(args[0], "__float__"):
                theta = math.radians(args[0])
                c = round(math.cos(theta), 12)
                s = round(math.sin(theta), 12)
                self.a = self.d = c
                self.b = s
                self.c = -s
                self.e = self.f = 0.0
                return None
            else:
                self.a, self.b, self.c, self.d, self.e, self.f = map(float, args[0])
                return None
        if len(args) == 2 or len(args) == 3 and args[2] == 0:
            self.a, self.b, self.c, self.d, self.e, self.f = float(args[0]), \
                0.0, 0.0, float(args[1]), 0.0, 0.0
            return None
        if len(args) == 3 and args[2] == 1:
            self.a, self.b, self.c, self.d, self.e, self.f = 1.0, \
                float(args[1]), float(args[0]), 1.0, 0.0, 0.0
            return None
        raise ValueError("Matrix: bad args")

    def invert(self, src=None):
        """Calculate the inverted matrix. Return 0 if successful and replace
        current one. Else return 1 and do nothing.
        """
        if src is None:
            dst = util_invert_matrix(self)
        else:
            dst = util_invert_matrix(src)
        if dst[0] == 1:
            return 1
        self.a, self.b, self.c, self.d, self.e, self.f = dst[1]
        return 0

    def pretranslate(self, tx, ty):
        """Calculate pre translation and replace current matrix."""
        tx = float(tx)
        ty = float(ty)
        self.e += tx * self.a + ty * self.c
        self.f += tx * self.b + ty * self.d
        return self

    def prescale(self, sx, sy):
        """Calculate pre scaling and replace current matrix."""
        sx = float(sx)
        sy = float(sy)
        self.a *= sx
        self.b *= sx
        self.c *= sy
        self.d *= sy
        return self

    def preshear(self, h, v):
        """Calculate pre shearing and replace current matrix."""
        h = float(h)
        v = float(v)
        a, b = self.a, self.b
        self.a += v * self.c
        self.b += v * self.d
        self.c += h * a
        self.d += h * b
        return self

    def prerotate(self, theta):
        """Calculate pre rotation and replace current matrix."""
        theta = float(theta)
        while theta < 0: theta += 360
        while theta >= 360: theta -= 360
        if abs(0 - theta) < EPSILON:
            pass

        elif abs(90.0 - theta) < EPSILON:
            a = self.a
            b = self.b
            self.a = self.c
            self.b = self.d
            self.c = -a
            self.d = -b

        elif abs(180.0 - theta) < EPSILON:
            self.a = -self.a
            self.b = -self.b
            self.c = -self.c
            self.d = -self.d

        elif abs(270.0 - theta) < EPSILON:
            a = self.a
            b = self.b
            self.a = -self.c
            self.b = -self.d
            self.c = a
            self.d = b

        else:
            rad = math.radians(theta)
            s = math.sin(rad)
            c = math.cos(rad)
            a = self.a
            b = self.b
            self.a = c * a + s * self.c
            self.b = c * b + s * self.d
            self.c =-s * a + c * self.c
            self.d =-s * b + c * self.d

        return self

    def concat(self, one, two):
        """Multiply two matrices and replace current one."""
        if not len(one) == len(two) == 6:
            raise ValueError("Matrix: bad seq len")
        self.a, self.b, self.c, self.d, self.e, self.f = util_concat_matrix(one, two)
        return self

    def __getitem__(self, i):
        return (self.a, self.b, self.c, self.d, self.e, self.f)[i]

    def __setitem__(self, i, v):
        v = float(v)
        if   i == 0: self.a = v
        elif i == 1: self.b = v
        elif i == 2: self.c = v
        elif i == 3: self.d = v
        elif i == 4: self.e = v
        elif i == 5: self.f = v
        else:
            raise IndexError("index out of range")
        return

    def __len__(self):
        return 6

    def __repr__(self):
        return "Matrix" + str(tuple(self))

    def __invert__(self):
        """Calculate inverted matrix."""
        m1 = Matrix()
        m1.invert(self)
        return m1
    __inv__ = __invert__

    def __mul__(self, m):
        if hasattr(m, "__float__"):
            return Matrix(self.a * m, self.b * m, self.c * m,
                          self.d * m, self.e * m, self.f * m)
        m1 = Matrix(1,1)
        return m1.concat(self, m)

    def __truediv__(self, m):
        if hasattr(m, "__float__"):
            return Matrix(self.a * 1./m, self.b * 1./m, self.c * 1./m,
                          self.d * 1./m, self.e * 1./m, self.f * 1./m)
        m1 = util_invert_matrix(m)[1]
        if not m1:
            raise ZeroDivisionError("matrix not invertible")
        m2 = Matrix(1,1)
        return m2.concat(self, m1)
    __div__ = __truediv__

    def __add__(self, m):
        if hasattr(m, "__float__"):
            return Matrix(self.a + m, self.b + m, self.c + m,
                          self.d + m, self.e + m, self.f + m)
        if len(m) != 6:
            raise ValueError("Matrix: bad seq len")
        return Matrix(self.a + m[0], self.b + m[1], self.c + m[2],
                          self.d + m[3], self.e + m[4], self.f + m[5])

    def __sub__(self, m):
        if hasattr(m, "__float__"):
            return Matrix(self.a - m, self.b - m, self.c - m,
                          self.d - m, self.e - m, self.f - m)
        if len(m) != 6:
            raise ValueError("Matrix: bad seq len")
        return Matrix(self.a - m[0], self.b - m[1], self.c - m[2],
                          self.d - m[3], self.e - m[4], self.f - m[5])

    def __pos__(self):
        return Matrix(self)

    def __neg__(self):
        return Matrix(-self.a, -self.b, -self.c, -self.d, -self.e, -self.f)

    def __bool__(self):
        return not (max(self) == min(self) == 0)

    def __nonzero__(self):
        return not (max(self) == min(self) == 0)

    def __eq__(self, mat):
        if not hasattr(mat, "__len__"):
            return False
        return len(mat) == 6 and bool(self - mat) is False

    def __abs__(self):
        return math.sqrt(sum([c*c for c in self]))

    norm = __abs__

    @property
    def is_rectilinear(self):
        """True if rectangles are mapped to rectangles."""
        return (abs(self.b) < EPSILON and abs(self.c) < EPSILON) or \
            (abs(self.a) < EPSILON and abs(self.d) < EPSILON);


class IdentityMatrix(Matrix):
    """Identity matrix [1, 0, 0, 1, 0, 0]"""
    def __init__(self):
        Matrix.__init__(self, 1.0, 1.0)
    def __setattr__(self, name, value):
        if name in "ad":
            self.__dict__[name] = 1.0
        elif name in "bcef":
            self.__dict__[name] = 0.0
        else:
            self.__dict__[name] = value

    def checkargs(*args):
        raise NotImplementedError("Identity is readonly")

    prerotate    = checkargs
    preshear     = checkargs
    prescale     = checkargs
    pretranslate = checkargs
    concat       = checkargs
    invert       = checkargs

    def __repr__(self):
        return "IdentityMatrix(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)"

    def __hash__(self):
        return hash((1,0,0,1,0,0))


Identity = IdentityMatrix()

class Point(object):
    """Point() - all zeros\nPoint(x, y)\nPoint(Point) - new copy\nPoint(sequence) - from 'sequence'"""
    def __init__(self, *args):
        if not args:
            self.x = 0.0
            self.y = 0.0
            return None

        if len(args) > 2:
            raise ValueError("Point: bad seq len")
        if len(args) == 2:
            self.x = float(args[0])
            self.y = float(args[1])
            return None
        if len(args) == 1:
            l = args[0]
            if hasattr(l, "__getitem__") is False:
                raise ValueError("Point: bad args")
            if len(l) != 2:
                raise ValueError("Point: bad seq len")
            self.x = float(l[0])
            self.y = float(l[1])
            return None
        raise ValueError("Point: bad args")

    def transform(self, m):
        """Replace point by its transformation with matrix-like m."""
        if len(m) != 6:
            raise ValueError("Matrix: bad seq len")
        self.x, self.y = util_transform_point(self, m)
        return self

    @property
    def unit(self):
        """Unit vector of the point."""
        s = self.x * self.x + self.y * self.y
        if s < EPSILON:
            return Point(0,0)
        s = math.sqrt(s)
        return Point(self.x / s, self.y / s)

    @property
    def abs_unit(self):
        """Unit vector with positive coordinates."""
        s = self.x * self.x + self.y * self.y
        if s < EPSILON:
            return Point(0,0)
        s = math.sqrt(s)
        return Point(abs(self.x) / s, abs(self.y) / s)

    def distance_to(self, *args):
        """Return distance to rectangle or another point."""
        if not len(args) > 0:
            raise ValueError("at least one parameter must be given")

        x = args[0]
        if len(x) == 2:
            x = Point(x)
        elif len(x) == 4:
            x = Rect(x)
        else:
            raise ValueError("arg1 must be point-like or rect-like")

        if len(args) > 1:
            unit = args[1]
        else:
            unit = "px"
        u = {"px": (1.,1.), "in": (1.,72.), "cm": (2.54, 72.),
             "mm": (25.4, 72.)}
        f = u[unit][0] / u[unit][1]

        if type(x) is Point:
            return abs(self - x) * f

        # from here on, x is a rectangle
        # as a safeguard, make a finite copy of it
        r = Rect(x.top_left, x.top_left)
        r = r | x.bottom_right
        if self in r:
            return 0.0
        if self.x > r.x1:
            if self.y >= r.y1:
                return self.distance_to(r.bottom_right, unit)
            elif self.y <= r.y0:
                return self.distance_to(r.top_right, unit)
            else:
                return (self.x - r.x1) * f
        elif r.x0 <= self.x <= r.x1:
            if self.y >= r.y1:
                return (self.y - r.y1) * f
            else:
                return (r.y0 - self.y) * f
        else:
            if self.y >= r.y1:
                return self.distance_to(r.bottom_left, unit)
            elif self.y <= r.y0:
                return self.distance_to(r.top_left, unit)
            else:
                return (r.x0 - self.x) * f

    def __getitem__(self, i):
        return (self.x, self.y)[i]

    def __len__(self):
        return 2

    def __setitem__(self, i, v):
        v = float(v)
        if   i == 0: self.x = v
        elif i == 1: self.y = v
        else:
            raise IndexError("index out of range")
        return None

    def __repr__(self):
        return "Point" + str(tuple(self))

    def __pos__(self):
        return Point(self)

    def __neg__(self):
        return Point(-self.x, -self.y)

    def __bool__(self):
        return not (max(self) == min(self) == 0)

    def __nonzero__(self):
        return not (max(self) == min(self) == 0)

    def __eq__(self, p):
        if not hasattr(p, "__len__"):
            return False
        return len(p) == 2 and bool(self - p) is False

    def __abs__(self):
        return math.sqrt(self.x * self.x + self.y * self.y)

    norm = __abs__

    def __add__(self, p):
        if hasattr(p, "__float__"):
            return Point(self.x + p, self.y + p)
        if len(p) != 2:
            raise ValueError("Point: bad seq len")
        return Point(self.x + p[0], self.y + p[1])

    def __sub__(self, p):
        if hasattr(p, "__float__"):
            return Point(self.x - p, self.y - p)
        if len(p) != 2:
            raise ValueError("Point: bad seq len")
        return Point(self.x - p[0], self.y - p[1])

    def __mul__(self, m):
        if hasattr(m, "__float__"):
            return Point(self.x * m, self.y * m)
        p = Point(self)
        return p.transform(m)

    def __truediv__(self, m):
        if hasattr(m, "__float__"):
            return Point(self.x * 1./m, self.y * 1./m)
        m1 = util_invert_matrix(m)[1]
        if not m1:
            raise ZeroDivisionError("matrix not invertible")
        p = Point(self)
        return p.transform(m1)

    __div__ = __truediv__

    def __hash__(self):
        return hash(tuple(self))

class Rect(object):
    """Rect() - all zeros
    Rect(x0, y0, x1, y1) - 4 coordinates
    Rect(top-left, x1, y1) - point and 2 coordinates
    Rect(x0, y0, bottom-right) - 2 coordinates and point
    Rect(top-left, bottom-right) - 2 points
    Rect(sequ) - new from sequence or rect-like
    """
    def __init__(self, *args):
        self.x0, self.y0, self.x1, self.y1 = util_make_rect(args)
        return None

    def normalize(self):
        """Replace rectangle with its valid version."""
        if self.x1 < self.x0:
            self.x0, self.x1 = self.x1, self.x0
        if self.y1 < self.y0:
            self.y0, self.y1 = self.y1, self.y0
        return self

    @property
    def is_empty(self):
        """True if rectangle area is empty."""
        return self.x0 >= self.x1 or self.y0 >= self.y1

    @property
    def is_valid(self):
        """True if rectangle is valid."""
        return self.x0 <= self.x1 and self.y0 <= self.y1

    @property
    def is_infinite(self):
        """True if this is the infinite rectangle."""
        return self.x0 == self.y0 == FZ_MIN_INF_RECT and self.x1 == self.y1 == FZ_MAX_INF_RECT

    @property
    def top_left(self):
        """Top-left corner."""
        return Point(self.x0, self.y0)

    @property
    def top_right(self):
        """Top-right corner."""
        return Point(self.x1, self.y0)

    @property
    def bottom_left(self):
        """Bottom-left corner."""
        return Point(self.x0, self.y1)

    @property
    def bottom_right(self):
        """Bottom-right corner."""
        return Point(self.x1, self.y1)

    tl = top_left
    tr = top_right
    bl = bottom_left
    br = bottom_right

    @property
    def quad(self):
        """Return Quad version of rectangle."""
        return Quad(self.tl, self.tr, self.bl, self.br)

    def torect(self, r):
        """Return matrix that converts to target rect."""

        r = Rect(r)
        if self.is_infinite or self.is_empty or r.is_infinite or r.is_empty:
            raise ValueError("rectangles must be finite and not empty")
        return (
            Matrix(1, 0, 0, 1, -self.x0, -self.y0)
            * Matrix(r.width / self.width, r.height / self.height)
            * Matrix(1, 0, 0, 1, r.x0, r.y0)
        )

    def morph(self, p, m):
        """Morph with matrix-like m and point-like p.

        Returns a new quad."""
        if self.is_infinite:
            return INFINITE_QUAD()
        return self.quad.morph(p, m)

    def round(self):
        """Return the IRect."""
        return IRect(util_round_rect(self))

    irect = property(round)

    width  = property(lambda self: self.x1 - self.x0 if self.x1 > self.x0 else 0)
    height = property(lambda self: self.y1 - self.y0 if self.y1 > self.y0 else 0)

    def include_point(self, p):
        """Extend to include point-like p."""
        if len(p) != 2:
            raise ValueError("Point: bad seq len")
        self.x0, self.y0, self.x1, self.y1 = util_include_point_in_rect(self, p)
        return self

    def include_rect(self, r):
        """Extend to include rect-like r."""
        if len(r) != 4:
            raise ValueError("Rect: bad seq len")
        r = Rect(r)
        if r.is_infinite or self.is_infinite:
            self.x0, self.y0, self.x1, self.y1 = FZ_MIN_INF_RECT, FZ_MIN_INF_RECT, FZ_MAX_INF_RECT, FZ_MAX_INF_RECT
        elif r.is_empty:
            return self
        elif self.is_empty:
            self.x0, self.y0, self.x1, self.y1 = r.x0, r.y0, r.x1, r.y1
        else:
            self.x0, self.y0, self.x1, self.y1 = util_union_rect(self, r)
        return self

    def intersect(self, r):
        """Restrict to common rect with rect-like r."""
        if not len(r) == 4:
            raise ValueError("Rect: bad seq len")
        r = Rect(r)
        if r.is_infinite:
            return self
        elif self.is_infinite:
            self.x0, self.y0, self.x1, self.y1 = r.x0, r.y0, r.x1, r.y1
        elif r.is_empty:
            self.x0, self.y0, self.x1, self.y1 = r.x0, r.y0, r.x1, r.y1
        elif self.is_empty:
            return self
        else:
            self.x0, self.y0, self.x1, self.y1 = util_intersect_rect(self, r)
        return self

    def contains(self, x):
        """Check if containing point-like or rect-like x."""
        return self.__contains__(x)

    def transform(self, m):
        """Replace with the transformation by matrix-like m."""
        if not len(m) == 6:
            raise ValueError("Matrix: bad seq len")
        self.x0, self.y0, self.x1, self.y1 = util_transform_rect(self, m)
        return self

    def __getitem__(self, i):
        return (self.x0, self.y0, self.x1, self.y1)[i]

    def __len__(self):
        return 4

    def __setitem__(self, i, v):
        v = float(v)
        if   i == 0: self.x0 = v
        elif i == 1: self.y0 = v
        elif i == 2: self.x1 = v
        elif i == 3: self.y1 = v
        else:
            raise IndexError("index out of range")
        return None

    def __repr__(self):
        return "Rect" + str(tuple(self))

    def __pos__(self):
        return Rect(self)

    def __neg__(self):
        return Rect(-self.x0, -self.y0, -self.x1, -self.y1)

    def __bool__(self):
        return not self.x0 == self.y0 == self.x1 == self.y1 == 0

    def __nonzero__(self):
        return not self.x0 == self.y0 == self.x1 == self.y1 == 0

    def __eq__(self, r):
        if not hasattr(r, "__len__"):
            return False
        return len(r) == 4 and self.x0 == r[0] and self.y0 == r[1] and self.x1 == r[2] and self.y1 == r[3]

    def __abs__(self):
        if self.is_infinite or not self.is_valid:
            return 0.0
        return self.width * self.height

    def norm(self):
        return math.sqrt(sum([c*c for c in self]))

    def __add__(self, p):
        if hasattr(p, "__float__"):
            return Rect(self.x0 + p, self.y0 + p, self.x1 + p, self.y1 + p)
        if len(p) != 4:
            raise ValueError("Rect: bad seq len")
        return Rect(self.x0 + p[0], self.y0 + p[1], self.x1 + p[2], self.y1 + p[3])


    def __sub__(self, p):
        if hasattr(p, "__float__"):
            return Rect(self.x0 - p, self.y0 - p, self.x1 - p, self.y1 - p)
        if len(p) != 4:
            raise ValueError("Rect: bad seq len")
        return Rect(self.x0 - p[0], self.y0 - p[1], self.x1 - p[2], self.y1 - p[3])


    def __mul__(self, m):
        if hasattr(m, "__float__"):
            return Rect(self.x0 * m, self.y0 * m, self.x1 * m, self.y1 * m)
        r = Rect(self)
        r = r.transform(m)
        return r

    def __truediv__(self, m):
        if hasattr(m, "__float__"):
            return Rect(self.x0 * 1./m, self.y0 * 1./m, self.x1 * 1./m, self.y1 * 1./m)
        im = util_invert_matrix(m)[1]
        if not im:
            raise ZeroDivisionError("Matrix not invertible")
        r = Rect(self)
        r = r.transform(im)
        return r

    __div__ = __truediv__

    def __contains__(self, x):
        if hasattr(x, "__float__"):
            return x in tuple(self)
        l = len(x)
        if l == 2:
            return util_is_point_in_rect(x, self)
        if l == 4:
            r = INFINITE_RECT()
            try:
                r = Rect(x)
            except:
                r = Quad(x).rect
            return (self.x0 <= r.x0 <= r.x1 <= self.x1 and
                    self.y0 <= r.y0 <= r.y1 <= self.y1)
        return False
    

    def __or__(self, x):
        if not hasattr(x, "__len__"):
            raise ValueError("bad type op 2")

        r = Rect(self)
        if len(x) == 2:
            return r.include_point(x)
        if len(x) == 4:
            return r.include_rect(x)
        raise ValueError("bad type op 2")

    def __and__(self, x):
        if not hasattr(x, "__len__") or len(x) != 4:
            raise ValueError("bad type op 2")
        r = Rect(self)
        return r.intersect(x)

    def intersects(self, x):
        """Check if intersection with rectangle x is not empty."""
        r1 = Rect(x)
        if self.is_empty or self.is_infinite or r1.is_empty or r1.is_infinite:
            return False
        r = Rect(self)
        if r.intersect(r1).is_empty:
            return False
        return True

    def __hash__(self):
        return hash(tuple(self))

class IRect(object):
    """IRect() - all zeros
    IRect(x0, y0, x1, y1) - 4 coordinates
    IRect(top-left, x1, y1) - point and 2 coordinates
    IRect(x0, y0, bottom-right) - 2 coordinates and point
    IRect(top-left, bottom-right) - 2 points
    IRect(sequ) - new from sequence or rect-like
    """
    def __init__(self, *args):
        self.x0, self.y0, self.x1, self.y1 = util_make_irect(args)
        return None

    def normalize(self):
        """Replace rectangle with its valid version."""
        if self.x1 < self.x0:
            self.x0, self.x1 = self.x1, self.x0
        if self.y1 < self.y0:
            self.y0, self.y1 = self.y1, self.y0
        return self

    @property
    def is_empty(self):
        """True if rectangle area is empty."""
        return self.x0 >= self.x1 or self.y0 >= self.y1

    @property
    def is_valid(self):
        """True if rectangle is valid."""
        return self.x0 <= self.x1 and self.y0 <= self.y1

    @property
    def is_infinite(self):
        """True if rectangle is infinite."""
        return self.x0 == self.y0 == FZ_MIN_INF_RECT and self.x1 == self.y1 == FZ_MAX_INF_RECT

    @property
    def top_left(self):
        """Top-left corner."""
        return Point(self.x0, self.y0)

    @property
    def top_right(self):
        """Top-right corner."""
        return Point(self.x1, self.y0)

    @property
    def bottom_left(self):
        """Bottom-left corner."""
        return Point(self.x0, self.y1)

    @property
    def bottom_right(self):
        """Bottom-right corner."""
        return Point(self.x1, self.y1)

    tl = top_left
    tr = top_right
    bl = bottom_left
    br = bottom_right

    @property
    def quad(self):
        """Return Quad version of rectangle."""
        return Quad(self.tl, self.tr, self.bl, self.br)


    def torect(self, r):
        """Return matrix that converts to target rect."""

        r = Rect(r)
        if self.is_infinite or self.is_empty or r.is_infinite or r.is_empty:
            raise ValueError("rectangles must be finite and not empty")
        return (
            Matrix(1, 0, 0, 1, -self.x0, -self.y0)
            * Matrix(r.width / self.width, r.height / self.height)
            * Matrix(1, 0, 0, 1, r.x0, r.y0)
        )

    def morph(self, p, m):
        """Morph with matrix-like m and point-like p.

        Returns a new quad."""
        if self.is_infinite:
            return INFINITE_QUAD()
        return self.quad.morph(p, m)

    @property
    def rect(self):
        return Rect(self)

    width  = property(lambda self: self.x1 - self.x0 if self.x1 > self.x0 else 0)
    height = property(lambda self: self.y1 - self.y0 if self.y1 > self.y0 else 0)

    def include_point(self, p):
        """Extend rectangle to include point p."""
        rect = self.rect.include_point(p)
        return rect.irect

    def include_rect(self, r):
        """Extend rectangle to include rectangle r."""
        rect = self.rect.include_rect(r)
        return rect.irect

    def intersect(self, r):
        """Restrict rectangle to intersection with rectangle r."""
        rect = self.rect.intersect(r)
        return rect.irect

    def __getitem__(self, i):
        return (self.x0, self.y0, self.x1, self.y1)[i]

    def __len__(self):
        return 4

    def __setitem__(self, i, v):
        v = int(v)
        if   i == 0: self.x0 = v
        elif i == 1: self.y0 = v
        elif i == 2: self.x1 = v
        elif i == 3: self.y1 = v
        else:
            raise IndexError("index out of range")
        return None

    def __repr__(self):
        return "IRect" + str(tuple(self))

    def __pos__(self):
        return IRect(self)

    def __neg__(self):
        return IRect(-self.x0, -self.y0, -self.x1, -self.y1)

    def __bool__(self):
        return not self.x0 == self.y0 == self.x1 == self.y1 == 0

    def __nonzero__(self):
        return not self.x0 == self.y0 == self.x1 == self.y1 == 0

    def __eq__(self, r):
        if not hasattr(r, "__len__"):
            return False
        return len(r) == 4 and self.x0 == r[0] and self.y0 == r[1] and self.x1 == r[2] and self.y1 == r[3]

    def __abs__(self):
        if self.is_infinite or not self.is_valid:
            return 0
        return self.width * self.height

    def norm(self):
        return math.sqrt(sum([c*c for c in self]))

    def __add__(self, p):
        return Rect.__add__(self, p).round()

    def __sub__(self, p):
        return Rect.__sub__(self, p).round()

    def transform(self, m):
        return Rect.transform(self, m).round()

    def __mul__(self, m):
        return Rect.__mul__(self, m).round()

    def __truediv__(self, m):
        return Rect.__truediv__(self, m).round()

    __div__ = __truediv__


    def __contains__(self, x):
        return Rect.__contains__(self, x)


    def __or__(self, x):
        return Rect.__or__(self, x).round()

    def __and__(self, x):
        return Rect.__and__(self, x).round()

    def intersects(self, x):
        return Rect.intersects(self, x)

    def __hash__(self):
        return hash(tuple(self))


class Quad(object):
    """Quad() - all zero points\nQuad(ul, ur, ll, lr)\nQuad(quad) - new copy\nQuad(sequence) - from 'sequence'"""
    def __init__(self, *args):
        if not args:
            self.ul = self.ur = self.ll = self.lr = Point()
            return None

        if len(args) > 4:
            raise ValueError("Quad: bad seq len")
        if len(args) == 4:
            self.ul, self.ur, self.ll, self.lr = map(Point, args)
            return None
        if len(args) == 1:
            l = args[0]
            if hasattr(l, "__getitem__") is False:
                raise ValueError("Quad: bad args")
            if len(l) != 4:
                raise ValueError("Quad: bad seq len")
            self.ul, self.ur, self.ll, self.lr = map(Point, l)
            return None
        raise ValueError("Quad: bad args")

    @property
    def is_rectangular(self)->bool:
        """Check if quad is rectangular.

        Notes:
            Some rotation matrix can thus transform it into a rectangle.
            This is equivalent to three corners enclose 90 degrees.
        Returns:
            True or False.
        """

        sine = util_sine_between(self.ul, self.ur, self.lr)
        if abs(sine - 1) > EPSILON:  # the sine of the angle
            return False

        sine = util_sine_between(self.ur, self.lr, self.ll)
        if abs(sine - 1) > EPSILON:
            return False

        sine = util_sine_between(self.lr, self.ll, self.ul)
        if abs(sine - 1) > EPSILON:
            return False

        return True


    @property
    def is_convex(self)->bool:
        """Check if quad is convex and not degenerate.

        Notes:
            Check that for the two diagonals, the other two corners are not
            on the same side of the diagonal.
        Returns:
            True or False.
        """
        m = planish_line(self.ul, self.lr)  # puts this diagonal on x-axis
        p1 = self.ll * m  # transform the
        p2 = self.ur * m  # other two points
        if p1.y * p2.y > 0:
            return False
        m = planish_line(self.ll, self.ur)  # puts other diagonal on x-axis
        p1 = self.lr * m  # tranform the
        p2 = self.ul * m  # remaining points
        if p1.y * p2.y > 0:
            return False
        return True


    width  = property(lambda self: max(abs(self.ul - self.ur), abs(self.ll - self.lr)))
    height = property(lambda self: max(abs(self.ul - self.ll), abs(self.ur - self.lr)))

    @property
    def is_empty(self):
        """Check whether all quad corners are on the same line.

        This is the case if width or height is zero.
        """
        return self.width < EPSILON or self.height < EPSILON

    @property
    def is_infinite(self):
        """Check whether this is the infinite quad."""
        return self.rect.is_infinite

    @property
    def rect(self):
        r = Rect()
        r.x0 = min(self.ul.x, self.ur.x, self.lr.x, self.ll.x)
        r.y0 = min(self.ul.y, self.ur.y, self.lr.y, self.ll.y)
        r.x1 = max(self.ul.x, self.ur.x, self.lr.x, self.ll.x)
        r.y1 = max(self.ul.y, self.ur.y, self.lr.y, self.ll.y)
        return r


    def __contains__(self, x):
        try:
            l = x.__len__()
        except:
            return False
        if l == 2:
            return util_point_in_quad(x, self)
        if l != 4:
            return False
        if CheckRect(x):
            if Rect(x).is_empty:
                return True
            return util_point_in_quad(x[:2], self) and util_point_in_quad(x[2:], self)
        if CheckQuad(x):
            for i in range(4):
                if not util_point_in_quad(x[i], self):
                    return False
            return True
        return False


    def __getitem__(self, i):
        return (self.ul, self.ur, self.ll, self.lr)[i]

    def __len__(self):
        return 4

    def __setitem__(self, i, v):
        if   i == 0: self.ul = Point(v)
        elif i == 1: self.ur = Point(v)
        elif i == 2: self.ll = Point(v)
        elif i == 3: self.lr = Point(v)
        else:
            raise IndexError("index out of range")
        return None

    def __repr__(self):
        return "Quad" + str(tuple(self))

    def __pos__(self):
        return Quad(self)

    def __neg__(self):
        return Quad(-self.ul, -self.ur, -self.ll, -self.lr)

    def __bool__(self):
        return not self.is_empty

    def __nonzero__(self):
        return not self.is_empty

    def __eq__(self, quad):
        if not hasattr(quad, "__len__"):
            return False
        return len(quad) == 4 and (
            self.ul == quad[0] and
            self.ur == quad[1] and
            self.ll == quad[2] and
            self.lr == quad[3]
        )

    def __abs__(self):
        if self.is_empty:
            return 0.0
        return abs(self.ul - self.ur) * abs(self.ul - self.ll)


    def morph(self, p, m):
        """Morph the quad with matrix-like 'm' and point-like 'p'.

        Return a new quad."""
        if self.is_infinite:
            return INFINITE_QUAD()
        delta = Matrix(1, 1).pretranslate(p.x, p.y)
        q = self * ~delta * m * delta
        return q


    def transform(self, m):
        """Replace quad by its transformation with matrix m."""
        if hasattr(m, "__float__"):
            pass
        elif len(m) != 6:
            raise ValueError("Matrix: bad seq len")
        self.ul *= m
        self.ur *= m
        self.ll *= m
        self.lr *= m
        return self

    def __mul__(self, m):
        q = Quad(self)
        q = q.transform(m)
        return q

    def __add__(self, q):
        if hasattr(q, "__float__"):
            return Quad(self.ul + q, self.ur + q, self.ll + q, self.lr + q)
        if len(p) != 4:
            raise ValueError("Quad: bad seq len")
        return Quad(self.ul + q[0], self.ur + q[1], self.ll + q[2], self.lr + q[3])


    def __sub__(self, q):
        if hasattr(q, "__float__"):
            return Quad(self.ul - q, self.ur - q, self.ll - q, self.lr - q)
        if len(p) != 4:
            raise ValueError("Quad: bad seq len")
        return Quad(self.ul - q[0], self.ur - q[1], self.ll - q[2], self.lr - q[3])


    def __truediv__(self, m):
        if hasattr(m, "__float__"):
            im = 1. / m
        else:
            im = util_invert_matrix(m)[1]
            if not im:
                raise ZeroDivisionError("Matrix not invertible")
        q = Quad(self)
        q = q.transform(im)
        return q

    __div__ = __truediv__


    def __hash__(self):
        return hash(tuple(self))


# some special geometry objects
def EMPTY_RECT():
    return Rect(FZ_MAX_INF_RECT, FZ_MAX_INF_RECT, FZ_MIN_INF_RECT, FZ_MIN_INF_RECT)


def INFINITE_RECT():
    return Rect(FZ_MIN_INF_RECT, FZ_MIN_INF_RECT, FZ_MAX_INF_RECT, FZ_MAX_INF_RECT)


def EMPTY_IRECT():
    return IRect(FZ_MAX_INF_RECT, FZ_MAX_INF_RECT, FZ_MIN_INF_RECT, FZ_MIN_INF_RECT)


def INFINITE_IRECT():
    return IRect(FZ_MIN_INF_RECT, FZ_MIN_INF_RECT, FZ_MAX_INF_RECT, FZ_MAX_INF_RECT)


def INFINITE_QUAD():
    return INFINITE_RECT().quad


def EMPTY_QUAD():
    return EMPTY_RECT().quad


%}







PyMuPDF-1.21.1/fitz/helper-globals.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
// Global switches
// Switch for device hints = no cache
static int no_device_caching = 0;

// Switch for computing glyph of fontsize height
static int small_glyph_heights = 0;

// Switch for returning fontnames including subset prefix
static int subset_fontnames = 0;

// Unset ascender / descender corrections
static int skip_quad_corrections = 0;

// constants: error messages
static const char MSG_BAD_ANNOT_TYPE[] = "bad annot type";
static const char MSG_BAD_APN[] = "bad or missing annot AP/N";
static const char MSG_BAD_ARG_INK_ANNOT[] = "arg must be seq of seq of float pairs";
static const char MSG_BAD_ARG_POINTS[] = "bad seq of points";
static const char MSG_BAD_BUFFER[] = "bad type: 'buffer'";
static const char MSG_BAD_COLOR_SEQ[] = "bad color sequence";
static const char MSG_BAD_DOCUMENT[] = "cannot open broken document";
static const char MSG_BAD_FILETYPE[] = "bad filetype";
static const char MSG_BAD_LOCATION[] = "bad location";
static const char MSG_BAD_OC_CONFIG[] = "bad config number";
static const char MSG_BAD_OC_LAYER[] = "bad layer number";
static const char MSG_BAD_OC_REF[] = "bad 'oc' reference";
static const char MSG_BAD_PAGEID[] = "bad page id";
static const char MSG_BAD_PAGENO[] = "bad page number(s)";
static const char MSG_BAD_PDFROOT[] = "PDF has no root";
static const char MSG_BAD_RECT[] = "rect is infinite or empty";
static const char MSG_BAD_TEXT[] = "bad type: 'text'";
static const char MSG_BAD_XREF[] = "bad xref";
static const char MSG_COLOR_COUNT_FAILED[] = "color count failed";
static const char MSG_FILE_OR_BUFFER[] = "need font file or buffer";
static const char MSG_FONT_FAILED[] = "cannot create font";
static const char MSG_IS_NO_ANNOT[] = "is no annotation";
static const char MSG_IS_NO_IMAGE[] = "is no image";
static const char MSG_IS_NO_PDF[] = "is no PDF";
static const char MSG_IS_NO_DICT[] = "object is no PDF dict";
static const char MSG_PIX_NOALPHA[] = "source pixmap has no alpha";
static const char MSG_PIXEL_OUTSIDE[] = "pixel(s) outside image";
%}







PyMuPDF-1.21.1/fitz/helper-other.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
fz_buffer *JM_object_to_buffer(fz_context *ctx, pdf_obj *val, int a, int b);
PyObject *JM_EscapeStrFromBuffer(fz_context *ctx, fz_buffer *buff);
pdf_obj *JM_pdf_obj_from_str(fz_context *ctx, pdf_document *doc, char *src);

// exception handling
void *JM_ReturnException(fz_context *ctx)
{
    PyErr_SetString(JM_Exc_CurrentException, fz_caught_message(ctx));
    JM_Exc_CurrentException = PyExc_RuntimeError;
    return NULL;
}


static int LIST_APPEND_DROP(PyObject *list, PyObject *item)
{
    if (!list || !PyList_Check(list) || !item) return -2;
    int rc = PyList_Append(list, item);
    Py_DECREF(item);
    return rc;
}

static int DICT_SETITEM_DROP(PyObject *dict, PyObject *key, PyObject *value)
{
    if (!dict || !PyDict_Check(dict) || !key || !value) return -2;
    int rc = PyDict_SetItem(dict, key, value);
    Py_DECREF(value);
    return rc;
}

static int DICT_SETITEMSTR_DROP(PyObject *dict, const char *key, PyObject *value)
{
    if (!dict || !PyDict_Check(dict) || !key || !value) return -2;
    int rc = PyDict_SetItemString(dict, key, value);
    Py_DECREF(value);
    return rc;
}


//--------------------------------------
// Ensure valid journalling state
//--------------------------------------
int JM_have_operation(fz_context *ctx, pdf_document *pdf)
{
    if (pdf->journal && !pdf_undoredo_step(ctx, pdf, 0)) {
        return 0;
    }
    return 1;
}

//----------------------------------
// Set a PDF dict key to some value
//----------------------------------
static pdf_obj
*JM_set_object_value(fz_context *ctx, pdf_obj *obj, const char *key, char *value)
{
    fz_buffer *res = NULL;
    pdf_obj *new_obj = NULL, *testkey = NULL;
    PyObject *skey = PyUnicode_FromString(key);  // Python version of dict key
    PyObject *slash = PyUnicode_FromString("/");  // PDF path separator
    PyObject *list = NULL, *newval=NULL, *newstr=NULL, *nullval=NULL;
    const char eyecatcher[] = "fitz: replace me!";
    fz_try(ctx)
    {
        pdf_document *pdf = pdf_get_bound_document(ctx, obj);
        // split PDF key at path seps and take last key part
        list = PyUnicode_Split(skey, slash, -1);
        Py_ssize_t len = PySequence_Size(list);
        Py_ssize_t i = len - 1;
        Py_DECREF(skey);
        skey = PySequence_GetItem(list, i);

        PySequence_DelItem(list, i);  // del the last sub-key
        len =  PySequence_Size(list);  // remaining length
        testkey = pdf_dict_getp(ctx, obj, key);  // check if key already exists
        if (!testkey) {
            /*-----------------------------------------------------------------
            No, it will be created here. But we cannot allow this happening if
            indirect objects are referenced. So we check all higher level
            sub-paths for indirect references.
            -----------------------------------------------------------------*/
            while (len > 0) {
                PyObject *t = PyUnicode_Join(slash, list);  // next high level
                if (pdf_is_indirect(ctx, pdf_dict_getp(ctx, obj, JM_StrAsChar(t)))) {
                    Py_DECREF(t);
                    fz_throw(ctx, FZ_ERROR_GENERIC, "path to '%s' has indirects", JM_StrAsChar(skey));
                }
                PySequence_DelItem(list, len - 1);  // del last sub-key
                len = PySequence_Size(list);  // remaining length
                Py_DECREF(t);
            }
        }
        // Insert our eyecatcher. Will create all sub-paths in the chain, or
        // respectively remove old value of key-path.
        pdf_dict_putp_drop(ctx, obj, key, pdf_new_text_string(ctx, eyecatcher));
        testkey = pdf_dict_getp(ctx, obj, key);
        if (!pdf_is_string(ctx, testkey)) {
            fz_throw(ctx, FZ_ERROR_GENERIC, "cannot insert value for '%s'", key);
        }
        const char *temp = pdf_to_text_string(ctx, testkey);
        if (strcmp(temp, eyecatcher) != 0) {
            fz_throw(ctx, FZ_ERROR_GENERIC, "cannot insert value for '%s'", key);
        }
        // read the result as a string
        res = JM_object_to_buffer(ctx, obj, 1, 0);
        PyObject *objstr = JM_EscapeStrFromBuffer(ctx, res);

        // replace 'eyecatcher' by desired 'value'
        nullval = PyUnicode_FromFormat("/%s(%s)", JM_StrAsChar(skey), eyecatcher);
        newval = PyUnicode_FromFormat("/%s %s", JM_StrAsChar(skey), value);
        newstr = PyUnicode_Replace(objstr, nullval, newval, 1);

        // make PDF object from resulting string
        new_obj = JM_pdf_obj_from_str(ctx, pdf, JM_StrAsChar(newstr));
    }
    fz_always(ctx) {
        fz_drop_buffer(ctx, res);
        Py_CLEAR(skey);
        Py_CLEAR(slash);
        Py_CLEAR(list);
        Py_CLEAR(newval);
        Py_CLEAR(newstr);
        Py_CLEAR(nullval);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return new_obj;
}


static void
JM_get_page_labels(fz_context *ctx, PyObject *liste, pdf_obj *nums)
{
    int pno, i, n = pdf_array_len(ctx, nums);
    char *c = NULL;
    pdf_obj *val;
    fz_buffer *res = NULL;
    for (i = 0; i < n; i += 2) {
        pdf_obj *key = pdf_resolve_indirect(ctx, pdf_array_get(ctx, nums, i));
        pno = pdf_to_int(ctx, key);
        val = pdf_resolve_indirect(ctx, pdf_array_get(ctx, nums, i + 1));
        res = JM_object_to_buffer(ctx, val, 1, 0);
        fz_buffer_storage(ctx, res, &c);
        LIST_APPEND_DROP(liste, Py_BuildValue("is", pno, c));
        fz_drop_buffer(ctx, res);
    }
}


PyObject *JM_EscapeStrFromBuffer(fz_context *ctx, fz_buffer *buff)
{
    if (!buff) return EMPTY_STRING;
    unsigned char *s = NULL;
    size_t len = fz_buffer_storage(ctx, buff, &s);
    PyObject *val = PyUnicode_DecodeRawUnicodeEscape((const char *) s, (Py_ssize_t) len, "replace");
    if (!val) {
        val = EMPTY_STRING;
        PyErr_Clear();
    }
    return val;
}

PyObject *JM_UnicodeFromBuffer(fz_context *ctx, fz_buffer *buff)
{
    unsigned char *s = NULL;
    Py_ssize_t len = (Py_ssize_t) fz_buffer_storage(ctx, buff, &s);
    PyObject *val = PyUnicode_DecodeUTF8((const char *) s, len, "replace");
    if (!val) {
        val = EMPTY_STRING;
        PyErr_Clear();
    }
    return val;
}

PyObject *JM_UnicodeFromStr(const char *c)
{
    if (!c) return EMPTY_STRING;
    PyObject *val = Py_BuildValue("s", c);
    if (!val) {
        val = EMPTY_STRING;
        PyErr_Clear();
    }
    return val;
}

PyObject *JM_EscapeStrFromStr(const char *c)
{
    if (!c) return EMPTY_STRING;
    PyObject *val = PyUnicode_DecodeRawUnicodeEscape(c, (Py_ssize_t) strlen(c), "replace");
    if (!val) {
        val = EMPTY_STRING;
        PyErr_Clear();
    }
    return val;
}


// list of valid unicodes of a fz_font
void JM_valid_chars(fz_context *ctx, fz_font *font, void *arr)
{
	FT_Face face = font->ft_face;
	FT_ULong ucs;
	FT_UInt gid;
	long *table = (long *)arr;
	fz_lock(ctx, FZ_LOCK_FREETYPE);
	ucs = FT_Get_First_Char(face, &gid);
	while (gid > 0)
	{
		if (gid < (FT_ULong)face->num_glyphs && face->num_glyphs > 0)
			table[gid] = (long)ucs;
		ucs = FT_Get_Next_Char(face, ucs, &gid);
	}
	fz_unlock(ctx, FZ_LOCK_FREETYPE);
	return;
}


// redirect MuPDF warnings
void JM_mupdf_warning(void *user, const char *message)
{
    LIST_APPEND_DROP(JM_mupdf_warnings_store, JM_EscapeStrFromStr(message));
    if (JM_mupdf_show_warnings) {
        PySys_WriteStderr("mupdf: %s\n", message);
    }
}

// redirect MuPDF errors
void JM_mupdf_error(void *user, const char *message)
{
    LIST_APPEND_DROP(JM_mupdf_warnings_store, JM_EscapeStrFromStr(message));
    if (JM_mupdf_show_errors) {
        PySys_WriteStderr("mupdf: %s\n", message);
    }
}

// a simple tracer
void JM_TRACE(const char *id)
{
    PySys_WriteStdout("%s\n", id);
}


// put a warning on Python-stdout
void JM_Warning(const char *id)
{
    PySys_WriteStdout("warning: %s\n", id);
}

#if JM_MEMORY == 1
//-----------------------------------------------------------------------------
// The following 3 functions replace MuPDF standard memory allocation.
// This will ensure, that MuPDF memory handling becomes part of Python's
// memory management.
//-----------------------------------------------------------------------------
static void *JM_Py_Malloc(void *opaque, size_t size)
{
    void *mem = PyMem_Malloc((Py_ssize_t) size);
    if (mem) return mem;
    fz_throw(gctx, FZ_ERROR_MEMORY, "malloc of %zu bytes failed", size);
}

static void *JM_Py_Realloc(void *opaque, void *old, size_t size)
{
    void *mem = PyMem_Realloc(old, (Py_ssize_t) size);
    if (mem) return mem;
    fz_throw(gctx, FZ_ERROR_MEMORY, "realloc of %zu bytes failed", size);
}

static void JM_PY_Free(void *opaque, void *ptr)
{
    PyMem_Free(ptr);
}

const fz_alloc_context JM_Alloc_Context =
{
	NULL,
	JM_Py_Malloc,
	JM_Py_Realloc,
	JM_PY_Free
};
#endif

PyObject *JM_fitz_config()
{
#if defined(TOFU)
#define have_TOFU JM_BOOL(0)
#else
#define have_TOFU JM_BOOL(1)
#endif
#if defined(TOFU_CJK)
#define have_TOFU_CJK JM_BOOL(0)
#else
#define have_TOFU_CJK JM_BOOL(1)
#endif
#if defined(TOFU_CJK_EXT)
#define have_TOFU_CJK_EXT JM_BOOL(0)
#else
#define have_TOFU_CJK_EXT JM_BOOL(1)
#endif
#if defined(TOFU_CJK_LANG)
#define have_TOFU_CJK_LANG JM_BOOL(0)
#else
#define have_TOFU_CJK_LANG JM_BOOL(1)
#endif
#if defined(TOFU_EMOJI)
#define have_TOFU_EMOJI JM_BOOL(0)
#else
#define have_TOFU_EMOJI JM_BOOL(1)
#endif
#if defined(TOFU_HISTORIC)
#define have_TOFU_HISTORIC JM_BOOL(0)
#else
#define have_TOFU_HISTORIC JM_BOOL(1)
#endif
#if defined(TOFU_SYMBOL)
#define have_TOFU_SYMBOL JM_BOOL(0)
#else
#define have_TOFU_SYMBOL JM_BOOL(1)
#endif
#if defined(TOFU_SIL)
#define have_TOFU_SIL JM_BOOL(0)
#else
#define have_TOFU_SIL JM_BOOL(1)
#endif
#if defined(TOFU_BASE14)
#define have_TOFU_BASE14 JM_BOOL(0)
#else
#define have_TOFU_BASE14 JM_BOOL(1)
#endif
    PyObject *dict = PyDict_New();
    DICT_SETITEMSTR_DROP(dict, "plotter-g", JM_BOOL(FZ_PLOTTERS_G));
    DICT_SETITEMSTR_DROP(dict, "plotter-rgb", JM_BOOL(FZ_PLOTTERS_RGB));
    DICT_SETITEMSTR_DROP(dict, "plotter-cmyk", JM_BOOL(FZ_PLOTTERS_CMYK));
    DICT_SETITEMSTR_DROP(dict, "plotter-n", JM_BOOL(FZ_PLOTTERS_N));
    DICT_SETITEMSTR_DROP(dict, "pdf", JM_BOOL(FZ_ENABLE_PDF));
    DICT_SETITEMSTR_DROP(dict, "xps", JM_BOOL(FZ_ENABLE_XPS));
    DICT_SETITEMSTR_DROP(dict, "svg", JM_BOOL(FZ_ENABLE_SVG));
    DICT_SETITEMSTR_DROP(dict, "cbz", JM_BOOL(FZ_ENABLE_CBZ));
    DICT_SETITEMSTR_DROP(dict, "img", JM_BOOL(FZ_ENABLE_IMG));
    DICT_SETITEMSTR_DROP(dict, "html", JM_BOOL(FZ_ENABLE_HTML));
    DICT_SETITEMSTR_DROP(dict, "epub", JM_BOOL(FZ_ENABLE_EPUB));
    DICT_SETITEMSTR_DROP(dict, "jpx", JM_BOOL(FZ_ENABLE_JPX));
    DICT_SETITEMSTR_DROP(dict, "js", JM_BOOL(FZ_ENABLE_JS));
    DICT_SETITEMSTR_DROP(dict, "tofu", have_TOFU);
    DICT_SETITEMSTR_DROP(dict, "tofu-cjk", have_TOFU_CJK);
    DICT_SETITEMSTR_DROP(dict, "tofu-cjk-ext", have_TOFU_CJK_EXT);
    DICT_SETITEMSTR_DROP(dict, "tofu-cjk-lang", have_TOFU_CJK_LANG);
    DICT_SETITEMSTR_DROP(dict, "tofu-emoji", have_TOFU_EMOJI);
    DICT_SETITEMSTR_DROP(dict, "tofu-historic", have_TOFU_HISTORIC);
    DICT_SETITEMSTR_DROP(dict, "tofu-symbol", have_TOFU_SYMBOL);
    DICT_SETITEMSTR_DROP(dict, "tofu-sil", have_TOFU_SIL);
    DICT_SETITEMSTR_DROP(dict, "icc", JM_BOOL(FZ_ENABLE_ICC));
    DICT_SETITEMSTR_DROP(dict, "base14", have_TOFU_BASE14);
    DICT_SETITEMSTR_DROP(dict, "py-memory", JM_BOOL(JM_MEMORY));
    return dict;
}

//----------------------------------------------------------------------------
// Update a color float array with values from a Python sequence.
// Any error condition is treated as a no-op.
//----------------------------------------------------------------------------
void JM_color_FromSequence(PyObject *color, int *n, float col[4])
{
    if (!color || color == Py_None) {
        *n = -1;
        return;
    }
    if (PyFloat_Check(color)) { // maybe just a single float
        *n = 1;
        float c = (float) PyFloat_AsDouble(color);
        if (!INRANGE(c, 0, 1)) {
            c = 1;
        }
        col[0] = c;
        return;
    }

    if (!PySequence_Check(color)) {
        *n = -1;
        return;
    }
    int len = (int) PySequence_Size(color), rc;
    if (len == 0) {
        *n = 0;
        return;
    }
    if (!INRANGE(len, 1, 4) || len == 2) {
        *n = -1;
        return;
    }

    double mcol[4] = {0,0,0,0}; // local color storage
    Py_ssize_t i;
    for (i = 0; i < len; i++) {
        rc = JM_FLOAT_ITEM(color, i, &mcol[i]);
        if (!INRANGE(mcol[i], 0, 1) || rc == 1) mcol[i] = 1;
    }

    *n = len;
    for (i = 0; i < len; i++)
        col[i] = (float) mcol[i];
    return;
}

// return extension for fitz image type
const char *JM_image_extension(int type)
{
    switch (type) {
        case(FZ_IMAGE_RAW): return "raw";
        case(FZ_IMAGE_FLATE): return "flate";
        case(FZ_IMAGE_LZW): return "lzw";
        case(FZ_IMAGE_RLD): return "rld";
        case(FZ_IMAGE_BMP): return "bmp";
        case(FZ_IMAGE_GIF): return "gif";
        case(FZ_IMAGE_JBIG2): return "jb2";
        case(FZ_IMAGE_JPEG): return "jpeg";
        case(FZ_IMAGE_JPX): return "jpx";
        case(FZ_IMAGE_JXR): return "jxr";
        case(FZ_IMAGE_PNG): return "png";
        case(FZ_IMAGE_PNM): return "pnm";
        case(FZ_IMAGE_TIFF): return "tiff";
        default: return "n/a";
    }
}

//----------------------------------------------------------------------------
// Turn fz_buffer into a Python bytes object
//----------------------------------------------------------------------------
PyObject *JM_BinFromBuffer(fz_context *ctx, fz_buffer *buffer)
{

#if  PY_VERSION_HEX < 0x03000000
 #define PyBytes_FromString(x) PyString_FromString(x)
 #define PyBytes_FromStringAndSize(c, l) PyString_FromStringAndSize(c, l)
#endif

    if (!buffer) {
        return PyBytes_FromString("");
    }
    unsigned char *c = NULL;
    size_t len = fz_buffer_storage(ctx, buffer, &c);
    return PyBytes_FromStringAndSize((const char *) c, (Py_ssize_t) len);
}

//----------------------------------------------------------------------------
// Turn fz_buffer into a Python bytearray object
//----------------------------------------------------------------------------
PyObject *JM_BArrayFromBuffer(fz_context *ctx, fz_buffer *buffer)
{
    if (!buffer) {
        return PyByteArray_FromStringAndSize("", 0);
    }
    unsigned char *c = NULL;
    size_t len = fz_buffer_storage(ctx, buffer, &c);
    return PyByteArray_FromStringAndSize((const char *) c, (Py_ssize_t) len);
}


//----------------------------------------------------------------------------
// compress char* into a new buffer
//----------------------------------------------------------------------------
fz_buffer *JM_compress_buffer(fz_context *ctx, fz_buffer *inbuffer)
{
    fz_buffer *buf = NULL;
    fz_try(ctx) {
        size_t compressed_length = 0;
        unsigned char *data = fz_new_deflated_data_from_buffer(ctx,
                              &compressed_length, inbuffer, FZ_DEFLATE_BEST);
        if (data == NULL || compressed_length == 0)
            return NULL;
        buf = fz_new_buffer_from_data(ctx, data, compressed_length);
        fz_resize_buffer(ctx, buf, compressed_length);
    }
    fz_catch(ctx) {
        fz_drop_buffer(ctx, buf);
        fz_rethrow(ctx);
    }
    return buf;
}

//----------------------------------------------------------------------------
// update a stream object
// compress stream when beneficial
//----------------------------------------------------------------------------
void JM_update_stream(fz_context *ctx, pdf_document *doc, pdf_obj *obj, fz_buffer *buffer, int compress)
{

    fz_buffer *nres = NULL;
    size_t len = fz_buffer_storage(ctx, buffer, NULL);
    size_t nlen = len;

    if (compress == 1 && len > 30) {  // ignore small stuff
        nres = JM_compress_buffer(ctx, buffer);
        nlen = fz_buffer_storage(ctx, nres, NULL);
    }

    if (nlen < len && nres && compress==1) {  // was it worth the effort?
        pdf_dict_put(ctx, obj, PDF_NAME(Filter), PDF_NAME(FlateDecode));
        pdf_update_stream(ctx, doc, obj, nres, 1);
    } else {
        pdf_update_stream(ctx, doc, obj, buffer, 0);
    }
    fz_drop_buffer(ctx, nres);
}

//-----------------------------------------------------------------------------
// return hex characters for n characters in input 'in'
//-----------------------------------------------------------------------------
void hexlify(int n, unsigned char *in, unsigned char *out)
{
    const unsigned char hdigit[17] = "0123456789abcedf";
    int i, i1, i2;
    for (i = 0; i < n; i++) {
        i1 = in[i]>>4;
        i2 = in[i] - i1*16;
        out[2*i] = hdigit[i1];
        out[2*i + 1] = hdigit[i2];
    }
    out[2*n] = 0;
}

//----------------------------------------------------------------------------
// Make fz_buffer from a PyBytes, PyByteArray, io.BytesIO object
//----------------------------------------------------------------------------
fz_buffer *JM_BufferFromBytes(fz_context *ctx, PyObject *stream)
{
    char *c = NULL;
    PyObject *mybytes = NULL;
    size_t len = 0;
    fz_buffer *res = NULL;
    fz_var(res);
    fz_try(ctx) {
        if (PyBytes_Check(stream)) {
            c = PyBytes_AS_STRING(stream);
            len = (size_t) PyBytes_GET_SIZE(stream);
        } else if (PyByteArray_Check(stream)) {
            c = PyByteArray_AS_STRING(stream);
            len = (size_t) PyByteArray_GET_SIZE(stream);
        } else if (PyObject_HasAttrString(stream, "getvalue")) {
            // we assume here that this delivers what we expect
            mybytes = PyObject_CallMethod(stream, "getvalue", NULL);
            c = PyBytes_AS_STRING(mybytes);
            len = (size_t) PyBytes_GET_SIZE(mybytes);
        }
        // if none of the above, c is NULL and we return an empty buffer
        if (c) {
            res = fz_new_buffer_from_copied_data(ctx, (const unsigned char *) c, len);
        } else {
            res = fz_new_buffer(ctx, 1);
            fz_append_byte(ctx, res, 10);
        }
        fz_terminate_buffer(ctx, res);
    }
    fz_always(ctx) {
        Py_CLEAR(mybytes);
        PyErr_Clear();
    }
    fz_catch(ctx) {
        fz_drop_buffer(ctx, res);
        fz_rethrow(ctx);
    }
    return res;
}


//----------------------------------------------------------------------------
// Deep-copies a specified source page to the target location.
// Modified copy of function of pdfmerge.c: we also copy annotations, but
// we skip **link** annotations. In addition we rotate output.
//----------------------------------------------------------------------------
static void
page_merge(fz_context *ctx, pdf_document *doc_des, pdf_document *doc_src, int page_from, int page_to, int rotate, int links, int copy_annots, pdf_graft_map *graft_map)
{
    pdf_obj *page_ref = NULL;
    pdf_obj *page_dict = NULL;
    pdf_obj *obj = NULL, *ref = NULL;

    // list of object types (per page) we want to copy
    static pdf_obj * const known_page_objs[] = {
        PDF_NAME(Contents),
        PDF_NAME(Resources),
        PDF_NAME(MediaBox),
        PDF_NAME(CropBox),
        PDF_NAME(BleedBox),
        PDF_NAME(TrimBox),
        PDF_NAME(ArtBox),
        PDF_NAME(Rotate),
        PDF_NAME(UserUnit)
    };

    int i, n;

    fz_var(ref);
    fz_var(page_dict);

    fz_try(ctx) {
        page_ref = pdf_lookup_page_obj(ctx, doc_src, page_from);

        // make new page dict in dest doc
        page_dict = pdf_new_dict(ctx, doc_des, 4);
        pdf_dict_put(ctx, page_dict, PDF_NAME(Type), PDF_NAME(Page));

        for (i = 0; i < (int) nelem(known_page_objs); i++) {
            obj = pdf_dict_get_inheritable(ctx, page_ref, known_page_objs[i]);
            if (obj != NULL) {
                pdf_dict_put_drop(ctx, page_dict, known_page_objs[i], pdf_graft_mapped_object(ctx, graft_map, obj));
            }
        }

        // Copy the annotations, but skip types Link, Popup, IRT.
        // Remove dict keys P (parent) and Popup from copied annot.
        if (copy_annots) {
            pdf_obj *old_annots = pdf_dict_get(ctx, page_ref, PDF_NAME(Annots));
            if (old_annots) {
                n = pdf_array_len(ctx, old_annots);
                pdf_obj *new_annots = pdf_dict_put_array(ctx, page_dict, PDF_NAME(Annots), n);
                for (i = 0; i < n; i++) {
                    pdf_obj *o = pdf_array_get(ctx, old_annots, i);
                    if (pdf_dict_get(ctx, o, PDF_NAME(IRT))) continue;
                    pdf_obj *subtype = pdf_dict_get(ctx, o, PDF_NAME(Subtype));
                    if (pdf_name_eq(ctx, subtype, PDF_NAME(Link))) continue;
                    if (pdf_name_eq(ctx, subtype, PDF_NAME(Popup))) continue;
                    if (pdf_name_eq(ctx, subtype, PDF_NAME(Widget))) {
                        fz_warn(ctx, "skipping widget annotation");
                        continue;
                    }
                    pdf_dict_del(ctx, o, PDF_NAME(Popup));
                    pdf_dict_del(ctx, o, PDF_NAME(P));
                    pdf_obj *copy_o = pdf_graft_mapped_object(ctx, graft_map, o);
                    pdf_obj *annot = pdf_new_indirect(ctx, doc_des,
                                     pdf_to_num(ctx, copy_o), 0);
                    pdf_array_push_drop(ctx, new_annots, annot);
                    pdf_drop_obj(ctx, copy_o);
                }
            }
        }
        // rotate the page
        if (rotate != -1) {
            pdf_dict_put_int(ctx, page_dict, PDF_NAME(Rotate), (int64_t) rotate);
        }
        // Now add the page dictionary to dest PDF
        ref = pdf_add_object(ctx, doc_des, page_dict);

        // Insert new page at specified location
        pdf_insert_page(ctx, doc_des, page_to, ref);

    }
    fz_always(ctx) {
        pdf_drop_obj(ctx, page_dict);
        pdf_drop_obj(ctx, ref);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
}

//-----------------------------------------------------------------------------
// Copy a range of pages (spage, epage) from a source PDF to a specified
// location (apage) of the target PDF.
// If spage > epage, the sequence of source pages is reversed.
//-----------------------------------------------------------------------------
void JM_merge_range(fz_context *ctx, pdf_document *doc_des, pdf_document *doc_src, int spage, int epage, int apage, int rotate, int links, int annots, int show_progress, pdf_graft_map *graft_map)
{
    int page, afterpage;
    afterpage = apage;
    int counter = 0;  // copied pages counter
    int total = fz_absi(epage - spage) + 1;  // total pages to copy

    fz_try(ctx) {
        if (spage < epage) {
            for (page = spage; page <= epage; page++, afterpage++) {
                page_merge(ctx, doc_des, doc_src, page, afterpage, rotate, links, annots, graft_map);
                counter++;
                if (show_progress > 0 && counter % show_progress == 0) {
                    PySys_WriteStdout("Inserted %i of %i pages.\n", counter, total);
                }
            }
        } else {
            for (page = spage; page >= epage; page--, afterpage++) {
                page_merge(ctx, doc_des, doc_src, page, afterpage, rotate, links, annots, graft_map);
                counter++;
                if (show_progress > 0 && counter % show_progress == 0) {
                    PySys_WriteStdout("Inserted %i of %i pages.\n", counter, total);
                }
            }
        }
    }

    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
}

//----------------------------------------------------------------------------
// Return list of outline xref numbers. Recursive function. Arguments:
// 'obj' first OL item
// 'xrefs' empty Python list
//----------------------------------------------------------------------------
PyObject *JM_outline_xrefs(fz_context *ctx, pdf_obj *obj, PyObject *xrefs)
{
    pdf_obj *first, *parent, *thisobj;
    if (!obj) return xrefs;
    PyObject *newxref = NULL;
    thisobj = obj;
    while (thisobj) {
        newxref = PyLong_FromLong((long) pdf_to_num(ctx, thisobj));
        if (PySequence_Contains(xrefs, newxref) ||
            pdf_dict_get(ctx, thisobj, PDF_NAME(Type))) {
            // circular ref or top of chain: terminate
            Py_DECREF(newxref);
            break;
        }
        LIST_APPEND_DROP(xrefs, newxref);
        first = pdf_dict_get(ctx, thisobj, PDF_NAME(First));  // try go down
        if (pdf_is_dict(ctx, first)) xrefs = JM_outline_xrefs(ctx, first, xrefs);
        thisobj = pdf_dict_get(ctx, thisobj, PDF_NAME(Next));  // try go next
        parent = pdf_dict_get(ctx, thisobj, PDF_NAME(Parent));  // get parent
        if (!pdf_is_dict(ctx, thisobj)) {
            thisobj = parent;
        }
    }
    return xrefs;
}


//-------------------------------------------------------------------
// Return the contents of a font file, identified by xref
//-------------------------------------------------------------------
fz_buffer *JM_get_fontbuffer(fz_context *ctx, pdf_document *doc, int xref)
{
    if (xref < 1) return NULL;
    pdf_obj *o, *obj = NULL, *desft, *stream = NULL;
    o = pdf_load_object(ctx, doc, xref);
    desft = pdf_dict_get(ctx, o, PDF_NAME(DescendantFonts));
    if (desft) {
        obj = pdf_resolve_indirect(ctx, pdf_array_get(ctx, desft, 0));
        obj = pdf_dict_get(ctx, obj, PDF_NAME(FontDescriptor));
    } else {
        obj = pdf_dict_get(ctx, o, PDF_NAME(FontDescriptor));
    }

    if (!obj) {
        pdf_drop_obj(ctx, o);
        PySys_WriteStdout("invalid font - FontDescriptor missing");
        return NULL;
    }
    pdf_drop_obj(ctx, o);
    o = obj;

    obj = pdf_dict_get(ctx, o, PDF_NAME(FontFile));
    if (obj) stream = obj;             // ext = "pfa"

    obj = pdf_dict_get(ctx, o, PDF_NAME(FontFile2));
    if (obj) stream = obj;             // ext = "ttf"

    obj = pdf_dict_get(ctx, o, PDF_NAME(FontFile3));
    if (obj) {
        stream = obj;

        obj = pdf_dict_get(ctx, obj, PDF_NAME(Subtype));
        if (obj && !pdf_is_name(ctx, obj)) {
            PySys_WriteStdout("invalid font descriptor subtype");
            return NULL;
        }

        if (pdf_name_eq(ctx, obj, PDF_NAME(Type1C)))
            ; /*Prev code did: ext = "cff", but this has no effect. */
        else if (pdf_name_eq(ctx, obj, PDF_NAME(CIDFontType0C)))
            ; /*Prev code did: ext = "cid", but this has no effect. */
        else if (pdf_name_eq(ctx, obj, PDF_NAME(OpenType)))
            ; /*Prev code did: ext = "otf", but this has no effect. */
        else
            PySys_WriteStdout("warning: unhandled font type '%s'", pdf_to_name(ctx, obj));
    }

    if (!stream) {
        PySys_WriteStdout("warning: unhandled font type");
        return NULL;
    }

    return pdf_load_stream(ctx, stream);
}

//-----------------------------------------------------------------------------
// Return the file extension of a font file, identified by xref
//-----------------------------------------------------------------------------
char *JM_get_fontextension(fz_context *ctx, pdf_document *doc, int xref)
{
    if (xref < 1) return "n/a";
    pdf_obj *o, *obj = NULL, *desft;
    o = pdf_load_object(ctx, doc, xref);
    desft = pdf_dict_get(ctx, o, PDF_NAME(DescendantFonts));
    if (desft) {
        obj = pdf_resolve_indirect(ctx, pdf_array_get(ctx, desft, 0));
        obj = pdf_dict_get(ctx, obj, PDF_NAME(FontDescriptor));
    } else {
        obj = pdf_dict_get(ctx, o, PDF_NAME(FontDescriptor));
    }

    pdf_drop_obj(ctx, o);
    if (!obj) return "n/a";  // this is a base-14 font

    o = obj;  // we have the FontDescriptor

    obj = pdf_dict_get(ctx, o, PDF_NAME(FontFile));
    if (obj) return "pfa";

    obj = pdf_dict_get(ctx, o, PDF_NAME(FontFile2));
    if (obj) return "ttf";

    obj = pdf_dict_get(ctx, o, PDF_NAME(FontFile3));
    if (obj) {
        obj = pdf_dict_get(ctx, obj, PDF_NAME(Subtype));
        if (obj && !pdf_is_name(ctx, obj)) {
            PySys_WriteStdout("invalid font descriptor subtype");
            return "n/a";
        }
        if (pdf_name_eq(ctx, obj, PDF_NAME(Type1C)))
            return "cff";
        else if (pdf_name_eq(ctx, obj, PDF_NAME(CIDFontType0C)))
            return "cid";
        else if (pdf_name_eq(ctx, obj, PDF_NAME(OpenType)))
            return "otf";
        else
            PySys_WriteStdout("unhandled font type '%s'", pdf_to_name(ctx, obj));
    }

    return "n/a";
}


//-----------------------------------------------------------------------------
// create PDF object from given string (new in v1.14.0: MuPDF dropped it)
//-----------------------------------------------------------------------------
pdf_obj *JM_pdf_obj_from_str(fz_context *ctx, pdf_document *doc, char *src)
{
    pdf_obj *result = NULL;
    pdf_lexbuf lexbuf;
    fz_stream *stream = fz_open_memory(ctx, (unsigned char *)src, strlen(src));

    pdf_lexbuf_init(ctx, &lexbuf, PDF_LEXBUF_SMALL);

    fz_try(ctx) {
        result = pdf_parse_stm_obj(ctx, doc, stream, &lexbuf);
    }

    fz_always(ctx) {
        pdf_lexbuf_fin(ctx, &lexbuf);
        fz_drop_stream(ctx, stream);
    }

    fz_catch(ctx) {
        fz_rethrow(ctx);
    }

    return result;

}

//----------------------------------------------------------------------------
// return normalized /Rotate value:one of 0, 90, 180, 270
//----------------------------------------------------------------------------
int JM_norm_rotation(int rotate)
{
    while (rotate < 0) rotate += 360;
    while (rotate >= 360) rotate -= 360;
    if (rotate % 90 != 0) return 0;
    return rotate;
}


//----------------------------------------------------------------------------
// return a PDF page's /Rotate value: one of (0, 90, 180, 270)
//----------------------------------------------------------------------------
int JM_page_rotation(fz_context *ctx, pdf_page *page)
{
    int rotate = 0;
    fz_try(ctx)
    {
        rotate = pdf_to_int(ctx,
                pdf_dict_get_inheritable(ctx, page->obj, PDF_NAME(Rotate)));
        rotate = JM_norm_rotation(rotate);
    }
    fz_catch(ctx) return 0;
    return rotate;
}


//----------------------------------------------------------------------------
// return a PDF page's MediaBox
//----------------------------------------------------------------------------
fz_rect JM_mediabox(fz_context *ctx, pdf_obj *page_obj)
{
    fz_rect mediabox, page_mediabox;

    mediabox = pdf_to_rect(ctx, pdf_dict_get_inheritable(ctx, page_obj,
        PDF_NAME(MediaBox)));
    if (fz_is_empty_rect(mediabox) || fz_is_infinite_rect(mediabox))
    {
        mediabox.x0 = 0;
        mediabox.y0 = 0;
        mediabox.x1 = 612;
        mediabox.y1 = 792;
    }

    page_mediabox.x0 = fz_min(mediabox.x0, mediabox.x1);
    page_mediabox.y0 = fz_min(mediabox.y0, mediabox.y1);
    page_mediabox.x1 = fz_max(mediabox.x0, mediabox.x1);
    page_mediabox.y1 = fz_max(mediabox.y0, mediabox.y1);

    if (page_mediabox.x1 - page_mediabox.x0 < 1 ||
        page_mediabox.y1 - page_mediabox.y0 < 1)
        page_mediabox = fz_unit_rect;

    return page_mediabox;
}


//----------------------------------------------------------------------------
// return a PDF page's CropBox
//----------------------------------------------------------------------------
fz_rect JM_cropbox(fz_context *ctx, pdf_obj *page_obj)
{
    fz_rect mediabox = JM_mediabox(ctx, page_obj);
    fz_rect cropbox = pdf_to_rect(ctx,
                pdf_dict_get_inheritable(ctx, page_obj, PDF_NAME(CropBox)));
    if (fz_is_infinite_rect(cropbox) || fz_is_empty_rect(cropbox))
        cropbox = mediabox;
    float y0 = mediabox.y1 - cropbox.y1;
    float y1 = mediabox.y1 - cropbox.y0;
    cropbox.y0 = y0;
    cropbox.y1 = y1;
    return cropbox;
}


//----------------------------------------------------------------------------
// calculate width and height of the UNROTATED page
//----------------------------------------------------------------------------
fz_point JM_cropbox_size(fz_context *ctx, pdf_obj *page_obj)
{
    fz_point size;
    fz_try(ctx)
    {
        fz_rect rect = JM_cropbox(ctx, page_obj);
        float w = (rect.x0 < rect.x1 ? rect.x1 - rect.x0 : rect.x0 - rect.x1);
        float h = (rect.y0 < rect.y1 ? rect.y1 - rect.y0 : rect.y0 - rect.y1);
        size = fz_make_point(w, h);
    }
    fz_catch(ctx) fz_rethrow(ctx);
    return size;
}


//----------------------------------------------------------------------------
// calculate page rotation matrices
//----------------------------------------------------------------------------
fz_matrix JM_rotate_page_matrix(fz_context *ctx, pdf_page *page)
{
    if (!page) return fz_identity;  // no valid pdf page given
    int rotation = JM_page_rotation(ctx, page);
    if (rotation == 0) return fz_identity;  // no rotation
    fz_matrix m;
    fz_point cb_size = JM_cropbox_size(ctx, page->obj);
    float w = cb_size.x;
    float h = cb_size.y;
    if (rotation == 90)
        m = fz_make_matrix(0, 1, -1, 0, h, 0);
    else if (rotation == 180)
        m = fz_make_matrix(-1, 0, 0, -1, w, h);
    else
        m = fz_make_matrix(0, -1, 1, 0, 0, w);
    return m;
}


fz_matrix JM_derotate_page_matrix(fz_context *ctx, pdf_page *page)
{  // just the inverse of rotation
    return fz_invert_matrix(JM_rotate_page_matrix(ctx, page));
}


//-----------------------------------------------------------------------------
// Insert a font in a PDF
//-----------------------------------------------------------------------------
PyObject *
JM_insert_font(fz_context *ctx, pdf_document *pdf, char *bfname, char *fontfile,
    PyObject *fontbuffer, int set_simple, int idx, int wmode, int serif,
    int encoding, int ordering)
{
    pdf_obj *font_obj = NULL;
    fz_font *font = NULL;
    fz_buffer *res = NULL;
    const unsigned char *data = NULL;
    int size, ixref = 0, index = 0, simple = 0;
    PyObject *value=NULL, *name=NULL, *subt=NULL, *exto = NULL;

    fz_var(exto);
    fz_var(name);
    fz_var(subt);
    fz_var(res);
    fz_var(font);
    fz_var(font_obj);
    fz_try(ctx) {
        ENSURE_OPERATION(ctx, pdf);
        //-------------------------------------------------------------
        // check for CJK font
        //-------------------------------------------------------------
        if (ordering > -1) {
            data = fz_lookup_cjk_font(ctx, ordering, &size, &index);
        }
        if (data) {
            font = fz_new_font_from_memory(ctx, NULL, data, size, index, 0);
            font_obj = pdf_add_cjk_font(ctx, pdf, font, ordering, wmode, serif);
            exto = JM_UnicodeFromStr("n/a");
            simple = 0;
            goto weiter;
        }

        //-------------------------------------------------------------
        // check for PDF Base-14 font
        //-------------------------------------------------------------
        if (bfname) {
            data = fz_lookup_base14_font(ctx, bfname, &size);
        }
        if (data) {
            font = fz_new_font_from_memory(ctx, bfname, data, size, 0, 0);
            font_obj = pdf_add_simple_font(ctx, pdf, font, encoding);
            exto = JM_UnicodeFromStr("n/a");
            simple = 1;
            goto weiter;
        }

        if (fontfile) {
            font = fz_new_font_from_file(ctx, NULL, fontfile, idx, 0);
        } else {
            res = JM_BufferFromBytes(ctx, fontbuffer);
            if (!res) {
                RAISEPY(ctx, MSG_FILE_OR_BUFFER, PyExc_ValueError);
            }
            font = fz_new_font_from_buffer(ctx, NULL, res, idx, 0);
        }

        if (!set_simple) {
            font_obj = pdf_add_cid_font(ctx, pdf, font);
            simple = 0;
        } else {
            font_obj = pdf_add_simple_font(ctx, pdf, font, encoding);
            simple = 2;
        }

        weiter: ;
        ixref = pdf_to_num(ctx, font_obj);
        name = JM_EscapeStrFromStr(pdf_to_name(ctx,
                    pdf_dict_get(ctx, font_obj, PDF_NAME(BaseFont))));

        subt = JM_UnicodeFromStr(pdf_to_name(ctx,
                    pdf_dict_get(ctx, font_obj, PDF_NAME(Subtype))));

        if (!exto)
            exto = JM_UnicodeFromStr(JM_get_fontextension(ctx, pdf, ixref));

        float asc = fz_font_ascender(ctx, font);
        float dsc = fz_font_descender(ctx, font);
        value = Py_BuildValue("[i,{s:O,s:O,s:O,s:O,s:i,s:f,s:f}]",
                                ixref,
                                "name", name,        // base font name
                                "type", subt,        // subtype
                                "ext", exto,         // file extension
                                "simple", JM_BOOL(simple), // simple font?
                                "ordering", ordering, // CJK font?
                                "ascender", asc,
                                "descender", dsc
                                );
    }
    fz_always(ctx) {
        Py_CLEAR(exto);
        Py_CLEAR(name);
        Py_CLEAR(subt);
        fz_drop_buffer(ctx, res);
        fz_drop_font(ctx, font);
        pdf_drop_obj(ctx, font_obj);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return value;
}


//-----------------------------------------------------------------------------
// compute image insertion matrix
//-----------------------------------------------------------------------------
fz_matrix
calc_image_matrix(int width, int height, PyObject *tr, int rotate, int keep)
{
    float large, small, fw, fh, trw, trh, f, w, h;
    fz_rect trect = JM_rect_from_py(tr);
    fz_matrix rot = fz_rotate((float) rotate);
    trw = trect.x1 - trect.x0;
    trh = trect.y1 - trect.y0;
    w = trw;
    h = trh;
    if (keep) {
        large = (float) Py_MAX(width, height);
        fw = (float) width / large;
        fh = (float) height / large;
    } else {
        fw = fh = 1;
    }
    small = Py_MIN(fw, fh);
    if (rotate != 0 && rotate != 180) {
        f = fw;
        fw = fh;
        fh = f;
    }
    if (fw < 1) {
        if ((trw / fw) > (trh / fh)) {
            w = trh * small;
            h = trh;
        } else {
            w = trw;
            h = trw / small;
        }
    } else if (fw != fh) {
        if ((trw / fw) > (trh / fh)) {
            w = trh / small;
            h = trh;
        } else {
            w = trw;
            h = trw * small;
        }
    } else {
        w = trw;
        h = trh;
    }
    fz_point tmp = fz_make_point((trect.x0 + trect.x1) / 2,
                                 (trect.y0 + trect.y1) / 2);
    fz_matrix mat = fz_make_matrix(1, 0, 0, 1, -0.5, -0.5);
    mat = fz_concat(mat, rot);
    mat = fz_concat(mat, fz_scale(w, h));
    mat = fz_concat(mat, fz_translate(tmp.x, tmp.y));
    return mat;
}

// --------------------------------------------------------
// Callback function for the Story class
// --------------------------------------------------------
static PyObject *make_story_elpos = NULL; // Py function returning object
void Story_Callback(fz_context *ctx, void *opaque, fz_story_element_position *pos)
{
#define SETATTR(a, v) PyObject_SetAttrString(arg, a, v);Py_DECREF(v)
    // ------------------------------------------------------------------------
    // 'opaque' is a tuple (userfunc, userdict), where 'userfunc' is a function
    // in the user's script and 'userdict' is a dictionary containing any
    // additional parameters of the user
    // userfunc will be called with the joined info of userdict and pos.
    // ------------------------------------------------------------------------
    PyObject *callarg = (PyObject *) opaque;
    PyObject *userfunc = PyTuple_GET_ITEM(callarg, 0);
    PyObject *userdict = PyTuple_GET_ITEM(callarg, 1);

    PyObject *this_module = PyImport_AddModule("fitz");  // get our module
    if (!make_story_elpos) {  // locate ElementPosition maker once
        make_story_elpos = Py_BuildValue("s", "make_story_elpos");
    }
    // get access to ElementPosition() object
    PyObject *arg = PyObject_CallMethodObjArgs(this_module, make_story_elpos, NULL);
    
    SETATTR("depth", Py_BuildValue("i", pos->depth));
    SETATTR("heading", Py_BuildValue("i", pos->heading));
    SETATTR("id", Py_BuildValue("s", pos->id));
    SETATTR("rect", JM_py_from_rect(pos->rect));
    SETATTR("text", Py_BuildValue("s", pos->text));
    SETATTR("open_close", Py_BuildValue("i", pos->open_close));
    SETATTR("rect_num", Py_BuildValue("i", pos->rectangle_num));
    SETATTR("href", Py_BuildValue("s", pos->href));

    // iterate over userdict items and set their attributes
    PyObject *pkey = NULL;
    PyObject *pval = NULL;
    Py_ssize_t ppos = 0;
    while (PyDict_Next(userdict, &ppos, &pkey, &pval)) {
            PyObject_SetAttr(arg, pkey, pval);
    }
    PyObject_CallFunctionObjArgs(userfunc, arg, NULL);
    Py_DECREF(arg);
#undef SETATTR
}

// -----------------------------------------------------------
// Return last archive if it is a tree and mount points match
// -----------------------------------------------------------
fz_archive *JM_last_tree(fz_context *ctx, fz_archive *arch, const char *mount)
{
    typedef struct
    {
        fz_archive *arch;
        char *dir;
    } multi_archive_entry;

    typedef struct
    {
        fz_archive super;
        int len;
        int max;
        multi_archive_entry *sub;
    } fz_multi_archive;

    if (!arch) {
        return NULL;
    }

    fz_multi_archive *multi = (fz_multi_archive *) arch;
    if (multi->len == 0) {  // archive is empty
        return NULL;
    }
    int i = multi->len - 1;  // read last sub archive
    multi_archive_entry *e = &multi->sub[i];
    fz_archive *arch_ = e->arch;
    const char *mount_ = e->dir;
    const char *fmt = fz_archive_format(ctx, arch_);
    if (strcmp(fmt, "tree") != 0) {  // not a tree archive
        return NULL;
    }
    if ((mount_ && mount && strcmp(mount, mount_) == 0) || (!mount && !mount_)) {  // last sub archive is eligible!
        return arch_;
    }
    return NULL;
}

fz_archive *JM_archive_from_py(fz_context *ctx, fz_archive *arch, PyObject *path, const char *mount, int *drop_sub)
{
    fz_stream *stream = NULL;
    fz_buffer *buff = NULL;
    *drop_sub = 1;
    fz_archive *sub = NULL;
    const char *my_mount = mount;
    fz_try(ctx) {
        // tree archive: tuple of memory items
        // check if we can add to last sub-archive
        sub = JM_last_tree(ctx, arch, my_mount);
        if (!sub) {
            sub = fz_new_tree_archive(ctx, NULL);
        } else {
            *drop_sub = 0;  // never drop last sub-archive
        }

        // a single tree item
        if (PyBytes_Check(path) || PyByteArray_Check(path) || PyObject_HasAttrString(path, "getvalue")) {
            buff = JM_BufferFromBytes(ctx, path);
            fz_tree_archive_add_buffer(ctx, sub, mount, buff);
            goto finished;
        }

        // a tuple of tree items
        Py_ssize_t i, n = PyTuple_Size(path);
        for (i = 0; i < n; i++) {
            PyObject *item = PyTuple_GET_ITEM(path, i);
            PyObject *i0 = PySequence_GetItem(item, 0);  // data
            PyObject *i1 = PySequence_GetItem(item, 1);  // name
            buff = JM_BufferFromBytes(ctx, i0);
            fz_tree_archive_add_buffer(ctx, sub, PyUnicode_AsUTF8(i1), buff);
            fz_drop_buffer(ctx, buff);
            Py_DECREF(i0);
            Py_DECREF(i1);
        }
        buff = NULL;
        goto finished;

        finished:;
    }

    fz_always(ctx) {
        fz_drop_buffer(ctx, buff);
        fz_drop_stream(ctx, stream);
    }

    fz_catch(ctx) {
        fz_rethrow(ctx);
    }

    return sub;
}




//-----------------------------------------------------------------------------
// dummy structure for various tools and utilities
//-----------------------------------------------------------------------------
struct Tools {int index;};

typedef struct fz_item fz_item;

struct fz_item
{
	void *key;
	fz_storable *val;
	size_t size;
	fz_item *next;
	fz_item *prev;
	fz_store *store;
	const fz_store_type *type;
};

struct fz_store
{
	int refs;

	/* Every item in the store is kept in a doubly linked list, ordered
	 * by usage (so LRU entries are at the end). */
	fz_item *head;
	fz_item *tail;

	/* We have a hash table that allows to quickly find a subset of the
	 * entries (those whose keys are indirect objects). */
	fz_hash_table *hash;

	/* We keep track of the size of the store, and keep it below max. */
	size_t max;
	size_t size;

	int defer_reap_count;
	int needs_reaping;
};

%}







PyMuPDF-1.21.1/fitz/helper-pdfinfo.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
//------------------------------------------------------------------------
// Store ID in PDF trailer
//------------------------------------------------------------------------
void JM_ensure_identity(fz_context *ctx, pdf_document *pdf)
{
    unsigned char rnd[16];
    pdf_obj *id;
    id = pdf_dict_get(ctx, pdf_trailer(ctx, pdf), PDF_NAME(ID));
    if (!id) {
        fz_memrnd(ctx, rnd, nelem(rnd));
        id = pdf_dict_put_array(ctx, pdf_trailer(ctx, pdf), PDF_NAME(ID), 2);
        pdf_array_push_drop(ctx, id, pdf_new_string(ctx, (char *) rnd + 0, nelem(rnd)));
        pdf_array_push_drop(ctx, id, pdf_new_string(ctx, (char *) rnd + 0, nelem(rnd)));
    }
}


//------------------------------------------------------------------------
// Ensure OCProperties, return /OCProperties key
//------------------------------------------------------------------------
pdf_obj *
JM_ensure_ocproperties(fz_context *ctx, pdf_document *pdf)
{
    pdf_obj *D, *ocp;
    fz_try(ctx) {
        ocp = pdf_dict_get(ctx, pdf_dict_get(ctx, pdf_trailer(ctx, pdf), PDF_NAME(Root)), PDF_NAME(OCProperties));
        if (ocp) goto finished;
        pdf_obj *root = pdf_dict_get(ctx, pdf_trailer(ctx, pdf), PDF_NAME(Root));
        ocp = pdf_dict_put_dict(ctx, root, PDF_NAME(OCProperties), 2);
        pdf_dict_put_array(ctx, ocp, PDF_NAME(OCGs), 0);
        D = pdf_dict_put_dict(ctx, ocp, PDF_NAME(D), 5);
        pdf_dict_put_array(ctx, D, PDF_NAME(ON), 0);
        pdf_dict_put_array(ctx, D, PDF_NAME(OFF), 0);
        pdf_dict_put_array(ctx, D, PDF_NAME(Order), 0);
        pdf_dict_put_array(ctx, D, PDF_NAME(RBGroups), 0);
    finished:;
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return ocp;
}


//------------------------------------------------------------------------
// Add OC configuration to the PDF catalog
//------------------------------------------------------------------------
void
JM_add_layer_config(fz_context *ctx, pdf_document *pdf, char *name, char *creator, PyObject *ON)
{
    pdf_obj *D, *ocp, *configs;
    fz_try(ctx) {
        ocp = JM_ensure_ocproperties(ctx, pdf);
        configs = pdf_dict_get(ctx, ocp, PDF_NAME(Configs));
        if (!pdf_is_array(ctx, configs)) {
            configs = pdf_dict_put_array(ctx,ocp, PDF_NAME(Configs), 1);
        }
        D = pdf_new_dict(ctx, pdf, 5);
        pdf_dict_put_text_string(ctx, D, PDF_NAME(Name), name);
        if (creator) {
            pdf_dict_put_text_string(ctx, D, PDF_NAME(Creator), creator);
        }
        pdf_dict_put(ctx, D, PDF_NAME(BaseState), PDF_NAME(OFF));
        pdf_obj *onarray = pdf_dict_put_array(ctx, D, PDF_NAME(ON), 5);
        if (!EXISTS(ON) || !PySequence_Check(ON) || !PySequence_Size(ON)) {
            ;
        } else {
            pdf_obj *ocgs = pdf_dict_get(ctx, ocp, PDF_NAME(OCGs));
            int i, n = PySequence_Size(ON);
            for (i = 0; i < n; i++) {
                int xref = 0;
                if (JM_INT_ITEM(ON, (Py_ssize_t) i, &xref) == 1) continue;
                pdf_obj *ind = pdf_new_indirect(ctx, pdf, xref, 0);
                if (pdf_array_contains(ctx, ocgs, ind)) {
                    pdf_array_push_drop(ctx, onarray, ind);
                } else {
                    pdf_drop_obj(ctx, ind);
                }
            }
        }
        pdf_array_push_drop(ctx, configs, D);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
}


//------------------------------------------------------------------------
// Get OCG arrays from OC configuration
// Returns dict {"basestate":name, "on":list, "off":list, "rbg":list}
//------------------------------------------------------------------------
static PyObject *
JM_get_ocg_arrays_imp(fz_context *ctx, pdf_obj *arr)
{
    int i, n;
    PyObject *list = PyList_New(0), *item = NULL;
    pdf_obj *obj = NULL;
    if (pdf_is_array(ctx, arr)) {
        n = pdf_array_len(ctx, arr);
        for (i = 0; i < n; i++) {
            obj = pdf_array_get(ctx, arr, i);
            item = Py_BuildValue("i", pdf_to_num(ctx, obj));
            if (!PySequence_Contains(list, item)) {
                LIST_APPEND_DROP(list, item);
            } else {
                Py_DECREF(item);
            }
        }
    }
    return list;
}

PyObject *
JM_get_ocg_arrays(fz_context *ctx, pdf_obj *conf)
{
    PyObject *rc = PyDict_New(), *list = NULL, *list1 = NULL;
    int i, n;
    pdf_obj *arr = NULL, *obj = NULL;
    fz_try(ctx) {
        arr = pdf_dict_get(ctx, conf, PDF_NAME(ON));
        list = JM_get_ocg_arrays_imp(ctx, arr);
        if (PySequence_Size(list)) {
            PyDict_SetItemString(rc, "on", list);
        }
        Py_DECREF(list);
        arr = pdf_dict_get(ctx, conf, PDF_NAME(OFF));
        list = JM_get_ocg_arrays_imp(ctx, arr);
        if (PySequence_Size(list)) {
            PyDict_SetItemString(rc, "off", list);
        }
        Py_DECREF(list);
        list = PyList_New(0);
        arr = pdf_dict_get(ctx, conf, PDF_NAME(RBGroups));
        if (pdf_is_array(ctx, arr)) {
            n = pdf_array_len(ctx, arr);
            for (i = 0; i < n; i++) {
                obj = pdf_array_get(ctx, arr, i);
                list1 = JM_get_ocg_arrays_imp(ctx, obj);
                LIST_APPEND_DROP(list, list1);
            }
        }
        if (PySequence_Size(list)) {
            PyDict_SetItemString(rc, "rbgroups", list);
        }
        Py_DECREF(list);
        obj = pdf_dict_get(ctx, conf, PDF_NAME(BaseState));

        if (obj) {
            PyObject *state = NULL;
            state = Py_BuildValue("s", pdf_to_name(ctx, obj));
            PyDict_SetItemString(rc, "basestate", state);
            Py_DECREF(state);
        }
    }
    fz_always(ctx) {
    }
    fz_catch(ctx) {
        Py_CLEAR(rc);
        PyErr_Clear();
        fz_rethrow(ctx);
    }
    return rc;
}


//------------------------------------------------------------------------
// Set OCG arrays from dict of Python lists
// Works with dict like {"basestate":name, "on":list, "off":list, "rbg":list}
//------------------------------------------------------------------------
static void
JM_set_ocg_arrays_imp(fz_context *ctx, pdf_obj *arr, PyObject *list)
{
    int i, n = PySequence_Size(list);
    pdf_obj *obj = NULL;
    pdf_document *pdf = pdf_get_bound_document(ctx, arr);
    for (i = 0; i < n; i++) {
        int xref = 0;
        if (JM_INT_ITEM(list, i, &xref) == 1) continue;
        obj = pdf_new_indirect(ctx, pdf, xref, 0);
        pdf_array_push_drop(ctx, arr, obj);
    }
    return;
}

static void
JM_set_ocg_arrays(fz_context *ctx, pdf_obj *conf, const char *basestate,
                  PyObject *on, PyObject *off, PyObject *rbgroups)
{
    int i, n;
    pdf_obj *arr = NULL, *obj = NULL;
    fz_try(ctx) {
        if (basestate) {
            pdf_dict_put_name(ctx, conf, PDF_NAME(BaseState), basestate);
        }

        if (on != Py_None) {
            pdf_dict_del(ctx, conf, PDF_NAME(ON));
            if (PySequence_Size(on)) {
                arr = pdf_dict_put_array(ctx, conf, PDF_NAME(ON), 1);
                JM_set_ocg_arrays_imp(ctx, arr, on);
            }
        }

        if (off != Py_None) {
            pdf_dict_del(ctx, conf, PDF_NAME(OFF));
            if (PySequence_Size(off)) {
                arr = pdf_dict_put_array(ctx, conf, PDF_NAME(OFF), 1);
                JM_set_ocg_arrays_imp(ctx, arr, off);
            }
        }

        if (rbgroups != Py_None) {
            pdf_dict_del(ctx, conf, PDF_NAME(RBGroups));
            if (PySequence_Size(rbgroups)) {
                arr = pdf_dict_put_array(ctx, conf, PDF_NAME(RBGroups), 1);
                n = PySequence_Size(rbgroups);
                for (i = 0; i < n; i++) {
                    PyObject *item0 = PySequence_ITEM(rbgroups, i);
                    obj = pdf_array_push_array(ctx, arr, 1);
                    JM_set_ocg_arrays_imp(ctx, obj, item0);
                    Py_DECREF(item0);
                }
            }
        }
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return;
}


//------------------------------------------------------------------------
// Return the items of Resources/Properties (used for Marked Content)
// Argument may be e.g. a page object or a Form XObject
//------------------------------------------------------------------------
PyObject *
JM_get_resource_properties(fz_context *ctx, pdf_obj *ref)
{
    PyObject *rc = NULL;
    fz_try(ctx) {
        pdf_obj *properties = pdf_dict_getl(ctx, ref,
                         PDF_NAME(Resources),
                         PDF_NAME(Properties), NULL);
        if (!properties) {
            rc = PyTuple_New(0);
        } else {
            int i, n = pdf_dict_len(ctx, properties);
            if (n < 1) {
                rc = PyTuple_New(0);
                goto finished;
            }
            rc = PyTuple_New(n);
            for (i = 0; i < n; i++) {
                pdf_obj *key = pdf_dict_get_key(ctx, properties, i);
                pdf_obj *val = pdf_dict_get_val(ctx, properties, i);
                const char *c = pdf_to_name(ctx, key);
                int xref = pdf_to_num(ctx, val);
                PyTuple_SET_ITEM(rc, i, Py_BuildValue("si", c, xref));
            }
        }
        finished:;
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return rc;
}


//------------------------------------------------------------------------
// Insert an item into Resources/Properties (used for Marked Content)
// Arguments:
// (1) e.g. page object, Form XObject
// (2) marked content name
// (3) xref of the referenced object (insert as indirect reference)
//------------------------------------------------------------------------
void
JM_set_resource_property(fz_context *ctx, pdf_obj *ref, const char *name, int xref)
{
    pdf_obj *ind = NULL;
    pdf_obj *properties = NULL;
    pdf_document *pdf = pdf_get_bound_document(ctx, ref);
    pdf_obj *name2 = NULL;
    fz_var(ind);
    fz_var(name2);
    fz_try(ctx) {
        ind = pdf_new_indirect(ctx, pdf, xref, 0);
        if (!ind) {
            RAISEPY(ctx, MSG_BAD_XREF, PyExc_ValueError);
        }
        pdf_obj *resources = pdf_dict_get(ctx, ref, PDF_NAME(Resources));
        if (!resources) {
            resources = pdf_dict_put_dict(ctx, ref, PDF_NAME(Resources), 1);
        }
        properties = pdf_dict_get(ctx, resources, PDF_NAME(Properties));
        if (!properties) {
            properties = pdf_dict_put_dict(ctx, resources, PDF_NAME(Properties), 1);
        }
        name2 = pdf_new_name(ctx, name);
        pdf_dict_put(ctx, properties, name2, ind);
    }
    fz_always(ctx) {
        pdf_drop_obj(ctx, ind);
        pdf_drop_obj(ctx, name2);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return;
}


//------------------------------------------------------------------------
// Add OC object reference to a dictionary
//------------------------------------------------------------------------
void
JM_add_oc_object(fz_context *ctx, pdf_document *pdf, pdf_obj *ref, int xref)
{
    pdf_obj *indobj = NULL;
    fz_try(ctx) {
        indobj = pdf_new_indirect(ctx, pdf, xref, 0);
        if (!pdf_is_dict(ctx, indobj)) {
            RAISEPY(ctx, MSG_BAD_OC_REF, PyExc_ValueError);
        }
        pdf_obj *type = pdf_dict_get(ctx, indobj, PDF_NAME(Type));
        if (pdf_objcmp(ctx, type, PDF_NAME(OCG)) == 0 ||
            pdf_objcmp(ctx, type, PDF_NAME(OCMD)) == 0) {
            pdf_dict_put(ctx, ref, PDF_NAME(OC), indobj);
        } else {
            RAISEPY(ctx, MSG_BAD_OC_REF, PyExc_ValueError);
        }
    }
    fz_always(ctx) {
        pdf_drop_obj(ctx, indobj);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
}


//-------------------------------------------------------------------------
// Store info of a font in Python list
//-------------------------------------------------------------------------
int JM_gather_fonts(fz_context *ctx, pdf_document *pdf, pdf_obj *dict,
                    PyObject *fontlist, int stream_xref)
{
    int i, n, rc = 1;
    n = pdf_dict_len(ctx, dict);
    for (i = 0; i < n; i++) {
        pdf_obj *fontdict = NULL;
        pdf_obj *subtype = NULL;
        pdf_obj *basefont = NULL;
        pdf_obj *name = NULL;
        pdf_obj *refname = NULL;
        pdf_obj *encoding = NULL;

        refname = pdf_dict_get_key(ctx, dict, i);
        fontdict = pdf_dict_get_val(ctx, dict, i);
        if (!pdf_is_dict(ctx, fontdict)) {
            fz_warn(ctx, "'%s' is no font dict (%d 0 R)",
                    pdf_to_name(ctx, refname), pdf_to_num(ctx, fontdict));
            continue;
        }

        subtype = pdf_dict_get(ctx, fontdict, PDF_NAME(Subtype));
        basefont = pdf_dict_get(ctx, fontdict, PDF_NAME(BaseFont));
        if (!basefont || pdf_is_null(ctx, basefont)) {
            name = pdf_dict_get(ctx, fontdict, PDF_NAME(Name));
        } else {
            name = basefont;
        }
        encoding = pdf_dict_get(ctx, fontdict, PDF_NAME(Encoding));
        if (pdf_is_dict(ctx, encoding)) {
            encoding = pdf_dict_get(ctx, encoding, PDF_NAME(BaseEncoding));
        }
        int xref = pdf_to_num(ctx, fontdict);
        char *ext = "n/a";
        if (xref) {
            ext = JM_get_fontextension(ctx, pdf, xref);
        }
        PyObject *entry = PyTuple_New(7);
        PyTuple_SET_ITEM(entry, 0, Py_BuildValue("i", xref));
        PyTuple_SET_ITEM(entry, 1, Py_BuildValue("s", ext));
        PyTuple_SET_ITEM(entry, 2, Py_BuildValue("s", pdf_to_name(ctx, subtype)));
        PyTuple_SET_ITEM(entry, 3, JM_EscapeStrFromStr(pdf_to_name(ctx, name)));
        PyTuple_SET_ITEM(entry, 4, Py_BuildValue("s", pdf_to_name(ctx, refname)));
        PyTuple_SET_ITEM(entry, 5, Py_BuildValue("s", pdf_to_name(ctx, encoding)));
        PyTuple_SET_ITEM(entry, 6, Py_BuildValue("i", stream_xref));
        LIST_APPEND_DROP(fontlist, entry);
    }
    return rc;
}

//-------------------------------------------------------------------------
// Store info of an image in Python list
//-------------------------------------------------------------------------
int JM_gather_images(fz_context *ctx, pdf_document *doc, pdf_obj *dict,
                     PyObject *imagelist, int stream_xref)
{
    int i, n, rc = 1;
    n = pdf_dict_len(ctx, dict);
    for (i = 0; i < n; i++) {
        pdf_obj *imagedict, *smask;
        pdf_obj *refname = NULL;
        pdf_obj *type;
        pdf_obj *width;
        pdf_obj *height;
        pdf_obj *bpc = NULL;
        pdf_obj *filter = NULL;
        pdf_obj *cs = NULL;
        pdf_obj *altcs;

        refname = pdf_dict_get_key(ctx, dict, i);
        imagedict = pdf_dict_get_val(ctx, dict, i);
        if (!pdf_is_dict(ctx, imagedict)) {
            fz_warn(ctx, "'%s' is no image dict (%d 0 R)",
                    pdf_to_name(ctx, refname), pdf_to_num(ctx, imagedict));
            continue;
        }

        type = pdf_dict_get(ctx, imagedict, PDF_NAME(Subtype));
        if (!pdf_name_eq(ctx, type, PDF_NAME(Image)))
            continue;

        int xref = pdf_to_num(ctx, imagedict);
        int gen = 0;
        smask = pdf_dict_geta(ctx, imagedict, PDF_NAME(SMask), PDF_NAME(Mask));
        if (smask)
            gen = pdf_to_num(ctx, smask);

        filter = pdf_dict_geta(ctx, imagedict, PDF_NAME(Filter), PDF_NAME(F));
        if (pdf_is_array(ctx, filter)) {
            filter = pdf_array_get(ctx, filter, 0);
        }

        altcs = NULL;
        cs = pdf_dict_geta(ctx, imagedict, PDF_NAME(ColorSpace), PDF_NAME(CS));
        if (pdf_is_array(ctx, cs)) {
            pdf_obj *cses = cs;
            cs = pdf_array_get(ctx, cses, 0);
            if (pdf_name_eq(ctx, cs, PDF_NAME(DeviceN)) ||
                pdf_name_eq(ctx, cs, PDF_NAME(Separation))) {
                altcs = pdf_array_get(ctx, cses, 2);
                if (pdf_is_array(ctx, altcs)) {
                    altcs = pdf_array_get(ctx, altcs, 0);
                }
            }
        }

        width = pdf_dict_geta(ctx, imagedict, PDF_NAME(Width), PDF_NAME(W));
        height = pdf_dict_geta(ctx, imagedict, PDF_NAME(Height), PDF_NAME(H));
        bpc = pdf_dict_geta(ctx, imagedict, PDF_NAME(BitsPerComponent), PDF_NAME(BPC));

        PyObject *entry = PyTuple_New(10);
        PyTuple_SET_ITEM(entry, 0, Py_BuildValue("i", xref));
        PyTuple_SET_ITEM(entry, 1, Py_BuildValue("i", gen));
        PyTuple_SET_ITEM(entry, 2, Py_BuildValue("i", pdf_to_int(ctx, width)));
        PyTuple_SET_ITEM(entry, 3, Py_BuildValue("i", pdf_to_int(ctx, height)));
        PyTuple_SET_ITEM(entry, 4, Py_BuildValue("i", pdf_to_int(ctx, bpc)));
        PyTuple_SET_ITEM(entry, 5, JM_EscapeStrFromStr(pdf_to_name(ctx, cs)));
        PyTuple_SET_ITEM(entry, 6, JM_EscapeStrFromStr(pdf_to_name(ctx, altcs)));
        PyTuple_SET_ITEM(entry, 7, JM_EscapeStrFromStr(pdf_to_name(ctx, refname)));
        PyTuple_SET_ITEM(entry, 8, JM_EscapeStrFromStr(pdf_to_name(ctx, filter)));
        PyTuple_SET_ITEM(entry, 9, Py_BuildValue("i", stream_xref));
        LIST_APPEND_DROP(imagelist, entry);
    }
    return rc;
}

//-------------------------------------------------------------------------
// Store info of a /Form xobject in Python list
//-------------------------------------------------------------------------
int JM_gather_forms(fz_context *ctx, pdf_document *doc, pdf_obj *dict,
                     PyObject *imagelist, int stream_xref)
{
    int i, rc = 1, n = pdf_dict_len(ctx, dict);
    fz_rect bbox;
    fz_matrix mat;
    pdf_obj *o = NULL, *m = NULL;
    for (i = 0; i < n; i++) {
        pdf_obj *imagedict;
        pdf_obj *refname = NULL;
        pdf_obj *type;

        refname = pdf_dict_get_key(ctx, dict, i);
        imagedict = pdf_dict_get_val(ctx, dict, i);
        if (!pdf_is_dict(ctx, imagedict)) {
            fz_warn(ctx, "'%s' is no form dict (%d 0 R)",
                    pdf_to_name(ctx, refname), pdf_to_num(ctx, imagedict));
            continue;
        }

        type = pdf_dict_get(ctx, imagedict, PDF_NAME(Subtype));
        if (!pdf_name_eq(ctx, type, PDF_NAME(Form)))
            continue;

        o = pdf_dict_get(ctx, imagedict, PDF_NAME(BBox));
        m = pdf_dict_get(ctx, imagedict, PDF_NAME(Matrix));
        if (m) {
            mat = pdf_to_matrix(ctx, m);
        } else {
            mat = fz_identity;
        }
        if (o) {
            bbox = fz_transform_rect(pdf_to_rect(ctx, o), mat);
        } else {
            bbox = fz_infinite_rect;
        }
        int xref = pdf_to_num(ctx, imagedict);

        PyObject *entry = PyTuple_New(4);
        PyTuple_SET_ITEM(entry, 0, Py_BuildValue("i", xref));
        PyTuple_SET_ITEM(entry, 1, Py_BuildValue("s", pdf_to_name(ctx, refname)));
        PyTuple_SET_ITEM(entry, 2, Py_BuildValue("i", stream_xref));
        PyTuple_SET_ITEM(entry, 3, JM_py_from_rect(bbox));
        LIST_APPEND_DROP(imagelist, entry);
    }
    return rc;
}

//-------------------------------------------------------------------------
// Step through /Resources, looking up image, xobject or font information
//-------------------------------------------------------------------------
void JM_scan_resources(fz_context *ctx, pdf_document *pdf, pdf_obj *rsrc,
                 PyObject *liste, int what, int stream_xref,
                 PyObject *tracer)
{
    pdf_obj *font, *xobj, *subrsrc;
    int i, n, sxref;
    if (pdf_mark_obj(ctx, rsrc)) {
        fz_warn(ctx, "Circular dependencies! Consider page cleaning.");
        return;  // Circular dependencies!
    }

    fz_try(ctx) {

        xobj = pdf_dict_get(ctx, rsrc, PDF_NAME(XObject));

        if (what == 1) {  // lookup fonts
            font = pdf_dict_get(ctx, rsrc, PDF_NAME(Font));
            JM_gather_fonts(ctx, pdf, font, liste, stream_xref);
        } else if (what == 2) {  // look up images
            JM_gather_images(ctx, pdf, xobj, liste, stream_xref);
        } else if (what == 3) {  // look up form xobjects
            JM_gather_forms(ctx, pdf, xobj, liste, stream_xref);
        } else {  // should never happen
            goto finished;
        }

        // check if we need to recurse into Form XObjects
        n = pdf_dict_len(ctx, xobj);
        for (i = 0; i < n; i++) {
            pdf_obj *obj = pdf_dict_get_val(ctx, xobj, i);
            if (pdf_is_stream(ctx, obj)) {
                sxref = pdf_to_num(ctx, obj);
            } else {
                sxref = 0;
            }
            subrsrc = pdf_dict_get(ctx, obj, PDF_NAME(Resources));
            if (subrsrc) {
                PyObject *sxref_t = Py_BuildValue("i", sxref);
                if (PySequence_Contains(tracer, sxref_t) == 0) {
                    LIST_APPEND_DROP(tracer, sxref_t);
                    JM_scan_resources(ctx, pdf, subrsrc, liste, what, sxref, tracer);
                } else {
                    Py_DECREF(sxref_t);
                    PyErr_Clear();
                    fz_warn(ctx, "Circular dependencies! Consider page cleaning.");
                    goto finished;
                }
            }
        }
        finished:;
    }
    fz_always(ctx) {
        pdf_unmark_obj(ctx, rsrc);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
}
%}







PyMuPDF-1.21.1/fitz/helper-pixmap.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
//-----------------------------------------------------------------------------
// pixmap helper functions
//-----------------------------------------------------------------------------

//-----------------------------------------------------------------------------
// Clear a pixmap rectangle - my version also supports non-alpha pixmaps
//-----------------------------------------------------------------------------
int
JM_clear_pixmap_rect_with_value(fz_context *ctx, fz_pixmap *dest, int value, fz_irect b)
{
    unsigned char *destp;
    int x, y, w, k, destspan;

    b = fz_intersect_irect(b, fz_pixmap_bbox(ctx, dest));
    w = b.x1 - b.x0;
    y = b.y1 - b.y0;
    if (w <= 0 || y <= 0)
        return 0;

    destspan = dest->stride;
    destp = dest->samples + (unsigned int)(destspan * (b.y0 - dest->y) + dest->n * (b.x0 - dest->x));

    /* CMYK needs special handling (and potentially any other subtractive colorspaces) */
    if (fz_colorspace_n(ctx, dest->colorspace) == 4) {
        value = 255 - value;
        do {
            unsigned char *s = destp;
            for (x = 0; x < w; x++) {
                *s++ = 0;
                *s++ = 0;
                *s++ = 0;
                *s++ = value;
                if (dest->alpha) *s++ = 255;
            }
            destp += destspan;
        } while (--y);
        return 1;
    }

    do {
        unsigned char *s = destp;
        for (x = 0; x < w; x++) {
            for (k = 0; k < dest->n - 1; k++)
                *s++ = value;
            if (dest->alpha) *s++ = 255;
            else *s++ = value;
        }
        destp += destspan;
    } while (--y);
    return 1;
}

//-----------------------------------------------------------------------------
// fill a rect with a color tuple
//-----------------------------------------------------------------------------
int
JM_fill_pixmap_rect_with_color(fz_context *ctx, fz_pixmap *dest, unsigned char col[5], fz_irect b)
{
    unsigned char *destp;
    int x, y, w, i, destspan;

    b = fz_intersect_irect(b, fz_pixmap_bbox(ctx, dest));
    w = b.x1 - b.x0;
    y = b.y1 - b.y0;
    if (w <= 0 || y <= 0)
        return 0;

    destspan = dest->stride;
    destp = dest->samples + (unsigned int)(destspan * (b.y0 - dest->y) + dest->n * (b.x0 - dest->x));

    do {
        unsigned char *s = destp;
        for (x = 0; x < w; x++) {
            for (i = 0; i < dest->n; i++)
                *s++ = col[i];
        }
        destp += destspan;
    } while (--y);
    return 1;
}

//-----------------------------------------------------------------------------
// invert a rectangle - also supports non-alpha pixmaps
//-----------------------------------------------------------------------------
int
JM_invert_pixmap_rect(fz_context *ctx, fz_pixmap *dest, fz_irect b)
{
    unsigned char *destp;
    int x, y, w, i, destspan;

    b = fz_intersect_irect(b, fz_pixmap_bbox(ctx, dest));
    w = b.x1 - b.x0;
    y = b.y1 - b.y0;
    if (w <= 0 || y <= 0)
        return 0;

    destspan = dest->stride;
    destp = dest->samples + (unsigned int)(destspan * (b.y0 - dest->y) + dest->n * (b.x0 - dest->x));
    int n0 = dest->n - dest->alpha;
    do {
        unsigned char *s = destp;
        for (x = 0; x < w; x++) {
            for (i = 0; i < n0; i++) {
                *s = 255 - *s;
                s++;
            }
            if (dest->alpha) s++;
        }
        destp += destspan;
    } while (--y);
    return 1;
}

int
JM_is_jbig2_image(fz_context *ctx, pdf_obj *dict)
{
    // fixme: should we remove this function?
	return 0;
    /*
    pdf_obj *filter;
	int i, n;

	filter = pdf_dict_get(ctx, dict, PDF_NAME(Filter));
	if (pdf_name_eq(ctx, filter, PDF_NAME(JBIG2Decode)))
		return 1;
	n = pdf_array_len(ctx, filter);
	for (i = 0; i < n; i++)
		if (pdf_name_eq(ctx, pdf_array_get(ctx, filter, i), PDF_NAME(JBIG2Decode)))
			return 1;
	return 0;
    */
}

//-----------------------------------------------------------------------------
// Return basic properties of an image provided as bytes or bytearray
// The function creates an fz_image and optionally returns it.
//-----------------------------------------------------------------------------
PyObject *JM_image_profile(fz_context *ctx, PyObject *imagedata, int keep_image)
{
    if (!EXISTS(imagedata)) {
        Py_RETURN_NONE;  // nothing given
    }
    fz_image *image = NULL;
    fz_buffer *res = NULL;
    PyObject *result = NULL;
    unsigned char *c = NULL;
    Py_ssize_t len = 0;
    if (PyBytes_Check(imagedata)) {
        c = PyBytes_AS_STRING(imagedata);
        len = PyBytes_GET_SIZE(imagedata);
    } else if (PyByteArray_Check(imagedata)) {
        c = PyByteArray_AS_STRING(imagedata);
        len = PyByteArray_GET_SIZE(imagedata);
    } else {
        PySys_WriteStderr("bad image data\n");
        Py_RETURN_NONE;
    }

    if (len < 8) {
        PySys_WriteStderr("bad image data\n");
        Py_RETURN_NONE;
    }
    int type = fz_recognize_image_format(ctx, c);
    if (type == FZ_IMAGE_UNKNOWN) {
        Py_RETURN_NONE;
    }

    fz_try(ctx) {
        if (keep_image) {
            res = fz_new_buffer_from_copied_data(ctx, c, (size_t) len);
        } else {
            res = fz_new_buffer_from_shared_data(ctx, c, (size_t) len);
        }
        image = fz_new_image_from_buffer(ctx, res);
        int xres, yres, orientation;
        fz_matrix ctm = fz_image_orientation_matrix(ctx, image);
        fz_image_resolution(image, &xres, &yres);
        orientation = (int) fz_image_orientation(ctx, image);
        const char *cs_name = fz_colorspace_name(ctx, image->colorspace);
        result = PyDict_New();
        DICT_SETITEM_DROP(result, dictkey_width,
                Py_BuildValue("i", image->w));
        DICT_SETITEM_DROP(result, dictkey_height,
                Py_BuildValue("i", image->h));
        DICT_SETITEMSTR_DROP(result, "orientation",
                Py_BuildValue("i", orientation));
        DICT_SETITEM_DROP(result, dictkey_matrix,
                JM_py_from_matrix(ctm));
        DICT_SETITEM_DROP(result, dictkey_xres,
                Py_BuildValue("i", xres));
        DICT_SETITEM_DROP(result, dictkey_yres,
                Py_BuildValue("i", yres));
        DICT_SETITEM_DROP(result, dictkey_colorspace,
                Py_BuildValue("i", image->n));
        DICT_SETITEM_DROP(result, dictkey_bpc,
                Py_BuildValue("i", image->bpc));
        DICT_SETITEM_DROP(result, dictkey_ext,
                Py_BuildValue("s", JM_image_extension(type)));
        DICT_SETITEM_DROP(result, dictkey_cs_name,
                Py_BuildValue("s", cs_name));

        if (keep_image) {
            DICT_SETITEM_DROP(result, dictkey_image,
                    PyLong_FromVoidPtr((void *) fz_keep_image(ctx, image)));
        }
    }
    fz_always(ctx) {
        if (!keep_image) {
            fz_drop_image(ctx, image);
        } else {
            fz_drop_buffer(ctx, res);  // drop the buffer copy
        }
    }
    fz_catch(ctx) {
        Py_CLEAR(result);
        fz_rethrow(ctx);
    }
    PyErr_Clear();
    return result;
}

//----------------------------------------------------------------------------
// Version of fz_new_pixmap_from_display_list (util.c) to also support
// rendering of only the 'clip' part of the displaylist rectangle
//----------------------------------------------------------------------------
fz_pixmap *
JM_pixmap_from_display_list(fz_context *ctx,
                            fz_display_list *list,
                            PyObject *ctm,
                            fz_colorspace *cs,
                            int alpha,
                            PyObject *clip,
                            fz_separations *seps
                           )
{
    fz_rect rect = fz_bound_display_list(ctx, list);
    fz_matrix matrix = JM_matrix_from_py(ctm);
    fz_pixmap *pix = NULL;
    fz_var(pix);
    fz_device *dev = NULL;
    fz_var(dev);
    fz_rect rclip = JM_rect_from_py(clip);
    rect = fz_intersect_rect(rect, rclip);  // no-op if clip is not given

    rect = fz_transform_rect(rect, matrix);
    fz_irect irect = fz_round_rect(rect);

    pix = fz_new_pixmap_with_bbox(ctx, cs, irect, seps, alpha);
    if (alpha)
        fz_clear_pixmap(ctx, pix);
    else
        fz_clear_pixmap_with_value(ctx, pix, 0xFF);

    fz_try(ctx) {
        if (!fz_is_infinite_rect(rclip)) {
            dev = fz_new_draw_device_with_bbox(ctx, matrix, pix, &irect);
            fz_run_display_list(ctx, list, dev, fz_identity, rclip, NULL);
        } else {
            dev = fz_new_draw_device(ctx, matrix, pix);
            fz_run_display_list(ctx, list, dev, fz_identity, fz_infinite_rect, NULL);
        }

        fz_close_device(ctx, dev);
    }
    fz_always(ctx) {
        fz_drop_device(ctx, dev);
    }
    fz_catch(ctx) {
        fz_drop_pixmap(ctx, pix);
        fz_rethrow(ctx);
    }
    return pix;
}

//----------------------------------------------------------------------------
// Pixmap creation directly using a short-lived displaylist, so we can support
// separations.
//----------------------------------------------------------------------------
fz_pixmap *
JM_pixmap_from_page(fz_context *ctx,
                    fz_document *doc,
                    fz_page *page,
                    PyObject *ctm,
                    fz_colorspace *cs,
                    int alpha,
                    int annots,
                    PyObject *clip
                   )
{
    enum { SPOTS_NONE, SPOTS_OVERPRINT_SIM, SPOTS_FULL };
    int spots;
    if (FZ_ENABLE_SPOT_RENDERING)
        spots = SPOTS_OVERPRINT_SIM;
    else
        spots = SPOTS_NONE;

    fz_separations *seps = NULL;
    fz_pixmap *pix = NULL;
    fz_colorspace *oi = NULL;
    fz_var(oi);
    fz_colorspace *colorspace = cs;
    fz_rect rect;
    fz_irect bbox;
    fz_device *dev = NULL;
    fz_var(dev);
    fz_matrix matrix = JM_matrix_from_py(ctm);
    rect = fz_bound_page(ctx, page);
    fz_rect rclip = JM_rect_from_py(clip);
    rect = fz_intersect_rect(rect, rclip);  // no-op if clip is not given
    rect = fz_transform_rect(rect, matrix);
    bbox = fz_round_rect(rect);

    fz_try(ctx) {
        // Pixmap of the document's /OutputIntents ("output intents")
        oi = fz_document_output_intent(ctx, doc);
        // if present and compatible, use it instead of the parameter
        if (oi) {
            if (fz_colorspace_n(ctx, oi) == fz_colorspace_n(ctx, cs)) {
                colorspace = fz_keep_colorspace(ctx, oi);
            }
        }

        // check if spots rendering is available and if so use separations
        if (spots != SPOTS_NONE) {
            seps = fz_page_separations(ctx, page);
            if (seps) {
                int i, n = fz_count_separations(ctx, seps);
                if (spots == SPOTS_FULL)
                    for (i = 0; i < n; i++)
                        fz_set_separation_behavior(ctx, seps, i, FZ_SEPARATION_SPOT);
                else
                    for (i = 0; i < n; i++)
                        fz_set_separation_behavior(ctx, seps, i, FZ_SEPARATION_COMPOSITE);
            } else if (fz_page_uses_overprint(ctx, page)) {
                /* This page uses overprint, so we need an empty
                 * sep object to force the overprint simulation on. */
                seps = fz_new_separations(ctx, 0);
            } else if (oi && fz_colorspace_n(ctx, oi) != fz_colorspace_n(ctx, colorspace)) {
                /* We have an output intent, and it's incompatible
                 * with the colorspace our device needs. Force the
                 * overprint simulation on, because this ensures that
                 * we 'simulate' the output intent too. */
                seps = fz_new_separations(ctx, 0);
            }
        }

        pix = fz_new_pixmap_with_bbox(ctx, colorspace, bbox, seps, alpha);

        if (alpha) {
            fz_clear_pixmap(ctx, pix);
        } else {
            fz_clear_pixmap_with_value(ctx, pix, 0xFF);
        }

        dev = fz_new_draw_device(ctx, matrix, pix);
        if (annots) {
            fz_run_page(ctx, page, dev, fz_identity, NULL);
        } else {
            fz_run_page_contents(ctx, page, dev, fz_identity, NULL);
        }
        fz_close_device(ctx, dev);
    }
    fz_always(ctx) {
        fz_drop_device(ctx, dev);
        fz_drop_separations(ctx, seps);
        fz_drop_colorspace(ctx, oi);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return pix;
}

PyObject *JM_color_count(fz_context *ctx, fz_pixmap *pm, PyObject *clip)
{
    PyObject *rc = PyDict_New(), *pixel=NULL, *c=NULL;
    long cnt=0;
    fz_irect irect = fz_pixmap_bbox(ctx, pm);
    irect = fz_intersect_irect(irect, fz_round_rect(JM_rect_from_py(clip)));
    size_t stride = pm->stride;
    size_t width = irect.x1 - irect.x0, height = irect.y1 - irect.y0;
    size_t i, j, n = (size_t) pm->n, substride = width * n;
    unsigned char *s = pm->samples + stride * (irect.y0 - pm->y) + (irect.x0 - pm->x) * n;
    unsigned char oldpix[10], newpix[10];
    memcpy(oldpix, s, n);
    cnt = 0;
    fz_try(ctx) {
        if (fz_is_empty_irect(irect)) goto finished;
        for (i = 0; i < height; i++) {
            for (j = 0; j < substride; j += n) {
                memcpy(newpix, s + j, n);
                if (memcmp(oldpix, newpix,n) != 0) {
                    pixel = PyBytes_FromStringAndSize(oldpix, n);
                    c = PyDict_GetItem(rc, pixel);
                    if (c) cnt += PyLong_AsLong(c);
                    DICT_SETITEM_DROP(rc, pixel, PyLong_FromLong(cnt));
                    Py_DECREF(pixel);
                    cnt = 1;
                    memcpy(oldpix, newpix, n);
                } else {
                    cnt += 1;
                }
            }
            s += stride;
        }
        pixel = PyBytes_FromStringAndSize(oldpix, n);
        c = PyDict_GetItem(rc, pixel);
        if (c) cnt += PyLong_AsLong(c);
        DICT_SETITEM_DROP(rc, pixel, PyLong_FromLong(cnt));
        Py_DECREF(pixel);
        finished:;
    }
    fz_catch(ctx) {
        Py_CLEAR(rc);
        fz_rethrow(ctx);
    }
    PyErr_Clear();
    return rc;
}
%}







PyMuPDF-1.21.1/fitz/helper-portfolio.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
//-----------------------------------------------------------------------------
// perform some cleaning if we have /EmbeddedFiles:
// (1) remove any /Limits if /Names exists
// (2) remove any empty /Collection
// (3) set /PageMode/UseAttachments
//-----------------------------------------------------------------------------
void JM_embedded_clean(fz_context *ctx, pdf_document *pdf)
{
    pdf_obj *root = pdf_dict_get(ctx, pdf_trailer(ctx, pdf), PDF_NAME(Root));

    // remove any empty /Collection entry
    pdf_obj *coll = pdf_dict_get(ctx, root, PDF_NAME(Collection));
    if (coll && pdf_dict_len(ctx, coll) == 0)
        pdf_dict_del(ctx, root, PDF_NAME(Collection));

    pdf_obj *efiles = pdf_dict_getl(ctx, root,
                                    PDF_NAME(Names),
                                    PDF_NAME(EmbeddedFiles),
                                    PDF_NAME(Names),
                                    NULL);
    if (efiles) {
        pdf_dict_put_name(ctx, root, PDF_NAME(PageMode), "UseAttachments");
    }
    return;
}

//-----------------------------------------------------------------------------
// embed a new file in a PDF (not only /EmbeddedFiles entries)
//-----------------------------------------------------------------------------
pdf_obj *JM_embed_file(fz_context *ctx,
                       pdf_document *pdf,
                       fz_buffer *buf,
                       char *filename,
                       char *ufilename,
                       char *desc,
                       int compress)
{
    size_t len = 0;
    pdf_obj *ef, *f, *params, *val = NULL;
    fz_buffer *buff2 = NULL;
    fz_var(buff2);
    fz_try(ctx) {
        val = pdf_new_dict(ctx, pdf, 6);
        pdf_dict_put_dict(ctx, val, PDF_NAME(CI), 4);
        ef = pdf_dict_put_dict(ctx, val, PDF_NAME(EF), 4);
        pdf_dict_put_text_string(ctx, val, PDF_NAME(F), filename);
        pdf_dict_put_text_string(ctx, val, PDF_NAME(UF), ufilename);
        pdf_dict_put_text_string(ctx, val, PDF_NAME(Desc), desc);
        pdf_dict_put(ctx, val, PDF_NAME(Type), PDF_NAME(Filespec));
        buff2 = fz_new_buffer_from_copied_data(ctx, "  ", 1);
        f = pdf_add_stream(ctx, pdf, buff2, NULL, 0);
        pdf_dict_put_drop(ctx, ef, PDF_NAME(F), f);
        JM_update_stream(ctx, pdf, f, buf, compress);
        len = fz_buffer_storage(ctx, buf, NULL);
        pdf_dict_put_int(ctx, f, PDF_NAME(DL), len);
        pdf_dict_put_int(ctx, f, PDF_NAME(Length), len);
        params = pdf_dict_put_dict(ctx, f, PDF_NAME(Params), 4);
        pdf_dict_put_int(ctx, params, PDF_NAME(Size), len);
    }
    fz_always(ctx) {
        fz_drop_buffer(ctx, buff2);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return val;
}
%}







PyMuPDF-1.21.1/fitz/helper-python.i

%pythoncode %{
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------

# ------------------------------------------------------------------------------
# link kinds and link flags
# ------------------------------------------------------------------------------
LINK_NONE = 0
LINK_GOTO = 1
LINK_URI = 2
LINK_LAUNCH = 3
LINK_NAMED = 4
LINK_GOTOR = 5
LINK_FLAG_L_VALID = 1
LINK_FLAG_T_VALID = 2
LINK_FLAG_R_VALID = 4
LINK_FLAG_B_VALID = 8
LINK_FLAG_FIT_H = 16
LINK_FLAG_FIT_V = 32
LINK_FLAG_R_IS_ZOOM = 64

# ------------------------------------------------------------------------------
# Text handling flags
# ------------------------------------------------------------------------------
TEXT_ALIGN_LEFT = 0
TEXT_ALIGN_CENTER = 1
TEXT_ALIGN_RIGHT = 2
TEXT_ALIGN_JUSTIFY = 3

TEXT_OUTPUT_TEXT = 0
TEXT_OUTPUT_HTML = 1
TEXT_OUTPUT_JSON = 2
TEXT_OUTPUT_XML = 3
TEXT_OUTPUT_XHTML = 4

TEXT_PRESERVE_LIGATURES = 1
TEXT_PRESERVE_WHITESPACE = 2
TEXT_PRESERVE_IMAGES = 4
TEXT_INHIBIT_SPACES = 8
TEXT_DEHYPHENATE = 16
TEXT_PRESERVE_SPANS = 32
TEXT_MEDIABOX_CLIP = 64

TEXTFLAGS_WORDS = (
    TEXT_PRESERVE_LIGATURES
    | TEXT_PRESERVE_WHITESPACE
    | TEXT_MEDIABOX_CLIP
)
TEXTFLAGS_BLOCKS = (
    TEXT_PRESERVE_LIGATURES
    | TEXT_PRESERVE_WHITESPACE
    | TEXT_MEDIABOX_CLIP
)
TEXTFLAGS_DICT = (
    TEXT_PRESERVE_LIGATURES
    | TEXT_PRESERVE_WHITESPACE
    | TEXT_MEDIABOX_CLIP
    | TEXT_PRESERVE_IMAGES
)
TEXTFLAGS_RAWDICT = TEXTFLAGS_DICT
TEXTFLAGS_SEARCH = (
    TEXT_PRESERVE_LIGATURES
    | TEXT_PRESERVE_WHITESPACE
    | TEXT_MEDIABOX_CLIP
    | TEXT_DEHYPHENATE
)
TEXTFLAGS_HTML = (
    TEXT_PRESERVE_LIGATURES
    | TEXT_PRESERVE_WHITESPACE
    | TEXT_MEDIABOX_CLIP
    | TEXT_PRESERVE_IMAGES
)
TEXTFLAGS_XHTML = (
    TEXT_PRESERVE_LIGATURES
    | TEXT_PRESERVE_WHITESPACE
    | TEXT_MEDIABOX_CLIP
    | TEXT_PRESERVE_IMAGES
)
TEXTFLAGS_XML = (
    TEXT_PRESERVE_LIGATURES
    | TEXT_PRESERVE_WHITESPACE
    | TEXT_MEDIABOX_CLIP
)
TEXTFLAGS_TEXT = (
    TEXT_PRESERVE_LIGATURES
    | TEXT_PRESERVE_WHITESPACE
    | TEXT_MEDIABOX_CLIP
)

# ------------------------------------------------------------------------------
# Simple text encoding options
# ------------------------------------------------------------------------------
TEXT_ENCODING_LATIN = 0
TEXT_ENCODING_GREEK = 1
TEXT_ENCODING_CYRILLIC = 2
# ------------------------------------------------------------------------------
# Stamp annotation icon numbers
# ------------------------------------------------------------------------------
STAMP_Approved = 0
STAMP_AsIs = 1
STAMP_Confidential = 2
STAMP_Departmental = 3
STAMP_Experimental = 4
STAMP_Expired = 5
STAMP_Final = 6
STAMP_ForComment = 7
STAMP_ForPublicRelease = 8
STAMP_NotApproved = 9
STAMP_NotForPublicRelease = 10
STAMP_Sold = 11
STAMP_TopSecret = 12
STAMP_Draft = 13

# ------------------------------------------------------------------------------
# Base 14 font names and dictionary
# ------------------------------------------------------------------------------
Base14_fontnames = (
    "Courier",
    "Courier-Oblique",
    "Courier-Bold",
    "Courier-BoldOblique",
    "Helvetica",
    "Helvetica-Oblique",
    "Helvetica-Bold",
    "Helvetica-BoldOblique",
    "Times-Roman",
    "Times-Italic",
    "Times-Bold",
    "Times-BoldItalic",
    "Symbol",
    "ZapfDingbats",
)

Base14_fontdict = {}
for f in Base14_fontnames:
    Base14_fontdict[f.lower()] = f
    del f
Base14_fontdict["helv"] = "Helvetica"
Base14_fontdict["heit"] = "Helvetica-Oblique"
Base14_fontdict["hebo"] = "Helvetica-Bold"
Base14_fontdict["hebi"] = "Helvetica-BoldOblique"
Base14_fontdict["cour"] = "Courier"
Base14_fontdict["coit"] = "Courier-Oblique"
Base14_fontdict["cobo"] = "Courier-Bold"
Base14_fontdict["cobi"] = "Courier-BoldOblique"
Base14_fontdict["tiro"] = "Times-Roman"
Base14_fontdict["tibo"] = "Times-Bold"
Base14_fontdict["tiit"] = "Times-Italic"
Base14_fontdict["tibi"] = "Times-BoldItalic"
Base14_fontdict["symb"] = "Symbol"
Base14_fontdict["zadb"] = "ZapfDingbats"

annot_skel = {
    "goto1": "<</A<</S/GoTo/D[%i 0 R/XYZ %g %g %g]>>/Rect[%s]/BS<</W 0>>/Subtype/Link>>",
    "goto2": "<</A<</S/GoTo/D%s>>/Rect[%s]/BS<</W 0>>/Subtype/Link>>",
    "gotor1": "<</A<</S/GoToR/D[%i /XYZ %g %g %g]/F<</F(%s)/UF(%s)/Type/Filespec>>>>/Rect[%s]/BS<</W 0>>/Subtype/Link>>",
    "gotor2": "<</A<</S/GoToR/D%s/F(%s)>>/Rect[%s]/BS<</W 0>>/Subtype/Link>>",
    "launch": "<</A<</S/Launch/F<</F(%s)/UF(%s)/Type/Filespec>>>>/Rect[%s]/BS<</W 0>>/Subtype/Link>>",
    "uri": "<</A<</S/URI/URI(%s)>>/Rect[%s]/BS<</W 0>>/Subtype/Link>>",
    "named": "<</A<</S/Named/N/%s/Type/Action>>/Rect[%s]/BS<</W 0>>/Subtype/Link>>",
}

class FileDataError(RuntimeError):
    """Raised for documents with file structure issues."""
    pass

class FileNotFoundError(RuntimeError):
    """Raised if file does not exist."""
    pass

class EmptyFileError(FileDataError):
    """Raised when creating documents from zero-length data."""
    pass

# propagate exception class to C-level code
_set_FileDataError(FileDataError)

def css_for_pymupdf_font(
    fontcode: str, *, CSS: OptStr = None, archive: AnyType = None, name: OptStr = None
) -> str:
    """Create @font-face items for the given fontcode of pymupdf-fonts.

    Adds @font-face support for fonts contained in package pymupdf-fonts.

    Creates a CSS font-family for all fonts starting with string 'fontcode'.

    Note:
        The font naming convention in package pymupdf-fonts is "fontcode<sf>",
        where the suffix "sf" is either empty or one of "it", "bo" or "bi".
        These suffixes thus represent the regular, italic, bold or bold-italic
        variants of a font. For example, font code "notos" refers to fonts
        "notos" - "Noto Sans Regular"
        "notosit" - "Noto Sans Italic"
        "notosbo" - "Noto Sans Bold"
        "notosbi" - "Noto Sans Bold Italic"

        This function creates four CSS @font-face definitions and collectively
        assigns the font-family name "notos" to them (or the "name" value).

    All fitting font buffers of the pymupdf-fonts package are placed / added
    to the archive provided as parameter.
    To use the font in fitz.Story, execute 'set_font(fontcode)'. The correct
    font weight (bold) or style (italic) will automatically be selected.
    Expects and returns the CSS source, with the new CSS definitions appended.

    Args:
        fontcode: (str) font code for naming the font variants to include.
                  E.g. "fig" adds notos, notosi, notosb, notosbi fonts.
                  A maximum of 4 font variants is accepted.
        CSS: (str) CSS string to add @font-face definitions to.
        archive: (Archive, mandatory) where to place the font buffers.
        name: (str) use this as family-name instead of 'fontcode'.
    Returns:
        Modified CSS, with appended @font-face statements for each font variant
        of fontcode.
        Fontbuffers associated with "fontcode" will be added to 'archive'.
    """
    # @font-face template string
    CSSFONT = "\n@font-face {font-family: %s; src: url(%s);%s%s}\n"

    if not type(archive) is Archive:
        raise ValueError("'archive' must be an Archive")
    if CSS == None:
        CSS = ""

    # select font codes starting with the pass-in string
    font_keys = [k for k in fitz_fontdescriptors.keys() if k.startswith(fontcode)]
    if font_keys == []:
        raise ValueError(f"No font code '{fontcode}' found in pymupdf-fonts.")
    if len(font_keys) > 4:
        raise ValueError("fontcode too short")
    if name == None:  # use this name for font-family
        name = fontcode

    for fkey in font_keys:
        font = fitz_fontdescriptors[fkey]
        bold = font["bold"]  # determine font property
        italic = font["italic"]  # determine font property
        fbuff = font["loader"]()  # load the fontbuffer
        archive.add(fbuff, fkey)  # update the archive
        bold_text = "font-weight: bold;" if bold else ""
        italic_text = "font-style: italic;" if italic else ""
        CSS += CSSFONT % (name, fkey, bold_text, italic_text)
    return CSS


def get_text_length(text: str, fontname: str ="helv", fontsize: float =11, encoding: int =0) -> float:
    """Calculate length of a string for a built-in font.

    Args:
        fontname: name of the font.
        fontsize: font size points.
        encoding: encoding to use, 0=Latin (default), 1=Greek, 2=Cyrillic.
    Returns:
        (float) length of text.
    """
    fontname = fontname.lower()
    basename = Base14_fontdict.get(fontname, None)

    glyphs = None
    if basename == "Symbol":
        glyphs = symbol_glyphs
    if basename == "ZapfDingbats":
        glyphs = zapf_glyphs
    if glyphs is not None:
        w = sum([glyphs[ord(c)][1] if ord(c) < 256 else glyphs[183][1] for c in text])
        return w * fontsize

    if fontname in Base14_fontdict.keys():
        return util_measure_string(
            text, Base14_fontdict[fontname], fontsize, encoding
        )

    if fontname in (
        "china-t",
        "china-s",
        "china-ts",
        "china-ss",
        "japan",
        "japan-s",
        "korea",
        "korea-s",
    ):
        return len(text) * fontsize

    raise ValueError("Font '%s' is unsupported" % fontname)


# ------------------------------------------------------------------------------
# Glyph list for the built-in font 'ZapfDingbats'
# ------------------------------------------------------------------------------
zapf_glyphs = (
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (32, 0.278),
    (33, 0.974),
    (34, 0.961),
    (35, 0.974),
    (36, 0.98),
    (37, 0.719),
    (38, 0.789),
    (39, 0.79),
    (40, 0.791),
    (41, 0.69),
    (42, 0.96),
    (43, 0.939),
    (44, 0.549),
    (45, 0.855),
    (46, 0.911),
    (47, 0.933),
    (48, 0.911),
    (49, 0.945),
    (50, 0.974),
    (51, 0.755),
    (52, 0.846),
    (53, 0.762),
    (54, 0.761),
    (55, 0.571),
    (56, 0.677),
    (57, 0.763),
    (58, 0.76),
    (59, 0.759),
    (60, 0.754),
    (61, 0.494),
    (62, 0.552),
    (63, 0.537),
    (64, 0.577),
    (65, 0.692),
    (66, 0.786),
    (67, 0.788),
    (68, 0.788),
    (69, 0.79),
    (70, 0.793),
    (71, 0.794),
    (72, 0.816),
    (73, 0.823),
    (74, 0.789),
    (75, 0.841),
    (76, 0.823),
    (77, 0.833),
    (78, 0.816),
    (79, 0.831),
    (80, 0.923),
    (81, 0.744),
    (82, 0.723),
    (83, 0.749),
    (84, 0.79),
    (85, 0.792),
    (86, 0.695),
    (87, 0.776),
    (88, 0.768),
    (89, 0.792),
    (90, 0.759),
    (91, 0.707),
    (92, 0.708),
    (93, 0.682),
    (94, 0.701),
    (95, 0.826),
    (96, 0.815),
    (97, 0.789),
    (98, 0.789),
    (99, 0.707),
    (100, 0.687),
    (101, 0.696),
    (102, 0.689),
    (103, 0.786),
    (104, 0.787),
    (105, 0.713),
    (106, 0.791),
    (107, 0.785),
    (108, 0.791),
    (109, 0.873),
    (110, 0.761),
    (111, 0.762),
    (112, 0.762),
    (113, 0.759),
    (114, 0.759),
    (115, 0.892),
    (116, 0.892),
    (117, 0.788),
    (118, 0.784),
    (119, 0.438),
    (120, 0.138),
    (121, 0.277),
    (122, 0.415),
    (123, 0.392),
    (124, 0.392),
    (125, 0.668),
    (126, 0.668),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (183, 0.788),
    (161, 0.732),
    (162, 0.544),
    (163, 0.544),
    (164, 0.91),
    (165, 0.667),
    (166, 0.76),
    (167, 0.76),
    (168, 0.776),
    (169, 0.595),
    (170, 0.694),
    (171, 0.626),
    (172, 0.788),
    (173, 0.788),
    (174, 0.788),
    (175, 0.788),
    (176, 0.788),
    (177, 0.788),
    (178, 0.788),
    (179, 0.788),
    (180, 0.788),
    (181, 0.788),
    (182, 0.788),
    (183, 0.788),
    (184, 0.788),
    (185, 0.788),
    (186, 0.788),
    (187, 0.788),
    (188, 0.788),
    (189, 0.788),
    (190, 0.788),
    (191, 0.788),
    (192, 0.788),
    (193, 0.788),
    (194, 0.788),
    (195, 0.788),
    (196, 0.788),
    (197, 0.788),
    (198, 0.788),
    (199, 0.788),
    (200, 0.788),
    (201, 0.788),
    (202, 0.788),
    (203, 0.788),
    (204, 0.788),
    (205, 0.788),
    (206, 0.788),
    (207, 0.788),
    (208, 0.788),
    (209, 0.788),
    (210, 0.788),
    (211, 0.788),
    (212, 0.894),
    (213, 0.838),
    (214, 1.016),
    (215, 0.458),
    (216, 0.748),
    (217, 0.924),
    (218, 0.748),
    (219, 0.918),
    (220, 0.927),
    (221, 0.928),
    (222, 0.928),
    (223, 0.834),
    (224, 0.873),
    (225, 0.828),
    (226, 0.924),
    (227, 0.924),
    (228, 0.917),
    (229, 0.93),
    (230, 0.931),
    (231, 0.463),
    (232, 0.883),
    (233, 0.836),
    (234, 0.836),
    (235, 0.867),
    (236, 0.867),
    (237, 0.696),
    (238, 0.696),
    (239, 0.874),
    (183, 0.788),
    (241, 0.874),
    (242, 0.76),
    (243, 0.946),
    (244, 0.771),
    (245, 0.865),
    (246, 0.771),
    (247, 0.888),
    (248, 0.967),
    (249, 0.888),
    (250, 0.831),
    (251, 0.873),
    (252, 0.927),
    (253, 0.97),
    (183, 0.788),
    (183, 0.788),
)

# ------------------------------------------------------------------------------
# Glyph list for the built-in font 'Symbol'
# ------------------------------------------------------------------------------
symbol_glyphs = (
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (32, 0.25),
    (33, 0.333),
    (34, 0.713),
    (35, 0.5),
    (36, 0.549),
    (37, 0.833),
    (38, 0.778),
    (39, 0.439),
    (40, 0.333),
    (41, 0.333),
    (42, 0.5),
    (43, 0.549),
    (44, 0.25),
    (45, 0.549),
    (46, 0.25),
    (47, 0.278),
    (48, 0.5),
    (49, 0.5),
    (50, 0.5),
    (51, 0.5),
    (52, 0.5),
    (53, 0.5),
    (54, 0.5),
    (55, 0.5),
    (56, 0.5),
    (57, 0.5),
    (58, 0.278),
    (59, 0.278),
    (60, 0.549),
    (61, 0.549),
    (62, 0.549),
    (63, 0.444),
    (64, 0.549),
    (65, 0.722),
    (66, 0.667),
    (67, 0.722),
    (68, 0.612),
    (69, 0.611),
    (70, 0.763),
    (71, 0.603),
    (72, 0.722),
    (73, 0.333),
    (74, 0.631),
    (75, 0.722),
    (76, 0.686),
    (77, 0.889),
    (78, 0.722),
    (79, 0.722),
    (80, 0.768),
    (81, 0.741),
    (82, 0.556),
    (83, 0.592),
    (84, 0.611),
    (85, 0.69),
    (86, 0.439),
    (87, 0.768),
    (88, 0.645),
    (89, 0.795),
    (90, 0.611),
    (91, 0.333),
    (92, 0.863),
    (93, 0.333),
    (94, 0.658),
    (95, 0.5),
    (96, 0.5),
    (97, 0.631),
    (98, 0.549),
    (99, 0.549),
    (100, 0.494),
    (101, 0.439),
    (102, 0.521),
    (103, 0.411),
    (104, 0.603),
    (105, 0.329),
    (106, 0.603),
    (107, 0.549),
    (108, 0.549),
    (109, 0.576),
    (110, 0.521),
    (111, 0.549),
    (112, 0.549),
    (113, 0.521),
    (114, 0.549),
    (115, 0.603),
    (116, 0.439),
    (117, 0.576),
    (118, 0.713),
    (119, 0.686),
    (120, 0.493),
    (121, 0.686),
    (122, 0.494),
    (123, 0.48),
    (124, 0.2),
    (125, 0.48),
    (126, 0.549),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (183, 0.46),
    (160, 0.25),
    (161, 0.62),
    (162, 0.247),
    (163, 0.549),
    (164, 0.167),
    (165, 0.713),
    (166, 0.5),
    (167, 0.753),
    (168, 0.753),
    (169, 0.753),
    (170, 0.753),
    (171, 1.042),
    (172, 0.713),
    (173, 0.603),
    (174, 0.987),
    (175, 0.603),
    (176, 0.4),
    (177, 0.549),
    (178, 0.411),
    (179, 0.549),
    (180, 0.549),
    (181, 0.576),
    (182, 0.494),
    (183, 0.46),
    (184, 0.549),
    (185, 0.549),
    (186, 0.549),
    (187, 0.549),
    (188, 1),
    (189, 0.603),
    (190, 1),
    (191, 0.658),
    (192, 0.823),
    (193, 0.686),
    (194, 0.795),
    (195, 0.987),
    (196, 0.768),
    (197, 0.768),
    (198, 0.823),
    (199, 0.768),
    (200, 0.768),
    (201, 0.713),
    (202, 0.713),
    (203, 0.713),
    (204, 0.713),
    (205, 0.713),
    (206, 0.713),
    (207, 0.713),
    (208, 0.768),
    (209, 0.713),
    (210, 0.79),
    (211, 0.79),
    (212, 0.89),
    (213, 0.823),
    (214, 0.549),
    (215, 0.549),
    (216, 0.713),
    (217, 0.603),
    (218, 0.603),
    (219, 1.042),
    (220, 0.987),
    (221, 0.603),
    (222, 0.987),
    (223, 0.603),
    (224, 0.494),
    (225, 0.329),
    (226, 0.79),
    (227, 0.79),
    (228, 0.786),
    (229, 0.713),
    (230, 0.384),
    (231, 0.384),
    (232, 0.384),
    (233, 0.384),
    (234, 0.384),
    (235, 0.384),
    (236, 0.494),
    (237, 0.494),
    (238, 0.494),
    (239, 0.494),
    (183, 0.46),
    (241, 0.329),
    (242, 0.274),
    (243, 0.686),
    (244, 0.686),
    (245, 0.686),
    (246, 0.384),
    (247, 0.549),
    (248, 0.384),
    (249, 0.384),
    (250, 0.384),
    (251, 0.384),
    (252, 0.494),
    (253, 0.494),
    (254, 0.494),
    (183, 0.46),
)


class linkDest(object):
    """link or outline destination details"""

    def __init__(self, obj, rlink):
        isExt = obj.is_external
        isInt = not isExt
        self.dest = ""
        self.fileSpec = ""
        self.flags = 0
        self.isMap = False
        self.isUri = False
        self.kind = LINK_NONE
        self.lt = Point(0, 0)
        self.named = ""
        self.newWindow = ""
        self.page = obj.page
        self.rb = Point(0, 0)
        self.uri = obj.uri
        if rlink and not self.uri.startswith("#"):
            self.uri = "#page=%i&zoom=0,%g,%g" % (rlink[0] + 1, rlink[1], rlink[2])
        if obj.is_external:
            self.page = -1
            self.kind = LINK_URI
        if not self.uri:
            self.page = -1
            self.kind = LINK_NONE
        if isInt and self.uri:
            self.uri = self.uri.replace("&zoom=nan", "&zoom=0")
            if self.uri.startswith("#"):
                self.named = ""
                self.kind = LINK_GOTO
                m = re.match('^#page=([0-9]+)&zoom=([0-9.]+),([0-9.]+),([0-9.]+)$', self.uri)
                if m:
                    self.page = int(m.group(1)) - 1
                    self.lt = Point(float((m.group(3))), float(m.group(4)))
                    self.flags = self.flags | LINK_FLAG_L_VALID | LINK_FLAG_T_VALID
                else:
                    m = re.match('^#page=([0-9]+)$', self.uri)
                    if m:
                        self.page = int(m.group(1)) - 1
                    else:
                        self.kind = LINK_NAMED
                        self.named = self.uri[1:]
            else:
                self.kind = LINK_NAMED
                self.named = self.uri
        if obj.is_external:
            if self.uri.startswith(("http://", "https://", "mailto:", "ftp://")):
                self.isUri = True
                self.kind = LINK_URI
            elif self.uri.startswith("file://"):
                self.fileSpec = self.uri[7:]
                self.isUri = False
                self.uri = ""
                self.kind = LINK_LAUNCH
                ftab = self.fileSpec.split("#")
                if len(ftab) == 2:
                    if ftab[1].startswith("page="):
                        self.kind = LINK_GOTOR
                        self.fileSpec = ftab[0]
                        self.page = int(ftab[1][5:]) - 1
            else:
                self.isUri = True
                self.kind = LINK_LAUNCH


# -------------------------------------------------------------------------------
# "Now" timestamp in PDF Format
# -------------------------------------------------------------------------------
def get_pdf_now() -> str:
    import time

    tz = "%s'%s'" % (
        str(abs(time.altzone // 3600)).rjust(2, "0"),
        str((abs(time.altzone // 60) % 60)).rjust(2, "0"),
    )
    tstamp = time.strftime("D:%Y%m%d%H%M%S", time.localtime())
    if time.altzone > 0:
        tstamp += "-" + tz
    elif time.altzone < 0:
        tstamp += "+" + tz
    else:
        pass
    return tstamp


def get_pdf_str(s: str) -> str:
    """ Return a PDF string depending on its coding.

    Notes:
        Returns a string bracketed with either "()" or "<>" for hex values.
        If only ascii then "(original)" is returned, else if only 8 bit chars
        then "(original)" with interspersed octal strings \nnn is returned,
        else a string "<FEFF[hexstring]>" is returned, where [hexstring] is the
        UTF-16BE encoding of the original.
    """
    if not bool(s):
        return "()"

    def make_utf16be(s):
        r = bytearray([254, 255]) + bytearray(s, "UTF-16BE")
        return "<" + r.hex() + ">"  # brackets indicate hex

    # The following either returns the original string with mixed-in
    # octal numbers \nnn for chars outside the ASCII range, or returns
    # the UTF-16BE BOM version of the string.
    r = ""
    for c in s:
        oc = ord(c)
        if oc > 255:  # shortcut if beyond 8-bit code range
            return make_utf16be(s)

        if oc > 31 and oc < 127:  # in ASCII range
            if c in ("(", ")", "\\"):  # these need to be escaped
                r += "\\"
            r += c
            continue

        if oc > 127:  # beyond ASCII
            r += "\\%03o" % oc
            continue

        # now the white spaces
        if oc == 8:  # backspace
            r += "\\b"
        elif oc == 9:  # tab
            r += "\\t"
        elif oc == 10:  # line feed
            r += "\\n"
        elif oc == 12:  # form feed
            r += "\\f"
        elif oc == 13:  # carriage return
            r += "\\r"
        else:
            r += "\\267"  # unsupported: replace by 0xB7

    return "(" + r + ")"


def getTJstr(text: str, glyphs: typing.Union[list, tuple, None], simple: bool, ordering: int) -> str:
    """ Return a PDF string enclosed in [] brackets, suitable for the PDF TJ
    operator.

    Notes:
        The input string is converted to either 2 or 4 hex digits per character.
    Args:
        simple: no glyphs: 2-chars, use char codes as the glyph
                glyphs: 2-chars, use glyphs instead of char codes (Symbol,
                ZapfDingbats)
        not simple: ordering < 0: 4-chars, use glyphs not char codes
                    ordering >=0: a CJK font! 4 chars, use char codes as glyphs
    """
    if text.startswith("[<") and text.endswith(">]"):  # already done
        return text

    if not bool(text):
        return "[<>]"

    if simple:  # each char or its glyph is coded as a 2-byte hex
        if glyphs is None:  # not Symbol, not ZapfDingbats: use char code
            otxt = "".join(["%02x" % ord(c) if ord(c) < 256 else "b7" for c in text])
        else:  # Symbol or ZapfDingbats: use glyphs
            otxt = "".join(
                ["%02x" % glyphs[ord(c)][0] if ord(c) < 256 else "b7" for c in text]
            )
        return "[<" + otxt + ">]"

    # non-simple fonts: each char or its glyph is coded as 4-byte hex
    if ordering < 0:  # not a CJK font: use the glyphs
        otxt = "".join(["%04x" % glyphs[ord(c)][0] for c in text])
    else:  # CJK: use the char codes
        otxt = "".join(["%04x" % ord(c) for c in text])

    return "[<" + otxt + ">]"


def paper_sizes():
    """Known paper formats @ 72 dpi as a dictionary. Key is the format string
    like "a4" for ISO-A4. Value is the tuple (width, height).

    Information taken from the following web sites:
    www.din-formate.de
    www.din-formate.info/amerikanische-formate.html
    www.directtools.de/wissen/normen/iso.htm
    """
    return {
        "a0": (2384, 3370),
        "a1": (1684, 2384),
        "a10": (74, 105),
        "a2": (1191, 1684),
        "a3": (842, 1191),
        "a4": (595, 842),
        "a5": (420, 595),
        "a6": (298, 420),
        "a7": (210, 298),
        "a8": (147, 210),
        "a9": (105, 147),
        "b0": (2835, 4008),
        "b1": (2004, 2835),
        "b10": (88, 125),
        "b2": (1417, 2004),
        "b3": (1001, 1417),
        "b4": (709, 1001),
        "b5": (499, 709),
        "b6": (354, 499),
        "b7": (249, 354),
        "b8": (176, 249),
        "b9": (125, 176),
        "c0": (2599, 3677),
        "c1": (1837, 2599),
        "c10": (79, 113),
        "c2": (1298, 1837),
        "c3": (918, 1298),
        "c4": (649, 918),
        "c5": (459, 649),
        "c6": (323, 459),
        "c7": (230, 323),
        "c8": (162, 230),
        "c9": (113, 162),
        "card-4x6": (288, 432),
        "card-5x7": (360, 504),
        "commercial": (297, 684),
        "executive": (522, 756),
        "invoice": (396, 612),
        "ledger": (792, 1224),
        "legal": (612, 1008),
        "legal-13": (612, 936),
        "letter": (612, 792),
        "monarch": (279, 540),
        "tabloid-extra": (864, 1296),
    }


def paper_size(s: str) -> tuple:
    """Return a tuple (width, height) for a given paper format string.

    Notes:
        'A4-L' will return (842, 595), the values for A4 landscape.
        Suffix '-P' and no suffix return the portrait tuple.
    """
    size = s.lower()
    f = "p"
    if size.endswith("-l"):
        f = "l"
        size = size[:-2]
    if size.endswith("-p"):
        size = size[:-2]
    rc = paper_sizes().get(size, (-1, -1))
    if f == "p":
        return rc
    return (rc[1], rc[0])


def paper_rect(s: str) -> Rect:
    """Return a Rect for the paper size indicated in string 's'. Must conform to the argument of method 'PaperSize', which will be invoked.
    """
    width, height = paper_size(s)
    return Rect(0.0, 0.0, width, height)


def CheckParent(o: typing.Any):
    if getattr(o, "parent", None) == None:
        raise ValueError("orphaned object: parent is None")


def EnsureOwnership(o: typing.Any):
    if not getattr(o, "thisown", False):
        raise RuntimeError("object destroyed")


def CheckColor(c: OptSeq):
    if c:
        if (
            type(c) not in (list, tuple)
            or len(c) not in (1, 3, 4)
            or min(c) < 0
            or max(c) > 1
        ):
            raise ValueError("need 1, 3 or 4 color components in range 0 to 1")


def ColorCode(c: typing.Union[list, tuple, float, None], f: str) -> str:
    if not c:
        return ""
    if hasattr(c, "__float__"):
        c = (c,)
    CheckColor(c)
    if len(c) == 1:
        s = "%g " % c[0]
        return s + "G " if f == "c" else s + "g "

    if len(c) == 3:
        s = "%g %g %g " % tuple(c)
        return s + "RG " if f == "c" else s + "rg "

    s = "%g %g %g %g " % tuple(c)
    return s + "K " if f == "c" else s + "k "


def JM_TUPLE(o: typing.Sequence) -> tuple:
    return tuple(map(lambda x: round(x, 5) if abs(x) >= 1e-4 else 0, o))


def JM_TUPLE3(o: typing.Sequence) -> tuple:
    return tuple(map(lambda x: round(x, 3) if abs(x) >= 1e-3 else 0, o))


def CheckRect(r: typing.Any) -> bool:
    """Check whether an object is non-degenerate rect-like.

    It must be a sequence of 4 numbers.
    """
    try:
        r = Rect(r)
    except:
        return False
    return not (r.is_empty or r.is_infinite)


def CheckQuad(q: typing.Any) -> bool:
    """Check whether an object is convex, not empty quad-like.

    It must be a sequence of 4 number pairs.
    """
    try:
        q0 = Quad(q)
    except:
        return False
    return q0.is_convex


def CheckMarkerArg(quads: typing.Any) -> tuple:
    if CheckRect(quads):
        r = Rect(quads)
        return (r.quad,)
    if CheckQuad(quads):
        return (quads,)
    for q in quads:
        if not (CheckRect(q) or CheckQuad(q)):
            raise ValueError("bad quads entry")
    return quads


def CheckMorph(o: typing.Any) -> bool:
    if not bool(o):
        return False
    if not (type(o) in (list, tuple) and len(o) == 2):
        raise ValueError("morph must be a sequence of length 2")
    if not (len(o[0]) == 2 and len(o[1]) == 6):
        raise ValueError("invalid morph parm 0")
    if not o[1][4] == o[1][5] == 0:
        raise ValueError("invalid morph parm 1")
    return True


def CheckFont(page: "struct Page *", fontname: str) -> tuple:
    """Return an entry in the page's font list if reference name matches.
    """
    for f in page.get_fonts():
        if f[4] == fontname:
            return f


def CheckFontInfo(doc: "struct Document *", xref: int) -> list:
    """Return a font info if present in the document.
    """
    for f in doc.FontInfos:
        if xref == f[0]:
            return f


def UpdateFontInfo(doc: "struct Document *", info: typing.Sequence):
    xref = info[0]
    found = False
    for i, fi in enumerate(doc.FontInfos):
        if fi[0] == xref:
            found = True
            break
    if found:
        doc.FontInfos[i] = info
    else:
        doc.FontInfos.append(info)


def DUMMY(*args, **kw):
    return


def planish_line(p1: point_like, p2: point_like) -> Matrix:
    """Compute matrix which maps line from p1 to p2 to the x-axis, such that it
    maintains its length and p1 * matrix = Point(0, 0).

    Args:
        p1, p2: point_like
    Returns:
        Matrix which maps p1 to Point(0, 0) and p2 to a point on the x axis at
        the same distance to Point(0,0). Will always combine a rotation and a
        transformation.
    """
    p1 = Point(p1)
    p2 = Point(p2)
    return Matrix(util_hor_matrix(p1, p2))


def image_profile(img: typing.ByteString) -> dict:
    """ Return basic properties of an image.

    Args:
        img: bytes, bytearray, io.BytesIO object or an opened image file.
    Returns:
        A dictionary with keys width, height, colorspace.n, bpc, type, ext and size,
        where 'type' is the MuPDF image type (0 to 14) and 'ext' the suitable
        file extension.
    """
    if type(img) is io.BytesIO:
        stream = img.getvalue()
    elif hasattr(img, "read"):
        stream = img.read()
    elif type(img) in (bytes, bytearray):
        stream = img
    else:
        raise ValueError("bad argument 'img'")

    return TOOLS.image_profile(stream)


def ConversionHeader(i: str, filename: OptStr ="unknown"):
    t = i.lower()
    html = """<!DOCTYPE html>
<html>
<head>
<style>
body{background-color:gray}
div{position:relative;background-color:white;margin:1em auto}
p{position:absolute;margin:0}
img{position:absolute}
</style>
</head>
<body>\n"""

    xml = (
        """<?xml version="1.0"?>
<document name="%s">\n"""
        % filename
    )

    xhtml = """<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<style>
body{background-color:gray}
div{background-color:white;margin:1em;padding:1em}
p{white-space:pre-wrap}
</style>
</head>
<body>\n"""

    text = ""
    json = '{"document": "%s", "pages": [\n' % filename
    if t == "html":
        r = html
    elif t == "json":
        r = json
    elif t == "xml":
        r = xml
    elif t == "xhtml":
        r = xhtml
    else:
        r = text

    return r


def ConversionTrailer(i: str):
    t = i.lower()
    text = ""
    json = "]\n}"
    html = "</body>\n</html>\n"
    xml = "</document>\n"
    xhtml = html
    if t == "html":
        r = html
    elif t == "json":
        r = json
    elif t == "xml":
        r = xml
    elif t == "xhtml":
        r = xhtml
    else:
        r = text

    return r

class ElementPosition(object):
    """Convert a dictionary with element position information to an object."""
    def __init__(self):
        pass
    def __str__(self):
        ret = ""
        for n, v in self.__dict__.items():
            ret += f" {n}={v!r}"
        return ret

def make_story_elpos():
    return ElementPosition()


def get_highlight_selection(page, start: point_like =None, stop: point_like =None, clip: rect_like =None) -> list:
    """Return rectangles of text lines between two points.

    Notes:
        The default of 'start' is top-left of 'clip'. The default of 'stop'
        is bottom-reight of 'clip'.

    Args:
        start: start point_like
        stop: end point_like, must be 'below' start
        clip: consider this rect_like only, default is page rectangle
    Returns:
        List of line bbox intersections with the area established by the
        parameters.
    """
    # validate and normalize arguments
    if clip is None:
        clip = page.rect
    clip = Rect(clip)
    if start is None:
        start = clip.tl
    if stop is None:
        stop = clip.br
    clip.y0 = start.y
    clip.y1 = stop.y
    if clip.is_empty or clip.is_infinite:
        return []

    # extract text of page, clip only, no images, expand ligatures
    blocks = page.get_text(
        "dict", flags=0, clip=clip,
    )["blocks"]

    lines = []  # will return this list of rectangles
    for b in blocks:
        for line in b["lines"]:
            lines.append(Rect(line["bbox"]))

    if lines == []:  # did not select anything
        return lines

    lines.sort(key=lambda bbox: bbox.y1)  # sort by vertical positions

    # cut off prefix from first line if start point is close to its top
    bboxf = lines.pop(0)
    if bboxf.y0 - start.y <= 0.1 * bboxf.height:  # close enough?
        r = Rect(start.x, bboxf.y0, bboxf.br)  # intersection rectangle
        if not (r.is_empty or r.is_infinite):
            lines.insert(0, r)  # insert again if not empty
    else:
        lines.insert(0, bboxf)  # insert again

    if lines == []:  # the list might have been emptied
        return lines

    # cut off suffix from last line if stop point is close to its bottom
    bboxl = lines.pop()
    if stop.y - bboxl.y1 <= 0.1 * bboxl.height:  # close enough?
        r = Rect(bboxl.tl, stop.x, bboxl.y1)  # intersection rectangle
        if not (r.is_empty or r.is_infinite):
            lines.append(r)  # append if not empty
    else:
        lines.append(bboxl)  # append again

    return lines


def annot_preprocess(page: "Page") -> int:
    """Prepare for annotation insertion on the page.

    Returns:
        Old page rotation value. Temporarily sets rotation to 0 when required.
    """
    CheckParent(page)
    if not page.parent.is_pdf:
        raise ValueError("is no PDF")
    old_rotation = page.rotation
    if old_rotation != 0:
        page.set_rotation(0)
    return old_rotation


def annot_postprocess(page: "Page", annot: "Annot") -> None:
    """Clean up after annotation inertion.

    Set ownership flag and store annotation in page annotation dictionary.
    """
    annot.parent = weakref.proxy(page)
    page._annot_refs[id(annot)] = annot
    annot.thisown = True


def sRGB_to_rgb(srgb: int) -> tuple:
    """Convert sRGB color code to an RGB color triple.

    There is **no error checking** for performance reasons!

    Args:
        srgb: (int) RRGGBB (red, green, blue), each color in range(255).
    Returns:
        Tuple (red, green, blue) each item in intervall 0 <= item <= 255.
    """
    r = srgb >> 16
    g = (srgb - (r << 16)) >> 8
    b = srgb - (r << 16) - (g << 8)
    return (r, g, b)


def sRGB_to_pdf(srgb: int) -> tuple:
    """Convert sRGB color code to a PDF color triple.

    There is **no error checking** for performance reasons!

    Args:
        srgb: (int) RRGGBB (red, green, blue), each color in range(255).
    Returns:
        Tuple (red, green, blue) each item in intervall 0 <= item <= 1.
    """
    t = sRGB_to_rgb(srgb)
    return t[0] / 255.0, t[1] / 255.0, t[2] / 255.0


def make_table(rect: rect_like =(0, 0, 1, 1), cols: int =1, rows: int =1) -> list:
    """Return a list of (rows x cols) equal sized rectangles.

    Notes:
        A utility to fill a given area with table cells of equal size.
    Args:
        rect: rect_like to use as the table area
        rows: number of rows
        cols: number of columns
    Returns:
        A list with <rows> items, where each item is a list of <cols>
        PyMuPDF Rect objects of equal sizes.
    """
    rect = Rect(rect)  # ensure this is a Rect
    if rect.is_empty or rect.is_infinite:
        raise ValueError("rect must be finite and not empty")
    tl = rect.tl

    height = rect.height / rows  # height of one table cell
    width = rect.width / cols  # width of one table cell
    delta_h = (width, 0, width, 0)  # diff to next right rect
    delta_v = (0, height, 0, height)  # diff to next lower rect

    r = Rect(tl, tl.x + width, tl.y + height)  # first rectangle

    # make the first row
    row = [r]
    for i in range(1, cols):
        r += delta_h  # build next rect to the right
        row.append(r)

    # make result, starts with first row
    rects = [row]
    for i in range(1, rows):
        row = rects[i - 1]  # take previously appended row
        nrow = []  # the new row to append
        for r in row:  # for each previous cell add its downward copy
            nrow.append(r + delta_v)
        rects.append(nrow)  # append new row to result

    return rects


def repair_mono_font(page: "Page", font: "Font") -> None:
    """Repair character spacing for mono fonts.

    Notes:
        Some mono-spaced fonts are displayed with a too large character
        width, e.g. "a b c" instead of "abc". This utility adds an entry
        "/DW w" to the descendent font of font. The int w is
        taken to be the first width > 0 of the font's unicodes.
        This should enforce viewers to use 'w' as the character width.

    Args:
        page: fitz.Page object.
        font: fitz.Font object.
    """
    def set_font_width(doc, xref, width):
        df = doc.xref_get_key(xref, "DescendantFonts")
        if df[0] != "array":
            return False
        df_xref = int(df[1][1:-1].replace("0 R",""))
        W = doc.xref_get_key(df_xref, "W")
        if W[1] != "null":
            doc.xref_set_key(df_xref, "W", "null")
        doc.xref_set_key(df_xref, "DW", str(width))
        return True

    if not font.flags["mono"]:  # font not flagged as monospaced
        return None
    doc = page.parent  # the document
    fontlist = page.get_fonts()  # list of fonts on page
    xrefs = [  # list of objects referring to font
        f[0]
        for f in fontlist
        if (f[3] == font.name and f[4].startswith("F") and f[5].startswith("Identity"))
    ]
    if xrefs == []:  # our font does not occur
        return
    xrefs = set(xrefs)  # drop any double counts
    maxadv = max([font.glyph_advance(cp) for cp in font.valid_codepoints()[:3]])
    width = int(round((maxadv * 1000)))
    for xref in xrefs:
        if not set_font_width(doc, xref, width):
            print("Cannot set width for '%s' in xref %i" % (font.name, xref))


# Adobe Glyph List functions
import base64, gzip

_adobe_glyphs = {}
_adobe_unicodes = {}
def unicode_to_glyph_name(ch: int) -> str:
    if _adobe_glyphs == {}:
        for line in _get_glyph_text():
            if line.startswith("#"):
                continue
            name, unc = line.split(";")
            uncl = unc.split()
            for unc in uncl:
                c = int(unc[:4], base=16)
                _adobe_glyphs[c] = name
    return _adobe_glyphs.get(ch, ".notdef")


def glyph_name_to_unicode(name: str) -> int:
    if _adobe_unicodes == {}:
        for line in _get_glyph_text():
            if line.startswith("#"):
                continue
            gname, unc = line.split(";")
            c = int(unc[:4], base=16)
            _adobe_unicodes[gname] = c
    return _adobe_unicodes.get(name, 65533)

def adobe_glyph_names() -> tuple:
    if _adobe_unicodes == {}:
        for line in _get_glyph_text():
            if line.startswith("#"):
                continue
            gname, unc = line.split(";")
            c = int("0x" + unc[:4], base=16)
            _adobe_unicodes[gname] = c
    return tuple(_adobe_unicodes.keys())

def adobe_glyph_unicodes() -> tuple:
    if _adobe_unicodes == {}:
        for line in _get_glyph_text():
            if line.startswith("#"):
                continue
            gname, unc = line.split(";")
            c = int("0x" + unc[:4], base=16)
            _adobe_unicodes[gname] = c
    return tuple(_adobe_unicodes.values())

def _get_glyph_text() -> bytes:
    return gzip.decompress(base64.b64decode(
    b'H4sIABmRaF8C/7W9SZfjRpI1useviPP15utzqroJgBjYWhEkKGWVlKnOoapVO0YQEYSCJE'
    b'IcMhT569+9Ppibg8xevHdeSpmEXfPBfDZ3N3f/t7u//r//k/zb3WJ4eTv2T9vzXTaZZH/N'
    b'Junsbr4Z7ru7/7s9n1/+6z//8/X19T/WRP7jYdj/57//R/Jv8Pax2/Sn87G/v5z74XC3Pm'
    b'zuLqfurj/cnYbL8aEzyH1/WB/f7h6H4/70l7vX/ry9G47wzK/hcr7bD5v+sX9YM4i/3K2P'
    b'3d1Ld9z353O3uXs5Dl/7DT7O2/UZ/3Tw9zjsdsNrf3i6exgOm57eTsbbvjv/1w2xTnfDo5'
    b'fnYdjA3eV0vjt25zXkRJB36/vhKwN+kEw4DOf+ofsLuP3pboewGISO7bAxPkUU+EaUD7t1'
    b'v++O/3FTCESmcsILgQRuLhDs/w857lz6NsPDZd8dzmtfSP85HO8GcI53+/W5O/br3QkeJa'
    b'9NERmPKgE2Ue+73vgj97Ded5TH1pPDEFCT4/35RFFtAMORMezXb3dwiioCsYe77rABjjCO'
    b'jHs/nLs7mx3wuYFYX+HsEQyTfHg/DY/nVxa0rzmnl+6BVQfeegTyemSlOdjqczqJ0J9/ev'
    b'fp7tOH1ed/zj+2d/j+9eOHf7xbtsu75jcw27vFh19/+/jux58+3/304edl+/HT3fz9kq3i'
    b'w/vPH981Xz5/APR/5p/g9/+Qhb+/3bX/8+vH9tOnuw8f79798uvP7xAcwv84f//5XfvpL/'
    b'D97v3i5y/Ld+9//Msdgrh7/+Hz3c/vfnn3GQ4/f/iLifja492HFbz+0n5c/ARg3rz7+d3n'
    b'30ycq3ef3zO+FSKc3/06//j53eLLz/OPd79++fjrh0/tHRIHr8t3nxY/z9/90i7/AxIg1r'
    b'v2H+37z3effpr//PPN1CIF47Q2LUSdNz+3NjakdvnuY7v4/BcEGb4WyEPI+DMT++nXdvEO'
    b'n8iWFomaf/ztL8wZhPqp/e8vcAbm3XL+y/xHpPH/xlnDejXKHJTQ4svH9hdK/mF19+lL8+'
    b'nzu89fPrd3P374sDSZ/qn9+I93i/bTD/D+8wcWxOruy6f2L4jl89xEjkCQaZ9+4Hfz5dM7'
    b'k33v3n9uP3788uvndx/e/zu8/vThn8ggSDqH56XJ6Q/vTZKRVx8+/sZgmRemIP5y98+fWu'
    b'Ao8vc+z+bMjE/Iu8Vn7RBxIis/q7TevW9//Pndj+37RWuz/AND+ue7T+2/o+zefaKTdzbq'
    b'f84R7xeTdJYYJLOf7z4xq11N/osp2bt3q7v58h/vKLxzjtrw6Z2rOSbzFj+5rEd7+P84UL'
    b'xH8/6vO/lj2/6Pu7eX7d3P6C3Y2tb3u+7ua3dkA/yvu+w/JqyV6GeUt0/dy7nb36MjySZ/'
    b'MUMO3Hz5+LNycsdx54SB5wmN/XJvRh0z/vz1/PaCf4Zhd/rP9dPur/j7eDDtfIV+dX3+r7'
    b'vz63B36vb9w7AbDn/ddLseown7kr7bbU4YIhD6/03//e7JiM0O669/vbyg1/hPdKLd8WGN'
    b'PmnXoSs52h5200OGk/WW/fvdl0NvhpHTw3q3Pt59Xe8uCOARA8ydCcX433Z/rjfonfbrnf'
    b'hP5j9MJtM0mbf4XZT4XT9czt0Pk3S1ALFfPxyHA6g2A3WCz90Pq6qFO+dsskjdtzAB3B+7'
    b'rwwDeWi/reu0nbcOeMBostv1Dz9MpsuJwzbD+b5DcuGuKR32dFx/pcfGO9oOw7MZlAj64M'
    b'/9bmOAaTJ/WFuJF0t898eHXfdDNmV4JC77x133J8XONCDiTTWq5JkvNMMLNY9C1ZLNa82R'
    b'rIki9ULP50AZ/6pczOyn92DSE3IqRSZs7nc2+gmqKMi+O3an/sQkTQOpszcLsBTnsg2gSE'
    b'f/KskTQ4YaANrFPFn4b/ELIEo/Iu2jQkbg/QEtEJXe1Y6MtWP3sl3/MMlnqf08D4cBaclr'
    b'5KzEzHTuyXhZPyCXVhkcD0/DoXsmEwEfoWVQqsJ+Sg2eW9qniOGQFqHh3n+XCNMWCMLJ3b'
    b'c4BPB2vz5CYenXkKjI06Rhu8mSJlSxKmmQX+uHB6g1jC0ztEQ+TRqdISmC6A46TLiH/sfM'
    b'wBczE0mo4WrXHzoJpUyaKCvglLnpJC1XiEWSBN55eIHcDChLFpQ4TxZrHWkL2mUXwl6Yto'
    b'N6OLefEmyRLHy7mizwDT1yt1szryqhfCOa1AJJBtKVZFRtCd8WU3pATvFrbr5cHlo6Dome'
    b'tzoF0xmAbn3/vF2fgKgcbhbkKCCrCKBYETp0uZt+2siJ5pSGc92+kOVgbLVIOREE/rw+jc'
    b'JfNGSxGWBysYMmOzxrCU3qelSBOUV1VQCf456kXEGaqB4gykGJUKTJQupBnixZ9NNk+S+2'
    b'ihS/0kkCjOoD6ccjhCO3niVLKfYW367Y0xY90TIU6MwSVkRfVdMM6HFYsxzpPGobc0NLrV'
    b'4ky6htQIoOA9rLmWTeIupuh6aRZaij5vPp2LH15zO49PmEMH1niBrcCCWd60KgH00/Bmgp'
    b'kM8t9NzL/mm930scS/j7XYuHlr2MGiXkiwoDQvnESoFVyfKEarx1uSGFA7ehkULobywiRP'
    b'BNiqgAcbOCo9MFRwtGp1GVn6wSDuzTImllwJ65b2mcAPyAjZxvfcTpHN+2xC0bZboApKt6'
    b'joBDPZhbIgyyEeD7B7Sx9kZ1qTWqKgeUkvZ66MUI1N4eejGytzeG3kgUP/QumFyVWyD1+E'
    b'pSja9NICVYYqbrSkvzJV2Xo0WhQfIedV+EsGU0rd23hAogyuUKtNZ7kBjOxTEPBT9LS/Cv'
    b'BlfE32OqDgVzo+JFfWt3uqkhATv4OEhYCFtGXrRhR/jCY7Is4kuCVWavQ0QdiVoDqoiute'
    b'kS9K0eFjpDy3E8nc75EdVjKGbtgVmg+1KkWtQAVp/hpaPQM1SNl1O/YwryWeEJUS3gUkeb'
    b'wTnzDLP+DdtgG0jtClLrXh86SHu6mQoIb1r5HM1KWjmksEN7xQ9VsjVpEQ1ezvA7gUqMD+'
    b'97RcpruAv3Le0G8V2Oww/ZBDpq+40xQxPBh2/G6D1BqRSiKq7YJ5TJKjTdJlnpDjptk1U0'
    b'phVwrbvkabJy/S5Ut1UPnyELqgwIovM1Cm6jCoGgMDERdp6sJJ/K5EeKViU/Nqc/Lutj90'
    b'OeYwD8UVS6Kb7RNzMrc/sZhqsZmYenfh3EnCc/StfWJj9KniAe0WFSKFE/hpxYWEK0k5TA'
    b'wIh806Z72+hRd37UjZ50NJBBxu16o3UD+N1iHrjZ7LpRfab42+5KJ5gZH5eX8+WomxFq+Y'
    b'++BBALJnWqVgGIRywArlFjJgefUXkgf/142NpPKQ84le/KfdtYs1kD2gjLDJ0mP7Hg6uSn'
    b'tEb8P2TFYmW+p/xGo+B3kfK7SX7CQF4ZPE1++lUKGh3sT+tbAx3G5J/WN5WyDIzj5tQ/ae'
    b'cZYrMDKqraT6b8fWshK2gxGcINBb+0hBQ8uuifpPuHY4SlmwhqwU+qg6frKFcRttbIphPQ'
    b'R9WCwJesxfcF85bjZb9bX84siFWEiBYBh98kv1AF3jHTZ8k7PUvMVsm7v0F+TCjefdF4m7'
    b'wTJWDpvmXIAeBbSrZI3on2gcBCFrWWCAN8BEhYRFXlK5N3elStQapRdRVIP8hQ0huaNirZ'
    b'u6sBmN5NW8wn5kvaoqNFjZgn77qrpQeIFrXXInn3eFw/o62hZ8IU7Z2M0Qv3LREDiNQOJK'
    b'vXQZEej8mQoT9th+NZO0TxyYCL+ukInW4UZFS14AO1SrX3Jnk36ByH4DIyMjMHO/jMzJfq'
    b'MEsDhNLI0VCJyIAEUiopfEt7xzj2zk2XU9T0d9GQxPrzbdufT9GgMPWgrwuaWSZ/Y02eJ3'
    b'+L5nZp8rdQ+VaWkPaJucrfok6uTv42mog1yd+ijEP4kpx58ndG2SR/V0NNkfz976E/WiZ/'
    b'X99DZ3/uoxF+AtjV1Nx8q8JEqDd7qhkZYwUmB/byYoqG7OuuvwX63cnibJH8XQa0Gt8yoO'
    b'UlKJ9v0JT/Ho9fZKuWgX7i7/FYPwUQLU2skr9vdTKh0/19q9UBhOgHI0gSjz0QU8+WUGx/'
    b'jwoFJTAgF5SXemIhmYEhH066cZUEfEE2yc8syEXyM3s9aIU//4yuEtXlZ6815DN87+83Jq'
    b'fh3OdavsR3yDVyJNdSS8STlByRjPISnlz/szJfgWNp8VoGUoZiqH8/969RViOG35kMcOJs'
    b'RBqibJwnP0fZCI9+gol2Y79l3IBnya9F8gvza5n8oip+mfxihVqVUD7tt0yJVwRchW+TX0'
    b'ImZckvekjEGPeLSjJ0nV+iejSdJr9EMkMGEQvfVHGMioqq/cuFhbVI3lPWNnlvynaevPdl'
    b'Os2T974coS++D+WIye77IGJuibgc0dG8j8uRnqKkTA0tHsrkPSv4rnuk69kyeY+yEBW2Tt'
    b'6bQmvwGxUa4tGFBv3ofZQBSNjwqnMI8UiOgOmXJJep+5Y5AQCTQ8vkA3NolXzARD8tMvxK'
    b'qc+TD37AX+buWwIAACXpGM1y0I048Nbwi+C8ioAS+eBzH7J9YK7Bw8aPCTPIE8pgaglRG5'
    b'YR4KsW6t2HmysAy1oz/LxzmWlUD8Vx8JLgCPXzKWgAH3T/jXRhfPKVrJgYUlSXBcigutDv'
    b'rXxSsEROTCkjCMiMz1JUDQCnajBhkaqxAhD1zwXoPeodVNIPkQ7Skj6yUDBImU/J3LmllR'
    b'BtZiHJ0IWlo6x0IfrsahmsVlVtHvWMEcFdKTzwLroNeugP8WICa2u8mMDA9t3T2iWOn7rb'
    b'd1w/LmCKbejjcDnoalzNLX7uzzutF1ULh3v1BrV031vx8pkQwqZz3VrhQjV6CCNKFtuGJc'
    b'J+CXy7FQn0rh9c3zxhZTbfMqVtHSDFTRe+D0CUduDXzrX6WJH2vUThvn0GM8sNoOYxU+9B'
    b'4iuSX+EZWf+rFMw0+TU0X/B111iUya+R0rwCHaldcwA3p7hzeLXr2/ywCsMccRkI8fevR1'
    b'3P8+RXnf9Qtn49Gac1P3QmkOOSg+//ZnLS5L9DEsrkv6OQwBT3afKR7rPkY6R7LkD7bmCa'
    b'fPS9XVHjW8Ya5MXHEEsFIhpVyFb9RzoBqXOyNrRvkMU8kKIiFJAj1s4QiJqjgL0dmCdIRt'
    b'jbKlcLknFrTJFEPRoVbfIxyhXwJVf8tw8E/ut0hJ0uLx2tXMBryuQTczFPPq24YzeZYHqP'
    b'/hJU5qh0Sir31ITU1FM1qcJRufFXOiozVOV5JpTa+zO8mXdJnoncxM4YUpElI+VdlimozL'
    b'ssycu8SxQaKC81OltQXuqS6cu81IUJxUtdVKS81MWSlJe6oJyZl7poQOXisiUlLlekxOWc'
    b'lJe6YPqmIvWMlJe6pNRTL3XJtE+91IWhvNQlZZl6qUtKPfWylCyHqZelNPF5WUrmxFRkYe'
    b'yFl6Wgv0JykPlZSA4yzwrJQaa9EFmQPmll/ls3EYqw3r/0vsvHAPTJN8XSf0ceSgdKS0BB'
    b'qAaLzH7YvvITvb/51OsBtYVubaNDutDSa0vIXJTlGzX9jDU6kmtiaN/2WOU8GTmDt7gzhf'
    b'jR+jzSF2+AVgT05AxBbB9iCIUVzdcQ+zZy0SB5236vlk6Rov7JrLTOUYD9nyIAqkHUa4A7'
    b'PJ7Ha3DwLn0JXJwZlszn5slndhbT5POaSiyGgM92wQ6p+yzFCzQUHDLsc8j/mSVirR49/+'
    b'e4/6WnKHfnhpZCWCSfow1iOL+5+Tunw1AEiL07n6KNW8i6dbv3NT7d0LbgJ/WxCRQp8ymD'
    b'Lmlkh4SJqNWgXJIfzwyh4n/WvTemB5+jcoAIesERk97PUEgee6OwNwtDnXrW1npqiPPrQC'
    b'Gr5POxg47h1WhiCDtKH5Sxz6d4Z7EB4gsY4b12O7XkD+brIFSafGFxF8kXmY7M3bfkBwA/'
    b'uUCxfJHJRY5vKfa5JcJEotGA1INSoxID3aoUIWCl6aPufNEj9RSk0vQXgfQ+llXAJOYsYJ'
    b'KCmcKU2cAkwC7WlMm5NtUpAihpoTxKk4e0MnuYuW9xC0Cr9JiefPGThJX99Gofpn9fRpME'
    b'iqknCVB0v4wnCegqvkSThBZ0PElg9mpIZwTy7EpTgYxab6wgmGQIGvGX6zXS1oNK1a3oUj'
    b'cRZKWo7Cwr2SacF55I2T8Jy+QM03p6298PO+nAcnEgi6lN6jG9ntqMwRuBTb2bwIuEkPkI'
    b'0mhNnVI0/i/jheQJMd8ikR7MG9bcJdb9WBvga+MTlJGfv2MY+hLNJCoPSFWfJv9goy6Tf4'
    b'T22ST/UHUHU5N/RBOFDHS02gEHrsdpwIuKCuFG2yd18g9JHHi+rmFK90+KUSX/9KLWWfLP'
    b'INLCEjJSQ+5/qipSk1QjBKZq/1RJqOvkn77q15Pkn5GIiFNEqpL/oRh18j8h6mXyPzqmBU'
    b'gd0zz5n2ikz+Ges5tZm/xPFA8ClXjq5DfGM0t+k6506b6lwRPQpY6x5bcgVWuJkCFl8luo'
    b'sSljuOpuVsC06K2hpY+YJr9hHqA714bI5Va3h+B9hqLl/+aLP7efvktZQSi9wzEtQOu6Xo'
    b'GOhkfonL9FuYYsklzDt68wFOByuu+fdAbNHXbLYGJB3q4/n3e6LkNREfiWrzr5F8tpnvwr'
    b'Mq8qQfsRZ5aIGVa1dN8y/K8ASJE5whVZ2s4myb/sonPVmC9ReBztS2aWJf+KWmAF+ub2RE'
    b'3GDa23BW7VGoi+7XRa5gTGO2qLlKiO0vi7Gafl3Ih0kfxLazqzafKvqGgRsxQtv/2uVFMk'
    b'tEmEvrFe33cYbXZoTzM06bVvLC1Zm+4rnM0mxJ8uv6+P6zPczWtLH/eXZ65RzA1/v0Z3qc'
    b'C8BXi8yML5JAf9dYD2QwU4RNq0Gncx5hGooqbre2Zlb87D7NfHZ121VxFXBYhhVScUyb8f'
    b'Xob98Dj8kNN+ay2G2Ln7FkvnlQN0vqcO03ZLlcPEENs7igySfPBipgJRZAsZiZO6vJxYQl'
    b'Q4TEXWNwyxC41qq+SlZoghdqXRyBB5pjlict0kvkZAczefJoKH/T2qelpZyFKT1FFDRLoS'
    b'KJx3LtkMXCRBYzUABm0XwJQ+Qi7nyAG9pgzuZrN+VnWsIuTqKPJB6aFQ9G7OTfMAB70Rgu'
    b'iMSw0ZlidBmxaBWh4WF5G73fNw7FDvcq7srrvgAZE89v2EO/g/QOzCkvVsmtL4aGrIdII+'
    b'yFqqe7K2xs6enFlFwJHZxFrJeDK11p+ezOyevCdzu7ftyantXjxZ2A7Ok6XdhPdkZbfaPV'
    b'nbzVpPzqwpnCPzibVj82RqzdY8mdmNAk/mdg3Uk1NrU+bJwhqLebK000xPVnYm4snaWgZ6'
    b'cma3Wh05ndiJmCdTa9LsycxO/T2Z22m/J6fWLsaThR2kPVnaGbsnK2vw5snaGo94cmZtTB'
    b'xZTKwxkidTayDrycxaH3kyt1aWnpxao1VPFtZaxJOlHeg9Wdk9fk/WdlPUkzO73ebIcmKn'
    b'qJ5M7Ua0JzOrLnsyp8WNSFVOSYpUZeEarSMpVS4FWlKqXNJbUqpc0ltSqlxCrihVLiFXlK'
    b'qQoCpKlUvyK+ZVLsmvmFe5JL8yUknyKyOVJL8yUknyKyOVJL8yUkn51kYqyY2aUuVSvjWl'
    b'mkrya0o1FZlrSjWV5NeUairJrynVVJJfU6qpJL+mVFNJb02pppLeGaWaSnpnlGoq6Z0ZqS'
    b'S9MyOVpHdmpJL0zoxUkt6ZkUrSOzNSSXpnlGomCZxRqsInEADJXEhTglMhKVVRCEmpilJI'
    b'SlVUQlKqohaSUhUzISlVMReSUhWNkEYqn8A0NVL5FKWmdU9WQpZ2DuDJyppoerK2xjmORM'
    b'ai8ovMJmMLCcpkbCnJNxlbBZIRVT75NbpNBFUJaUL26a2NVEub3gy5nE1cg8y5MDxx4mO4'
    b'JWHLrqhyVs6ynAsJ4UvXrkGyVpTlRMicZCrklGQmZEEyF7IkORWyIlkIyYjKUsgZycqRU9'
    b'aKsqyFNELOhKQYbnAhyZDdeEGSQWVeyCmLsswyIRlUlgvJBGZTIRlyVgjJBGalkExgJkKm'
    b'TGAmQnKYLjMRksN0mc2FNFKJzJmRaiGkkWoppJGqFdJIJQnkMF3mEyEpVS7p5TBd5pJeDt'
    b'NlLunlMF3mkl4O02Uu6eUwXeaSXg7TZS7p5TBd5pJeDtNlLunNjVSSXo6t5VSE5NhaTkVI'
    b'jq3lVITk2FpORUiOreVUhGTrK6ciJOt5ORUh2dzKqUjFwbScilSFEUOkKowYUgqFEUNKoT'
    b'BiSCkURgwphcKIIaXAwbQsJIEcTMtCEsjBtCwkgZURw+dkwZ6qnE+FZFBVKySDqkshGdSs'
    b'FpIJnHsxClOfq5mQTFEtjk19nqVCMkXNXEgGtfRCFqYElz6fUQ+ohXrHJUuhaLyQJRNYLH'
    b'yRoZ2DXE6EpONlKmRJMhOyIhn8MqjlVMgZSRGDWVcsSyFTkpWQGclayJzkTEgjlSShMlI1'
    b'QhqpFkIaqZZCGqkkvZWRymd7ySG+aCW97EWLVtLLIb5oJb0c4otW0sshvmglvRzii1bSyy'
    b'G+aCW9HOKLVtLL/rloJb0c4otW0jszUkl60T+vmiyQBUmf/Ap97KqZBpJc6UUrdm7FaiIk'
    b'xVilQlKMlU9ghQ5q1Ug3UnGYKJqpkExvE7imIpVCMqJGxOAwUTS1kIyoqYRkehsvVc1hom'
    b'gyIVkKTSokS6HJhaRUi+CYUi2CYyPGTEgjhq8bdW7i9XWjnpqIVkIyooWXasZONXN+yzRD'
    b'B5WlTicHiSLLUjdBK9McXVCWujlXmRY04p9kCyGnJJdCFiRbR7LRYSh3jvO0NCOsczydcS'
    b'qUUWa/kcHqqldniiRanAG57Y/rp/Vh/UPOk7jraNoPifuwMsL5Sa+XRiBU76bYnKrGR5UR'
    b'dK9iNp5V1MbDeF2IXTpvUlnfMwwz0PSHRyA7h61ogQ4M/517jTZE990mAhcER7ZUTNKNlS'
    b'aqVP14pWkagSoxdP28PuOvybd5Fsjtevf42m/O2x9WKy5ByDoAR5Fd9+i6THxJMqldgN6s'
    b'n7rT1iwGvrJpWVdx6uvWgNv1/tvalFIIJB9xRh6ngW0WM4LHYsQZeawt24olwu/WyGyR1a'
    b'VtzzWYkVjZiDMK3bOfT5fjWnxxLA9w7GU10bxxRVjlmjuqECubCS8oqpDPmc3SP7hIeQqo'
    b'SdHLFg2Vfdxu1/1xWe9+yDJqDu64PXsdfdx+DlY4bg+mXm6lHrR/6Y6n9WHzAxdWAqmdTR'
    b'TuV2eN22BPjyw7qFbIHD48aWBK4Hm7PjxvL+ftGhWWRlHAuHaYcVWFn/fH9cNzdza2uJgt'
    b'1FeoN5lHxnEiq7jmCiN6ml3DytfUxWSiyPLMuba+QRuZuOxsrDDRgg/DGY575m2NNnG4bN'
    b'bns1/Eo2J1uJy+sjTDYm0A/VpfQHS/BzRcdoACfVmj2ML684TIsTv8kPFAwPploFgv0Uo9'
    b's1Bwu0rJ/v7lBbm6qlcrfh6H9cO2OyGXqSSS/lPqTa2B4Yi+74nFwWQZnJ1ht3sT9xDyuO'
    b'7UQiLbPpEAoJ8/PiAnuRJocpWdj9nbTNvZnJi50YF6RnSjQ2NpOXmNqnk8Dq/3w5n1fTa1'
    b'5GZ92m6GV9oeUI/xkC1NXmQhkCtRXm8i2OWFgAt5c79zgS+ngriwl7kgLujlRBAf8jITyA'
    b'S89AHbMGZ5IF0gs1mAfChUqD32uu2RGRDRuUNZb4i79ecioAzQoVlATZgOzgN8eXGYS+cW'
    b'Jf2t+xM1hPocES/fJJBIlUq2Q9x+TMYrWARHB3r0qeH6gsclNQ6TFGeKjgJdKQYE//r2Q1'
    b'bNWgUyKierT4zBJSqXmWfeCmSrxFQQqREuH02hzVJPbEyhFYG8PzHIeS0ISuJ+PQJ9zpUa'
    b'GB5dHVhIcJL4yiMis0OMTmAKBWGdHvrebm5wr7HVQLRf5jjeTLjStHZogzj2LzRg4+zQEv'
    b'5Yhmnx9gio0rxSh2mtYoxp1YLLJife8HZ65mgyF2q9456JjKRUDT3nBoY+B60yS0No0WAU'
    b'gnVjUcuFIAuh0zYKo5ivrkq2pdPb/uU8mCFAdWZoIWcesEAV9/nHPuUcGYaTKfGgjwo5Bs'
    b'5F6aFTkmrAI9vroeRptdPSQe0kvUNQ5y33B0OgnF5ervRRdPCXW9pihHttMQK1tgjGV2rk'
    b'Wz9Icdk4ugqH2frWH9wM8o0KD4sxqCMTg4oWBlf33KPFjxoNoYDcYyT2RvKFIqOaTNxJkv'
    b'FbyTq3tOSA4auKWk1In51aAb3gXivCS3KPbBz0doxaBRBVZhiD78N2ZprcRxeb5IaW8Qlu'
    b'O+pyp/7PcwcnWyoKGGXLEoF2D+sLO4ospzO9RYhQaRriNdGaZKxLohMGNtYhZ8ajSvOM9E'
    b'iXRM9qwG4/8r6YrYRzGnYY1DfCmhgZDsMQT2oWaJH3nc5HxqjtMljQ3dmur9xbU4LGQOuR'
    b'FRQTdLYzCc4h0kCGiYUBg0JvSGjZobahJt9vdb1akvY1xhC6yjgg1BkC9nh7gZLsdVaS1g'
    b'klvUMurHcPKDVzIh551B82eq4Ine6+V+YCTMEONdtXIJ6SNwBKCHVuQ6R0CAaHl6E/nKHv'
    b'QEF1SjBn+YbNEcSzzW93pOfpNVd5xqzfscF5uKAYY106/d/4WqtuvuPO69dp+r850CH55P'
    b'CWO8aipEU/G3jGo2ZmlnnsHs4em7vAjNvrzGnmN9g6a13Om57cFZm5u8Ch/Q7uH9kpZKXP'
    b'geDMZd3pjG4kK9nySZrb98bpmireVbqCRyehEUeLOR270EyTLYdn9E0Zs09fU1SBHlBTsw'
    b'JT4/toigdfwz1XNXrXP6ZI9aCrP7J20NUftMw70Gr+CLM8RIuy7oyWgnmrIey5yUnVBPL+'
    b'TH4egH2/IZIpRPfCyqsfajV2fqHnNAC6klUWtrUTYiwVbeVoFeIE0Y4iSTRDRFko0MqiES'
    b'1MnehGh8Gu0YAVZ6Ihq++tNBQNipF/E3fbJlGDRCTLCLGxNBFmC2weYVE8cRA2keju3frU'
    b'sk7CVRvW8iVrLeQMaUpLycKWcriKWc4OJ43RzXCBwm55JXn95imKbu6wGzHk5GECcbCj/B'
    b'yyiNlYjdzWuiCchiu5UEEvuh3A40W3A9KY/p251Jm5bxM/R3au9VtoQPCYtx+pss4Mdure'
    b'TJfcJg/Uh/LkQVsKloDVOIY58YPc01fh2yuNxLXSaOmgNJLehWPeNcjDhoP3YaP00jrVuM'
    b'v9icb8GkXkUC9TkPFysv0Lj0M+IMbh0a4lO0uwbFHZT11mCwu5KmIo9GZP3bGjEg3/Dfzr'
    b'pVskQe6kW+JbriLEFOlhfBXhDJDoapklwr2D5F6OO472iMRdQdiYr3AFIenQucGdRNjUnn'
    b'BpgQDGE5dV+dU/cXGHeZBb+vDoK9lyZRDdvtqJgYbd5nR+49JM5YLRdRNuotM/0PAetMIz'
    b'a0j72mEIXT0cEOoHAZ27U9C3b1NckvPwzLkHJtxpbsjAn1YE/vfLFVeRE82xnm+YCxdkaC'
    b'vpykR8+3LFBVnfv1yRWUUDa1bDbd9deEbKVA6/LpVVgWMGN2Gkwhj5KGeeEZbL5x6Kw2B1'
    b'2w4ImlM4M8hO5h7xQG2BPjhxnobOA0yku/EQrhnPVSpKh4/S4OBxClwoQX4HjKR36GUUKM'
    b'QRXbZx3/vL7ty/7N7Q2c0qh6FxgZo56mV34VrjrPD0AL1pZ+pWjs7dobxTnWMalw+MysMe'
    b'daKYsnQo3DTRTTxblMnofJBrqkuFu74HjW3XUXkzDZk6/Xr3tcM8iOPAIrPQhnfW7whMLM'
    b'Bp0tEiqUXkMBUx1Nbd5Z4TPvt1uvRnJ6yG3DIPbUoe9g/omUOXM0eTjHQ1+HJr6soRpNHH'
    b'JdgdD+ZoywQjn/nc88TX+vjGbfJUIAk2dc64AqCciH5TWNqqmlTome12xXCZjnkOp1Dmsj'
    b'buEdqTedxIceNLriBTkA4vEn2Ib1UuvEM/H574wNQS99JCqodtUwtFy0LOp78NT4szjVlu'
    b'ndyFK9ngkqS75MxCds1HhxgxXHgNsRd0XZxDUJrD0/HCdJp1c75NMFyOnLA8Hc36E1Qo82'
    b'DBAILG5o6YL3h5ETQqRzct78ChZuBoHsZmk7XkYs5rVNJA88Q7R09LLhcp2WmgM9JZoHPS'
    b'eaCnpKdCm9irldA/89JRKhCWbnnhDNQeT77nAf1JIfQHngadSHDtJ15VzKHJ0Z952XJaBZ'
    b'pnbUJmrHidoSlaSzLtqZA/GlLS+pOJS2T52fide/L9nPmaimgfjWcpg0+8b20i6fzEq1cm'
    b'gWvTIdn2ycop2frpi0mHRPbpN1MqUohfTGQS+j9MaMwF9/QGFYtZIE/rw4m6voZQKR+pXR'
    b'BDrRtN700ejeBoaTa75utdsTRmy2ba8gYehZvfcKADNvG+DEd7vsF3aqZCBdWL5Q9Pz08B'
    b'QtbJJBTFcLx863p7FyZChALQnalWcGkGnqHpvXELM6ONvqGMOk4F/HJEIA9vzGDUwrejuV'
    b'Ob+ZiSWrEvX9H0CMS9ZxmHj45VJNwaLafJJlLiSavFqBLkJtgIGNItTZnveImvaYmNl/ig'
    b'RAEd2wtMErdyZsxAomUzjzxxDWSSTdy32bmZZClJtSJWGjosiJFW05+S3tX0x0S8CyuVFG'
    b'5nl/ty+xlW9CIgrOk5eItA7f628XxnLGVGnLDyd8U/dU88Nek46Zgz8un5AXVAf+z/EFdT'
    b'BY4C8CxoB3sBZwocuXesOH2VAkfuHctu7Qtaa3Tkw/Mu9xflo9HoyIfjxTlXKnDk3rO2ps'
    b'o6cKLAkXvHYqfUCVgocOTesOImMJ8D00P/dGUBbQbisfP6MNpCmi4CJ8IOvApuZprn8SnI'
    b'Pa8sYPrFCMRM4+XQcZdFjvKYQX5aQ+r7nb8/lfWIy2/XRgrzWwy9KrQcO5DetbnJ0X5b4+'
    b'LIecP10or1rvZv0XN5RG1Sc1vb54tJ05NPUymUU5RXBLSOsiCAGLnayKNBlaLd8ovJGLMx'
    b'GzATzsux33ujBJNJPmFcf8k4OiqMnpWGNWHC1c4MWtl9GBzQImShAFGpy+vR/MOqQG6J0W'
    b'3kRP3l9XAedeOG9h23IXQP6oDQhRog9JGYtW3GFb2pIfpmIxP3Ajm6ifYxskSxM0vpWD0S'
    b'oiWid6YaQ8tiMOqbfQrm1L2szdJU2GVtrni06zFjmmOqvSrUpo6bOFwQQZPvtn1oOktDh9'
    b'EDFUPfQoJS0XtHC7LROYjZTeNosbspCdg9pKn9lCsDa8Z1GPbIVsiLn8sJXcHhsrfrbiEr'
    b'V8j/jvdkZxjr40yuEpXHhtBZ7ICQwwTcZhE+MR6/nblD5E/rFyPMnQacJrLXwxMFjogmgS'
    b'i6cOZvXifx1RNoklUS3TzhWvpUUNc8gk9pzAGK5NSFxNh1qZA+nwc3OYfaven5JhtEW1Xu'
    b'm3P5zDL4wpLdxs0y6NGb6D7EAmE9n7ZmUayYwUO0P4HqEJYqobFtwj30aEPRHBhJPchmBg'
    b'guomzWfokE3cKAmuW3MsjXCURb01sZC9I7M82fMA/Nt55I5g6LZpLeoVquE89iCuBD1tNF'
    b'Ojo8UUdF9R7U3iBrd1h4zJazQLryrBLfgl2J5wEYFKISt2IkGGxOvDgtzVNP/c4rUluh7G'
    b'KZq80mQ8/OwGJRkOCavCzzoHMyK/Fvw8YqNMYSO8ZEvzOc1wMS8qyP2LaCurUCRCOqPLzo'
    b'HEMSzuveLNMii8LSPOTQS/MctvTSPCU3r2kgT75ZzYCNnpQcTS5J2CXgOZ3ffmcjJUdXYz'
    b'qNVj+LVcIGARE6OWo+w/eReciTJJ1abIdbveS6SDq5ox7+7fq6X29fekCvtQt4ZchRXHG0'
    b'NYfhuhbV4Hv0uAeD1UutTM3D9i2+Z6GuAMrgObVEOM0914C8+LHSqIyxM43q2zErzZAXP1'
    b'KNRtde5pojb3tQelVCEFUfuwbX5zGk02eskTPuSY8q6aInPSwtR+Mhf6f3+hFOd2WHAz/6'
    b'3Q/0XJ1YuNf4VsUK/1H2w2u0No/y0YZX8B2dwYfckY07gnOrBnltP8MI74BQKdvWIlK0jD'
    b'0AbkeLSw52jSGrZql14HKxdAF0mEj7MKpUMN+2MdoIxAa+YXufWUzlhRdH5aSPYIs+4yoh'
    b'XFT/th0uyJfMQzS1sdY3HFMbi2KwGpD/L9verRzkWeZSKl1+NqldGNECqcNUh+/z1Seucp'
    b'FIyuqVAE59Wjkv/m6sykUu/V02qZwTbwBNcnwWgL5u3DqCzNVmeHUgI+N+1MHn4YBc1JcO'
    b'GNCf/AehX4nJkbBdt7frlFArOvNkTKgrc4dIRrQekDLOHCIJp59d/8JGl9Go3FMyscky1o'
    b'KgA+SekLdoKo/IWzTIAP0WTY6+db8xygiXK+23njmhgkZ6Bf2/cAA4je/gaMg5v506kwVw'
    b'F1myQzY9YmA21x18vLn71vFmxG5dNEfH5g2chh86CkY5ehSH0PhOeRTOwSbHPGHZhRdy0M'
    b'qGUMKIyN5OmzFp/HzYDSe7WDa3QHgzBoN+DInboo0ZXiFGBvjKMJ/g21+0hVl+F99qhUmC'
    b'NbZEP+U+o2bnMNGpSkerBrMg1H/FvP3AdGclivWo8w5+dC5PIZFOXB1I7Qox671IjuK3n/'
    b'xBBnLpLatzfjh9oi5JDEffQUIrtfTVoG0cegF2w/DCq9nmBKkbnpWk7D2vDHArh+mWP8ai'
    b'1VgGfTZG+xseX6BcSttCZtoZVsUPNRzVpKXU4Ms8VbRCXsqtL0v3LUM8cuaM2M/rxwH9jE'
    b'wMOXYoPFpvCbwb0LVLP/9bIu6LVG/WAHkVqbtlB1sp2BeExrTeBPzPB7PSxwVT+637hoXD'
    b'7JpqLiTNuyfcSgu03KnvwWhS4UE5P0MAUzXaDpgeEbMvO3dlf6reeFoZyla8mXGjH3yaEb'
    b'AqdNrMk0dqqmXyKKsNLb7VUGBoBHDYdj1XhyYz0OetWoVrLRCtwjksWmtrkke9PlMnj0F1'
    b'LJLH6MWpVfKobF7R2B4jbQjN6XFsBLvMiI1XyJc50dEKOTTVR730gNgxdlASHvt+fMRMZc'
    b'Lfnh8I4HHHD3gyAITpHyPVBtqIg0SzyQSRQQ8y0xq080MBnex2GMeHP63JoCVpw2jNF036'
    b'nteP9iCwp8Ia+hgLy+iBE5ZVAxYWkud2sThmKC8xWxZ753ZFN8JHvhx33+3tyWRPBWcOO1'
    b'wO9nSyp4ILh7109giyI4LxuIP4ikxvzyEHOrgiejydzRVMqB7diToTpvmPPeS2Vlck4kfL'
    b'GLRRy/PCfAUd09JKV24MEOrCVNE3NOW6NXyvKFvfVkeF7pMWSwNo7bdxSFB+LRLrvoXDgu'
    b'prkVs6rhVRq7jWbTTUWkgruBYRta62pKi3C0977da6Fx3PxqqHauvAq7agTDtDu+DBMvMm'
    b'Eb4jlQxtKBwhxFThcXgUexl2GsOjX/eBqvAIXXAv7CnZR3alvM474XPYLN+p+Qr5aGlVvn'
    b'MDhPLNFX2rfJeG78vX+tbF6ZFQnBaJi3PqsFCcFrlVnFYiXZzWbVScFrq1BFoZji5o61YK'
    b'2joIBd142he0dS8FbeXRBW0dxH3mUjDpNNMASa9ZWMzVERfQdtSaIZEomAjkuH7g3jFP9k'
    b'xJHR449ucJTxFiKvukTeRI+gOFBb69tRzxcLZ5viIZL9NjaH3iod5owGlmU6LxgNPMGLI2'
    b'vasMHSzvSGs1bgFaq3Ck7UuHTW4/dwjJKRCYMDlQ3cHfTgDF7x82iZ5DTJYg/VITkifqA2'
    b'RRzyEi5DBMl5YIzyEijNFziHDvnkNMzVfggI72CuBSL2EUGWiV5ob0sOcOV3QIq2A4x45v'
    b'ZjDkoAAuHC7IKnfI/vLHRu3CzpbEUVl5kpCXpq5II8A33nkeB9oGVggXRQzt162BY0r3FB'
    b'ld1qT1M49VZhBXsQxb1wUHhMpgAH1/wNwCoxsEWote3SGwsvhY50F9+N5bkwVZ10+KMWE3'
    b'3ppE/m/D5tTcUFphJGInfiXjVE8UIkC9uQAt8UlvLsxJa12a1brfdzt7A4v5DNpPBATVx8'
    b'FBiwAQbzsg0N1wxvRBXq6QK0NbzzqdOfHK2JgDoF6/gDKnGO6s7ERjaqLG/L1mOE/pLZ5u'
    b'x5EIXtRsnl7DKso5Uh3e+ITbaBRFC9d7IOhVn/QeSANautOM38G0EI3syOsl7eJPlfjlSx'
    b'Y1P/WyfpnojWLnwN+c6UhfjXJLhpszWwtEcjs/6jZNIh2NLjmUt57wXQWUIo0MR25vAF82'
    b'Ho+GSPE/HGUJgcms8sBwIVSVQF9VfILKAgUkkEO0mIc+hUdSwdEbFgWScuEEYD/4syDzJk'
    b'De5qux2Kk/PLlz5pN8FiC3OUo7zye9/dEw9ON6HzaY2Mu8hf3xWcL5O6b129uPrs7IiA0q'
    b'UHV1v9fQyU177jwJJ0bpSN91a+lwoy5pddhxSXJkBpIRG/d689ygYf9nRXrUB86nAPuz2m'
    b'WbJ9vIgmmlaL1MUtPhDrqkXs2ncLymRKRNLRBbqWTpnTFLCSw9K7bcheXGE2vLahXr2mNj'
    b'udFFKKlgz+vTcRQeqlnEvQ7Spep0eb6MWAVznja9ZqJ65MoKM/Tqyd0pM+v4MgzmEoP79f'
    b'HenJtvFh62p448vqBIoSbSs7L+ajJFm5udIiTLr5DHMRJs3zR6cJcd3OJRGLTi20zUie6K'
    b'I3NqU9sFSO+voKy+gvLpFRQiiOCx0BHzSuqIG4vtWN7eq0kVbS7MipBsOkbyyRgJYWt0LL'
    b'DmXcmrmbG44LhHnKtEb4NN0K7iN53RItSbzuhOgvZaWSK86VwkW/2mM/jRm865oSVkuO7s'
    b'bW+8UOXMfaTCfkZ2/AoTGw6I3wXNZSpUUFuIbW90sHoVrCIpeo3xYbtG7W3VzCvNOb8O0v'
    b'9h7rkdL5tZ7Dv3LTXzIuaOj4I3cyOG741HgtSaJxE2Bg2H6Iwr11OPApgplvhHNwI5OhRc'
    b'6DUqBqpP4tWKjjryJRmXc3Rve14CPIjWyvw7XtQwwVHJ2rGSpSxFQXpPpf3Ur6Ch+Prucn'
    b'2uqHH46PCMg8cncpYWDidyWguMTuTQmc5V9EvRCXVNRxnCaK2hK/Q+85lOFZGlmtgoIrRO'
    b'B4zbuoOvmrnD4xYOMLrmH/kZ6X4oUH2mpcKgAR32xS0MsNlHJ5RJ6+RrOko+ctPZ7VIX4W'
    b'c6U0RWKiLPFBFEd8A4+Q6+Sr7D4+QTPAzP24s3VMoomNvQ9zrzzEAPmnjhQgAUsG+xnWdq'
    b'mHL4SLMysoJd/ZS0fop+ZuhvA482ObPLgpA7lclqOpxPL7x5ydxdwYIxN1fw0NRW5g3oPH'
    b'VbQHHJPSjsIqNjtKT7Xl1klcN3dLC2UHRUfOgMoseFsuUyQlxmQeivXE9EOG8vW+508mpC'
    b'+62tuzw/2ojxDkWpzz2gdspKh/EdrYzHXXrq07OkFxOgJb+VlrRK1KWEdZVoe42MpFucga'
    b'C9vB+FcMOAVid9bHDTJvpdlKJMem3lAmH86qExRnIB5Vm9CpzH/tgFRpOoBUea3GJW0PmF'
    b'x3yluWQLZx5xkCsqUIwpmsnNY5oSlhFqjorlPC8zRs2sZ7WC6hlxuO1/vuzMoRERo4rdHL'
    b'm3EuTINdfkiCypRikzzxmjwp9CypcR/8+Hbse5ogQ9i/iP3GHFbNL7xqxVczHgHh54c4j4'
    b'Lm/yJfIR+yhiZVFxbddfg8BZxIH+HbIhysieBxj9syMsgKiwduiOjkHO+oon8cUsFFmILy'
    b'oU9kvCiRLGYf+B9uHCnsXsc8gSdJaaNYQqkEU18bDehyyJ0u0WnHOaSWiYx+9CgqNoMPI+'
    b'SI2Z5jHrBVolaoRENovZJ24hBFHicJXpFVId5eSpe+A5JhFoFjN3jyJPlIzT8NB35zeJLx'
    b'LW9nN8kjNGu6jSRfXgdB4enoWVxqzLJkQUVcjTJbTMOC72o191+1po9itXVKRAY9YwbIQT'
    b'Nbpv3XFgolRtM1Um9G0q01ljAkNVGVaYkNuqxiAtAVeJMbKGoJSwFDUwjKzWFIQSKovDVS'
    b'C9bVOmMG2KyjJRlpLI7KsnmKCiRvfZshw7jo9jpdTjI6XUwWOltLJwUEodMFJKgYp9I7JC'
    b'2zeSpcwlQeqVYeR0ZNSJeq4HS7QJPdCxt5Hs5LeOyNIhJtJXhpkowSuzOmRnP35Wj+345r'
    b'27E417E5II1DYkYPxOC2y0Q73+PU1uqujQ5ftgzAI/5ua5bIkc3V3ewgEL0GIgx6Hg+l3E'
    b'PDH3dQ7Hm3d1FoY9euIKVS/Sw5EBB/RB3vwPXfbB7IHxfH+KJnXQL7WVkEIdDQrU/cBDBD'
    b'zFkQbsHNP2CppCaC7Jw8EkAIo+ome0e35ZRhHPfbgVlUF89Rez8BYWkGLAvqTrr7zPqQu3'
    b'OfX6ofgCIonhHJviYE2iZuZLve+4mEeIt45i9wDYbNhR+7X+xHYKAYrSjApw1JWVJX9l4p'
    b'U7TNecMRaZeCHBp9N2rfd8IalsJRi+0mTRNXklQEU7U7A+UkDYvRPJjI8svtgjRzccwsFF'
    b'q8CoL7eeS1slV20p15heQAb+bdufT5H5RuFBOaymmFXyO1XzefJ7dHdKClrt4i1A+i07fu'
    b'sdO0uHDTvQ2tZ6kvzu9fUVv0Vfn1lCFqDQGf+OJno6df5MA3L5d3cMQ8qnWCXxBlYNutuH'
    b'tdmFoUdXArYGvLoTcGXg8bo4pFQLTTNGsB2dSWuS36NdziVpn0GG0DnkgJBFBOKrWxAgWk'
    b'3Oo/6/Rz0MCkYaBDJIzyKzhNeEolfByLA+bZ/7yPIyJRwkLEC6ATQnS3fjc9A3nyFsDMOm'
    b'igE82mcXnpUtABpgZIbVJDcssAw4MlBjpMogyzi5slcz6HjvdkEwvttwCUjneGHokOGkda'
    b'/BcMfmwVNguhdpFB0NQCUYLy+m15vbz/i+RlRzoG/dcDnsoQfsZbSqUmG8cNXqJaxj1dPA'
    b'Iif4qYVxOq2hU8TcGbjH4dirDp55cdr2mzUm/EMop4mGUcF69kz2CunYzag3XTHvwjVZlF'
    b'PvoxST5GrrxBTH9Q76KmGwLAYMtztjjnR8jnKWYX33kiI0o2e92N0mz9EFXjPSzmqD32K1'
    b'gYnvc+h2UGSxkQbZSnGEGvIcm1dOCai9SZRiZJqh6Sg5kCK+8BM5cGWQvEJ1Ys057NaHDR'
    b'OaQoF7jnqXkrQeKQoCvmEarq78Dgi13wBqH7E19Ggj0Tq62kmsDDzuIimhthmlq2AFMTOU'
    b'toIggor7fL38WwtnpGsLY6xtzz0j6NuNh0YaN50Oz1u5uhHTWQMMcqtUYYHL2p8pmeQWeQ'
    b'2epkT2Fzl1wtjsNVMzpgv647O+uYoZqcw8UDsiZR61OFJzNR3VHuRpfxzGG9WFQfddd9YH'
    b'JFnEgAMNmXt0Gs/j/C5bzxhllcfH7icOl8zm6GGQUQDe4akfTsExcjMertF565VtDPrP6m'
    b'QrCn18xxNSFg2IyP3rO55QrpENR05aPa8A4ZBkKdHUkKEF54qOygAVaECXE/IV2TSgw1cp'
    b'qhkYk3s685KA48Y9U466vSJnOPhDxxwqZSwv+R0SgIhOehLHruIc5CflF4yhzDzrBeMpmH'
    b'p5eK7pKDXI3a8SZgPqNVBtwmMm5SLZaSuGDKSzB4SWsBPDBeJa77R0mCeRfjat4m09eJPT'
    b'IuHhgKvnT1YLj3/vnZNVfe1ivPfWrqrI0Y1XT1bzaxfXwcy8o2tW41nfe/kEffmVi+tgbD'
    b'7IYDkleb8x+kTjvsUwZmYQljsfuDKfQdeKgKBtOTjoVh7wV7Is7L0rAZQbchzrztyMM+ar'
    b'AG+6GvPJGil9LbHrYWaxMEVzpf6tiN7Q3BcLE/jzrZBMhhlptuOsX65YL8f6fjuxYHdDsG'
    b'Vde+ZVRAvPuTW1WK7uEPL0zkwnnLtb46tyx5iOT2I7X7RIvd3mnyF3UFuN1RRi1UoQSK/0'
    b'5MhcpfSQI0pPY4n4lHG+BBqrQvBk7VWhCu60vaqjxWsVSLGsy1Eo3aO9clpf9jY38PiYO5'
    b'JL67EJDwXxS8zGpoEcjt6gLcuWc4NHNmrW59hALXNo8AuV3UDaOs1CsovFWM3xIYyQvDTR'
    b'XaCAGKK9QzpAtqH3tS877+Ij4CwermWxfsbjHgC+Xo+RaBe60ZyE7kcJ6NER5aacI7rd1w'
    b'FKb/+gTPLTgHo7ewXdWFFo8xts7xU8axbr1jEyzC+jU4dTJDGMrEukZ3jYcqvJ7dSCPTxR'
    b'gbcXimWVpw+DMeNbKFpsNDPeqetwc/VYhuox7MJlnxk6zYF7rJMUw6q/QMfsRZmrdVbttE'
    b'3ie3UyT/OIEeKAE5Tc8A35YM65oD7JaAwh3QML6RT+/NXlPFm706tBiOMsl3Qgl/1TTBlq'
    b'01XJsPLEBTMJyK1yyZLvFgtYf4ZMzxMeuENF3Os7WtrEL3hSB7Df+p7n1GFuF3jqyGBlun'
    b'RIdPVuTtAtHDBUfwkMY9N3wFg6XAFDmkq9Ots4nwoW3yNlcLUFTr/cskOn8UrjPNN/MKdX'
    b'Nab2Me8oB8LBnGqm1zsaDYZb550Xpq/vnuNYUHQe1eHXjYV9yLUlx2HWc+LQfrh+oPGpwv'
    b'1rGyyV/rzuMQnRTmcB9rFVBsJQG4u6CnAka+tw733m6Ctpl4aBrirO6CzAUR6nDvfhzh19'
    b'lbMTMt7W+0HyqwSiDRlaRUeGDEyTPYFIKQ6nN22jwXz4Q60dNQzmePKu0fO7WU+oYAwvrB'
    b'SgyPUYivDC3VhLlFEYN1ENRtMRVD9tFjdNDe07bKj4e70aCZ13f7UaiXZ+Q6FoW+t3rJ1M'
    b'HXqtgSzTwBo/SsKqOZojovfb63WMmt77b7HlGLJSr220qaJ1CbF22NOM9LEPOqkig0ZqwK'
    b'AektSjZsU0cikoFFjhkOfuEWNLwMsIj3sRz4tRhOSs0iokRs/MkQQz0qlrgaKdgsLwzajV'
    b'oI5wKe9q+SJz+GjxwsHjyfQ0iRcEWXsIvKCK62lzNfF4NMV23uMlQOgrBo0CwPRxHxnAkd'
    b'YtT9NRuTLmg7mB2iQCn9pcynF9A6FxhgHcTUWVpdwV1hg8SdLoE17xfezvI0tDdh0AA40u'
    b'iqP8rnuS2S6zQi0QIL5xi0QskX6Can61QDBDevUCQZ2RVgsEKAi9IsAmenNFgMPFEORZQp'
    b'5hL7oPQ6FGE4SrIkRJjfYp2of5DiwMMiEEqIR7rYEgIcF0DMSFtRM19ZL6D9XRIRWXh23Q'
    b'g6HLEXDHNkpk/+UxuEZnd/Fr2I0hAg+ZqtccapSKXnNoNR3lF7LkosqPArob0CcT1peLOs'
    b'FK6Q7KQp1FSyBu0ARPToE09sRzDZiLBkqTUGCP6BXttd18IM1A3Pt78RgzUOU180utkKBw'
    b'L2qJBFnydd89hfzFFHevnCM1rzEfwSv/y4SqGdrrQWttNUlM2cwBooNfbZlO8e1VLTrRqp'
    b'alg6pFWp/2mCeH6ByHpqNhtgBDnr9krDMAodDTRN/kMmlA2lYGBXOSHPzEE2PNIUw8MciH'
    b'c63LpSXiiSc0skM88aSnaFgtDC0ekDPRbYkINroeUdNRCiFa9wr1/w+rTtuH0A+q0kOU6A'
    b'TsjLRfWjeEXlp3QFhaJ4Aey+toLEK9TZwn5hYae4SJo8VhPJus4ITGIlcLtSuHj8YAB8fv'
    b'EuSFR+MwUgvHJtN5adEATC0wHoXK2uORBC7Q2GllwXP/3F3OAWZUutyQ29EFipqOyo0ezX'
    b'qJ1p+Z/Q71GiUKntO/Cc998SucGbe0ml2tDBCOXNeKvnWJV2b4fgJmfeuj6x4JR9ctEh9d'
    b'nzksHF23yK2j61YifXTduo3WPCykD6hbRA6oLywpZ8YnnvYH1K17OaBuY9UH1K2D+L6yTD'
    b'A5oF4GSCKbW8ztlCAgsxoCkeLVEDjTW2B5IKPBA6ULXcDMPqgXcCkMvadeIWGPFY3+4KsR'
    b'BfFEnW1O2nerhtD9qgNCx0oguEdU0WWZiCq6LFPTUWWmxwOGr/UzzcRVD8prWP0NDTlJ34'
    b'+wlIdB7aiWydUDg21rwaftBUKK02au0NEZ/ZVh3TqGUt2ZsyRkX/MMfGsZdpkF1tUMpDG8'
    b'8XSmduiNwIrAugqsNbzrRxahmGDU57MA6/5ApWbCRJzVlWwzRfPVJY/4dUAWw1mpSCtFHw'
    b'ZZL8TkIcL90VcTWL8xj/nZAJknZ69itZ7QQZkoeX3wbtcZU7DSAEdeO2kujK2Ni9Pl3t6p'
    b'Vk8tidERKiSB1AJs1NYF8+5VT6kQpOiXkFEpOfCrGzvS619vXYF1ofKHTI2uD0WeRteHaj'
    b'qq6RUZZ72DtLCIX8J0pF7zFChsHxHa37PHejKHE3JFR4cRNEMeIlkl9mIPax3lFFrMMRVq'
    b'3k0UVmFZAxf8kG/mDh5otPiQee1UkcHsxIDhch2QSh1EqEr5Q2t403pGS9rrGYbQeoYDgp'
    b'7RJgN1x1Uy+BMU6DSHsOucLZPhfn082jlT4Qlt7jjz4C3j2QbMIByC1iZcZLrjF1NIEF3D'
    b'mqYe0PILeGUFOrviaFNQw3WHOzJ8ix7ZWkIOd6ymGvALlMtUo0qBXM40w9+JuMw1qk1s0R'
    b'cN1/emYr6iTSFzCMXr4p3KXqSGlAMmKBGfR4hHGTWvykDqMkDo2oAZ/k2w8Kyun5wn3vqS'
    b'B/ftt5uc18ng7YtXyDxdHggjMmlB8vQOMgKNDIxXpI8shXlqPyWHG0srQdvcQpKrS0tH+e'
    b'lC9DnZMtjoqJLJPl7EjFF4uLI+hne9wz1Pbm/XI1khp5CdegkQgos9MNTGIb4wk7kcX5hJ'
    b'efbeomWCb8zsaNY6s58pH+Yt7bfet08tZOxb5SrIqrLocUAfoq0vG4ufoebqmlUtHe7MYq'
    b'FaDHtVnkvK09vEcJbpCHG+AKKVIriwSnKaRO+IG1KpyBXpoCFPAnnrbqc52V4/Nl5RKzpo'
    b'bOgbzIMqU2L2Ni9e5tWQfOx5YzbvW1+Q1Ap1ZYGgTxsgVqdTC+14UR+GqSFWrQ33lmZtUq'
    b'IVa+My0qsNcutGKJMKrW8bl6JuG3a4Dqp2pFe2jWN36pEym1SL7m3kCjadk2ZGwKvPqSX6'
    b'Iy+jZA0Vw2v215aQOt0uCakhg+6vTPvpz91tCsFFQ0BRAhWrcGiWNO2iAXmeoVEdN49GXz'
    b'OViI6Pm/369HDZWaQhct5SIKPgpKhv+n7PNHP01WgAj/5h81XtvuUCKoYyNveeOUz3BmMs'
    b'WsRFgq0xRRRsWFBboQj0mQboQ4PoQ4X79r0E+w0DqIPybFyRWTdKzT3mwXXPVqh4t3KexE'
    b'9+TAoBwn7lLGD3u9f11zeCCwE90hjk9DAcO7v3N9w6lNEo2Oe/xvQ43CQvfLZskrys1/uX'
    b'oDzWBuFZrmATlcGxnmPNQfpetcC3nz4Rf+rMzZ9ZigGBlLnyAoP7SzQPMy7VNIy0XsxOQf'
    b'dva0wH/CZUxuD0+jaduLPAxkh/9DTNlOzhYRvZQS+YuNFCPMNFxOxOWNHLRKvtTN2xO7gL'
    b'ajD+Chkf3V/mbWCZ94XRWAWwbxgvAqD7KeUuUnxVXKL3zhSmFHwVhH0BuQmAvnjZpcbfrZ'
    b'PNFD1Oz0rx7IPJtULsWZVKITpJrcKjNOkIJVFzDapU6VDse8ulQnS6DM6Z5qZ/NPO/DMCp'
    b'Cyf2Tbmfolt1KUpYkCfl7l+p7GeaamKjiGytiLBF6YDxqXgHX52Kd3h8Kp7gN+UKutmLXp'
    b'9FQoPCjBLSC6rQhuzNoaj50Qk4uAuXcUynQoVJDrHuW9ilyVF/rN3b2GUORjAzZhHFhxzm'
    b'ib6wlOGOzlUYKceLE01RGzS0fxPO6FJB1v7ozgs6unnB25yRxMcHKOnRPVDMVm2JoHXMPR'
    b'TVV3EoRkTGHRUBBNO6b612zxxmhwKqhtxZtFg0aqUO1KfxvcNIBh+LtJfMA2rPqDbYCTUF'
    b'kphZrzNINY4x8G/6B75NisYxN4milcDJ2O9gYAJw4r3XGe/OflFL50ht9EZQQ9r39obQnb'
    b'oDQq9OwLw5XPLD6NNF4s5FXO2zzoUz2mkVxnjte5GMz1hg9HbQaEXbOPUn0qqa1OEsdhe5'
    b'iSI+4mEktTbgc/P5El4qxlzdABeZnKeMYDiteX++N8eASvpiUs9fyHSV4tzho/Q6OF7/r0'
    b'qPxnlQWHhkwV1lSbyFPHXAKFucbzMgjkKYKpaEosDRPkDlgjoz+8+hRDAvsvjIOROpGzxD'
    b'1m2b9KhAmAOvR93YEAj3odEUG/OljQ9XBgnb2IWh7c73hCc6DGk3tUtHqFZnA5Rmn1lSjU'
    b'6oMtoD5o8vymYONSy6ngX1cuAhzcNTD83sT6pI/rIkSqp5HLSFt4h5ZuQTZhszLy/CYXQ6'
    b'N0m/iAFfisTpJ6ehvAf60R6OZ+WVuQPch5VLphyasbnkz8wfUgqiHrKbWSpY/vFS6ZfjsL'
    b'k8mOXaFYnfeXz1q7lFxTC5+N9t/G7BgtBLtzOWgjQkNeQxLJdmgoQF0txgmIPYY7F5pWg7'
    b'aUE2nEyLrPmhpwQpgV3/nWcOUT/U6ipyJrrNBfFEd7eAVmuEqMhqjXCe/EGtO03+kKM0Nb'
    b'/3ygCGgDp9l5EcGVmXxK4MjSui46N0DM1f1ea/00lErSPqQVNZFVEzTeW5pjidClRQaTwy'
    b'1os8/gfPlX0H/l/9XGlUETfWq4T1PT/Xzo+Hjtc6KI1xlfyhl0xRhqKLtZPkD2eCNMdn1D'
    b'HA3cBTlRjd8REUMUUGNcWA0X2AbWVfe43woGKNuP5+O4unMT7yZbkBM6S7Gsu6mAo08moZ'
    b'7rCBhWYCjdwaRpyaSqCRW8OQ+mqxOmAj15bj33y1WBOwkWvDifOnFGjk1jLc9f8Wmgg0cm'
    b'sY/p1XCxUCjdyCIZ3qInG10Ru5IKN8Wiis+U5rTWWFpvJUU6H2emTcejx+1Qg8I24ERHmR'
    b'j7E2xiTCU9IzpRoL74G0gronQJpVhPjnPRQs2zTBb7RwF1x6z0YeZwuE4T8T6n59Mq+wto'
    b'K4W2PThSDRQB+8mlGLw2EbQzKQ5XxJ3bP8zbMe8tHUgVQjYNpY+BbkA5op+mBNdQxgLrr1'
    b'6ZorjEtBWaWBKGVVwvVGqILH6Nz/ArTavZuA9NsbRSKbPjnxjdvwRKyOsCsZxt3IDK4dYc'
    b'oQbkVWIJcJp2asYqtETdIcrfcNJ0l8NwdpbaI2A61N1DQdWRkgK9ZmQxBjo1nCVIu/KXjO'
    b'SvSayRj3J7tTQuNOcx8ElYsy0W8spSD9rhamqcdgK4X5bnhLoUVcsVUU2WpHCYPKMZrTzw'
    b'zt92GKJpByJqdAfnaYQ/L5J6PQQd9qCKGwgsJUChIUJsTdPfGBHTtPZRE6mpsALOg6IGZL'
    b'YFVi0n1UKwB5asmgk08IjA4eM2BdbgvSb52x49UH5fL0btWucvxTt3fm3NwxMlVeKDoqXw'
    b'plTrcZiU/b8bBq0Xhcre3IGTNCfz1my8hR27EzZoz8OXYALe0H19qOoYKNfDuOH15rO4oK'
    b'NnJtOXGyqoCNXFtOGGJrO5AGcOTesWSQre1QGsCRe8uKM6sM2Mi14/iBtrbjqWAj15YjQ2'
    b'1tR1TBRq7JsZ2tXezPeIsdoF6pdJUFaBS7VuVlcXWoyRxeOvIFHW9o3gZSXUNfoQfTCyaY'
    b'eB3DoXkSA6cfKT9sOEv7GYyhGw3ou0AKMkbXUJiAzv0Dfbi5LATDfHt3tdiQOny02ODg8b'
    b'JCbuHRTawTi46Pi881HBsNzhxL3DogNpJnf0X0yjxx4fFo1cIJN178gU5g8WjlI18oNA7d'
    b'xRofZ19acLyOkbt8HZs/urQj5cd+ZIVZMiiurJuh2uyZ2bXs0THJmYOPvXfJgVCvjtSMRX'
    b'eEmo46QjTXnlZ0PEvJL23ZXxjE7UVZNv06y1UTZ0C0RjeLOFr0RcQJa57ZMheO223ImjaG'
    b'9Lm1WczSAWVkxbYCKQM/RydfMMs6aqPBAqlx5wzYqBZChYaGHIjmaYgoOj+A0ovOC2g6yn'
    b'NUI4giJwQgnOj48KOVreWCtNewUhL6Cg1y9bVEqaFH9xIxyOsTopOA+u16BekteAXf2kKc'
    b'3mD7rcRbPL2lCL7edoX4Z3/KdoZoQ9bPPKH7N/iOzh8gW6PzB5qO8h+hIRij+yjNLbNonL'
    b'xVTrTnq90l+2Y53InIrw93NskoTycB0TfuBfRWjubJdzP0BkvnZ55wqbLCj1bY6+QkCnvj'
    b'vrXOWBYAN0GnMqSrcvS7iZWzZk5svJbUMOTNaC2pWQDU+nlt6KCfk9Z3dDBqfQmHpiOrHs'
    b'YGfRn/b4cLYnzbdq9rA+3DyX4Kuu+ejZaTuu+wnBIjQfXzeNAOiGBK5Btsnlna22RMHb/f'
    b'8/+dXCmC6h/wS3hmLbfw3gfnaE9ODCmBW7Lv9enM0mHeS2Fp7cRB3oUVRc592hRcuk57qT'
    b'3oPVUO0I485t1YUWRfxIUh9Cw56VkPSD/rKVP3HVVFBK+mQitQ29c1LVNm9lNf3OmgG2Zz'
    b'y8ay/PO6qAhhSpVZQu6Yg5Z1iuZYGcWMpEoN7YcK6DpCRs7grUP13u30SIUm0D0Mdt8sd9'
    b'+jx9nmib+bccL9tFPXqaetckOPmmBmwKs2aN2OGyHK3j9iUdrPNNfEoyKyB0WEebYDxgtE'
    b'Dr5aH3K43j3PkhuPVtBdtBu8JKD6A5RjdK2WpqP+oAVj3z8MO7v41AQyrD4pMFosUrhsmU'
    b'4N9nXoURs5TjgBZosbeDS2oMp2+m7NLEtGpjEspK/mgnU2MH6GTWUHqHF6aZFggFdq4NYZ'
    b'lYl14Ed1F4B6QLO1iB7jlx4KhnYOik3tKg8G+zoH3bKwc6JqQw/nOsp/h2lzOgeJQd3c0W'
    b'JS1wrgjeqcFzGjc5HrHTjnJD7EMgmgnGKZKkyOsdQOdIZ4COzxLHflQ3E7baNVs4qAGoVL'
    b'0vrCtpoAbwSSa/NSh+jnkVaLMoLDnXqrBUvScPSzSPAw0bC+hK9wTyJZtr60D74yDUfRrB'
    b'K538I64ikMo6TlltzZFUlef2Fo9kCXvXJvlQmTBVodcEDQBwyww1R+px4RMbHoUQRj2/Yh'
    b'zkx0vduo25xaYNRvlha96jgri497ThaRvtKOgvDYoD0yaL+dmB4x6xLNxH5CVE1pIss00S'
    b'kidI8OGPe6Dr7qdR0ed7EEo6xiH7rlzceSKlbd3pxvmJmvoCJpOihIGjVfwxlwtriGxU/M'
    b'FC/LKzT4cLwh1INFaqCgl1lBlAhzDYSgHCzOGkUHV0StvlCj1vZP5jFRqtT8pCnKwsGmTi'
    b'l6dzmsz91ooYU8PZKhhukJeaPpaCRDTvW7i3o7ZmmB6MCzAfe9tc+hijHKKcY+nK6WdKYW'
    b'Hq3oWHRkPdI6MF7lKZNblh/zJDb6KAwdHyilxt6zz48WZmx4o/tLl8ktcxEmkqc82Ef0f4'
    b'YhyZBqwDTuwnBZBPKWvfqKbD9UGq96WHRAGBQNEA+JpYXCgGiAW8OhEUUPhsZlNBQaRA+E'
    b'BpBhcGYoGQSXjvRDoHEsA6CJTg9/hh0/MbwS6HLkfsDbBuPwHvU7NnefeWcyQuaCyPhYGc'
    b'iNjojL2XBnK/sZ7TQRs4c3K/epFekZ6oq+bhz1K1p4QeTcDT6pVrIwWDwec0d19O4eyi+6'
    b'E5KudKvUdNQqIeWw6zcXI6uxtV6/OQW/9ixjzh7zkCdcdBKTZGQk2l+4GIt+T35WNmlIhX'
    b'UhJNudC80m9lPXPAduzE6w+4yeWVOYPLM2TU6y1IQWbnRSPVlpHPbwwAswpp7a89zs0lF+'
    b'08vcyw394mHL1w4x2M9nzkV4HslzfEjPTzQSXHnKhNsK9bB+6eGJUXtwd6BxVOqpgf6XmS'
    b'P3JjTvFDWGzMKTJvCFp5zs3E70oYXzCddJKZ2bcIHRYLYDzWqjd1RpR3ZJ1rqiB++odo68'
    b'+bHHvZymbF5RQ8zcw5Ueb7Q4HYN1GMolWtKpSHu1yhBarTIAn6TQPTqHbaLxkjPXCYjGj1'
    b'XUE4uO1+0zC8c9e+mCGNkP5haNR4bSgqO+nU1IrwMiGnsqgs+RMyccFd1BhlI0ZziuG2Tp'
    b'ODfaI0RVFmH2Wx38recOCwdz2UmHQ7YcxS4PW6rVNEwjpbsTZHH0pqymo+5kmcSvhxYUht'
    b'q9tURLkbgLLyPh0B4ZrHlKC90IqsRGHQg2ZUsE8zZcXtfRvU6LhLbNUAr04dw5yYdneyQj'
    b'c5Q1VeB7UHJqNyNH2/JaOpjyklbbvhXJ0fvcGbGr17nz5BytCa5IjzTzBUPvmaYoRcvkHC'
    b'0frhQdnUmegHF+7bqdvuf8vOZBZxP0V6qXc34Y5ZRab6C2IzJoxgYM+ilIe1kn5s1nbZUP'
    b'hiyDFfjG6Mu3DdBXnMPqV4mMeNDPW6IqGiBe30eVNOjYQp7F+3D1OGTDPLLw1Wl7eDEXjy'
    b'bnsFiWWyK+q6VKgUZWCZRVnX+CLnCOVsYaQ8sCGmTQBw6mqAjdrccG5nSoLimfkxw941AS'
    b'u3Hp6zzzjPHFAZMFOVcPP1QGDQfcTcC3bjjAAOI5V0E3ZO35cO9ZvSs8U+hI/KlhxbV7Vl'
    b'vwRtRT4VxF3ZJ1fRtChaKJ7sUpFR01CjrcdS9bngvNeGZNSK9TmDh2PSft3WbQd7BNPOOP'
    b'jksHgcGkK4XTkLeUY8MQRXdpKFEtKUpY2aFTqpZ8KO1sXx1lhp3DhXOKDBfOGTBcOGfIk6'
    b'6GDZpi97UPM+pZY4Fo6kUwOuJQkPa9oiF0t+iA0C8aIPQ7+cTQI/uXBUEuNT1jpBndwViP'
    b'eNFFjJVm+tX+KLSrKxlRH3QvkzWGHlXTuQGv2ox1O66+jA99Qfdnfzqb+zdyCzzyMGLGd+'
    b'VA2ieCavtpTnqk9ntkxE/U7KxfzWZnwhlNaIUxnr42yXiX3uSNgUYzU+P0GM+WFoLJPGgS'
    b'IKmtTB60SqOvhLs2UybEHQ9Z8vPFnCYRdkaMVmOTVZtYb+r8SOUgASYWGMKBktoi6ogJS9'
    b'Ye2tF302eCnsx7cpzrhens4gY3TDENGyXDeXhuP4NXB6i5+MwiIQczDdyaj7vw/YzcBaAW'
    b'r50DPUufeSjM0x0Uz9RzD4a5uoNudUhOVD1fd66jGbvDbh0SLy1LT+eda+nnnJMwpZ8L4C'
    b'f1zotb7TNHUdoY4t2aJ7NB7RjSU7o06MPkLjg/Tyeprr9E1Y3u5kKdje7m0nQ0dhgGmtFV'
    b'I514xqiNenzcRLNkPDmoHDJqoHQoz7yFR7Wcoj+xkLNdyR01RORmuNzvnJPSeeARERajXV'
    b'azUDSDmFrQz+Yciozv9506PEShedIxDBulQ+LBxKAv0YtmlERd/eBOlFDm6FrxCsqtNmAp'
    b'QUerJJBUvwfNNhFdVYX+IrqqStNR2TIgxIPs//NMc9qnrbUca4uIIXdGs0FaXLktPRac1R'
    b'7a9xsHVQZ67M29Ms3SUGbZjxNVEnw8GB2o8WrutbDShd01hkAzRn+/8ATZwmlgj45m22GC'
    b'fUSf0Jkb5GiePf0uV7YCl991ok8Uz266sqZMOR+I/i5bImq/70bHhC4CqrWMGwjZHWv3o0'
    b'uTnGWRB6mn/ZA1803ZqXnSW+zOFeRNdhGC3Efo18SR5cd+/bRBsHziwRC7R16aPrXEkTtA'
    b'zdwSPMRPa1jagPLZWr4013NO5D7DRCoCwlTKwWEyRSCaNBjAGHZSceNnmmlCc7J7RYRVdA'
    b'eMN1gcfLXB4vB4g4XgNrrIDrmnVzPQcvUEe7Yi7W/BMIS+lccB4coOAvoE9czQ8RyQ88vr'
    b'KU3DJn41u2jYEcQa7MQAXoW1lNZhPRKUWCLeOKtG5NHNYKgP0c1gmo46FlSPy/g2D47Sl/'
    b'F1HosrMDoZjSx67XZflZ7ROEQGWu8kaGm5Q2SwNH4O57ewNZw7RDSGIp9OHSYaYOUBCZkB'
    b'8WauPONH0D8MqbSjmnSQOQ3kLc3IhOr1IuN1dLNO4bDvIboPmZCjdajaAkGDMkCsP2UWCt'
    b'qTAW7pTiYpWnMyLiO9ySC3tCYjtNaZjEspSMMO+tLMkV5bMo6lSI0c8m5OY7JQK0PGtVeF'
    b'HNEfN0bRnCa8RhnxXeR2tXlyMes5GaK9KLM/UuqylxqkuxqtXCYXubwMIYaFFUeEy8saDc'
    b'hKS5VEz4HmyWWzDt1HkYIOt41VlpSzIZDd2yFCRH3b2CKQ3jMmxIJJ9HnAJBlzhQXRVmmA'
    b'nQDpUkUjdxItS4DqpjAIKTeUQUptJmnI8C4xSH3tD8LR14lBd7i4C8qaif30V860M0uraC'
    b'muvqCsbSwdhbi0mFxQtgIdX1DGHNeQzhDk3ZUdMmTUtxSVye3lYXjVt1Ogz7+EO8yQqZKZ'
    b'6Ogu148YrzyoluQq43J08xOkj1RGlAVX4PytQcVK0eYS7QlTIJD2m2u3uqvJFe4vJ6Jb9x'
    b'TxnJ/s7cyy9QQlJxdaMRt8u2eRvsgLPCTQiqMtbzQonsg2158tCk/ox4ebMeh1SBO44fgL'
    b'HzAPc4jcn4bK8DI2xPeYO0kBEaL8ZQKsdT0v37+Mn8qGwnc1/E2L5Gr0m4+xaPBD3UAPtz'
    b'ZW8GrldBXgq1czG5S7f5KY/qP7rCoPSCeA6HVvh6yRboXfusVaOjRZ0le1LgN4y+45wr3F'
    b'cwRqW2cwbgWSJtdhaEwHkSZf2cWXyVfZSyvwrbfSLB0MlEjrW4or0NwsWJIRtgdyRZbFCA'
    b'hLkgYMS5KWNKe4oAE3QgWt2GDaz2pC5G0IL7uhZ/sahhkEqXo9qEHRS88YW78q3XI+JTlS'
    b'LRtiV5rlguhYsVwC1JkzA23ejeDuiu8TzAg6qRYCcBKrngabLCOOPo8yizjhjaI4LAfWAK'
    b'Pbb9vkq5/LIE16WWMFt2iC+uEkNHcL+TrkaV1/iJ3WR31XPObpDvNNRADdTgBGHS+qoJ6r'
    b'VxDImJjefGe8HTN1UjxTG602yf9isEoPOoB58lU6XVQlP/hVSGxQ+ZHjeiyeoeLogW01TV'
    b'5ZyFXy6rsVJPl1re4snYHUhzdWoPXhDU1H8i7IkGBqUOM+tG49qAMkeFZ2uAWF+2ou1uME'
    b'ncF+fbs9hCE169ewU8g4R89ImtBfw0uUYTV9GjNib3WZvKpnhpbJa2i5pSXETB3d8Ksaz2'
    b'uSaosN85BX1dKhO73q3axZChq+OSbwFuo0RSqixkoHIV+Rnk7dmwrJvKZUwyFNFvTFkAaQ'
    b'Rwox0CrAzWWAL2cOh07VHeOFmEn7HZ4qB2i/1278Cstk9T2mDmFqHaHb2huT/GJRRYi7NJ'
    b'zn4LjlZSqRclw7x8PrwV+kY5yEk3g8kn7lRrOXls2kfS+IRX7tRrNTz+b94ryja7SmVX6H'
    b'L4tRLs2G/m46Zjccab4LxPjzb+PxRl2H9jTYCAZcFhVnLgmnMw0Yy4mTWG0/lr48/7fFu/'
    b'r7TiStLhnQF7+X0GLsQjNRFHpBfDYBrVuNoaWZQOaoW0ce6SXXWQZa+9Z0pNQhQwbzMMmM'
    b'H5HdC1noSf1GUIY4pL9GeEbfTLmF/KrPysFV6L1RB98OZqK0Sjj3xHDzpxqB82Xypza3zp'
    b'JgT4lZ1p+6F4LTqBdqkj+jEx3QCf7kBUpNm0SWjui4xawRmfynkrXNEz4EBD30bb3ehA57'
    b'2ib6tnRouG8yM18mcnF6Rlz1ZFkSXaNuvOmlLNJ68JiC1uOGpqOByDAkmhTUfs3h1e+6Ut'
    b'yroSn3oI7iCozqwgJcrdqXcB7Ko7ZEGCaq5E3P9JG8qIAsLdPgInlTCuB0TtLcCB+GsGUW'
    b'wFg3ZF6Od4pXxvWtkbCMGaORcB5zxzvNqFgRf7TlDIXk7Xp7GlPwt6vdaegmb7eNKzD+vn'
    b'3HuALV9e2WccXMBGa3LIezXTcJGYc6oSoi029MU5nncZsmokZbQ16dDq8ZwHG9RRN4Q9sM'
    b'JhbzCI8fxjI8fXHZlBl5vLmCgwYHKDYETAUbH7VnVXasGGcFOPdhijKDDF55YIm4bYpmaj'
    b'/9agumUm+91oGRC1rwgvxgdIhY+sMb+mmMFWzD8eYYhYi6G6RtMA9mm48wT1NkmJYZMEzL'
    b'DBlNsTKH6PsyVk0KMaID4ag0QxC5Zji62deKjnqWkgypDSiwqzuvoe29XV163V6BUT+C/s'
    b'g8VmLPJ6AgBt1PGmFVh2ZieJNttIxJfgtv72KWJkvgLMmX4alDIe9ZAryXaR5D+oJRlCtt'
    b'4uZIpR+skDN6sIIoftrBShkGLiQhOvGNIC4qg9EJRAfAS0VHGVyQIVVpAup03z/pPrZxWD'
    b'+c+8c+ejQDQxp4u/4MPUTDVYBv+ZqRPS7GwoNa7CswKkbGrroVdowX3XuwJ9Xj5HJF2i8Y'
    b'r5JvHFvnyTd9WA36xjdZRCbPO2/wrS8cIK2MOmuSI6NOBnVt1FkZNBh1Gldjo04G16szXJ'
    b'mhR0e4JgC1jSdD+qN7xIRbHVhFCRs0visQvfW39fEPtSnPGN/M2adlaT9D1xABoXNwcOge'
    b'AGhtCSn1S+VVi28ZqWeWcCM1an0KwBp+8tO+sV4tzJcYVjraj9ezPPkWLeAgtpuWk2hS37'
    b'pbJ6NRAaITtgg/OmFL+mh2rybmK2z/WFrtX5UG8FtSltJ7Sh4Jm0oWiXeVbLB6s8gi0W6R'
    b'hfSukEXUzo8F9HkXi/jtHUuZZvT7wLfOqAusAngYDg7PJpNFwK0MwFD3ndEakhGdR0ShbD'
    b'vdnOYEzKK/vko+I6oLj+HcLr3KcG4U3zL5Fh0rQwWOjpWRPgzqPnBUQW0lwoYRDYwQNToR'
    b'A/fRiRjQ0s/D79gsABOib2GDDQmK7OEReGQPP0/+7a59v0z+H+SUGTTsMAEA'
    )).decode().splitlines()

%}







PyMuPDF-1.21.1/fitz/helper-select.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
//----------------------------------------------------------------------------
// Helpers for document page selection - main logic was imported
// from pdf_clean_file.c. But instead of analyzing a string-based spec of
// selected pages, we accept a Python sequence.
//----------------------------------------------------------------------------
typedef struct globals_s
{
    pdf_document *doc;
    fz_context *ctx;
} globals;

int string_in_names_list(fz_context *ctx, pdf_obj *p, pdf_obj *names_list)
{
    int n = pdf_array_len(ctx, names_list);
    int i;
    const char *str = pdf_to_text_string(ctx, p);

    for (i = 0; i < n ; i += 2)
    {
        if (!strcmp(pdf_to_text_string(ctx, pdf_array_get(ctx, names_list, i)), str))
            return 1;
    }
    return 0;
}

//----------------------------------------------------------------------------
// Recreate page tree to only retain specified pages.
//----------------------------------------------------------------------------
void retainpage(fz_context *ctx, pdf_document *doc, pdf_obj *parent, pdf_obj *kids, int page)
{
    pdf_obj *pageref = pdf_lookup_page_obj(ctx, doc, page);

    pdf_flatten_inheritable_page_items(ctx, pageref);

    pdf_dict_put(ctx, pageref, PDF_NAME(Parent), parent);

    /* Store page object in new kids array */
    pdf_array_push(ctx, kids, pageref);
}

int dest_is_valid_page(fz_context *ctx, pdf_obj *obj, int *page_object_nums, int pagecount)
{
    int i;
    int num = pdf_to_num(ctx, obj);

    if (num == 0)
        return 0;
    for (i = 0; i < pagecount; i++)
    {
        if (page_object_nums[i] == num)
            return 1;
    }
    return 0;
}

int dest_is_valid(fz_context *ctx, pdf_obj *o, int page_count, int *page_object_nums, pdf_obj *names_list)
{
    pdf_obj *p;

    p = pdf_dict_get(ctx, o, PDF_NAME(A));
    if (pdf_name_eq(ctx, pdf_dict_get(ctx, p, PDF_NAME(S)), PDF_NAME(GoTo)) &&
        !string_in_names_list(ctx, pdf_dict_get(ctx, p, PDF_NAME(D)), names_list))
        return 0;

    p = pdf_dict_get(ctx, o, PDF_NAME(Dest));
    if (p == NULL)
    {}
    else if (pdf_is_string(ctx, p))
    {
        return string_in_names_list(ctx, p, names_list);
    }
    else if (!dest_is_valid_page(ctx, pdf_array_get(ctx, p, 0), page_object_nums, page_count))
        return 0;

    return 1;
}

int strip_outlines(fz_context *ctx, pdf_document *doc, pdf_obj *outlines, int page_count, int *page_object_nums, pdf_obj *names_list);

int strip_outline(fz_context *ctx, pdf_document *doc, pdf_obj *outlines, int page_count, int *page_object_nums, pdf_obj *names_list, pdf_obj **pfirst, pdf_obj **plast)
{
    pdf_obj *prev = NULL;
    pdf_obj *first = NULL;
    pdf_obj *current;
    int count = 0;

    for (current = outlines; current != NULL; )
    {
        int nc;

        /*********************************************************************/
        // Strip any children to start with. This takes care of
        // First / Last / Count for us.
        /*********************************************************************/
        nc = strip_outlines(ctx, doc, current, page_count, page_object_nums, names_list);

        if (!dest_is_valid(ctx, current, page_count, page_object_nums, names_list))
        {
            if (nc == 0)
            {
                /*************************************************************/
                // Outline with invalid dest and no children. Drop it by
                // pulling the next one in here.
                /*************************************************************/
                pdf_obj *next = pdf_dict_get(ctx, current, PDF_NAME(Next));
                if (next == NULL)
                {
                    // There is no next one to pull in
                    if (prev != NULL)
                        pdf_dict_del(ctx, prev, PDF_NAME(Next));
                }
                else if (prev != NULL)
                {
                    pdf_dict_put(ctx, prev, PDF_NAME(Next), next);
                    pdf_dict_put(ctx, next, PDF_NAME(Prev), prev);
                }
                else
                {
                    pdf_dict_del(ctx, next, PDF_NAME(Prev));
                }
                current = next;
            }
            else
            {
                // Outline with invalid dest, but children. Just drop the dest.
                pdf_dict_del(ctx, current, PDF_NAME(Dest));
                pdf_dict_del(ctx, current, PDF_NAME(A));
                current = pdf_dict_get(ctx, current, PDF_NAME(Next));
            }
        }
        else
        {
            // Keep this one
            if (first == NULL)
                first = current;
            prev = current;
            current = pdf_dict_get(ctx, current, PDF_NAME(Next));
            count++;
        }
    }

    *pfirst = first;
    *plast = prev;

    return count;
}

int strip_outlines(fz_context *ctx, pdf_document *doc, pdf_obj *outlines, int page_count, int *page_object_nums, pdf_obj *names_list)
{
    int nc;
    pdf_obj *first;
    pdf_obj *last;

    if (outlines == NULL)
        return 0;

    first = pdf_dict_get(ctx, outlines, PDF_NAME(First));
    if (first == NULL)
        nc = 0;
    else
        nc = strip_outline(ctx, doc, first, page_count, page_object_nums,
                           names_list, &first, &last);

    if (nc == 0)
    {
        pdf_dict_del(ctx, outlines, PDF_NAME(First));
        pdf_dict_del(ctx, outlines, PDF_NAME(Last));
        pdf_dict_del(ctx, outlines, PDF_NAME(Count));
    }
    else
    {
        int old_count = pdf_to_int(ctx, pdf_dict_get(ctx, outlines, PDF_NAME(Count)));
        pdf_dict_put(ctx, outlines, PDF_NAME(First), first);
        pdf_dict_put(ctx, outlines, PDF_NAME(Last), last);
        pdf_dict_put_drop(ctx, outlines, PDF_NAME(Count), pdf_new_int(ctx, old_count > 0 ? nc : -nc));
    }
    return nc;
}

//----------------------------------------------------------------------------
//   This is called by PyMuPDF:
//   liste = page numbers to retain
//----------------------------------------------------------------------------
void retainpages(fz_context *ctx, globals *glo, PyObject *liste)
{
    pdf_obj *oldroot, *root, *pages, *kids, *countobj, *olddests;
    Py_ssize_t argc = PySequence_Size(liste);
    pdf_document *doc = glo->doc;
    pdf_obj *names_list = NULL;
    pdf_obj *outlines;
    pdf_obj *ocproperties;
    int pagecount = pdf_count_pages(ctx, doc);

    int i;
    int *page_object_nums;

/******************************************************************************/
//    Keep only pages/type and (reduced) dest entries to avoid
//    references to dropped pages
/******************************************************************************/
    oldroot = pdf_dict_get(ctx, pdf_trailer(ctx, doc), PDF_NAME(Root));
    pages = pdf_dict_get(ctx, oldroot, PDF_NAME(Pages));
    olddests = pdf_load_name_tree(ctx, doc, PDF_NAME(Dests));
    outlines = pdf_dict_get(ctx, oldroot, PDF_NAME(Outlines));
    ocproperties = pdf_dict_get(ctx, oldroot, PDF_NAME(OCProperties));

    root = pdf_new_dict(ctx, doc, 3);
    pdf_dict_put(ctx, root, PDF_NAME(Type), pdf_dict_get(ctx, oldroot, PDF_NAME(Type)));
    pdf_dict_put(ctx, root, PDF_NAME(Pages), pdf_dict_get(ctx, oldroot, PDF_NAME(Pages)));
    if (outlines)
        pdf_dict_put(ctx, root, PDF_NAME(Outlines), outlines);
    if (ocproperties)
        pdf_dict_put(ctx, root, PDF_NAME(OCProperties), ocproperties);

    pdf_update_object(ctx, doc, pdf_to_num(ctx, oldroot), root);

    // Create a new kids array with only the pages we want to keep
    kids = pdf_new_array(ctx, doc, 1);

    // Retain pages specified
    Py_ssize_t page;
    fz_try(ctx) {
        for (page = 0; page < argc; page++) {
            i = (int) PyInt_AsLong(PySequence_ITEM(liste, page));
            if (i < 0 || i >= pagecount) {
                RAISEPY(ctx, MSG_BAD_PAGENO, PyExc_ValueError);
            }
            retainpage(ctx, doc, pages, kids, i);
        }
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }

    // Update page count and kids array
    countobj = pdf_new_int(ctx, pdf_array_len(ctx, kids));
    pdf_dict_put_drop(ctx, pages, PDF_NAME(Count), countobj);
    pdf_dict_put_drop(ctx, pages, PDF_NAME(Kids), kids);

    pagecount = pdf_count_pages(ctx, doc);
    page_object_nums = fz_calloc(ctx, pagecount, sizeof(*page_object_nums));
    for (i = 0; i < pagecount; i++)
    {
        pdf_obj *pageref = pdf_lookup_page_obj(ctx, doc, i);
        page_object_nums[i] = pdf_to_num(ctx, pageref);
    }

/******************************************************************************/
// If we had an old Dests tree (now reformed as an olddests dictionary),
// keep any entries in there that point to valid pages.
// This may mean we keep more than we need, but it is safe at least.
/******************************************************************************/
    if (olddests)
    {
        pdf_obj *names = pdf_new_dict(ctx, doc, 1);
        pdf_obj *dests = pdf_new_dict(ctx, doc, 1);
        int len = pdf_dict_len(ctx, olddests);

        names_list = pdf_new_array(ctx, doc, 32);

        for (i = 0; i < len; i++)
        {
            pdf_obj *key = pdf_dict_get_key(ctx, olddests, i);
            pdf_obj *val = pdf_dict_get_val(ctx, olddests, i);
            pdf_obj *dest = pdf_dict_get(ctx, val, PDF_NAME(D));

            dest = pdf_array_get(ctx, dest ? dest : val, 0);
            if (dest_is_valid_page(ctx, dest, page_object_nums, pagecount))
            {
                pdf_obj *key_str = pdf_new_string(ctx, pdf_to_name(ctx, key), strlen(pdf_to_name(ctx, key)));
                pdf_array_push_drop(ctx, names_list, key_str);
                pdf_array_push(ctx, names_list, val);
            }
        }

        pdf_dict_put(ctx, dests, PDF_NAME(Names), names_list);
        pdf_dict_put(ctx, names, PDF_NAME(Dests), dests);
        pdf_dict_put(ctx, root, PDF_NAME(Names), names);

        pdf_drop_obj(ctx, names);
        pdf_drop_obj(ctx, dests);
        pdf_drop_obj(ctx, olddests);
    }

/*****************************************************************************/
// Edit each pages /Annot list to remove any links pointing to nowhere.
/*****************************************************************************/
    for (i = 0; i < pagecount; i++)
    {
        pdf_obj *pageref = pdf_lookup_page_obj(ctx, doc, i);

        pdf_obj *annots = pdf_dict_get(ctx, pageref, PDF_NAME(Annots));

        int len = pdf_array_len(ctx, annots);
        int j;

        for (j = 0; j < len; j++)
        {
            pdf_obj *o = pdf_array_get(ctx, annots, j);

            if (!pdf_name_eq(ctx, pdf_dict_get(ctx, o, PDF_NAME(Subtype)), PDF_NAME(Link)))
                continue;

            if (!dest_is_valid(ctx, o, pagecount, page_object_nums, names_list))
            {
                // Remove this annotation
                pdf_array_delete(ctx, annots, j);
                len--;
                j--;
            }
        }
    }

    if (strip_outlines(ctx, doc, outlines, pagecount, page_object_nums, names_list) == 0)
    {
        pdf_dict_del(ctx, root, PDF_NAME(Outlines));
    }

    fz_free(ctx, page_object_nums);
    pdf_drop_obj(ctx, names_list);
    pdf_drop_obj(ctx, root);
}

void remove_dest_range(fz_context *ctx, pdf_document *pdf, PyObject *numbers)
{
    fz_try(ctx) {
        int i, j, pno, len, pagecount = pdf_count_pages(ctx, pdf);
        PyObject *n1 = NULL;
        pdf_obj *target, *annots, *pageref, *o, *action, *dest;
        for (i = 0; i < pagecount; i++) {
            n1 = PyLong_FromLong((long) i);
            if (PySet_Contains(numbers, n1)) {
                Py_DECREF(n1);
                continue;
            }
            Py_DECREF(n1);

            pageref = pdf_lookup_page_obj(ctx, pdf, i);
            annots = pdf_dict_get(ctx, pageref, PDF_NAME(Annots));
            if (!annots) continue;
            len = pdf_array_len(ctx, annots);
            for (j = len - 1; j >= 0; j -= 1) {
                o = pdf_array_get(ctx, annots, j);
                if (!pdf_name_eq(ctx, pdf_dict_get(ctx, o, PDF_NAME(Subtype)), PDF_NAME(Link))) {
                    continue;
                }
                action = pdf_dict_get(ctx, o, PDF_NAME(A));
                dest =  pdf_dict_get(ctx, o, PDF_NAME(Dest));
                if (action) {
                    if (!pdf_name_eq(ctx, pdf_dict_get(ctx, action,
                        PDF_NAME(S)), PDF_NAME(GoTo)))
                        continue;
                    dest = pdf_dict_get(ctx, action, PDF_NAME(D));
                }
                pno = -1;
                if (pdf_is_array(ctx, dest)) {
                    target = pdf_array_get(ctx, dest, 0);
                    pno = pdf_lookup_page_number(ctx, pdf, target);
                }
                else if (pdf_is_string(ctx, dest)) {
                    pno = pdf_lookup_anchor(ctx, pdf,
                                            pdf_to_text_string(ctx, dest),
                                            NULL, NULL);
                }
                if (pno < 0) { // page number lookup did not work
                    continue;
                }
                n1 = PyLong_FromLong((long) pno);
                if (PySet_Contains(numbers, n1)) {
                    pdf_array_delete(ctx, annots, j);
                }
                Py_DECREF(n1);
            }
        }
    }

    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return;
}
%}







PyMuPDF-1.21.1/fitz/helper-stext.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
// need own versions of ascender / descender
static const float
JM_font_ascender(fz_context *ctx, fz_font *font)
{
    if (skip_quad_corrections) {
        return 0.8f;
    }
    return fz_font_ascender(ctx, font);
}

static const float
JM_font_descender(fz_context *ctx, fz_font *font)
{
    if (skip_quad_corrections) {
        return -0.2f;
    }
    return fz_font_descender(ctx, font);
}


/*  inactive
//-----------------------------------------------------------------------------
// Make OCR text page directly from an fz_page
//-----------------------------------------------------------------------------
fz_stext_page *
JM_new_stext_page_ocr_from_page(fz_context *ctx, fz_page *page, fz_rect rect, int flags,
        const char *lang)
{
    if (!page) return NULL;
    int with_list = 1;
    fz_stext_page *tp = NULL;
    fz_device *dev = NULL, *ocr_dev = NULL;
    fz_var(dev);
    fz_var(ocr_dev);
    fz_var(tp);
    fz_stext_options options;
    memset(&options, 0, sizeof options);
    options.flags = flags;
    //fz_matrix ctm = fz_identity;
    fz_matrix ctm1 = fz_make_matrix(100/72, 0, 0, 100/72, 0, 0);
    fz_matrix ctm2 = fz_make_matrix(400/72, 0, 0, 400/72, 0, 0);

    fz_try(ctx) {
        tp = fz_new_stext_page(ctx, rect);
        dev = fz_new_stext_device(ctx, tp, &options);
        ocr_dev = fz_new_ocr_device(ctx, dev, fz_identity, rect, with_list, lang, NULL, NULL);
        fz_run_page(ctx, page, ocr_dev, fz_identity, NULL);
        fz_close_device(ctx, ocr_dev);
        fz_close_device(ctx, dev);
    }
    fz_always(ctx) {
        fz_drop_device(ctx, dev);
        fz_drop_device(ctx, ocr_dev);
    }
    fz_catch(ctx) {
        fz_drop_stext_page(ctx, tp);
        fz_rethrow(ctx);
    }
    return tp;
}
*/

//---------------------------------------------------------------------------
// APPEND non-ascii runes in unicode escape format to fz_buffer
//---------------------------------------------------------------------------
void JM_append_rune(fz_context *ctx, fz_buffer *buff, int ch)
{
    if ((ch >= 32 && ch <= 255) || ch == 10) {
        fz_append_byte(ctx, buff, ch);
    } else if (ch <= 0xffff) {  // 4 hex digits
        fz_append_printf(ctx, buff, "\\u%04x", ch);
    } else {  // 8 hex digits
        fz_append_printf(ctx, buff, "\\U%08x", ch);
    }
}


// re-compute char quad if ascender/descender values make no sense
static fz_quad
JM_char_quad(fz_context *ctx, fz_stext_line *line, fz_stext_char *ch)
{
    if (skip_quad_corrections) {  // no special handling
        return ch->quad;
    }
    if (line->wmode) {  // never touch vertical write mode
        return ch->quad;
    }
    fz_font *font = ch->font;
    float asc = JM_font_ascender(ctx, font);
    float dsc = JM_font_descender(ctx, font);
    float c, s, fsize = ch->size;
    float asc_dsc = asc - dsc + FLT_EPSILON;
    if (asc_dsc >= 1 && small_glyph_heights == 0) {  // no problem
       return ch->quad;
    }
    if (asc < 1e-3) {  // probably Tesseract glyphless font
        dsc = -0.1f;
        asc = 0.9f;
        asc_dsc = 1.0f;
    }

    if (small_glyph_heights || asc_dsc < 1) {
        dsc = dsc / asc_dsc;
        asc = asc / asc_dsc;
    }
    asc_dsc = asc - dsc;
    asc = asc * fsize / asc_dsc;
    dsc = dsc * fsize / asc_dsc;

    /* ------------------------------
    Re-compute quad with the adjusted ascender / descender values:
    Move ch->origin to (0,0) and de-rotate quad, then adjust the corners,
    re-rotate and move back to ch->origin location.
    ------------------------------ */
    fz_matrix trm1, trm2, xlate1, xlate2;
    fz_quad quad;
    c = line->dir.x;  // cosine
    s = line->dir.y;  // sine
    trm1 = fz_make_matrix(c, -s, s, c, 0, 0);  // derotate
    trm2 = fz_make_matrix(c, s, -s, c, 0, 0);  // rotate
    if (c == -1) {  // left-right flip
        trm1.d = 1;
        trm2.d = 1;
    }
    xlate1 = fz_make_matrix(1, 0, 0, 1, -ch->origin.x, -ch->origin.y);
    xlate2 = fz_make_matrix(1, 0, 0, 1, ch->origin.x, ch->origin.y);

    quad = fz_transform_quad(ch->quad, xlate1);  // move origin to (0,0)
    quad = fz_transform_quad(quad, trm1);  // de-rotate corners

    // adjust vertical coordinates
    if (c == 1 && quad.ul.y > 0) {  // up-down flip
        quad.ul.y = asc;
        quad.ur.y = asc;
        quad.ll.y = dsc;
        quad.lr.y = dsc;
    } else {
        quad.ul.y = -asc;
        quad.ur.y = -asc;
        quad.ll.y = -dsc;
        quad.lr.y = -dsc;
    }

    // adjust horizontal coordinates that are too crazy:
    // (1) left x must be >= 0
    // (2) if bbox width is 0, lookup char advance in font.
    if (quad.ll.x < 0) {
        quad.ll.x = 0;
        quad.ul.x = 0;
    }
    float cwidth = quad.lr.x - quad.ll.x;
    if (cwidth < FLT_EPSILON) {
        int glyph = fz_encode_character(ctx, font, ch->c);
        if (glyph) {
            float fwidth = fz_advance_glyph(ctx, font, glyph, line->wmode);
            quad.lr.x = quad.ll.x + fwidth * fsize;
            quad.ur.x = quad.lr.x;
        }
    }

    quad = fz_transform_quad(quad, trm2);  // rotate back
    quad = fz_transform_quad(quad, xlate2);  // translate back
    return quad;
}


// return rect of char quad
static fz_rect
JM_char_bbox(fz_context *ctx, fz_stext_line *line, fz_stext_char *ch)
{
    fz_rect r = fz_rect_from_quad(JM_char_quad(ctx, line, ch));
    if (!line->wmode) {
        return r;
    }
    if (r.y1 < r.y0 + ch->size) {
        r.y0 = r.y1 - ch->size;
    }
    return r;
}


//-------------------------------------------
// make a buffer from an stext_page's text
//-------------------------------------------
fz_buffer *
JM_new_buffer_from_stext_page(fz_context *ctx, fz_stext_page *page)
{
    fz_stext_block *block;
    fz_stext_line *line;
    fz_stext_char *ch;
    fz_rect rect = page->mediabox;
    fz_buffer *buf = NULL;

    fz_try(ctx)
    {
        buf = fz_new_buffer(ctx, 256);
        for (block = page->first_block; block; block = block->next) {
            if (block->type == FZ_STEXT_BLOCK_TEXT) {
                for (line = block->u.t.first_line; line; line = line->next) {
                    for (ch = line->first_char; ch; ch = ch->next) {
                        if (!fz_contains_rect(rect, JM_char_bbox(ctx, line, ch)) &&
                            !fz_is_infinite_rect(rect)) {
                            continue;
                        }
                        fz_append_rune(ctx, buf, ch->c);
                    }
                    fz_append_byte(ctx, buf, '\n');
                }
                fz_append_byte(ctx, buf, '\n');
            }
        }
    }
    fz_catch(ctx) {
        fz_drop_buffer(ctx, buf);
        fz_rethrow(ctx);
    }
    return buf;
}


static float hdist(fz_point *dir, fz_point *a, fz_point *b)
{
    float dx = b->x - a->x;
    float dy = b->y - a->y;
    return fz_abs(dx * dir->x + dy * dir->y);
}


static float vdist(fz_point *dir, fz_point *a, fz_point *b)
{
    float dx = b->x - a->x;
    float dy = b->y - a->y;
    return fz_abs(dx * dir->y + dy * dir->x);
}


struct highlight
{
    Py_ssize_t len;
    PyObject *quads;
    float hfuzz, vfuzz;
};


static void on_highlight_char(fz_context *ctx, void *arg, fz_stext_line *line, fz_stext_char *ch)
{
    struct highlight *hits = arg;
    float vfuzz = ch->size * hits->vfuzz;
    float hfuzz = ch->size * hits->hfuzz;
    fz_quad ch_quad = JM_char_quad(ctx, line, ch);
    if (hits->len > 0) {
        PyObject *quad = PySequence_ITEM(hits->quads, hits->len - 1);
        fz_quad end = JM_quad_from_py(quad);
        Py_DECREF(quad);
        if (hdist(&line->dir, &end.lr, &ch_quad.ll) < hfuzz
            && vdist(&line->dir, &end.lr, &ch_quad.ll) < vfuzz
            && hdist(&line->dir, &end.ur, &ch_quad.ul) < hfuzz
            && vdist(&line->dir, &end.ur, &ch_quad.ul) < vfuzz)
        {
            end.ur = ch_quad.ur;
            end.lr = ch_quad.lr;
            quad = JM_py_from_quad(end);
            PyList_SetItem(hits->quads, hits->len - 1, quad);
            return;
        }
    }
    LIST_APPEND_DROP(hits->quads, JM_py_from_quad(ch_quad));
    hits->len++;
}


static inline int canon(int c)
{
	/* TODO: proper unicode case folding */
	/* TODO: character equivalence (a matches ä, etc) */
	if (c == 0xA0 || c == 0x2028 || c == 0x2029)
		return ' ';
	if (c == '\r' || c == '\n' || c == '\t')
		return ' ';
	if (c >= 'A' && c <= 'Z')
		return c - 'A' + 'a';
	return c;
}


static inline int chartocanon(int *c, const char *s)
{
	int n = fz_chartorune(c, s);
	*c = canon(*c);
	return n;
}


static const char *match_string(const char *h, const char *n)
{
	int hc, nc;
	const char *e = h;
	h += chartocanon(&hc, h);
	n += chartocanon(&nc, n);
	while (hc == nc)
	{
		e = h;
		if (hc == ' ')
			do
				h += chartocanon(&hc, h);
			while (hc == ' ');
		else
			h += chartocanon(&hc, h);
		if (nc == ' ')
			do
				n += chartocanon(&nc, n);
			while (nc == ' ');
		else
			n += chartocanon(&nc, n);
	}
	return nc == 0 ? e : NULL;
}


static const char *find_string(const char *s, const char *needle, const char **endp)
{
    const char *end;
    while (*s)
    {
        end = match_string(s, needle);
        if (end)
            return *endp = end, s;
        ++s;
    }
    return *endp = NULL, NULL;
}


PyObject *
JM_search_stext_page(fz_context *ctx, fz_stext_page *page, const char *needle)
{
    struct highlight hits;
    fz_stext_block *block;
    fz_stext_line *line;
    fz_stext_char *ch;
    fz_buffer *buffer = NULL;
    const char *haystack, *begin, *end;
    fz_rect rect = page->mediabox;
    int c, inside;

    if (strlen(needle) == 0) Py_RETURN_NONE;
    PyObject *quads = PyList_New(0);
    hits.len = 0;
    hits.quads = quads;
    hits.hfuzz = 0.2f; /* merge kerns but not large gaps */
    hits.vfuzz = 0.1f;

    fz_try(ctx) {
        buffer = JM_new_buffer_from_stext_page(ctx, page);
        haystack = fz_string_from_buffer(ctx, buffer);
        begin = find_string(haystack, needle, &end);
        if (!begin) goto no_more_matches;

        inside = 0;
        for (block = page->first_block; block; block = block->next) {
            if (block->type != FZ_STEXT_BLOCK_TEXT) {
                continue;
            }
            for (line = block->u.t.first_line; line; line = line->next) {
                for (ch = line->first_char; ch; ch = ch->next) {
                    if (!fz_is_infinite_rect(rect) &&
                        !fz_contains_rect(rect, JM_char_bbox(ctx, line, ch))) {
                            goto next_char;
                        }
try_new_match:
                    if (!inside) {
                        if (haystack >= begin) inside = 1;
                    }
                    if (inside) {
                        if (haystack < end) {
                            on_highlight_char(ctx, &hits, line, ch);
                        } else {
                            inside = 0;
                            begin = find_string(haystack, needle, &end);
                            if (!begin) goto no_more_matches;
                            else goto try_new_match;
                        }
                    }
                    haystack += fz_chartorune(&c, haystack);
next_char:;
                }
                assert(*haystack == '\n');
                ++haystack;
            }
            assert(*haystack == '\n');
            ++haystack;
        }
no_more_matches:;
    }
    fz_always(ctx)
        fz_drop_buffer(ctx, buffer);
    fz_catch(ctx)
        fz_rethrow(ctx);

    return quads;
}


//-----------------------------------------------------------------------------
// Plain text output. An identical copy of fz_print_stext_page_as_text,
// but lines within a block are concatenated by space instead a new-line
// character (which else leads to 2 new-lines).
//-----------------------------------------------------------------------------
void
JM_print_stext_page_as_text(fz_context *ctx, fz_output *out, fz_stext_page *page)
{
    fz_stext_block *block;
    fz_stext_line *line;
    fz_stext_char *ch;
    fz_rect rect = page->mediabox;
    fz_rect chbbox;
    int last_char = 0;
    char utf[10];
    int i, n;

    for (block = page->first_block; block; block = block->next) {
        if (block->type == FZ_STEXT_BLOCK_TEXT) {
            for (line = block->u.t.first_line; line; line = line->next) {
                last_char = 0;
                for (ch = line->first_char; ch; ch = ch->next) {
                    chbbox = JM_char_bbox(ctx, line, ch);
                    if (fz_is_infinite_rect(rect) ||
                        fz_contains_rect(rect, chbbox)) {
                        last_char = ch->c;
                        n = fz_runetochar(utf, ch->c);
                        for (i = 0; i < n; i++) {
                            fz_write_byte(ctx, out, utf[i]);
                        }
                    }
                }
                if (last_char != 10 && last_char > 0) {
                    fz_write_string(ctx, out, "\n");
                }
            }
        }
    }
}

//-----------------------------------------------------------------------------
// Functions for wordlist output
//-----------------------------------------------------------------------------
int JM_append_word(fz_context *ctx, PyObject *lines, fz_buffer *buff, fz_rect *wbbox,
                   int block_n, int line_n, int word_n)
{
    PyObject *s = JM_EscapeStrFromBuffer(ctx, buff);
    PyObject *litem = Py_BuildValue("ffffOiii",
                                    wbbox->x0,
                                    wbbox->y0,
                                    wbbox->x1,
                                    wbbox->y1,
                                    s,
                                    block_n, line_n, word_n);
    LIST_APPEND_DROP(lines, litem);
    Py_DECREF(s);
    *wbbox = fz_empty_rect;
    return word_n + 1;                 // word counter
}

//-----------------------------------------------------------------------------
// Functions for dictionary output
//-----------------------------------------------------------------------------

static int detect_super_script(fz_stext_line *line, fz_stext_char *ch)
{
    if (line->wmode == 0 && line->dir.x == 1 && line->dir.y == 0)
        return ch->origin.y < line->first_char->origin.y - ch->size * 0.1f;
    return 0;
}

static int JM_char_font_flags(fz_context *ctx, fz_font *font, fz_stext_line *line, fz_stext_char *ch)
{
    int flags = detect_super_script(line, ch);
    flags += fz_font_is_italic(ctx, font) * TEXT_FONT_ITALIC;
    flags += fz_font_is_serif(ctx, font) * TEXT_FONT_SERIFED;
    flags += fz_font_is_monospaced(ctx, font) * TEXT_FONT_MONOSPACED;
    flags += fz_font_is_bold(ctx, font) * TEXT_FONT_BOLD;
    return flags;
}

static const char *
JM_font_name(fz_context *ctx, fz_font *font)
{
    const char *name = fz_font_name(ctx, font);
    const char *s = strchr(name, '+');
    if (subset_fontnames || s == NULL || s-name != 6) {
        return name;
    }
    return s + 1;
}


static fz_rect
JM_make_spanlist(fz_context *ctx, PyObject *line_dict,
                 fz_stext_line *line, int raw, fz_buffer *buff,
                 fz_rect tp_rect)
{
    PyObject *span = NULL, *char_list = NULL, *char_dict;
    PyObject *span_list = PyList_New(0);
    fz_clear_buffer(ctx, buff);
    fz_stext_char *ch;
    fz_rect span_rect = fz_empty_rect;
    fz_rect line_rect = fz_empty_rect;
    fz_point span_origin = {0, 0};
    typedef struct style_s {
        float size; int flags; const char *font; int color;
        float asc; float desc;
    } char_style;
    char_style old_style = { -1, -1, "", -1, 0, 0 }, style;

    for (ch = line->first_char; ch; ch = ch->next) {
        fz_rect r = JM_char_bbox(ctx, line, ch);
        if (!fz_contains_rect(tp_rect, r) &&
            !fz_is_infinite_rect(tp_rect)) {
            continue;
        }
        int flags = JM_char_font_flags(ctx, ch->font, line, ch);
        fz_point origin = ch->origin;
        style.size = ch->size;
        style.flags = flags;
        style.font = JM_font_name(ctx, ch->font);
        style.color = ch->color;
        style.asc = JM_font_ascender(ctx, ch->font);
        style.desc = JM_font_descender(ctx, ch->font);

        if (style.size != old_style.size ||
            style.flags != old_style.flags ||
            style.color != old_style.color ||
            strcmp(style.font, old_style.font) != 0) {

            if (old_style.size >= 0) {
                // not first one, output previous
                if (raw) {
                    // put character list in the span
                    DICT_SETITEM_DROP(span, dictkey_chars, char_list);
                    char_list = NULL;
                } else {
                    // put text string in the span
                    DICT_SETITEM_DROP(span, dictkey_text, JM_EscapeStrFromBuffer(ctx, buff));
                    fz_clear_buffer(ctx, buff);
                }

                DICT_SETITEM_DROP(span, dictkey_origin,
                    JM_py_from_point(span_origin));
                DICT_SETITEM_DROP(span, dictkey_bbox,
                    JM_py_from_rect(span_rect));
                line_rect = fz_union_rect(line_rect, span_rect);
                LIST_APPEND_DROP(span_list, span);
                span = NULL;
            }

            span = PyDict_New();
            float asc = style.asc, desc = style.desc;
            if (style.asc < 1e-3) {
                asc = 0.9f;
                desc = -0.1f;
            }

            DICT_SETITEM_DROP(span, dictkey_size, Py_BuildValue("f", style.size));
            DICT_SETITEM_DROP(span, dictkey_flags, Py_BuildValue("i", style.flags));
            DICT_SETITEM_DROP(span, dictkey_font, JM_EscapeStrFromStr(style.font));
            DICT_SETITEM_DROP(span, dictkey_color, Py_BuildValue("i", style.color));
            DICT_SETITEMSTR_DROP(span, "ascender", Py_BuildValue("f", asc));
            DICT_SETITEMSTR_DROP(span, "descender", Py_BuildValue("f", desc));

            old_style = style;
            span_rect = r;
            span_origin = origin;

        }
        span_rect = fz_union_rect(span_rect, r);

        if (raw) {  // make and append a char dict
            char_dict = PyDict_New();
            DICT_SETITEM_DROP(char_dict, dictkey_origin,
                          JM_py_from_point(ch->origin));

            DICT_SETITEM_DROP(char_dict, dictkey_bbox,
                          JM_py_from_rect(r));

            DICT_SETITEM_DROP(char_dict, dictkey_c,
                          Py_BuildValue("C", ch->c));

            if (!char_list) {
                char_list = PyList_New(0);
            }
            LIST_APPEND_DROP(char_list, char_dict);
        } else {  // add character byte to buffer
            JM_append_rune(ctx, buff, ch->c);
        }
    }
    // all characters processed, now flush remaining span
    if (span) {
        if (raw) {
            DICT_SETITEM_DROP(span, dictkey_chars, char_list);
            char_list = NULL;
        } else {
            DICT_SETITEM_DROP(span, dictkey_text, JM_EscapeStrFromBuffer(ctx, buff));
            fz_clear_buffer(ctx, buff);
        }
        DICT_SETITEM_DROP(span, dictkey_origin, JM_py_from_point(span_origin));
        DICT_SETITEM_DROP(span, dictkey_bbox, JM_py_from_rect(span_rect));

        if (!fz_is_empty_rect(span_rect)) {
            LIST_APPEND_DROP(span_list, span);
            line_rect = fz_union_rect(line_rect, span_rect);
        } else {
            Py_DECREF(span);
        }
        span = NULL;
    }
    if (!fz_is_empty_rect(line_rect)) {
        DICT_SETITEM_DROP(line_dict, dictkey_spans, span_list);
    } else {
        DICT_SETITEM_DROP(line_dict, dictkey_spans, span_list);
    }
    return line_rect;
}

static void JM_make_image_block(fz_context *ctx, fz_stext_block *block, PyObject *block_dict)
{
    fz_image *image = block->u.i.image;
    fz_buffer *buf = NULL, *freebuf = NULL;
    fz_compressed_buffer *buffer = fz_compressed_image_buffer(ctx, image);
    fz_var(buf);
    fz_var(freebuf);
    int n = fz_colorspace_n(ctx, image->colorspace);
    int w = image->w;
    int h = image->h;
    const char *ext = NULL;
    int type = FZ_IMAGE_UNKNOWN;
    if (buffer)
        type = buffer->params.type;
    if (type < FZ_IMAGE_BMP || type == FZ_IMAGE_JBIG2)
        type = FZ_IMAGE_UNKNOWN;
    PyObject *bytes = NULL;
    fz_var(bytes);
    fz_try(ctx) {
        if (buffer && type != FZ_IMAGE_UNKNOWN) {
            buf = buffer->buffer;
            ext = JM_image_extension(type);
        } else {
            buf = freebuf = fz_new_buffer_from_image_as_png(ctx, image, fz_default_color_params);
            ext = "png";
        }
        bytes = JM_BinFromBuffer(ctx, buf);
    }
    fz_always(ctx) {
        if (!bytes)
            bytes = JM_BinFromChar("");
        DICT_SETITEM_DROP(block_dict, dictkey_width,
                        Py_BuildValue("i", w));
        DICT_SETITEM_DROP(block_dict, dictkey_height,
                        Py_BuildValue("i", h));
        DICT_SETITEM_DROP(block_dict, dictkey_ext,
                        Py_BuildValue("s", ext));
        DICT_SETITEM_DROP(block_dict, dictkey_colorspace,
                        Py_BuildValue("i", n));
        DICT_SETITEM_DROP(block_dict, dictkey_xres,
                        Py_BuildValue("i", image->xres));
        DICT_SETITEM_DROP(block_dict, dictkey_yres,
                        Py_BuildValue("i", image->xres));
        DICT_SETITEM_DROP(block_dict, dictkey_bpc,
                        Py_BuildValue("i", (int) image->bpc));
        DICT_SETITEM_DROP(block_dict, dictkey_matrix,
                        JM_py_from_matrix(block->u.i.transform));
        DICT_SETITEM_DROP(block_dict, dictkey_size,
                        Py_BuildValue("n", (Py_ssize_t) fz_image_size(ctx, image)));
        DICT_SETITEM_DROP(block_dict, dictkey_image, bytes);

        fz_drop_buffer(ctx, freebuf);
    }
    fz_catch(ctx) {;}
    return;
}

static void JM_make_text_block(fz_context *ctx, fz_stext_block *block, PyObject *block_dict, int raw, fz_buffer *buff, fz_rect tp_rect)
{
    fz_stext_line *line;
    PyObject *line_list = PyList_New(0), *line_dict;
    fz_rect block_rect = fz_empty_rect;
    for (line = block->u.t.first_line; line; line = line->next) {
        if (fz_is_empty_rect(fz_intersect_rect(tp_rect, line->bbox)) &&
            !fz_is_infinite_rect(tp_rect)) {
            continue;
        }
        line_dict = PyDict_New();
        fz_rect line_rect = JM_make_spanlist(ctx, line_dict, line, raw, buff, tp_rect);
        block_rect = fz_union_rect(block_rect, line_rect);
        DICT_SETITEM_DROP(line_dict, dictkey_wmode,
                    Py_BuildValue("i", line->wmode));
        DICT_SETITEM_DROP(line_dict, dictkey_dir, JM_py_from_point(line->dir));
        DICT_SETITEM_DROP(line_dict, dictkey_bbox,
                    JM_py_from_rect(line_rect));
        LIST_APPEND_DROP(line_list, line_dict);
    }
    DICT_SETITEM_DROP(block_dict, dictkey_bbox, JM_py_from_rect(block_rect));
    DICT_SETITEM_DROP(block_dict, dictkey_lines, line_list);
    return;
}

void JM_make_textpage_dict(fz_context *ctx, fz_stext_page *tp, PyObject *page_dict, int raw)
{
    fz_stext_block *block;
    fz_buffer *text_buffer = fz_new_buffer(ctx, 128);
    PyObject *block_dict, *block_list = PyList_New(0);
    fz_rect tp_rect = tp->mediabox;
    int block_n = -1;
    for (block = tp->first_block; block; block = block->next) {
        block_n++;
        if (!fz_contains_rect(tp_rect, block->bbox) &&
            !fz_is_infinite_rect(tp_rect) &&
            block->type == FZ_STEXT_BLOCK_IMAGE) {
            continue;
        }
        if (!fz_is_infinite_rect(tp_rect) &&
            fz_is_empty_rect(fz_intersect_rect(tp_rect, block->bbox))) {
            continue;
        }

        block_dict = PyDict_New();
        DICT_SETITEM_DROP(block_dict, dictkey_number, Py_BuildValue("i", block_n));
        DICT_SETITEM_DROP(block_dict, dictkey_type, Py_BuildValue("i", block->type));
        if (block->type == FZ_STEXT_BLOCK_IMAGE) {
            DICT_SETITEM_DROP(block_dict, dictkey_bbox, JM_py_from_rect(block->bbox));
            JM_make_image_block(ctx, block, block_dict);
        } else {
            JM_make_text_block(ctx, block, block_dict, raw, text_buffer, tp_rect);
        }

        LIST_APPEND_DROP(block_list, block_dict);
    }
    DICT_SETITEM_DROP(page_dict, dictkey_blocks, block_list);
    fz_drop_buffer(ctx, text_buffer);
}



//---------------------------------------------------------------------
char *
JM_copy_rectangle(fz_context *ctx, fz_stext_page *page, fz_rect area)
{
	fz_stext_block *block;
	fz_stext_line *line;
	fz_stext_char *ch;
	fz_buffer *buffer;
	unsigned char *s;
	int need_new_line = 0;

	buffer = fz_new_buffer(ctx, 1024);
	fz_try(ctx) {
		for (block = page->first_block; block; block = block->next) {
			if (block->type != FZ_STEXT_BLOCK_TEXT)
				continue;
			for (line = block->u.t.first_line; line; line = line->next) {
				int line_had_text = 0;
				for (ch = line->first_char; ch; ch = ch->next) {
					fz_rect r = JM_char_bbox(ctx, line, ch);
					if (fz_contains_rect(area, r)) {
						line_had_text = 1;
						if (need_new_line) {
							fz_append_string(ctx, buffer, "\n");
							need_new_line = 0;
						}
						fz_append_rune(ctx, buffer, ch->c < 32 ? FZ_REPLACEMENT_CHARACTER : ch->c);
					}
				}
				if (line_had_text)
					need_new_line = 1;
			}
		}
		fz_terminate_buffer(ctx, buffer);
	}
	fz_catch(ctx) {
		fz_drop_buffer(ctx, buffer);
		fz_rethrow(ctx);
	}


	fz_buffer_extract(ctx, buffer, &s); /* take over the data */
	fz_drop_buffer(ctx, buffer);
	return (char*)s;
}
//---------------------------------------------------------------------




fz_buffer *JM_object_to_buffer(fz_context *ctx, pdf_obj *what, int compress, int ascii)
{
    fz_buffer *res=NULL;
    fz_output *out=NULL;
    fz_try(ctx) {
        res = fz_new_buffer(ctx, 512);
        out = fz_new_output_with_buffer(ctx, res);
        pdf_print_obj(ctx, out, what, compress, ascii);
    }
    fz_always(ctx) {
        fz_drop_output(ctx, out);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    fz_terminate_buffer(ctx, res);
    return res;
}

//-----------------------------------------------------------------------------
// Merge the /Resources object created by a text pdf device into the page.
// The device may have created multiple /ExtGState/Alp? and /Font/F? objects.
// These need to be renamed (renumbered) to not overwrite existing page
// objects from previous executions.
// Returns the next available numbers n, m for objects /Alp<n>, /F<m>.
//-----------------------------------------------------------------------------
PyObject *JM_merge_resources(fz_context *ctx, pdf_page *page, pdf_obj *temp_res)
{
    // page objects /Resources, /Resources/ExtGState, /Resources/Font
    pdf_obj *resources = pdf_dict_get(ctx, page->obj, PDF_NAME(Resources));
    pdf_obj *main_extg = pdf_dict_get(ctx, resources, PDF_NAME(ExtGState));
    pdf_obj *main_fonts = pdf_dict_get(ctx, resources, PDF_NAME(Font));

    // text pdf device objects /ExtGState, /Font
    pdf_obj *temp_extg = pdf_dict_get(ctx, temp_res, PDF_NAME(ExtGState));
    pdf_obj *temp_fonts = pdf_dict_get(ctx, temp_res, PDF_NAME(Font));


    int max_alp = -1, max_fonts = -1, i, n;
    char text[20];

    // Handle /Alp objects
    if (pdf_is_dict(ctx, temp_extg))  // any created at all?
    {
        n = pdf_dict_len(ctx, temp_extg);
        if (pdf_is_dict(ctx, main_extg)) {  // does page have /ExtGState yet?
            for (i = 0; i < pdf_dict_len(ctx, main_extg); i++) {
                // get highest number of objects named /Alpxxx
                char *alp = (char *) pdf_to_name(ctx, pdf_dict_get_key(ctx, main_extg, i));
                if (strncmp(alp, "Alp", 3) != 0) continue;
                int j = fz_atoi(alp + 3);
                if (j > max_alp) max_alp = j;
            }
        }
        else  // create a /ExtGState for the page
            main_extg = pdf_dict_put_dict(ctx, resources, PDF_NAME(ExtGState), n);

        max_alp += 1;
        for (i = 0; i < n; i++)  // copy over renumbered /Alp objects
        {
            char *alp = (char *) pdf_to_name(ctx, pdf_dict_get_key(ctx, temp_extg, i));
            int j = fz_atoi(alp + 3) + max_alp;
            fz_snprintf(text, sizeof(text), "Alp%d", j);  // new name
            pdf_obj *val = pdf_dict_get_val(ctx, temp_extg, i);
            pdf_dict_puts(ctx, main_extg, text, val);
        }
    }


    if (pdf_is_dict(ctx, main_fonts)) { // has page any fonts yet?
        for (i = 0; i < pdf_dict_len(ctx, main_fonts); i++) { // get max font number
            char *font = (char *) pdf_to_name(ctx, pdf_dict_get_key(ctx, main_fonts, i));
            if (strncmp(font, "F", 1) != 0) continue;
            int j = fz_atoi(font + 1);
            if (j > max_fonts) max_fonts = j;
        }
    }
    else  // create a Resources/Font for the page
        main_fonts = pdf_dict_put_dict(ctx, resources, PDF_NAME(Font), 2);

    max_fonts += 1;
    for (i = 0; i < pdf_dict_len(ctx, temp_fonts); i++) { // copy renumbered fonts
        char *font = (char *) pdf_to_name(ctx, pdf_dict_get_key(ctx, temp_fonts, i));
        int j = fz_atoi(font + 1) + max_fonts;
        fz_snprintf(text, sizeof(text), "F%d", j);
        pdf_obj *val = pdf_dict_get_val(ctx, temp_fonts, i);
        pdf_dict_puts(ctx, main_fonts, text, val);
    }
    return Py_BuildValue("ii", max_alp, max_fonts); // next available numbers
}


//-----------------------------------------------------------------------------
// version of fz_show_string, which covers SMALL CAPS
//-----------------------------------------------------------------------------
fz_matrix
JM_show_string_cs(fz_context *ctx, fz_text *text, fz_font *user_font, fz_matrix trm, const char *s,
	int wmode, int bidi_level, fz_bidi_direction markup_dir, fz_text_language language)
{
	fz_font *font=NULL;
	int gid, ucs;
	float adv;

	while (*s)
	{
		s += fz_chartorune(&ucs, s);
        gid = fz_encode_character_sc(ctx, user_font, ucs);
        if (gid == 0) {
		    gid = fz_encode_character_with_fallback(ctx, user_font, ucs, 0, language, &font);
        } else {
            font = user_font;
        }
		fz_show_glyph(ctx, text, font, trm, gid, ucs, wmode, bidi_level, markup_dir, language);
		adv = fz_advance_glyph(ctx, font, gid, wmode);
		if (wmode == 0)
			trm = fz_pre_translate(trm, adv, 0);
		else
			trm = fz_pre_translate(trm, 0, -adv);
	}

	return trm;
}


//-----------------------------------------------------------------------------
// version of fz_show_string, which also covers UCDN script
//-----------------------------------------------------------------------------
fz_matrix JM_show_string(fz_context *ctx, fz_text *text, fz_font *user_font, fz_matrix trm, const char *s, int wmode, int bidi_level, fz_bidi_direction markup_dir, fz_text_language language, int script)
{
    fz_font *font;
    int gid, ucs;
    float adv;

    while (*s) {
        s += fz_chartorune(&ucs, s);
        gid = fz_encode_character_with_fallback(ctx, user_font, ucs, script, language, &font);
        fz_show_glyph(ctx, text, font, trm, gid, ucs, wmode, bidi_level, markup_dir, language);
        adv = fz_advance_glyph(ctx, font, gid, wmode);
        if (wmode == 0)
            trm = fz_pre_translate(trm, adv, 0);
        else
            trm = fz_pre_translate(trm, 0, -adv);
    }
    return trm;
}


//-----------------------------------------------------------------------------
// return a fz_font from a number of parameters
//-----------------------------------------------------------------------------
fz_font *JM_get_font(fz_context *ctx,
    char *fontname,
    char *fontfile,
    PyObject *fontbuffer,
    int script,
    int lang,
    int ordering,
    int is_bold,
    int is_italic,
    int is_serif)
{
    const unsigned char *data = NULL;
    int size, index=0;
    fz_buffer *res = NULL;
    fz_font *font = NULL;
    fz_try(ctx) {
        if (fontfile) goto have_file;
        if (EXISTS(fontbuffer)) goto have_buffer;
        if (ordering > -1) goto have_cjk;
        if (fontname) goto have_base14;
        goto have_noto;

        // Base-14 font
        have_base14:;
        data = fz_lookup_base14_font(ctx, fontname, &size);
        if (data) font = fz_new_font_from_memory(ctx, fontname, data, size, 0, 0);
        if(font) goto fertig;

        data = fz_lookup_builtin_font(ctx, fontname, is_bold, is_italic, &size);
        if (data) font = fz_new_font_from_memory(ctx, fontname, data, size, 0, 0);
        goto fertig;

        // CJK font
        have_cjk:;
        data = fz_lookup_cjk_font(ctx, ordering, &size, &index);
        if (data) font = fz_new_font_from_memory(ctx, NULL, data, size, index, 0);
        goto fertig;

        // fontfile
        have_file:;
        font = fz_new_font_from_file(ctx, NULL, fontfile, index, 0);
        goto fertig;

        // fontbuffer
        have_buffer:;
        res = JM_BufferFromBytes(ctx, fontbuffer);
        font = fz_new_font_from_buffer(ctx, NULL, res, index, 0);
        goto fertig;

        // Check for NOTO font
        have_noto:;
        data = fz_lookup_noto_font(ctx, script, lang, &size, &index);
        if (data) font = fz_new_font_from_memory(ctx, NULL, data, size, index, 0);
        if (font) goto fertig;
        font = fz_load_fallback_font(ctx, script, lang, is_serif, is_bold, is_italic);
        goto fertig;

        fertig:;
        if (!font) {
            RAISEPY(ctx, MSG_FONT_FAILED, PyExc_RuntimeError);
        }
    }
    fz_always(ctx) {
        fz_drop_buffer(ctx, res);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return font;
}

%}







PyMuPDF-1.21.1/fitz/helper-xobject.i

%{
/*
# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
*/
//-----------------------------------------------------------------------------
// Read and concatenate a PDF page's /Conents object(s) in a buffer
//-----------------------------------------------------------------------------
fz_buffer *JM_read_contents(fz_context * ctx, pdf_obj * pageref)
{
    fz_buffer *res = NULL, *nres = NULL;
    int i;
    fz_try(ctx) {
        pdf_obj *contents = pdf_dict_get(ctx, pageref, PDF_NAME(Contents));
        if (pdf_is_array(ctx, contents)) {
            res = fz_new_buffer(ctx, 1024);
            for (i = 0; i < pdf_array_len(ctx, contents); i++) {
                nres = pdf_load_stream(ctx, pdf_array_get(ctx, contents, i));
                fz_append_buffer(ctx, res, nres);
                fz_drop_buffer(ctx, nres);
            }
        }
        else if (contents) {
            res = pdf_load_stream(ctx, contents);
        }
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return res;
}

//-----------------------------------------------------------------------------
// Make an XObject from a PDF page
// For a positive xref assume that its object can be used instead
//-----------------------------------------------------------------------------
pdf_obj *JM_xobject_from_page(fz_context * ctx, pdf_document * pdfout, fz_page * fsrcpage, int xref, pdf_graft_map *gmap)
{
    pdf_obj *xobj1, *resources = NULL, *o, *spageref;
    fz_try(ctx) {
        if (xref > 0) {
            xobj1 = pdf_new_indirect(ctx, pdfout, xref, 0);
        } else {
            fz_buffer *res = NULL;
            fz_rect mediabox;
            pdf_page *srcpage = pdf_page_from_fz_page(ctx, fsrcpage);
            spageref = srcpage->obj;
            mediabox = pdf_to_rect(ctx, pdf_dict_get_inheritable(ctx, spageref, PDF_NAME(MediaBox)));
            // Deep-copy resources object of source page
            o = pdf_dict_get_inheritable(ctx, spageref, PDF_NAME(Resources));
            if (gmap) // use graftmap when possible
                resources = pdf_graft_mapped_object(ctx, gmap, o);
            else
                resources = pdf_graft_object(ctx, pdfout, o);

            // get spgage contents source
            res = JM_read_contents(ctx, spageref);

            //-------------------------------------------------------------
            // create XObject representing the source page
            //-------------------------------------------------------------
            xobj1 = pdf_new_xobject(ctx, pdfout, mediabox, fz_identity, NULL, res);
            // store spage contents
            JM_update_stream(ctx, pdfout, xobj1, res, 1);
            fz_drop_buffer(ctx, res);

            // store spage resources
            pdf_dict_put_drop(ctx, xobj1, PDF_NAME(Resources), resources);
        }
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return xobj1;
}

//-----------------------------------------------------------------------------
// Insert a buffer as a new separate /Contents object of a page.
// 1. Create a new stream object from buffer 'newcont'
// 2. If /Contents already is an array, then just prepend or append this object
// 3. Else, create new array and put old content obj and this object into it.
//    If the page had no /Contents before, just create a 1-item array.
//-----------------------------------------------------------------------------
int JM_insert_contents(fz_context * ctx, pdf_document * pdf,
                        pdf_obj * pageref, fz_buffer * newcont, int overlay)
{
    int xref = 0;
    pdf_obj *newconts = NULL;
    pdf_obj *carr = NULL;
    fz_var(newconts);
    fz_var(carr);
    fz_try(ctx) {
        pdf_obj *contents = pdf_dict_get(ctx, pageref, PDF_NAME(Contents));
        newconts = pdf_add_stream(ctx, pdf, newcont, NULL, 0);
        xref = pdf_to_num(ctx, newconts);
        if (pdf_is_array(ctx, contents)) {
            if (overlay) // append new object
                pdf_array_push(ctx, contents, newconts);
            else // prepend new object
                pdf_array_insert(ctx, contents, newconts, 0);
        } else {
            carr = pdf_new_array(ctx, pdf, 5);
            if (overlay) {
                if (contents)
                    pdf_array_push(ctx, carr, contents);
                pdf_array_push(ctx, carr, newconts);
            } else {
                pdf_array_push(ctx, carr, newconts);
                if (contents)
                    pdf_array_push(ctx, carr, contents);
            }
            pdf_dict_put(ctx, pageref, PDF_NAME(Contents), carr);
        }
    }
    fz_always(ctx) {
        pdf_drop_obj(ctx, newconts);
        pdf_drop_obj(ctx, carr);
    }
    fz_catch(ctx) {
        fz_rethrow(ctx);
    }
    return xref;
}

static PyObject *img_info = NULL;

static fz_image *
JM_image_filter(fz_context *ctx, void *opaque, fz_matrix ctm, const char *name, fz_image *image)
{
    fz_quad q = fz_transform_quad(fz_quad_from_rect(fz_unit_rect), ctm);
    PyObject *temp = Py_BuildValue("sN", name, JM_py_from_quad(q));
    LIST_APPEND_DROP(img_info, temp);
    return NULL;
}

void
JM_filter_content_stream(
    fz_context * ctx,
    pdf_document * doc,
    pdf_obj * in_stm,
    pdf_obj * in_res,
    fz_matrix transform,
    pdf_filter_options * filter,
    int struct_parents,
    fz_buffer **out_buf,
    pdf_obj **out_res)
{
    pdf_processor *proc_buffer = NULL;
    pdf_processor *proc_filter = NULL;

    fz_var(proc_buffer);
    fz_var(proc_filter);

    *out_buf = NULL;
    *out_res = NULL;

    fz_try(ctx) {
		*out_buf = fz_new_buffer(ctx, 1024);
		proc_buffer = pdf_new_buffer_processor(ctx, *out_buf, filter->ascii);
		if (filter->sanitize) {
			*out_res = pdf_new_dict(ctx, doc, 1);
			proc_filter = pdf_new_filter_processor(ctx, doc, proc_buffer, in_res, *out_res, struct_parents, transform, filter);
			pdf_process_contents(ctx, proc_filter, doc, in_res, in_stm, NULL);
			pdf_close_processor(ctx, proc_filter);
		} else {
			*out_res = pdf_keep_obj(ctx, in_res);
			pdf_process_contents(ctx, proc_buffer, doc, in_res, in_stm, NULL);
		}
		pdf_close_processor(ctx, proc_buffer);
    }
    fz_always(ctx) {
        pdf_drop_processor(ctx, proc_filter);
        pdf_drop_processor(ctx, proc_buffer);
    }
    fz_catch(ctx) {
        fz_drop_buffer(ctx, *out_buf);
        *out_buf = NULL;
        pdf_drop_obj(ctx, *out_res);
        *out_res = NULL;
        fz_rethrow(ctx);
    }
}

PyObject *
JM_image_reporter(fz_context *ctx, pdf_page *page)
{
    pdf_document *doc = page->doc;
    pdf_filter_options filter;
    memset(&filter, 0, sizeof filter);
    filter.opaque = page;
    filter.text_filter = NULL;
    filter.image_filter = JM_image_filter;
    filter.end_page = NULL;
    filter.recurse = 0;
    filter.instance_forms = 1;
    filter.sanitize = 1;
    filter.ascii = 1;

    pdf_obj *contents, *old_res;
    pdf_obj *struct_parents_obj;
    pdf_obj *new_res;
    fz_buffer *buffer;
    int struct_parents;
    fz_matrix ctm = fz_identity;
    pdf_page_transform(ctx, page, NULL, &ctm);
    struct_parents_obj = pdf_dict_get(ctx, page->obj, PDF_NAME(StructParents));
    struct_parents = -1;
    if (pdf_is_number(ctx, struct_parents_obj))
        struct_parents = pdf_to_int(ctx, struct_parents_obj);

    contents = pdf_page_contents(ctx, page);
    old_res = pdf_page_resources(ctx, page);
    img_info = PyList_New(0);
    JM_filter_content_stream(ctx, doc, contents, old_res, ctm, &filter, struct_parents, &buffer, &new_res);
    fz_drop_buffer(ctx, buffer);
    pdf_drop_obj(ctx, new_res);
    PyObject *rc = PySequence_Tuple(img_info);
    Py_CLEAR(img_info);
    return rc;
}

%}







PyMuPDF-1.21.1/fitz/utils.py

# ------------------------------------------------------------------------
# Copyright 2020-2022, Harald Lieder, mailto:harald.lieder@outlook.com
# License: GNU AFFERO GPL 3.0, https://www.gnu.org/licenses/agpl-3.0.html
#
# Part of "PyMuPDF", a Python binding for "MuPDF" (http://mupdf.com), a
# lightweight PDF, XPS, and E-book viewer, renderer and toolkit which is
# maintained and developed by Artifex Software, Inc. https://artifex.com.
# ------------------------------------------------------------------------
import io
import json
import math
import os
import random
import string
import tempfile
import typing
import warnings

from fitz import *

TESSDATA_PREFIX = os.environ.get("TESSDATA_PREFIX")
point_like = "point_like"
rect_like = "rect_like"
matrix_like = "matrix_like"
quad_like = "quad_like"
AnyType = typing.Any
OptInt = typing.Union[int, None]
OptFloat = typing.Optional[float]
OptStr = typing.Optional[str]
OptDict = typing.Optional[dict]
OptBytes = typing.Optional[typing.ByteString]
OptSeq = typing.Optional[typing.Sequence]

"""
This is a collection of functions to extend PyMupdf.
"""


def write_text(page: Page, **kwargs) -> None:
    """Write the text of one or more TextWriter objects.

    Args:
        rect: target rectangle. If None, the union of the text writers is used.
        writers: one or more TextWriter objects.
        overlay: put in foreground or background.
        keep_proportion: maintain aspect ratio of rectangle sides.
        rotate: arbitrary rotation angle.
        oc: the xref of an optional content object
    """
    if type(page) is not Page:
        raise ValueError("bad page parameter")
    s = {
        k
        for k in kwargs.keys()
        if k
        not in {
            "rect",
            "writers",
            "opacity",
            "color",
            "overlay",
            "keep_proportion",
            "rotate",
            "oc",
        }
    }
    if s != set():
        raise ValueError("bad keywords: " + str(s))

    rect = kwargs.get("rect")
    writers = kwargs.get("writers")
    opacity = kwargs.get("opacity")
    color = kwargs.get("color")
    overlay = bool(kwargs.get("overlay", True))
    keep_proportion = bool(kwargs.get("keep_proportion", True))
    rotate = int(kwargs.get("rotate", 0))
    oc = int(kwargs.get("oc", 0))

    if not writers:
        raise ValueError("need at least one TextWriter")
    if type(writers) is TextWriter:
        if rotate == 0 and rect is None:
            writers.write_text(page, opacity=opacity, color=color, overlay=overlay)
            return None
        else:
            writers = (writers,)
    clip = writers[0].text_rect
    textdoc = Document()
    tpage = textdoc.new_page(width=page.rect.width, height=page.rect.height)
    for writer in writers:
        clip |= writer.text_rect
        writer.write_text(tpage, opacity=opacity, color=color)
    if rect is None:
        rect = clip
    page.show_pdf_page(
        rect,
        textdoc,
        0,
        overlay=overlay,
        keep_proportion=keep_proportion,
        rotate=rotate,
        clip=clip,
        oc=oc,
    )
    textdoc = None
    tpage = None


def show_pdf_page(*args, **kwargs) -> int:
    """Show page number 'pno' of PDF 'src' in rectangle 'rect'.

    Args:
        rect: (rect-like) where to place the source image
        src: (document) source PDF
        pno: (int) source page number
        overlay: (bool) put in foreground
        keep_proportion: (bool) do not change width-height-ratio
        rotate: (int) degrees (multiple of 90)
        clip: (rect-like) part of source page rectangle
    Returns:
        xref of inserted object (for reuse)
    """
    if len(args) not in (3, 4):
        raise ValueError("bad number of positional parameters")
    pno = None
    if len(args) == 3:
        page, rect, src = args
    else:
        page, rect, src, pno = args
    if pno == None:
        pno = int(kwargs.get("pno", 0))
    overlay = bool(kwargs.get("overlay", True))
    keep_proportion = bool(kwargs.get("keep_proportion", True))
    rotate = float(kwargs.get("rotate", 0))
    oc = int(kwargs.get("oc", 0))
    clip = kwargs.get("clip")

    def calc_matrix(sr, tr, keep=True, rotate=0):
        """Calculate transformation matrix from source to target rect.

        Notes:
            The product of four matrices in this sequence: (1) translate correct
            source corner to origin, (2) rotate, (3) scale, (4) translate to
            target's top-left corner.
        Args:
            sr: source rect in PDF (!) coordinate system
            tr: target rect in PDF coordinate system
            keep: whether to keep source ratio of width to height
            rotate: rotation angle in degrees
        Returns:
            Transformation matrix.
        """
        # calc center point of source rect
        smp = (sr.tl + sr.br) / 2.0
        # calc center point of target rect
        tmp = (tr.tl + tr.br) / 2.0

        # m moves to (0, 0), then rotates
        m = Matrix(1, 0, 0, 1, -smp.x, -smp.y) * Matrix(rotate)

        sr1 = sr * m  # resulting source rect to calculate scale factors

        fw = tr.width / sr1.width  # scale the width
        fh = tr.height / sr1.height  # scale the height
        if keep:
            fw = fh = min(fw, fh)  # take min if keeping aspect ratio

        m *= Matrix(fw, fh)  # concat scale matrix
        m *= Matrix(1, 0, 0, 1, tmp.x, tmp.y)  # concat move to target center
        return JM_TUPLE(m)

    CheckParent(page)
    doc = page.parent

    if not doc.is_pdf or not src.is_pdf:
        raise ValueError("is no PDF")

    if rect.is_empty or rect.is_infinite:
        raise ValueError("rect must be finite and not empty")

    while pno < 0:  # support negative page numbers
        pno += src.page_count
    src_page = src[pno]  # load source page
    if src_page.get_contents() == []:
        raise ValueError("nothing to show - source page empty")

    tar_rect = rect * ~page.transformation_matrix  # target rect in PDF coordinates

    src_rect = src_page.rect if not clip else src_page.rect & clip  # source rect
    if src_rect.is_empty or src_rect.is_infinite:
        raise ValueError("clip must be finite and not empty")
    src_rect = src_rect * ~src_page.transformation_matrix  # ... in PDF coord

    matrix = calc_matrix(src_rect, tar_rect, keep=keep_proportion, rotate=rotate)

    # list of existing /Form /XObjects
    ilst = [i[1] for i in doc.get_page_xobjects(page.number)]
    ilst += [i[7] for i in doc.get_page_images(page.number)]
    ilst += [i[4] for i in doc.get_page_fonts(page.number)]

    # create a name not in that list
    n = "fzFrm"
    i = 0
    _imgname = n + "0"
    while _imgname in ilst:
        i += 1
        _imgname = n + str(i)

    isrc = src._graft_id  # used as key for graftmaps
    if doc._graft_id == isrc:
        raise ValueError("source document must not equal target")

    # retrieve / make Graftmap for source PDF
    gmap = doc.Graftmaps.get(isrc, None)
    if gmap is None:
        gmap = Graftmap(doc)
        doc.Graftmaps[isrc] = gmap

    # take note of generated xref for automatic reuse
    pno_id = (isrc, pno)  # id of src[pno]
    xref = doc.ShownPages.get(pno_id, 0)

    xref = page._show_pdf_page(
        src_page,
        overlay=overlay,
        matrix=matrix,
        xref=xref,
        oc=oc,
        clip=src_rect,
        graftmap=gmap,
        _imgname=_imgname,
    )
    doc.ShownPages[pno_id] = xref

    return xref


def replace_image(page: Page, xref: int, *, filename=None, pixmap=None, stream=None):
    """Replace the image referred to by xref.

    Replace the image by changing the object definition stored under xref. This
    will leave the pages appearance instructions intact, so the new image is
    being displayed with the same bbox, rotation etc.
    By providing a small fully transparent image, an effect as if the image had
    been deleted can be achieved.
    A typical use may include replacing large images by a smaller version,
    e.g. with a lower resolution or graylevel instead of colored.

    Args:
        xref: the xref of the image to replace.
        filename, pixmap, stream: exactly one of these must be provided. The
            meaning being the same as in Page.insert_image.
    """
    doc = page.parent  # the owning document
    if not doc.is_image(xref):
        raise ValueError("xref not an image")  # insert new image anywhere in page
    if bool(filename) + bool(stream) + bool(pixmap) != 1:
        raise ValueError("Exactly one of filename/stream/pixmap must be given")
    new_xref = page.insert_image(
        page.rect, filename=filename, stream=stream, pixmap=pixmap
    )
    doc.xref_copy(new_xref, xref)  # copy over new to old
    last_contents_xref = page.get_contents()[-1]
    # new image insertion has created a new /Contents source,
    # which we will set to spaces now
    doc.update_stream(last_contents_xref, b" ")


def delete_image(page: Page, xref: int):
    """Delete the image referred to by xef.

    Actually replaces by a small transparent Pixmap using method Page.replace_image.

    Args:
        xref: xref of the image to delete.
    """
    # make a small 100% transparent pixmap (of just any dimension)
    pix = fitz.Pixmap(fitz.csGRAY, (0, 0, 1, 1), 1)
    pix.clear_with()  # clear all samples bytes to 0x00
    page.replace_image(xref, pixmap=pix)


def insert_image(page, rect, **kwargs):
    """Insert an image for display in a rectangle.

    Args:
        rect: (rect_like) position of image on the page.
        alpha: (int, optional) set to 0 if image has no transparency.
        filename: (str, Path, file object) image filename.
        keep_proportion: (bool) keep width / height ratio (default).
        mask: (bytes, optional) image consisting of alpha values to use.
        oc: (int) xref of OCG or OCMD to declare as Optional Content.
        overlay: (bool) put in foreground (default) or background.
        pixmap: (Pixmap) use this as image.
        rotate: (int) rotate by 0, 90, 180 or 270 degrees.
        stream: (bytes) use this as image.
        xref: (int) use this as image.

    'page' and 'rect' are positional, all other parameters are keywords.

    If 'xref' is given, that image is used. Other input options are ignored.
    Else, exactly one of pixmap, stream or filename must be given.

    'alpha=0' for non-transparent images improves performance significantly.
    Affects stream and filename only.

    Optimum transparent insertions are possible by using filename / stream in
    conjunction with a 'mask' image of alpha values.

    Returns:
        xref (int) of inserted image. Re-use as argument for multiple insertions.
    """
    CheckParent(page)
    doc = page.parent
    if not doc.is_pdf:
        raise ValueError("is no PDF")

    valid_keys = {
        "alpha",
        "filename",
        "height",
        "keep_proportion",
        "mask",
        "oc",
        "overlay",
        "pixmap",
        "rotate",
        "stream",
        "width",
        "xref",
    }
    s = set(kwargs.keys()).difference(valid_keys)
    if s != set():
        raise ValueError("bad key argument(s) %s" % s)
    filename = kwargs.get("filename")
    pixmap = kwargs.get("pixmap")
    stream = kwargs.get("stream")
    mask = kwargs.get("mask")
    rotate = int(kwargs.get("rotate", 0))
    width = int(kwargs.get("width", 0))
    height = int(kwargs.get("height", 0))
    alpha = int(kwargs.get("alpha", -1))
    oc = int(kwargs.get("oc", 0))
    xref = int(kwargs.get("xref", 0))
    keep_proportion = bool(kwargs.get("keep_proportion", True))
    overlay = bool(kwargs.get("overlay", True))

    if xref == 0 and (bool(filename) + bool(stream) + bool(pixmap) != 1):
        raise ValueError("xref=0 needs exactly one of filename, pixmap, stream")

    if filename:
        if type(filename) is str:
            pass
        elif hasattr(filename, "absolute"):
            filename = str(filename)
        elif hasattr(filename, "name"):
            filename = filename.name
        else:
            raise ValueError("bad filename")

    if filename and not os.path.exists(filename):
        raise FileNotFoundError("No such file: '%s'" % filename)
    elif stream and type(stream) not in (bytes, bytearray, io.BytesIO):
        raise ValueError("stream must be bytes-like / BytesIO")
    elif pixmap and type(pixmap) is not Pixmap:
        raise ValueError("pixmap must be a Pixmap")
    if mask and not (stream or filename):
        raise ValueError("mask requires stream or filename")
    if mask and type(mask) not in (bytes, bytearray, io.BytesIO):
        raise ValueError("mask must be bytes-like / BytesIO")
    while rotate < 0:
        rotate += 360
    while rotate >= 360:
        rotate -= 360
    if rotate not in (0, 90, 180, 270):
        raise ValueError("bad rotate value")

    r = Rect(rect)
    if r.is_empty or r.is_infinite:
        raise ValueError("rect must be finite and not empty")
    clip = r * ~page.transformation_matrix

    # Create a unique image reference name.
    ilst = [i[7] for i in doc.get_page_images(page.number)]
    ilst += [i[1] for i in doc.get_page_xobjects(page.number)]
    ilst += [i[4] for i in doc.get_page_fonts(page.number)]
    n = "fzImg"  # 'fitz image'
    i = 0
    _imgname = n + "0"  # first name candidate
    while _imgname in ilst:
        i += 1
        _imgname = n + str(i)  # try new name

    digests = doc.InsertedImages

    xref, digests = page._insert_image(
        filename=filename,
        pixmap=pixmap,
        stream=stream,
        imask=mask,
        clip=clip,
        overlay=overlay,
        oc=oc,
        xref=xref,
        rotate=rotate,
        keep_proportion=keep_proportion,
        width=width,
        height=height,
        alpha=alpha,
        _imgname=_imgname,
        digests=digests,
    )

    if digests != None:
        doc.InsertedImages = digests

    return xref


def search_for(*args, **kwargs) -> list:
    """Search for a string on a page.

    Args:
        text: string to be searched for
        clip: restrict search to this rectangle
        quads: (bool) return quads instead of rectangles
        flags: bit switches, default: join hyphened words
        textpage: a pre-created TextPage
    Returns:
        a list of rectangles or quads, each containing one occurrence.
    """
    if len(args) != 2:
        raise ValueError("bad number of positional parameters")
    page, text = args
    quads = kwargs.get("quads", 0)
    clip = kwargs.get("clip")
    textpage = kwargs.get("textpage")
    if clip != None:
        clip = Rect(clip)
    flags = kwargs.get(
        "flags",
        TEXT_DEHYPHENATE
        | TEXT_PRESERVE_WHITESPACE
        | TEXT_PRESERVE_LIGATURES
        | TEXT_MEDIABOX_CLIP,
    )

    CheckParent(page)
    tp = textpage
    if tp is None:
        tp = page.get_textpage(clip=clip, flags=flags)  # create TextPage
    elif getattr(tp, "parent") != page:
        raise ValueError("not a textpage of this page")
    rlist = tp.search(text, quads=quads)
    if textpage is None:
        del tp
    return rlist


def search_page_for(
    doc: Document,
    pno: int,
    text: str,
    quads: bool = False,
    clip: rect_like = None,
    flags: int = TEXT_DEHYPHENATE
    | TEXT_PRESERVE_LIGATURES
    | TEXT_PRESERVE_WHITESPACE
    | TEXT_MEDIABOX_CLIP,
    textpage: TextPage = None,
) -> list:
    """Search for a string on a page.

    Args:
        pno: page number
        text: string to be searched for
        clip: restrict search to this rectangle
        quads: (bool) return quads instead of rectangles
        flags: bit switches, default: join hyphened words
        textpage: reuse a prepared textpage
    Returns:
        a list of rectangles or quads, each containing an occurrence.
    """

    return doc[pno].search_for(
        text,
        quads=quads,
        clip=clip,
        flags=flags,
        textpage=textpage,
    )


def get_text_blocks(
    page: Page,
    clip: rect_like = None,
    flags: OptInt = None,
    textpage: TextPage = None,
    sort: bool = False,
) -> list:
    """Return the text blocks on a page.

    Notes:
        Lines in a block are concatenated with line breaks.
    Args:
        flags: (int) control the amount of data parsed into the textpage.
    Returns:
        A list of the blocks. Each item contains the containing rectangle
        coordinates, text lines, block type and running block number.
    """
    CheckParent(page)
    if flags is None:
        flags = (
            TEXT_PRESERVE_WHITESPACE
            | TEXT_PRESERVE_IMAGES
            | TEXT_PRESERVE_LIGATURES
            | TEXT_MEDIABOX_CLIP
        )
    tp = textpage
    if tp is None:
        tp = page.get_textpage(clip=clip, flags=flags)
    elif getattr(tp, "parent") != page:
        raise ValueError("not a textpage of this page")

    blocks = tp.extractBLOCKS()
    if textpage is None:
        del tp
    if sort is True:
        blocks.sort(key=lambda b: (b[3], b[0]))
    return blocks


def get_text_words(
    page: Page,
    clip: rect_like = None,
    flags: OptInt = None,
    textpage: TextPage = None,
    sort: bool = False,
) -> list:
    """Return the text words as a list with the bbox for each word.

    Args:
        flags: (int) control the amount of data parsed into the textpage.
    """
    CheckParent(page)
    if flags is None:
        flags = TEXT_PRESERVE_WHITESPACE | TEXT_PRESERVE_LIGATURES | TEXT_MEDIABOX_CLIP
    tp = textpage
    if tp is None:
        tp = page.get_textpage(clip=clip, flags=flags)
    elif getattr(tp, "parent") != page:
        raise ValueError("not a textpage of this page")
    words = tp.extractWORDS()
    if textpage is None:
        del tp
    if sort is True:
        words.sort(key=lambda w: (w[3], w[0]))
    return words


def get_textbox(
    page: Page,
    rect: rect_like,
    textpage: TextPage = None,
) -> str:
    tp = textpage
    if tp is None:
        tp = page.get_textpage()
    elif getattr(tp, "parent") != page:
        raise ValueError("not a textpage of this page")
    rc = tp.extractTextbox(rect)
    if textpage is None:
        del tp
    return rc


def get_text_selection(
    page: Page,
    p1: point_like,
    p2: point_like,
    clip: rect_like = None,
    textpage: TextPage = None,
):
    CheckParent(page)
    tp = textpage
    if tp is None:
        tp = page.get_textpage(clip=clip, flags=TEXT_DEHYPHENATE)
    elif getattr(tp, "parent") != page:
        raise ValueError("not a textpage of this page")
    rc = tp.extractSelection(p1, p2)
    if textpage is None:
        del tp
    return rc


def get_textpage_ocr(
    page: Page,
    flags: int = 0,
    language: str = "eng",
    dpi: int = 72,
    full: bool = False,
) -> TextPage:
    """Create a Textpage from combined results of normal and OCR text parsing.

    Args:
        flags: (int) control content becoming part of the result.
        language: (str) specify expected language(s). Deafault is "eng" (English).
        dpi: (int) resolution in dpi, default 72.
        full: (bool) whether to OCR the full page image, or only its images (default)
    """
    CheckParent(page)
    if not TESSDATA_PREFIX:
        raise RuntimeError("No OCR support: TESSDATA_PREFIX not set")

    def full_ocr(page, dpi, language, flags):
        zoom = dpi / 72
        mat = Matrix(zoom, zoom)
        pix = page.get_pixmap(matrix=mat)
        ocr_pdf = Document("pdf", pix.pdfocr_tobytes(compress=False, language=language))
        ocr_page = ocr_pdf.load_page(0)
        unzoom = page.rect.width / ocr_page.rect.width
        ctm = Matrix(unzoom, unzoom) * page.derotation_matrix
        tpage = ocr_page.get_textpage(flags=flags, matrix=ctm)
        ocr_pdf.close()
        pix = None
        tpage.parent = weakref.proxy(page)
        return tpage

    # if OCR for the full page, OCR its pixmap @ desired dpi
    if full is True:
        return full_ocr(page, dpi, language, flags)

    # For partial OCR, make a normal textpage, then extend it with text that
    # is OCRed from each image.
    # Because of this, we need the images flag bit set ON.
    tpage = page.get_textpage(flags=flags)
    for block in page.get_text("dict", flags=TEXT_PRESERVE_IMAGES)["blocks"]:
        if block["type"] != 1:  # only look at images
            continue
        bbox = Rect(block["bbox"])
        if bbox.width <= 3 or bbox.height <= 3:  # ignore tiny stuff
            continue
        try:
            pix = Pixmap(block["image"])  # get image pixmap
            if pix.n - pix.alpha != 3:  # we need to convert this to RGB!
                pix = Pixmap(csRGB, pix)
            if pix.alpha:  # must remove alpha channel
                pix = Pixmap(pix, 0)
            imgdoc = Document(
                "pdf", pix.pdfocr_tobytes(language=language)
            )  # pdf with OCRed page
            imgpage = imgdoc.load_page(0)  # read image as a page
            pix = None
            # compute matrix to transform coordinates back to that of 'page'
            imgrect = imgpage.rect  # page size of image PDF
            shrink = Matrix(1 / imgrect.width, 1 / imgrect.height)
            mat = shrink * block["transform"]
            imgpage.extend_textpage(tpage, flags=0, matrix=mat)
            imgdoc.close()
        except RuntimeError:
            tpage = None
            print("Falling back to full page OCR")
            return full_ocr(page, dpi, language, flags)

    return tpage


def get_image_info(page: Page, hashes: bool = False, xrefs: bool = False) -> list:
    """Extract image information only from a TextPage.

    Args:
        hashes: (bool) include MD5 hash for each image.
        xrefs: (bool) try to find the xref for each image. Sets hashes to true.
    """
    doc = page.parent
    if xrefs and doc.is_pdf:
        hashes = True
    if not doc.is_pdf:
        xrefs = False
    imginfo = getattr(page, "_image_info", None)
    if imginfo and not xrefs:
        return imginfo
    if not imginfo:
        tp = page.get_textpage(flags=TEXT_PRESERVE_IMAGES)
        imginfo = tp.extractIMGINFO(hashes=hashes)
        del tp
        if hashes:
            page._image_info = imginfo
    if not xrefs or not doc.is_pdf:
        return imginfo
    imglist = page.get_images()
    digests = {}
    for item in imglist:
        xref = item[0]
        pix = Pixmap(doc, xref)
        digests[pix.digest] = xref
        del pix
    for i in range(len(imginfo)):
        item = imginfo[i]
        xref = digests.get(item["digest"], 0)
        item["xref"] = xref
        imginfo[i] = item
    return imginfo


def get_image_rects(page: Page, name, transform=False) -> list:
    """Return list of image positions on a page.

    Args:
        name: (str, list, int) image identification. May be reference name, an
              item of the page's image list or an xref.
        transform: (bool) whether to also return the transformation matrix.
    Returns:
        A list of Rect objects or tuples of (Rect, Matrix) for all image
        locations on the page.
    """
    if type(name) in (list, tuple):
        xref = name[0]
    elif type(name) is int:
        xref = name
    else:
        imglist = [i for i in page.get_images() if i[7] == name]
        if imglist == []:
            raise ValueError("bad image name")
        elif len(imglist) != 1:
            raise ValueError("multiple image names found")
        xref = imglist[0][0]
    pix = Pixmap(page.parent, xref)  # make pixmap of the image to compute MD5
    digest = pix.digest
    del pix
    infos = page.get_image_info(hashes=True)
    if not transform:
        bboxes = [Rect(im["bbox"]) for im in infos if im["digest"] == digest]
    else:
        bboxes = [
            (Rect(im["bbox"]), Matrix(im["transform"]))
            for im in infos
            if im["digest"] == digest
        ]
    return bboxes


def get_text(
    page: Page,
    option: str = "text",
    clip: rect_like = None,
    flags: OptInt = None,
    textpage: TextPage = None,
    sort: bool = False,
):
    """Extract text from a page or an annotation.

    This is a unifying wrapper for various methods of the TextPage class.

    Args:
        option: (str) text, words, blocks, html, dict, json, rawdict, xhtml or xml.
        clip: (rect-like) restrict output to this area.
        flags: bit switches to e.g. exclude images or decompose ligatures.
        textpage: reuse this TextPage and make no new one. If specified,
            'flags' and 'clip' are ignored.

    Returns:
        the output of methods get_text_words / get_text_blocks or TextPage
        methods extractText, extractHTML, extractDICT, extractJSON, extractRAWDICT,
        extractXHTML or etractXML respectively.
        Default and misspelling choice is "text".
    """
    formats = {
        "text": 0,
        "html": 1,
        "json": 1,
        "rawjson": 1,
        "xml": 0,
        "xhtml": 1,
        "dict": 1,
        "rawdict": 1,
        "words": 0,
        "blocks": 1,
    }
    option = option.lower()
    if option not in formats:
        option = "text"
    if flags is None:
        flags = TEXT_PRESERVE_WHITESPACE | TEXT_PRESERVE_LIGATURES | TEXT_MEDIABOX_CLIP
        if formats[option] == 1:
            flags |= TEXT_PRESERVE_IMAGES

    if option == "words":
        return get_text_words(
            page, clip=clip, flags=flags, textpage=textpage, sort=sort
        )
    if option == "blocks":
        return get_text_blocks(
            page, clip=clip, flags=flags, textpage=textpage, sort=sort
        )
    CheckParent(page)
    cb = None
    if option in ("html", "xml", "xhtml"):  # no clipping for MuPDF functions
        clip = page.cropbox
    if clip != None:
        clip = Rect(clip)
        cb = None
    elif type(page) is Page:
        cb = page.cropbox
    # TextPage with or without images
    tp = textpage
    if tp is None:
        tp = page.get_textpage(clip=clip, flags=flags)
    elif getattr(tp, "parent") != page:
        raise ValueError("not a textpage of this page")

    if option == "json":
        t = tp.extractJSON(cb=cb, sort=sort)
    elif option == "rawjson":
        t = tp.extractRAWJSON(cb=cb, sort=sort)
    elif option == "dict":
        t = tp.extractDICT(cb=cb, sort=sort)
    elif option == "rawdict":
        t = tp.extractRAWDICT(cb=cb, sort=sort)
    elif option == "html":
        t = tp.extractHTML()
    elif option == "xml":
        t = tp.extractXML()
    elif option == "xhtml":
        t = tp.extractXHTML()
    else:
        t = tp.extractText(sort=sort)

    if textpage is None:
        del tp
    return t


def get_page_text(
    doc: Document,
    pno: int,
    option: str = "text",
    clip: rect_like = None,
    flags: OptInt = None,
    textpage: TextPage = None,
    sort: bool = False,
) -> typing.Any:
    """Extract a document page's text by page number.

    Notes:
        Convenience function calling page.get_text().
    Args:
        pno: page number
        option: (str) text, words, blocks, html, dict, json, rawdict, xhtml or xml.
    Returns:
        output from page.TextPage().
    """
    return doc[pno].get_text(option, clip=clip, flags=flags, sort=sort)


def get_pixmap(
    page: Page,
    *,
    matrix: matrix_like = Identity,
    dpi=None,
    colorspace: Colorspace = csRGB,
    clip: rect_like = None,
    alpha: bool = False,
    annots: bool = True,
) -> Pixmap:
    """Create pixmap of page.

    Keyword args:
        matrix: Matrix for transformation (default: Identity).
        dpi: desired dots per inch. If given, matrix is ignored.
        colorspace: (str/Colorspace) cmyk, rgb, gray - case ignored, default csRGB.
        clip: (irect-like) restrict rendering to this area.
        alpha: (bool) whether to include alpha channel
        annots: (bool) whether to also render annotations
    """
    CheckParent(page)
    if dpi:
        zoom = dpi / 72
        matrix = Matrix(zoom, zoom)

    if type(colorspace) is str:
        if colorspace.upper() == "GRAY":
            colorspace = csGRAY
        elif colorspace.upper() == "CMYK":
            colorspace = csCMYK
        else:
            colorspace = csRGB
    if colorspace.n not in (1, 3, 4):
        raise ValueError("unsupported colorspace")

    dl = page.get_displaylist(annots=annots)
    pix = dl.get_pixmap(matrix=matrix, colorspace=colorspace, alpha=alpha, clip=clip)
    dl = None
    if dpi:
        pix.set_dpi(dpi, dpi)
    return pix


def get_page_pixmap(
    doc: Document,
    pno: int,
    *,
    matrix: matrix_like = Identity,
    dpi=None,
    colorspace: Colorspace = csRGB,
    clip: rect_like = None,
    alpha: bool = False,
    annots: bool = True,
) -> Pixmap:
    """Create pixmap of document page by page number.

    Notes:
        Convenience function calling page.get_pixmap.
    Args:
        pno: (int) page number
        matrix: Matrix for transformation (default: Identity).
        colorspace: (str,Colorspace) rgb, rgb, gray - case ignored, default csRGB.
        clip: (irect-like) restrict rendering to this area.
        alpha: (bool) include alpha channel
        annots: (bool) also render annotations
    """
    return doc[pno].get_pixmap(
        matrix=matrix,
        dpi=dpi,
        colorspace=colorspace,
        clip=clip,
        alpha=alpha,
        annots=annots,
    )


def getLinkDict(ln) -> dict:
    nl = {"kind": ln.dest.kind, "xref": 0}
    try:
        nl["from"] = ln.rect
    except:
        pass
    pnt = Point(0, 0)
    if ln.dest.flags & LINK_FLAG_L_VALID:
        pnt.x = ln.dest.lt.x
    if ln.dest.flags & LINK_FLAG_T_VALID:
        pnt.y = ln.dest.lt.y

    if ln.dest.kind == LINK_URI:
        nl["uri"] = ln.dest.uri

    elif ln.dest.kind == LINK_GOTO:
        nl["page"] = ln.dest.page
        nl["to"] = pnt
        if ln.dest.flags & LINK_FLAG_R_IS_ZOOM:
            nl["zoom"] = ln.dest.rb.x
        else:
            nl["zoom"] = 0.0

    elif ln.dest.kind == LINK_GOTOR:
        nl["file"] = ln.dest.fileSpec.replace("\\", "/")
        nl["page"] = ln.dest.page
        if ln.dest.page < 0:
            nl["to"] = ln.dest.dest
        else:
            nl["to"] = pnt
            if ln.dest.flags & LINK_FLAG_R_IS_ZOOM:
                nl["zoom"] = ln.dest.rb.x
            else:
                nl["zoom"] = 0.0

    elif ln.dest.kind == LINK_LAUNCH:
        nl["file"] = ln.dest.fileSpec.replace("\\", "/")

    elif ln.dest.kind == LINK_NAMED:
        nl["name"] = ln.dest.named

    else:
        nl["page"] = ln.dest.page

    return nl


def get_links(page: Page) -> list:
    """Create a list of all links contained in a PDF page.

    Notes:
        see PyMuPDF ducmentation for details.
    """

    CheckParent(page)
    ln = page.first_link
    links = []
    while ln:
        nl = getLinkDict(ln)
        links.append(nl)
        ln = ln.next
    if links != [] and page.parent.is_pdf:
        linkxrefs = [x for x in page.annot_xrefs() if x[1] == PDF_ANNOT_LINK]
        if len(linkxrefs) == len(links):
            for i in range(len(linkxrefs)):
                links[i]["xref"] = linkxrefs[i][0]
                links[i]["id"] = linkxrefs[i][2]
    return links


def get_toc(
    doc: Document,
    simple: bool = True,
) -> list:
    """Create a table of contents.

    Args:
        simple: a bool to control output. Returns a list, where each entry consists of outline level, title, page number and link destination (if simple = False). For details see PyMuPDF's documentation.
    """

    def recurse(olItem, liste, lvl):
        """Recursively follow the outline item chain and record item information in a list."""
        while olItem:
            if olItem.title:
                title = olItem.title
            else:
                title = " "

            if not olItem.is_external:
                if olItem.uri:
                    if olItem.page == -1:
                        resolve = doc.resolve_link(olItem.uri)
                        page = resolve[0] + 1
                    else:
                        page = olItem.page + 1
                else:
                    page = -1
            else:
                page = -1

            if not simple:
                link = getLinkDict(olItem)
                liste.append([lvl, title, page, link])
            else:
                liste.append([lvl, title, page])

            if olItem.down:
                liste = recurse(olItem.down, liste, lvl + 1)
            olItem = olItem.next
        return liste

    # ensure document is open
    if doc.is_closed:
        raise ValueError("document closed")
    doc.init_doc()
    olItem = doc.outline

    if not olItem:
        return []
    lvl = 1
    liste = []
    toc = recurse(olItem, liste, lvl)
    if doc.is_pdf and simple is False:
        doc._extend_toc_items(toc)
    return toc


def del_toc_item(
    doc: Document,
    idx: int,
) -> None:
    """Delete TOC / bookmark item by index."""
    xref = doc.get_outline_xrefs()[idx]
    doc._remove_toc_item(xref)


def set_toc_item(
    doc: Document,
    idx: int,
    dest_dict: OptDict = None,
    kind: OptInt = None,
    pno: OptInt = None,
    uri: OptStr = None,
    title: OptStr = None,
    to: point_like = None,
    filename: OptStr = None,
    zoom: float = 0,
) -> None:
    """Update TOC item by index.

    It allows changing the item's title and link destination.

    Args:
        idx: (int) desired index of the TOC list, as created by get_toc.
        dest_dict: (dict) destination dictionary as created by get_toc(False).
            Outrules all other parameters. If None, the remaining parameters
            are used to make a dest dictionary.
        kind: (int) kind of link (LINK_GOTO, etc.). If None, then only the
            title will be updated. If LINK_NONE, the TOC item will be deleted.
        pno: (int) page number (1-based like in get_toc). Required if LINK_GOTO.
        uri: (str) the URL, required if LINK_URI.
        title: (str) the new title. No change if None.
        to: (point-like) destination on the target page. If omitted, (72, 36)
            will be used as taget coordinates.
        filename: (str) destination filename, required for LINK_GOTOR and
            LINK_LAUNCH.
        name: (str) a destination name for LINK_NAMED.
        zoom: (float) a zoom factor for the target location (LINK_GOTO).
    """
    xref = doc.get_outline_xrefs()[idx]
    page_xref = 0
    if type(dest_dict) is dict:
        if dest_dict["kind"] == LINK_GOTO:
            pno = dest_dict["page"]
            page_xref = doc.page_xref(pno)
            page_height = doc.page_cropbox(pno).height
            to = dest_dict.get(to, Point(72, 36))
            to.y = page_height - to.y
            dest_dict["to"] = to
        action = getDestStr(page_xref, dest_dict)
        if not action.startswith("/A"):
            raise ValueError("bad bookmark dest")
        color = dest_dict.get("color")
        if color:
            color = list(map(float, color))
            if len(color) != 3 or min(color) < 0 or max(color) > 1:
                raise ValueError("bad color value")
        bold = dest_dict.get("bold", False)
        italic = dest_dict.get("italic", False)
        flags = italic + 2 * bold
        collapse = dest_dict.get("collapse")
        return doc._update_toc_item(
            xref,
            action=action[2:],
            title=title,
            color=color,
            flags=flags,
            collapse=collapse,
        )

    if kind == LINK_NONE:  # delete bookmark item
        return doc.del_toc_item(idx)
    if kind is None and title is None:  # treat as no-op
        return None
    if kind is None:  # only update title text
        return doc._update_toc_item(xref, action=None, title=title)

    if kind == LINK_GOTO:
        if pno is None or pno not in range(1, doc.page_count + 1):
            raise ValueError("bad page number")
        page_xref = doc.page_xref(pno - 1)
        page_height = doc.page_cropbox(pno - 1).height
        if to is None:
            to = Point(72, page_height - 38)
        else:
            to = Point(to)
            to.y = page_height - to.y

    ddict = {
        "kind": kind,
        "to": to,
        "uri": uri,
        "page": pno,
        "file": filename,
        "zoom": zoom,
    }
    action = getDestStr(page_xref, ddict)
    if action == "" or not action.startswith("/A"):
        raise ValueError("bad bookmark dest")

    return doc._update_toc_item(xref, action=action[2:], title=title)


def get_area(*args) -> float:
    """Calculate area of rectangle.\nparameter is one of 'px' (default), 'in', 'cm', or 'mm'."""
    rect = args[0]
    if len(args) > 1:
        unit = args[1]
    else:
        unit = "px"
    u = {"px": (1, 1), "in": (1.0, 72.0), "cm": (2.54, 72.0), "mm": (25.4, 72.0)}
    f = (u[unit][0] / u[unit][1]) ** 2
    return f * rect.width * rect.height


def set_metadata(doc: Document, m: dict) -> None:
    """Update the PDF /Info object.

    Args:
        m: a dictionary like doc.metadata.
    """
    if not doc.is_pdf:
        raise ValueError("is no PDF")
    if doc.is_closed or doc.is_encrypted:
        raise ValueError("document closed or encrypted")
    if type(m) is not dict:
        raise ValueError("bad metadata")
    keymap = {
        "author": "Author",
        "producer": "Producer",
        "creator": "Creator",
        "title": "Title",
        "format": None,
        "encryption": None,
        "creationDate": "CreationDate",
        "modDate": "ModDate",
        "subject": "Subject",
        "keywords": "Keywords",
        "trapped": "Trapped",
    }
    valid_keys = set(keymap.keys())
    diff_set = set(m.keys()).difference(valid_keys)
    if diff_set != set():
        msg = "bad dict key(s): %s" % diff_set
        raise ValueError(msg)

    t, temp = doc.xref_get_key(-1, "Info")
    if t != "xref":
        info_xref = 0
    else:
        info_xref = int(temp.replace("0 R", ""))

    if m == {} and info_xref == 0:  # nothing to do
        return

    if info_xref == 0:  # no prev metadata: get new xref
        info_xref = doc.get_new_xref()
        doc.update_object(info_xref, "<<>>")  # fill it with empty object
        doc.xref_set_key(-1, "Info", "%i 0 R" % info_xref)
    elif m == {}:  # remove existing metadata
        doc.xref_set_key(-1, "Info", "null")
        return

    for key, val in [(k, v) for k, v in m.items() if keymap[k] != None]:
        pdf_key = keymap[key]
        if not bool(val) or val in ("none", "null"):
            val = "null"
        else:
            val = get_pdf_str(val)
        doc.xref_set_key(info_xref, pdf_key, val)
    doc.init_doc()
    return


def getDestStr(xref: int, ddict: dict) -> str:
    """Calculate the PDF action string.

    Notes:
        Supports Link annotations and outline items (bookmarks).
    """
    if not ddict:
        return ""
    str_goto = "/A<</S/GoTo/D[%i 0 R/XYZ %g %g %g]>>"
    str_gotor1 = "/A<</S/GoToR/D[%s /XYZ %g %g %g]/F<</F%s/UF%s/Type/Filespec>>>>"
    str_gotor2 = "/A<</S/GoToR/D%s/F<</F%s/UF%s/Type/Filespec>>>>"
    str_launch = "/A<</S/Launch/F<</F%s/UF%s/Type/Filespec>>>>"
    str_uri = "/A<</S/URI/URI%s>>"

    if type(ddict) in (int, float):
        dest = str_goto % (xref, 0, ddict, 0)
        return dest
    d_kind = ddict.get("kind", LINK_NONE)

    if d_kind == LINK_NONE:
        return ""

    if ddict["kind"] == LINK_GOTO:
        d_zoom = ddict.get("zoom", 0)
        to = ddict.get("to", Point(0, 0))
        d_left, d_top = to
        dest = str_goto % (xref, d_left, d_top, d_zoom)
        return dest

    if ddict["kind"] == LINK_URI:
        dest = str_uri % (get_pdf_str(ddict["uri"]),)
        return dest

    if ddict["kind"] == LINK_LAUNCH:
        fspec = get_pdf_str(ddict["file"])
        dest = str_launch % (fspec, fspec)
        return dest

    if ddict["kind"] == LINK_GOTOR and ddict["page"] < 0:
        fspec = get_pdf_str(ddict["file"])
        dest = str_gotor2 % (get_pdf_str(ddict["to"]), fspec, fspec)
        return dest

    if ddict["kind"] == LINK_GOTOR and ddict["page"] >= 0:
        fspec = get_pdf_str(ddict["file"])
        dest = str_gotor1 % (
            ddict["page"],
            ddict["to"].x,
            ddict["to"].y,
            ddict["zoom"],
            fspec,
            fspec,
        )
        return dest

    return ""


def set_toc(
    doc: Document,
    toc: list,
    collapse: int = 1,
) -> int:
    """Create new outline tree (table of contents, TOC).

    Args:
        toc: (list, tuple) each entry must contain level, title, page and
            optionally top margin on the page. None or '()' remove the TOC.
        collapse: (int) collapses entries beyond this level. Zero or None
            shows all entries unfolded.
    Returns:
        the number of inserted items, or the number of removed items respectively.
    """
    if doc.is_closed or doc.is_encrypted:
        raise ValueError("document closed or encrypted")
    if not doc.is_pdf:
        raise ValueError("is no PDF")
    if not toc:  # remove all entries
        return len(doc._delToC())

    # validity checks --------------------------------------------------------
    if type(toc) not in (list, tuple):
        raise ValueError("'toc' must be list or tuple")
    toclen = len(toc)
    page_count = doc.page_count
    t0 = toc[0]
    if type(t0) not in (list, tuple):
        raise ValueError("items must be sequences of 3 or 4 items")
    if t0[0] != 1:
        raise ValueError("hierarchy level of item 0 must be 1")
    for i in list(range(toclen - 1)):
        t1 = toc[i]
        t2 = toc[i + 1]
        if not -1 <= t1[2] <= page_count:
            raise ValueError("row %i: page number out of range" % i)
        if (type(t2) not in (list, tuple)) or len(t2) not in (3, 4):
            raise ValueError("bad row %i" % (i + 1))
        if (type(t2[0]) is not int) or t2[0] < 1:
            raise ValueError("bad hierarchy level in row %i" % (i + 1))
        if t2[0] > t1[0] + 1:
            raise ValueError("bad hierarchy level in row %i" % (i + 1))
    # no formal errors in toc --------------------------------------------------

    # --------------------------------------------------------------------------
    # make a list of xref numbers, which we can use for our TOC entries
    # --------------------------------------------------------------------------
    old_xrefs = doc._delToC()  # del old outlines, get their xref numbers

    # prepare table of xrefs for new bookmarks
    old_xrefs = []
    xref = [0] + old_xrefs
    xref[0] = doc._getOLRootNumber()  # entry zero is outline root xref number
    if toclen > len(old_xrefs):  # too few old xrefs?
        for i in range((toclen - len(old_xrefs))):
            xref.append(doc.get_new_xref())  # acquire new ones

    lvltab = {0: 0}  # to store last entry per hierarchy level

    # ------------------------------------------------------------------------------
    # contains new outline objects as strings - first one is the outline root
    # ------------------------------------------------------------------------------
    olitems = [{"count": 0, "first": -1, "last": -1, "xref": xref[0]}]
    # ------------------------------------------------------------------------------
    # build olitems as a list of PDF-like connnected dictionaries
    # ------------------------------------------------------------------------------
    for i in range(toclen):
        o = toc[i]
        lvl = o[0]  # level
        title = get_pdf_str(o[1])  # title
        pno = min(doc.page_count - 1, max(0, o[2] - 1))  # page number
        page_xref = doc.page_xref(pno)
        page_height = doc.page_cropbox(pno).height
        top = Point(72, page_height - 36)
        dest_dict = {"to": top, "kind": LINK_GOTO}  # fall back target
        if o[2] < 0:
            dest_dict["kind"] = LINK_NONE
        if len(o) > 3:  # some target is specified
            if type(o[3]) in (int, float):  # convert a number to a point
                dest_dict["to"] = Point(72, page_height - o[3])
            else:  # if something else, make sure we have a dict
                dest_dict = o[3] if type(o[3]) is dict else dest_dict
                if "to" not in dest_dict:  # target point not in dict?
                    dest_dict["to"] = top  # put default in
                else:  # transform target to PDF coordinates
                    point = +dest_dict["to"]
                    point.y = page_height - point.y
                    dest_dict["to"] = point
        d = {}
        d["first"] = -1
        d["count"] = 0
        d["last"] = -1
        d["prev"] = -1
        d["next"] = -1
        d["dest"] = getDestStr(page_xref, dest_dict)
        d["top"] = dest_dict["to"]
        d["title"] = title
        d["parent"] = lvltab[lvl - 1]
        d["xref"] = xref[i + 1]
        d["color"] = dest_dict.get("color")
        d["flags"] = dest_dict.get("italic", 0) + 2 * dest_dict.get("bold", 0)
        lvltab[lvl] = i + 1
        parent = olitems[lvltab[lvl - 1]]  # the parent entry

        if (
            dest_dict.get("collapse") or collapse and lvl > collapse
        ):  # suppress expansion
            parent["count"] -= 1  # make /Count negative
        else:
            parent["count"] += 1  # positive /Count

        if parent["first"] == -1:
            parent["first"] = i + 1
            parent["last"] = i + 1
        else:
            d["prev"] = parent["last"]
            prev = olitems[parent["last"]]
            prev["next"] = i + 1
            parent["last"] = i + 1
        olitems.append(d)

    # ------------------------------------------------------------------------------
    # now create each outline item as a string and insert it in the PDF
    # ------------------------------------------------------------------------------
    for i, ol in enumerate(olitems):
        txt = "<<"
        if ol["count"] != 0:
            txt += "/Count %i" % ol["count"]
        try:
            txt += ol["dest"]
        except:
            pass
        try:
            if ol["first"] > -1:
                txt += "/First %i 0 R" % xref[ol["first"]]
        except:
            pass
        try:
            if ol["last"] > -1:
                txt += "/Last %i 0 R" % xref[ol["last"]]
        except:
            pass
        try:
            if ol["next"] > -1:
                txt += "/Next %i 0 R" % xref[ol["next"]]
        except:
            pass
        try:
            if ol["parent"] > -1:
                txt += "/Parent %i 0 R" % xref[ol["parent"]]
        except:
            pass
        try:
            if ol["prev"] > -1:
                txt += "/Prev %i 0 R" % xref[ol["prev"]]
        except:
            pass
        try:
            txt += "/Title" + ol["title"]
        except:
            pass

        if ol.get("color") and len(ol["color"]) == 3:
            txt += "/C[ %g %g %g]" % tuple(ol["color"])
        if ol.get("flags", 0) > 0:
            txt += "/F %i" % ol["flags"]

        if i == 0:  # special: this is the outline root
            txt += "/Type/Outlines"  # so add the /Type entry
        txt += ">>"
        doc.update_object(xref[i], txt)  # insert the PDF object

    doc.init_doc()
    return toclen


def do_links(
    doc1: Document,
    doc2: Document,
    from_page: int = -1,
    to_page: int = -1,
    start_at: int = -1,
) -> None:
    """Insert links contained in copied page range into destination PDF.

    Parameter values **must** equal those of method insert_pdf(), which must
    have been previously executed.
    """
    # --------------------------------------------------------------------------
    # internal function to create the actual "/Annots" object string
    # --------------------------------------------------------------------------
    def cre_annot(lnk, xref_dst, pno_src, ctm):
        """Create annotation object string for a passed-in link."""

        r = lnk["from"] * ctm  # rect in PDF coordinates
        rect = "%g %g %g %g" % tuple(r)
        if lnk["kind"] == LINK_GOTO:
            txt = annot_skel["goto1"]  # annot_goto
            idx = pno_src.index(lnk["page"])
            p = lnk["to"] * ctm  # target point in PDF coordinates
            annot = txt % (xref_dst[idx], p.x, p.y, lnk["zoom"], rect)

        elif lnk["kind"] == LINK_GOTOR:
            if lnk["page"] >= 0:
                txt = annot_skel["gotor1"]  # annot_gotor
                pnt = lnk.get("to", Point(0, 0))  # destination point
                if type(pnt) is not Point:
                    pnt = Point(0, 0)
                annot = txt % (
                    lnk["page"],
                    pnt.x,
                    pnt.y,
                    lnk["zoom"],
                    lnk["file"],
                    lnk["file"],
                    rect,
                )
            else:
                txt = annot_skel["gotor2"]  # annot_gotor_n
                to = get_pdf_str(lnk["to"])
                to = to[1:-1]
                f = lnk["file"]
                annot = txt % (to, f, rect)

        elif lnk["kind"] == LINK_LAUNCH:
            txt = annot_skel["launch"]  # annot_launch
            annot = txt % (lnk["file"], lnk["file"], rect)

        elif lnk["kind"] == LINK_URI:
            txt = annot_skel["uri"]  # annot_uri
            annot = txt % (lnk["uri"], rect)

        else:
            annot = ""

        return annot

    # --------------------------------------------------------------------------

    # validate & normalize parameters
    if from_page < 0:
        fp = 0
    elif from_page >= doc2.page_count:
        fp = doc2.page_count - 1
    else:
        fp = from_page

    if to_page < 0 or to_page >= doc2.page_count:
        tp = doc2.page_count - 1
    else:
        tp = to_page

    if start_at < 0:
        raise ValueError("'start_at' must be >= 0")
    sa = start_at

    incr = 1 if fp <= tp else -1  # page range could be reversed

    # lists of source / destination page numbers
    pno_src = list(range(fp, tp + incr, incr))
    pno_dst = [sa + i for i in range(len(pno_src))]

    # lists of source / destination page xrefs
    xref_src = []
    xref_dst = []
    for i in range(len(pno_src)):
        p_src = pno_src[i]
        p_dst = pno_dst[i]
        old_xref = doc2.page_xref(p_src)
        new_xref = doc1.page_xref(p_dst)
        xref_src.append(old_xref)
        xref_dst.append(new_xref)

    # create the links for each copied page in destination PDF
    for i in range(len(xref_src)):
        page_src = doc2[pno_src[i]]  # load source page
        links = page_src.get_links()  # get all its links
        if len(links) == 0:  # no links there
            page_src = None
            continue
        ctm = ~page_src.transformation_matrix  # calc page transformation matrix
        page_dst = doc1[pno_dst[i]]  # load destination page
        link_tab = []  # store all link definitions here
        for l in links:
            if l["kind"] == LINK_GOTO and (l["page"] not in pno_src):
                continue  # GOTO link target not in copied pages
            annot_text = cre_annot(l, xref_dst, pno_src, ctm)
            if not annot_text:
                print("cannot create /Annot for kind: " + str(l["kind"]))
            else:
                link_tab.append(annot_text)
        if link_tab != []:
            page_dst._addAnnot_FromString(link_tab)
        page_dst = None
        page_src = None
    return


def getLinkText(page: Page, lnk: dict) -> str:
    # --------------------------------------------------------------------------
    # define skeletons for /Annots object texts
    # --------------------------------------------------------------------------
    ctm = page.transformation_matrix
    ictm = ~ctm
    r = lnk["from"]
    rect = "%g %g %g %g" % tuple(r * ictm)

    annot = ""
    if lnk["kind"] == LINK_GOTO:
        if lnk["page"] >= 0:
            txt = annot_skel["goto1"]  # annot_goto
            pno = lnk["page"]
            xref = page.parent.page_xref(pno)
            pnt = lnk.get("to", Point(0, 0))  # destination point
            ipnt = pnt * ictm
            annot = txt % (xref, ipnt.x, ipnt.y, lnk.get("zoom", 0), rect)
        else:
            txt = annot_skel["goto2"]  # annot_goto_n
            annot = txt % (get_pdf_str(lnk["to"]), rect)

    elif lnk["kind"] == LINK_GOTOR:
        if lnk["page"] >= 0:
            txt = annot_skel["gotor1"]  # annot_gotor
            pnt = lnk.get("to", Point(0, 0))  # destination point
            if type(pnt) is not Point:
                pnt = Point(0, 0)
            annot = txt % (
                lnk["page"],
                pnt.x,
                pnt.y,
                lnk.get("zoom", 0),
                lnk["file"],
                lnk["file"],
                rect,
            )
        else:
            txt = annot_skel["gotor2"]  # annot_gotor_n
            annot = txt % (get_pdf_str(lnk["to"]), lnk["file"], rect)

    elif lnk["kind"] == LINK_LAUNCH:
        txt = annot_skel["launch"]  # annot_launch
        annot = txt % (lnk["file"], lnk["file"], rect)

    elif lnk["kind"] == LINK_URI:
        txt = annot_skel["uri"]  # txt = annot_uri
        annot = txt % (lnk["uri"], rect)

    elif lnk["kind"] == LINK_NAMED:
        txt = annot_skel["named"]  # annot_named
        annot = txt % (lnk["name"], rect)
    if not annot:
        return annot

    # add a /NM PDF key to the object definition
    link_names = dict(  # existing ids and their xref
        [(x[0], x[2]) for x in page.annot_xrefs() if x[1] == PDF_ANNOT_LINK]
    )

    old_name = lnk.get("id", "")  # id value in the argument

    if old_name and (lnk["xref"], old_name) in link_names.items():
        name = old_name  # no new name if this is an update only
    else:
        i = 0
        stem = TOOLS.set_annot_stem() + "-L%i"
        while True:
            name = stem % i
            if name not in link_names.values():
                break
            i += 1
    # add /NM key to object definition
    annot = annot.replace("/Link", "/Link/NM(%s)" % name)

    return annot


def delete_widget(page: Page, widget: Widget) -> Widget:
    """Delete widget from page and return the next one."""
    CheckParent(page)
    annot = getattr(widget, "_annot", None)
    if annot is None:
        raise ValueError("bad type: widget")
    nextwidget = widget.next
    page.delete_annot(annot)
    widget._annot.__del__()
    widget._annot.parent = None
    keylist = list(widget.__dict__.keys())
    for key in keylist:
        del widget.__dict__[key]
    return nextwidget


def update_link(page: Page, lnk: dict) -> None:
    """Update a link on the current page."""
    CheckParent(page)
    annot = getLinkText(page, lnk)
    if annot == "":
        raise ValueError("link kind not supported")

    page.parent.update_object(lnk["xref"], annot, page=page)
    return


def insert_link(page: Page, lnk: dict, mark: bool = True) -> None:
    """Insert a new link for the current page."""
    CheckParent(page)
    annot = getLinkText(page, lnk)
    if annot == "":
        raise ValueError("link kind not supported")
    page._addAnnot_FromString([annot])
    return


def insert_textbox(
    page: Page,
    rect: rect_like,
    buffer: typing.Union[str, list],
    fontname: str = "helv",
    fontfile: OptStr = None,
    set_simple: int = 0,
    encoding: int = 0,
    fontsize: float = 11,
    lineheight: OptFloat = None,
    color: OptSeq = None,
    fill: OptSeq = None,
    expandtabs: int = 1,
    align: int = 0,
    rotate: int = 0,
    render_mode: int = 0,
    border_width: float = 1,
    morph: OptSeq = None,
    overlay: bool = True,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> float:
    """Insert text into a given rectangle.

    Notes:
        Creates a Shape object, uses its same-named method and commits it.
    Parameters:
        rect: (rect-like) area to use for text.
        buffer: text to be inserted
        fontname: a Base-14 font, font name or '/name'
        fontfile: name of a font file
        fontsize: font size
        lineheight: overwrite the font property
        color: RGB color triple
        expandtabs: handles tabulators with string function
        align: left, center, right, justified
        rotate: 0, 90, 180, or 270 degrees
        morph: morph box with a matrix and a fixpoint
        overlay: put text in foreground or background
    Returns:
        unused or deficit rectangle area (float)
    """
    img = page.new_shape()
    rc = img.insert_textbox(
        rect,
        buffer,
        fontsize=fontsize,
        lineheight=lineheight,
        fontname=fontname,
        fontfile=fontfile,
        set_simple=set_simple,
        encoding=encoding,
        color=color,
        fill=fill,
        expandtabs=expandtabs,
        render_mode=render_mode,
        border_width=border_width,
        align=align,
        rotate=rotate,
        morph=morph,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    if rc >= 0:
        img.commit(overlay)
    return rc


def insert_text(
    page: Page,
    point: point_like,
    text: typing.Union[str, list],
    fontsize: float = 11,
    lineheight: OptFloat = None,
    fontname: str = "helv",
    fontfile: OptStr = None,
    set_simple: int = 0,
    encoding: int = 0,
    color: OptSeq = None,
    fill: OptSeq = None,
    border_width: float = 1,
    render_mode: int = 0,
    rotate: int = 0,
    morph: OptSeq = None,
    overlay: bool = True,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
):

    img = page.new_shape()
    rc = img.insert_text(
        point,
        text,
        fontsize=fontsize,
        lineheight=lineheight,
        fontname=fontname,
        fontfile=fontfile,
        set_simple=set_simple,
        encoding=encoding,
        color=color,
        fill=fill,
        border_width=border_width,
        render_mode=render_mode,
        rotate=rotate,
        morph=morph,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    if rc >= 0:
        img.commit(overlay)
    return rc


def new_page(
    doc: Document,
    pno: int = -1,
    width: float = 595,
    height: float = 842,
) -> Page:
    """Create and return a new page object.

    Args:
        pno: (int) insert before this page. Default: after last page.
        width: (float) page width in points. Default: 595 (ISO A4 width).
        height: (float) page height in points. Default 842 (ISO A4 height).
    Returns:
        A Page object.
    """
    doc._newPage(pno, width=width, height=height)
    return doc[pno]


def insert_page(
    doc: Document,
    pno: int,
    text: typing.Union[str, list, None] = None,
    fontsize: float = 11,
    width: float = 595,
    height: float = 842,
    fontname: str = "helv",
    fontfile: OptStr = None,
    color: OptSeq = (0,),
) -> int:
    """Create a new PDF page and insert some text.

    Notes:
        Function combining Document.new_page() and Page.insert_text().
        For parameter details see these methods.
    """
    page = doc.new_page(pno=pno, width=width, height=height)
    if not bool(text):
        return 0
    rc = page.insert_text(
        (50, 72),
        text,
        fontsize=fontsize,
        fontname=fontname,
        fontfile=fontfile,
        color=color,
    )
    return rc


def draw_line(
    page: Page,
    p1: point_like,
    p2: point_like,
    color: OptSeq = (0,),
    dashes: OptStr = None,
    width: float = 1,
    lineCap: int = 0,
    lineJoin: int = 0,
    overlay: bool = True,
    morph: OptSeq = None,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc=0,
) -> Point:
    """Draw a line from point p1 to point p2."""
    img = page.new_shape()
    p = img.draw_line(Point(p1), Point(p2))
    img.finish(
        color=color,
        dashes=dashes,
        width=width,
        closePath=False,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return p


def draw_squiggle(
    page: Page,
    p1: point_like,
    p2: point_like,
    breadth: float = 2,
    color: OptSeq = (0,),
    dashes: OptStr = None,
    width: float = 1,
    lineCap: int = 0,
    lineJoin: int = 0,
    overlay: bool = True,
    morph: OptSeq = None,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw a squiggly line from point p1 to point p2."""
    img = page.new_shape()
    p = img.draw_squiggle(Point(p1), Point(p2), breadth=breadth)
    img.finish(
        color=color,
        dashes=dashes,
        width=width,
        closePath=False,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return p


def draw_zigzag(
    page: Page,
    p1: point_like,
    p2: point_like,
    breadth: float = 2,
    color: OptSeq = (0,),
    dashes: OptStr = None,
    width: float = 1,
    lineCap: int = 0,
    lineJoin: int = 0,
    overlay: bool = True,
    morph: OptSeq = None,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw a zigzag line from point p1 to point p2."""
    img = page.new_shape()
    p = img.draw_zigzag(Point(p1), Point(p2), breadth=breadth)
    img.finish(
        color=color,
        dashes=dashes,
        width=width,
        closePath=False,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return p


def draw_rect(
    page: Page,
    rect: rect_like,
    color: OptSeq = (0,),
    fill: OptSeq = None,
    dashes: OptStr = None,
    width: float = 1,
    lineCap: int = 0,
    lineJoin: int = 0,
    morph: OptSeq = None,
    overlay: bool = True,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw a rectangle."""
    img = page.new_shape()
    Q = img.draw_rect(Rect(rect))
    img.finish(
        color=color,
        fill=fill,
        dashes=dashes,
        width=width,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return Q


def draw_quad(
    page: Page,
    quad: quad_like,
    color: OptSeq = (0,),
    fill: OptSeq = None,
    dashes: OptStr = None,
    width: float = 1,
    lineCap: int = 0,
    lineJoin: int = 0,
    morph: OptSeq = None,
    overlay: bool = True,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw a quadrilateral."""
    img = page.new_shape()
    Q = img.draw_quad(Quad(quad))
    img.finish(
        color=color,
        fill=fill,
        dashes=dashes,
        width=width,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return Q


def draw_polyline(
    page: Page,
    points: list,
    color: OptSeq = (0,),
    fill: OptSeq = None,
    dashes: OptStr = None,
    width: float = 1,
    morph: OptSeq = None,
    lineCap: int = 0,
    lineJoin: int = 0,
    overlay: bool = True,
    closePath: bool = False,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw multiple connected line segments."""
    img = page.new_shape()
    Q = img.draw_polyline(points)
    img.finish(
        color=color,
        fill=fill,
        dashes=dashes,
        width=width,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        closePath=closePath,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return Q


def draw_circle(
    page: Page,
    center: point_like,
    radius: float,
    color: OptSeq = (0,),
    fill: OptSeq = None,
    morph: OptSeq = None,
    dashes: OptStr = None,
    width: float = 1,
    lineCap: int = 0,
    lineJoin: int = 0,
    overlay: bool = True,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw a circle given its center and radius."""
    img = page.new_shape()
    Q = img.draw_circle(Point(center), radius)
    img.finish(
        color=color,
        fill=fill,
        dashes=dashes,
        width=width,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)
    return Q


def draw_oval(
    page: Page,
    rect: typing.Union[rect_like, quad_like],
    color: OptSeq = (0,),
    fill: OptSeq = None,
    dashes: OptStr = None,
    morph: OptSeq = None,
    width: float = 1,
    lineCap: int = 0,
    lineJoin: int = 0,
    overlay: bool = True,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw an oval given its containing rectangle or quad."""
    img = page.new_shape()
    Q = img.draw_oval(rect)
    img.finish(
        color=color,
        fill=fill,
        dashes=dashes,
        width=width,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return Q


def draw_curve(
    page: Page,
    p1: point_like,
    p2: point_like,
    p3: point_like,
    color: OptSeq = (0,),
    fill: OptSeq = None,
    dashes: OptStr = None,
    width: float = 1,
    morph: OptSeq = None,
    closePath: bool = False,
    lineCap: int = 0,
    lineJoin: int = 0,
    overlay: bool = True,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw a special Bezier curve from p1 to p3, generating control points on lines p1 to p2 and p2 to p3."""
    img = page.new_shape()
    Q = img.draw_curve(Point(p1), Point(p2), Point(p3))
    img.finish(
        color=color,
        fill=fill,
        dashes=dashes,
        width=width,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        closePath=closePath,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return Q


def draw_bezier(
    page: Page,
    p1: point_like,
    p2: point_like,
    p3: point_like,
    p4: point_like,
    color: OptSeq = (0,),
    fill: OptSeq = None,
    dashes: OptStr = None,
    width: float = 1,
    morph: OptStr = None,
    closePath: bool = False,
    lineCap: int = 0,
    lineJoin: int = 0,
    overlay: bool = True,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw a general cubic Bezier curve from p1 to p4 using control points p2 and p3."""
    img = page.new_shape()
    Q = img.draw_bezier(Point(p1), Point(p2), Point(p3), Point(p4))
    img.finish(
        color=color,
        fill=fill,
        dashes=dashes,
        width=width,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        closePath=closePath,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return Q


def draw_sector(
    page: Page,
    center: point_like,
    point: point_like,
    beta: float,
    color: OptSeq = (0,),
    fill: OptSeq = None,
    dashes: OptStr = None,
    fullSector: bool = True,
    morph: OptSeq = None,
    width: float = 1,
    closePath: bool = False,
    lineCap: int = 0,
    lineJoin: int = 0,
    overlay: bool = True,
    stroke_opacity: float = 1,
    fill_opacity: float = 1,
    oc: int = 0,
) -> Point:
    """Draw a circle sector given circle center, one arc end point and the angle of the arc.

    Parameters:
        center -- center of circle
        point -- arc end point
        beta -- angle of arc (degrees)
        fullSector -- connect arc ends with center
    """
    img = page.new_shape()
    Q = img.draw_sector(Point(center), Point(point), beta, fullSector=fullSector)
    img.finish(
        color=color,
        fill=fill,
        dashes=dashes,
        width=width,
        lineCap=lineCap,
        lineJoin=lineJoin,
        morph=morph,
        closePath=closePath,
        stroke_opacity=stroke_opacity,
        fill_opacity=fill_opacity,
        oc=oc,
    )
    img.commit(overlay)

    return Q


# ----------------------------------------------------------------------
# Name:        wx.lib.colourdb.py
# Purpose:     Adds a bunch of colour names and RGB values to the
#              colour database so they can be found by name
#
# Author:      Robin Dunn
#
# Created:     13-March-2001
# Copyright:   (c) 2001-2017 by Total Control Software
# Licence:     wxWindows license
# Tags:        phoenix-port, unittest, documented
# ----------------------------------------------------------------------


def getColorList() -> list:
    """
    Returns a list of just the colour names used by this module.
    :rtype: list of strings
    """

    return [x[0] for x in getColorInfoList()]


def getColorInfoList() -> list:
    """
    Returns the list of colour name/value tuples used by this module.
    :rtype: list of tuples
    """

    return [
        ("ALICEBLUE", 240, 248, 255),
        ("ANTIQUEWHITE", 250, 235, 215),
        ("ANTIQUEWHITE1", 255, 239, 219),
        ("ANTIQUEWHITE2", 238, 223, 204),
        ("ANTIQUEWHITE3", 205, 192, 176),
        ("ANTIQUEWHITE4", 139, 131, 120),
        ("AQUAMARINE", 127, 255, 212),
        ("AQUAMARINE1", 127, 255, 212),
        ("AQUAMARINE2", 118, 238, 198),
        ("AQUAMARINE3", 102, 205, 170),
        ("AQUAMARINE4", 69, 139, 116),
        ("AZURE", 240, 255, 255),
        ("AZURE1", 240, 255, 255),
        ("AZURE2", 224, 238, 238),
        ("AZURE3", 193, 205, 205),
        ("AZURE4", 131, 139, 139),
        ("BEIGE", 245, 245, 220),
        ("BISQUE", 255, 228, 196),
        ("BISQUE1", 255, 228, 196),
        ("BISQUE2", 238, 213, 183),
        ("BISQUE3", 205, 183, 158),
        ("BISQUE4", 139, 125, 107),
        ("BLACK", 0, 0, 0),
        ("BLANCHEDALMOND", 255, 235, 205),
        ("BLUE", 0, 0, 255),
        ("BLUE1", 0, 0, 255),
        ("BLUE2", 0, 0, 238),
        ("BLUE3", 0, 0, 205),
        ("BLUE4", 0, 0, 139),
        ("BLUEVIOLET", 138, 43, 226),
        ("BROWN", 165, 42, 42),
        ("BROWN1", 255, 64, 64),
        ("BROWN2", 238, 59, 59),
        ("BROWN3", 205, 51, 51),
        ("BROWN4", 139, 35, 35),
        ("BURLYWOOD", 222, 184, 135),
        ("BURLYWOOD1", 255, 211, 155),
        ("BURLYWOOD2", 238, 197, 145),
        ("BURLYWOOD3", 205, 170, 125),
        ("BURLYWOOD4", 139, 115, 85),
        ("CADETBLUE", 95, 158, 160),
        ("CADETBLUE1", 152, 245, 255),
        ("CADETBLUE2", 142, 229, 238),
        ("CADETBLUE3", 122, 197, 205),
        ("CADETBLUE4", 83, 134, 139),
        ("CHARTREUSE", 127, 255, 0),
        ("CHARTREUSE1", 127, 255, 0),
        ("CHARTREUSE2", 118, 238, 0),
        ("CHARTREUSE3", 102, 205, 0),
        ("CHARTREUSE4", 69, 139, 0),
        ("CHOCOLATE", 210, 105, 30),
        ("CHOCOLATE1", 255, 127, 36),
        ("CHOCOLATE2", 238, 118, 33),
        ("CHOCOLATE3", 205, 102, 29),
        ("CHOCOLATE4", 139, 69, 19),
        ("COFFEE", 156, 79, 0),
        ("CORAL", 255, 127, 80),
        ("CORAL1", 255, 114, 86),
        ("CORAL2", 238, 106, 80),
        ("CORAL3", 205, 91, 69),
        ("CORAL4", 139, 62, 47),
        ("CORNFLOWERBLUE", 100, 149, 237),
        ("CORNSILK", 255, 248, 220),
        ("CORNSILK1", 255, 248, 220),
        ("CORNSILK2", 238, 232, 205),
        ("CORNSILK3", 205, 200, 177),
        ("CORNSILK4", 139, 136, 120),
        ("CYAN", 0, 255, 255),
        ("CYAN1", 0, 255, 255),
        ("CYAN2", 0, 238, 238),
        ("CYAN3", 0, 205, 205),
        ("CYAN4", 0, 139, 139),
        ("DARKBLUE", 0, 0, 139),
        ("DARKCYAN", 0, 139, 139),
        ("DARKGOLDENROD", 184, 134, 11),
        ("DARKGOLDENROD1", 255, 185, 15),
        ("DARKGOLDENROD2", 238, 173, 14),
        ("DARKGOLDENROD3", 205, 149, 12),
        ("DARKGOLDENROD4", 139, 101, 8),
        ("DARKGREEN", 0, 100, 0),
        ("DARKGRAY", 169, 169, 169),
        ("DARKKHAKI", 189, 183, 107),
        ("DARKMAGENTA", 139, 0, 139),
        ("DARKOLIVEGREEN", 85, 107, 47),
        ("DARKOLIVEGREEN1", 202, 255, 112),
        ("DARKOLIVEGREEN2", 188, 238, 104),
        ("DARKOLIVEGREEN3", 162, 205, 90),
        ("DARKOLIVEGREEN4", 110, 139, 61),
        ("DARKORANGE", 255, 140, 0),
        ("DARKORANGE1", 255, 127, 0),
        ("DARKORANGE2", 238, 118, 0),
        ("DARKORANGE3", 205, 102, 0),
        ("DARKORANGE4", 139, 69, 0),
        ("DARKORCHID", 153, 50, 204),
        ("DARKORCHID1", 191, 62, 255),
        ("DARKORCHID2", 178, 58, 238),
        ("DARKORCHID3", 154, 50, 205),
        ("DARKORCHID4", 104, 34, 139),
        ("DARKRED", 139, 0, 0),
        ("DARKSALMON", 233, 150, 122),
        ("DARKSEAGREEN", 143, 188, 143),
        ("DARKSEAGREEN1", 193, 255, 193),
        ("DARKSEAGREEN2", 180, 238, 180),
        ("DARKSEAGREEN3", 155, 205, 155),
        ("DARKSEAGREEN4", 105, 139, 105),
        ("DARKSLATEBLUE", 72, 61, 139),
        ("DARKSLATEGRAY", 47, 79, 79),
        ("DARKTURQUOISE", 0, 206, 209),
        ("DARKVIOLET", 148, 0, 211),
        ("DEEPPINK", 255, 20, 147),
        ("DEEPPINK1", 255, 20, 147),
        ("DEEPPINK2", 238, 18, 137),
        ("DEEPPINK3", 205, 16, 118),
        ("DEEPPINK4", 139, 10, 80),
        ("DEEPSKYBLUE", 0, 191, 255),
        ("DEEPSKYBLUE1", 0, 191, 255),
        ("DEEPSKYBLUE2", 0, 178, 238),
        ("DEEPSKYBLUE3", 0, 154, 205),
        ("DEEPSKYBLUE4", 0, 104, 139),
        ("DIMGRAY", 105, 105, 105),
        ("DODGERBLUE", 30, 144, 255),
        ("DODGERBLUE1", 30, 144, 255),
        ("DODGERBLUE2", 28, 134, 238),
        ("DODGERBLUE3", 24, 116, 205),
        ("DODGERBLUE4", 16, 78, 139),
        ("FIREBRICK", 178, 34, 34),
        ("FIREBRICK1", 255, 48, 48),
        ("FIREBRICK2", 238, 44, 44),
        ("FIREBRICK3", 205, 38, 38),
        ("FIREBRICK4", 139, 26, 26),
        ("FLORALWHITE", 255, 250, 240),
        ("FORESTGREEN", 34, 139, 34),
        ("GAINSBORO", 220, 220, 220),
        ("GHOSTWHITE", 248, 248, 255),
        ("GOLD", 255, 215, 0),
        ("GOLD1", 255, 215, 0),
        ("GOLD2", 238, 201, 0),
        ("GOLD3", 205, 173, 0),
        ("GOLD4", 139, 117, 0),
        ("GOLDENROD", 218, 165, 32),
        ("GOLDENROD1", 255, 193, 37),
        ("GOLDENROD2", 238, 180, 34),
        ("GOLDENROD3", 205, 155, 29),
        ("GOLDENROD4", 139, 105, 20),
        ("GREEN YELLOW", 173, 255, 47),
        ("GREEN", 0, 255, 0),
        ("GREEN1", 0, 255, 0),
        ("GREEN2", 0, 238, 0),
        ("GREEN3", 0, 205, 0),
        ("GREEN4", 0, 139, 0),
        ("GREENYELLOW", 173, 255, 47),
        ("GRAY", 190, 190, 190),
        ("GRAY0", 0, 0, 0),
        ("GRAY1", 3, 3, 3),
        ("GRAY10", 26, 26, 26),
        ("GRAY100", 255, 255, 255),
        ("GRAY11", 28, 28, 28),
        ("GRAY12", 31, 31, 31),
        ("GRAY13", 33, 33, 33),
        ("GRAY14", 36, 36, 36),
        ("GRAY15", 38, 38, 38),
        ("GRAY16", 41, 41, 41),
        ("GRAY17", 43, 43, 43),
        ("GRAY18", 46, 46, 46),
        ("GRAY19", 48, 48, 48),
        ("GRAY2", 5, 5, 5),
        ("GRAY20", 51, 51, 51),
        ("GRAY21", 54, 54, 54),
        ("GRAY22", 56, 56, 56),
        ("GRAY23", 59, 59, 59),
        ("GRAY24", 61, 61, 61),
        ("GRAY25", 64, 64, 64),
        ("GRAY26", 66, 66, 66),
        ("GRAY27", 69, 69, 69),
        ("GRAY28", 71, 71, 71),
        ("GRAY29", 74, 74, 74),
        ("GRAY3", 8, 8, 8),
        ("GRAY30", 77, 77, 77),
        ("GRAY31", 79, 79, 79),
        ("GRAY32", 82, 82, 82),
        ("GRAY33", 84, 84, 84),
        ("GRAY34", 87, 87, 87),
        ("GRAY35", 89, 89, 89),
        ("GRAY36", 92, 92, 92),
        ("GRAY37", 94, 94, 94),
        ("GRAY38", 97, 97, 97),
        ("GRAY39", 99, 99, 99),
        ("GRAY4", 10, 10, 10),
        ("GRAY40", 102, 102, 102),
        ("GRAY41", 105, 105, 105),
        ("GRAY42", 107, 107, 107),
        ("GRAY43", 110, 110, 110),
        ("GRAY44", 112, 112, 112),
        ("GRAY45", 115, 115, 115),
        ("GRAY46", 117, 117, 117),
        ("GRAY47", 120, 120, 120),
        ("GRAY48", 122, 122, 122),
        ("GRAY49", 125, 125, 125),
        ("GRAY5", 13, 13, 13),
        ("GRAY50", 127, 127, 127),
        ("GRAY51", 130, 130, 130),
        ("GRAY52", 133, 133, 133),
        ("GRAY53", 135, 135, 135),
        ("GRAY54", 138, 138, 138),
        ("GRAY55", 140, 140, 140),
        ("GRAY56", 143, 143, 143),
        ("GRAY57", 145, 145, 145),
        ("GRAY58", 148, 148, 148),
        ("GRAY59", 150, 150, 150),
        ("GRAY6", 15, 15, 15),
        ("GRAY60", 153, 153, 153),
        ("GRAY61", 156, 156, 156),
        ("GRAY62", 158, 158, 158),
        ("GRAY63", 161, 161, 161),
        ("GRAY64", 163, 163, 163),
        ("GRAY65", 166, 166, 166),
        ("GRAY66", 168, 168, 168),
        ("GRAY67", 171, 171, 171),
        ("GRAY68", 173, 173, 173),
        ("GRAY69", 176, 176, 176),
        ("GRAY7", 18, 18, 18),
        ("GRAY70", 179, 179, 179),
        ("GRAY71", 181, 181, 181),
        ("GRAY72", 184, 184, 184),
        ("GRAY73", 186, 186, 186),
        ("GRAY74", 189, 189, 189),
        ("GRAY75", 191, 191, 191),
        ("GRAY76", 194, 194, 194),
        ("GRAY77", 196, 196, 196),
        ("GRAY78", 199, 199, 199),
        ("GRAY79", 201, 201, 201),
        ("GRAY8", 20, 20, 20),
        ("GRAY80", 204, 204, 204),
        ("GRAY81", 207, 207, 207),
        ("GRAY82", 209, 209, 209),
        ("GRAY83", 212, 212, 212),
        ("GRAY84", 214, 214, 214),
        ("GRAY85", 217, 217, 217),
        ("GRAY86", 219, 219, 219),
        ("GRAY87", 222, 222, 222),
        ("GRAY88", 224, 224, 224),
        ("GRAY89", 227, 227, 227),
        ("GRAY9", 23, 23, 23),
        ("GRAY90", 229, 229, 229),
        ("GRAY91", 232, 232, 232),
        ("GRAY92", 235, 235, 235),
        ("GRAY93", 237, 237, 237),
        ("GRAY94", 240, 240, 240),
        ("GRAY95", 242, 242, 242),
        ("GRAY96", 245, 245, 245),
        ("GRAY97", 247, 247, 247),
        ("GRAY98", 250, 250, 250),
        ("GRAY99", 252, 252, 252),
        ("HONEYDEW", 240, 255, 240),
        ("HONEYDEW1", 240, 255, 240),
        ("HONEYDEW2", 224, 238, 224),
        ("HONEYDEW3", 193, 205, 193),
        ("HONEYDEW4", 131, 139, 131),
        ("HOTPINK", 255, 105, 180),
        ("HOTPINK1", 255, 110, 180),
        ("HOTPINK2", 238, 106, 167),
        ("HOTPINK3", 205, 96, 144),
        ("HOTPINK4", 139, 58, 98),
        ("INDIANRED", 205, 92, 92),
        ("INDIANRED1", 255, 106, 106),
        ("INDIANRED2", 238, 99, 99),
        ("INDIANRED3", 205, 85, 85),
        ("INDIANRED4", 139, 58, 58),
        ("IVORY", 255, 255, 240),
        ("IVORY1", 255, 255, 240),
        ("IVORY2", 238, 238, 224),
        ("IVORY3", 205, 205, 193),
        ("IVORY4", 139, 139, 131),
        ("KHAKI", 240, 230, 140),
        ("KHAKI1", 255, 246, 143),
        ("KHAKI2", 238, 230, 133),
        ("KHAKI3", 205, 198, 115),
        ("KHAKI4", 139, 134, 78),
        ("LAVENDER", 230, 230, 250),
        ("LAVENDERBLUSH", 255, 240, 245),
        ("LAVENDERBLUSH1", 255, 240, 245),
        ("LAVENDERBLUSH2", 238, 224, 229),
        ("LAVENDERBLUSH3", 205, 193, 197),
        ("LAVENDERBLUSH4", 139, 131, 134),
        ("LAWNGREEN", 124, 252, 0),
        ("LEMONCHIFFON", 255, 250, 205),
        ("LEMONCHIFFON1", 255, 250, 205),
        ("LEMONCHIFFON2", 238, 233, 191),
        ("LEMONCHIFFON3", 205, 201, 165),
        ("LEMONCHIFFON4", 139, 137, 112),
        ("LIGHTBLUE", 173, 216, 230),
        ("LIGHTBLUE1", 191, 239, 255),
        ("LIGHTBLUE2", 178, 223, 238),
        ("LIGHTBLUE3", 154, 192, 205),
        ("LIGHTBLUE4", 104, 131, 139),
        ("LIGHTCORAL", 240, 128, 128),
        ("LIGHTCYAN", 224, 255, 255),
        ("LIGHTCYAN1", 224, 255, 255),
        ("LIGHTCYAN2", 209, 238, 238),
        ("LIGHTCYAN3", 180, 205, 205),
        ("LIGHTCYAN4", 122, 139, 139),
        ("LIGHTGOLDENROD", 238, 221, 130),
        ("LIGHTGOLDENROD1", 255, 236, 139),
        ("LIGHTGOLDENROD2", 238, 220, 130),
        ("LIGHTGOLDENROD3", 205, 190, 112),
        ("LIGHTGOLDENROD4", 139, 129, 76),
        ("LIGHTGOLDENRODYELLOW", 250, 250, 210),
        ("LIGHTGREEN", 144, 238, 144),
        ("LIGHTGRAY", 211, 211, 211),
        ("LIGHTPINK", 255, 182, 193),
        ("LIGHTPINK1", 255, 174, 185),
        ("LIGHTPINK2", 238, 162, 173),
        ("LIGHTPINK3", 205, 140, 149),
        ("LIGHTPINK4", 139, 95, 101),
        ("LIGHTSALMON", 255, 160, 122),
        ("LIGHTSALMON1", 255, 160, 122),
        ("LIGHTSALMON2", 238, 149, 114),
        ("LIGHTSALMON3", 205, 129, 98),
        ("LIGHTSALMON4", 139, 87, 66),
        ("LIGHTSEAGREEN", 32, 178, 170),
        ("LIGHTSKYBLUE", 135, 206, 250),
        ("LIGHTSKYBLUE1", 176, 226, 255),
        ("LIGHTSKYBLUE2", 164, 211, 238),
        ("LIGHTSKYBLUE3", 141, 182, 205),
        ("LIGHTSKYBLUE4", 96, 123, 139),
        ("LIGHTSLATEBLUE", 132, 112, 255),
        ("LIGHTSLATEGRAY", 119, 136, 153),
        ("LIGHTSTEELBLUE", 176, 196, 222),
        ("LIGHTSTEELBLUE1", 202, 225, 255),
        ("LIGHTSTEELBLUE2", 188, 210, 238),
        ("LIGHTSTEELBLUE3", 162, 181, 205),
        ("LIGHTSTEELBLUE4", 110, 123, 139),
        ("LIGHTYELLOW", 255, 255, 224),
        ("LIGHTYELLOW1", 255, 255, 224),
        ("LIGHTYELLOW2", 238, 238, 209),
        ("LIGHTYELLOW3", 205, 205, 180),
        ("LIGHTYELLOW4", 139, 139, 122),
        ("LIMEGREEN", 50, 205, 50),
        ("LINEN", 250, 240, 230),
        ("MAGENTA", 255, 0, 255),
        ("MAGENTA1", 255, 0, 255),
        ("MAGENTA2", 238, 0, 238),
        ("MAGENTA3", 205, 0, 205),
        ("MAGENTA4", 139, 0, 139),
        ("MAROON", 176, 48, 96),
        ("MAROON1", 255, 52, 179),
        ("MAROON2", 238, 48, 167),
        ("MAROON3", 205, 41, 144),
        ("MAROON4", 139, 28, 98),
        ("MEDIUMAQUAMARINE", 102, 205, 170),
        ("MEDIUMBLUE", 0, 0, 205),
        ("MEDIUMORCHID", 186, 85, 211),
        ("MEDIUMORCHID1", 224, 102, 255),
        ("MEDIUMORCHID2", 209, 95, 238),
        ("MEDIUMORCHID3", 180, 82, 205),
        ("MEDIUMORCHID4", 122, 55, 139),
        ("MEDIUMPURPLE", 147, 112, 219),
        ("MEDIUMPURPLE1", 171, 130, 255),
        ("MEDIUMPURPLE2", 159, 121, 238),
        ("MEDIUMPURPLE3", 137, 104, 205),
        ("MEDIUMPURPLE4", 93, 71, 139),
        ("MEDIUMSEAGREEN", 60, 179, 113),
        ("MEDIUMSLATEBLUE", 123, 104, 238),
        ("MEDIUMSPRINGGREEN", 0, 250, 154),
        ("MEDIUMTURQUOISE", 72, 209, 204),
        ("MEDIUMVIOLETRED", 199, 21, 133),
        ("MIDNIGHTBLUE", 25, 25, 112),
        ("MINTCREAM", 245, 255, 250),
        ("MISTYROSE", 255, 228, 225),
        ("MISTYROSE1", 255, 228, 225),
        ("MISTYROSE2", 238, 213, 210),
        ("MISTYROSE3", 205, 183, 181),
        ("MISTYROSE4", 139, 125, 123),
        ("MOCCASIN", 255, 228, 181),
        ("MUPDFBLUE", 37, 114, 172),
        ("NAVAJOWHITE", 255, 222, 173),
        ("NAVAJOWHITE1", 255, 222, 173),
        ("NAVAJOWHITE2", 238, 207, 161),
        ("NAVAJOWHITE3", 205, 179, 139),
        ("NAVAJOWHITE4", 139, 121, 94),
        ("NAVY", 0, 0, 128),
        ("NAVYBLUE", 0, 0, 128),
        ("OLDLACE", 253, 245, 230),
        ("OLIVEDRAB", 107, 142, 35),
        ("OLIVEDRAB1", 192, 255, 62),
        ("OLIVEDRAB2", 179, 238, 58),
        ("OLIVEDRAB3", 154, 205, 50),
        ("OLIVEDRAB4", 105, 139, 34),
        ("ORANGE", 255, 165, 0),
        ("ORANGE1", 255, 165, 0),
        ("ORANGE2", 238, 154, 0),
        ("ORANGE3", 205, 133, 0),
        ("ORANGE4", 139, 90, 0),
        ("ORANGERED", 255, 69, 0),
        ("ORANGERED1", 255, 69, 0),
        ("ORANGERED2", 238, 64, 0),
        ("ORANGERED3", 205, 55, 0),
        ("ORANGERED4", 139, 37, 0),
        ("ORCHID", 218, 112, 214),
        ("ORCHID1", 255, 131, 250),
        ("ORCHID2", 238, 122, 233),
        ("ORCHID3", 205, 105, 201),
        ("ORCHID4", 139, 71, 137),
        ("PALEGOLDENROD", 238, 232, 170),
        ("PALEGREEN", 152, 251, 152),
        ("PALEGREEN1", 154, 255, 154),
        ("PALEGREEN2", 144, 238, 144),
        ("PALEGREEN3", 124, 205, 124),
        ("PALEGREEN4", 84, 139, 84),
        ("PALETURQUOISE", 175, 238, 238),
        ("PALETURQUOISE1", 187, 255, 255),
        ("PALETURQUOISE2", 174, 238, 238),
        ("PALETURQUOISE3", 150, 205, 205),
        ("PALETURQUOISE4", 102, 139, 139),
        ("PALEVIOLETRED", 219, 112, 147),
        ("PALEVIOLETRED1", 255, 130, 171),
        ("PALEVIOLETRED2", 238, 121, 159),
        ("PALEVIOLETRED3", 205, 104, 137),
        ("PALEVIOLETRED4", 139, 71, 93),
        ("PAPAYAWHIP", 255, 239, 213),
        ("PEACHPUFF", 255, 218, 185),
        ("PEACHPUFF1", 255, 218, 185),
        ("PEACHPUFF2", 238, 203, 173),
        ("PEACHPUFF3", 205, 175, 149),
        ("PEACHPUFF4", 139, 119, 101),
        ("PERU", 205, 133, 63),
        ("PINK", 255, 192, 203),
        ("PINK1", 255, 181, 197),
        ("PINK2", 238, 169, 184),
        ("PINK3", 205, 145, 158),
        ("PINK4", 139, 99, 108),
        ("PLUM", 221, 160, 221),
        ("PLUM1", 255, 187, 255),
        ("PLUM2", 238, 174, 238),
        ("PLUM3", 205, 150, 205),
        ("PLUM4", 139, 102, 139),
        ("POWDERBLUE", 176, 224, 230),
        ("PURPLE", 160, 32, 240),
        ("PURPLE1", 155, 48, 255),
        ("PURPLE2", 145, 44, 238),
        ("PURPLE3", 125, 38, 205),
        ("PURPLE4", 85, 26, 139),
        ("PY_COLOR", 240, 255, 210),
        ("RED", 255, 0, 0),
        ("RED1", 255, 0, 0),
        ("RED2", 238, 0, 0),
        ("RED3", 205, 0, 0),
        ("RED4", 139, 0, 0),
        ("ROSYBROWN", 188, 143, 143),
        ("ROSYBROWN1", 255, 193, 193),
        ("ROSYBROWN2", 238, 180, 180),
        ("ROSYBROWN3", 205, 155, 155),
        ("ROSYBROWN4", 139, 105, 105),
        ("ROYALBLUE", 65, 105, 225),
        ("ROYALBLUE1", 72, 118, 255),
        ("ROYALBLUE2", 67, 110, 238),
        ("ROYALBLUE3", 58, 95, 205),
        ("ROYALBLUE4", 39, 64, 139),
        ("SADDLEBROWN", 139, 69, 19),
        ("SALMON", 250, 128, 114),
        ("SALMON1", 255, 140, 105),
        ("SALMON2", 238, 130, 98),
        ("SALMON3", 205, 112, 84),
        ("SALMON4", 139, 76, 57),
        ("SANDYBROWN", 244, 164, 96),
        ("SEAGREEN", 46, 139, 87),
        ("SEAGREEN1", 84, 255, 159),
        ("SEAGREEN2", 78, 238, 148),
        ("SEAGREEN3", 67, 205, 128),
        ("SEAGREEN4", 46, 139, 87),
        ("SEASHELL", 255, 245, 238),
        ("SEASHELL1", 255, 245, 238),
        ("SEASHELL2", 238, 229, 222),
        ("SEASHELL3", 205, 197, 191),
        ("SEASHELL4", 139, 134, 130),
        ("SIENNA", 160, 82, 45),
        ("SIENNA1", 255, 130, 71),
        ("SIENNA2", 238, 121, 66),
        ("SIENNA3", 205, 104, 57),
        ("SIENNA4", 139, 71, 38),
        ("SKYBLUE", 135, 206, 235),
        ("SKYBLUE1", 135, 206, 255),
        ("SKYBLUE2", 126, 192, 238),
        ("SKYBLUE3", 108, 166, 205),
        ("SKYBLUE4", 74, 112, 139),
        ("SLATEBLUE", 106, 90, 205),
        ("SLATEBLUE1", 131, 111, 255),
        ("SLATEBLUE2", 122, 103, 238),
        ("SLATEBLUE3", 105, 89, 205),
        ("SLATEBLUE4", 71, 60, 139),
        ("SLATEGRAY", 112, 128, 144),
        ("SNOW", 255, 250, 250),
        ("SNOW1", 255, 250, 250),
        ("SNOW2", 238, 233, 233),
        ("SNOW3", 205, 201, 201),
        ("SNOW4", 139, 137, 137),
        ("SPRINGGREEN", 0, 255, 127),
        ("SPRINGGREEN1", 0, 255, 127),
        ("SPRINGGREEN2", 0, 238, 118),
        ("SPRINGGREEN3", 0, 205, 102),
        ("SPRINGGREEN4", 0, 139, 69),
        ("STEELBLUE", 70, 130, 180),
        ("STEELBLUE1", 99, 184, 255),
        ("STEELBLUE2", 92, 172, 238),
        ("STEELBLUE3", 79, 148, 205),
        ("STEELBLUE4", 54, 100, 139),
        ("TAN", 210, 180, 140),
        ("TAN1", 255, 165, 79),
        ("TAN2", 238, 154, 73),
        ("TAN3", 205, 133, 63),
        ("TAN4", 139, 90, 43),
        ("THISTLE", 216, 191, 216),
        ("THISTLE1", 255, 225, 255),
        ("THISTLE2", 238, 210, 238),
        ("THISTLE3", 205, 181, 205),
        ("THISTLE4", 139, 123, 139),
        ("TOMATO", 255, 99, 71),
        ("TOMATO1", 255, 99, 71),
        ("TOMATO2", 238, 92, 66),
        ("TOMATO3", 205, 79, 57),
        ("TOMATO4", 139, 54, 38),
        ("TURQUOISE", 64, 224, 208),
        ("TURQUOISE1", 0, 245, 255),
        ("TURQUOISE2", 0, 229, 238),
        ("TURQUOISE3", 0, 197, 205),
        ("TURQUOISE4", 0, 134, 139),
        ("VIOLET", 238, 130, 238),
        ("VIOLETRED", 208, 32, 144),
        ("VIOLETRED1", 255, 62, 150),
        ("VIOLETRED2", 238, 58, 140),
        ("VIOLETRED3", 205, 50, 120),
        ("VIOLETRED4", 139, 34, 82),
        ("WHEAT", 245, 222, 179),
        ("WHEAT1", 255, 231, 186),
        ("WHEAT2", 238, 216, 174),
        ("WHEAT3", 205, 186, 150),
        ("WHEAT4", 139, 126, 102),
        ("WHITE", 255, 255, 255),
        ("WHITESMOKE", 245, 245, 245),
        ("YELLOW", 255, 255, 0),
        ("YELLOW1", 255, 255, 0),
        ("YELLOW2", 238, 238, 0),
        ("YELLOW3", 205, 205, 0),
        ("YELLOW4", 139, 139, 0),
        ("YELLOWGREEN", 154, 205, 50),
    ]


def getColorInfoDict() -> dict:
    d = {}
    for item in getColorInfoList():
        d[item[0].lower()] = item[1:]
    return d


def getColor(name: str) -> tuple:
    """Retrieve RGB color in PDF format by name.

    Returns:
        a triple of floats in range 0 to 1. In case of name-not-found, "white" is returned.
    """
    try:
        c = getColorInfoList()[getColorList().index(name.upper())]
        return (c[1] / 255.0, c[2] / 255.0, c[3] / 255.0)
    except:
        return (1, 1, 1)


def getColorHSV(name: str) -> tuple:
    """Retrieve the hue, saturation, value triple of a color name.

    Returns:
        a triple (degree, percent, percent). If not found (-1, -1, -1) is returned.
    """
    try:
        x = getColorInfoList()[getColorList().index(name.upper())]
    except:
        return (-1, -1, -1)

    r = x[1] / 255.0
    g = x[2] / 255.0
    b = x[3] / 255.0
    cmax = max(r, g, b)
    V = round(cmax * 100, 1)
    cmin = min(r, g, b)
    delta = cmax - cmin
    if delta == 0:
        hue = 0
    elif cmax == r:
        hue = 60.0 * (((g - b) / delta) % 6)
    elif cmax == g:
        hue = 60.0 * (((b - r) / delta) + 2)
    else:
        hue = 60.0 * (((r - g) / delta) + 4)

    H = int(round(hue))

    if cmax == 0:
        sat = 0
    else:
        sat = delta / cmax
    S = int(round(sat * 100))

    return (H, S, V)


def _get_font_properties(doc: Document, xref: int) -> tuple:
    fontname, ext, stype, buffer = doc.extract_font(xref)
    asc = 0.8
    dsc = -0.2
    if ext == "":
        return fontname, ext, stype, asc, dsc

    if buffer:
        try:
            font = Font(fontbuffer=buffer)
            asc = font.ascender
            dsc = font.descender
            bbox = font.bbox
            if asc - dsc < 1:
                if bbox.y0 < dsc:
                    dsc = bbox.y0
                asc = 1 - dsc
        except:
            asc *= 1.2
            dsc *= 1.2
        return fontname, ext, stype, asc, dsc
    if ext != "n/a":
        try:
            font = Font(fontname)
            asc = font.ascender
            dsc = font.descender
        except:
            asc *= 1.2
            dsc *= 1.2
    else:
        asc *= 1.2
        dsc *= 1.2
    return fontname, ext, stype, asc, dsc


def get_char_widths(
    doc: Document, xref: int, limit: int = 256, idx: int = 0, fontdict: OptDict = None
) -> list:
    """Get list of glyph information of a font.

    Notes:
        Must be provided by its XREF number. If we already dealt with the
        font, it will be recorded in doc.FontInfos. Otherwise we insert an
        entry there.
        Finally we return the glyphs for the font. This is a list of
        (glyph, width) where glyph is an integer controlling the char
        appearance, and width is a float controlling the char's spacing:
        width * fontsize is the actual space.
        For 'simple' fonts, glyph == ord(char) will usually be true.
        Exceptions are 'Symbol' and 'ZapfDingbats'. We are providing data for these directly here.
    """
    fontinfo = CheckFontInfo(doc, xref)
    if fontinfo is None:  # not recorded yet: create it
        if fontdict is None:
            name, ext, stype, asc, dsc = _get_font_properties(doc, xref)
            fontdict = {
                "name": name,
                "type": stype,
                "ext": ext,
                "ascender": asc,
                "descender": dsc,
            }
        else:
            name = fontdict["name"]
            ext = fontdict["ext"]
            stype = fontdict["type"]
            ordering = fontdict["ordering"]
            simple = fontdict["simple"]

        if ext == "":
            raise ValueError("xref is not a font")

        # check for 'simple' fonts
        if stype in ("Type1", "MMType1", "TrueType"):
            simple = True
        else:
            simple = False

        # check for CJK fonts
        if name in ("Fangti", "Ming"):
            ordering = 0
        elif name in ("Heiti", "Song"):
            ordering = 1
        elif name in ("Gothic", "Mincho"):
            ordering = 2
        elif name in ("Dotum", "Batang"):
            ordering = 3
        else:
            ordering = -1

        fontdict["simple"] = simple

        if name == "ZapfDingbats":
            glyphs = zapf_glyphs
        elif name == "Symbol":
            glyphs = symbol_glyphs
        else:
            glyphs = None

        fontdict["glyphs"] = glyphs
        fontdict["ordering"] = ordering
        fontinfo = [xref, fontdict]
        doc.FontInfos.append(fontinfo)
    else:
        fontdict = fontinfo[1]
        glyphs = fontdict["glyphs"]
        simple = fontdict["simple"]
        ordering = fontdict["ordering"]

    if glyphs is None:
        oldlimit = 0
    else:
        oldlimit = len(glyphs)

    mylimit = max(256, limit)

    if mylimit <= oldlimit:
        return glyphs

    if ordering < 0:  # not a CJK font
        glyphs = doc._get_char_widths(
            xref, fontdict["name"], fontdict["ext"], fontdict["ordering"], mylimit, idx
        )
    else:  # CJK fonts use char codes and width = 1
        glyphs = None

    fontdict["glyphs"] = glyphs
    fontinfo[1] = fontdict
    UpdateFontInfo(doc, fontinfo)

    return glyphs


class Shape(object):
    """Create a new shape."""

    @staticmethod
    def horizontal_angle(C, P):
        """Return the angle to the horizontal for the connection from C to P.
        This uses the arcus sine function and resolves its inherent ambiguity by
        looking up in which quadrant vector S = P - C is located.
        """
        S = Point(P - C).unit  # unit vector 'C' -> 'P'
        alfa = math.asin(abs(S.y))  # absolute angle from horizontal
        if S.x < 0:  # make arcsin result unique
            if S.y <= 0:  # bottom-left
                alfa = -(math.pi - alfa)
            else:  # top-left
                alfa = math.pi - alfa
        else:
            if S.y >= 0:  # top-right
                pass
            else:  # bottom-right
                alfa = -alfa
        return alfa

    def __init__(self, page: Page):
        CheckParent(page)
        self.page = page
        self.doc = page.parent
        if not self.doc.is_pdf:
            raise ValueError("is no PDF")
        self.height = page.mediabox_size.y
        self.width = page.mediabox_size.x
        self.x = page.cropbox_position.x
        self.y = page.cropbox_position.y

        self.pctm = page.transformation_matrix  # page transf. matrix
        self.ipctm = ~self.pctm  # inverted transf. matrix

        self.draw_cont = ""
        self.text_cont = ""
        self.totalcont = ""
        self.lastPoint = None
        self.rect = None

    def updateRect(self, x):
        if self.rect is None:
            if len(x) == 2:
                self.rect = Rect(x, x)
            else:
                self.rect = Rect(x)

        else:
            if len(x) == 2:
                x = Point(x)
                self.rect.x0 = min(self.rect.x0, x.x)
                self.rect.y0 = min(self.rect.y0, x.y)
                self.rect.x1 = max(self.rect.x1, x.x)
                self.rect.y1 = max(self.rect.y1, x.y)
            else:
                x = Rect(x)
                self.rect.x0 = min(self.rect.x0, x.x0)
                self.rect.y0 = min(self.rect.y0, x.y0)
                self.rect.x1 = max(self.rect.x1, x.x1)
                self.rect.y1 = max(self.rect.y1, x.y1)

    def draw_line(self, p1: point_like, p2: point_like) -> Point:
        """Draw a line between two points."""
        p1 = Point(p1)
        p2 = Point(p2)
        if not (self.lastPoint == p1):
            self.draw_cont += "%g %g m\n" % JM_TUPLE(p1 * self.ipctm)
            self.lastPoint = p1
            self.updateRect(p1)

        self.draw_cont += "%g %g l\n" % JM_TUPLE(p2 * self.ipctm)
        self.updateRect(p2)
        self.lastPoint = p2
        return self.lastPoint

    def draw_polyline(self, points: list) -> Point:
        """Draw several connected line segments."""
        for i, p in enumerate(points):
            if i == 0:
                if not (self.lastPoint == Point(p)):
                    self.draw_cont += "%g %g m\n" % JM_TUPLE(Point(p) * self.ipctm)
                    self.lastPoint = Point(p)
            else:
                self.draw_cont += "%g %g l\n" % JM_TUPLE(Point(p) * self.ipctm)
            self.updateRect(p)

        self.lastPoint = Point(points[-1])
        return self.lastPoint

    def draw_bezier(
        self,
        p1: point_like,
        p2: point_like,
        p3: point_like,
        p4: point_like,
    ) -> Point:
        """Draw a standard cubic Bezier curve."""
        p1 = Point(p1)
        p2 = Point(p2)
        p3 = Point(p3)
        p4 = Point(p4)
        if not (self.lastPoint == p1):
            self.draw_cont += "%g %g m\n" % JM_TUPLE(p1 * self.ipctm)
        self.draw_cont += "%g %g %g %g %g %g c\n" % JM_TUPLE(
            list(p2 * self.ipctm) + list(p3 * self.ipctm) + list(p4 * self.ipctm)
        )
        self.updateRect(p1)
        self.updateRect(p2)
        self.updateRect(p3)
        self.updateRect(p4)
        self.lastPoint = p4
        return self.lastPoint

    def draw_oval(self, tetra: typing.Union[quad_like, rect_like]) -> Point:
        """Draw an ellipse inside a tetrapod."""
        if len(tetra) != 4:
            raise ValueError("invalid arg length")
        if hasattr(tetra[0], "__float__"):
            q = Rect(tetra).quad
        else:
            q = Quad(tetra)

        mt = q.ul + (q.ur - q.ul) * 0.5
        mr = q.ur + (q.lr - q.ur) * 0.5
        mb = q.ll + (q.lr - q.ll) * 0.5
        ml = q.ul + (q.ll - q.ul) * 0.5
        if not (self.lastPoint == ml):
            self.draw_cont += "%g %g m\n" % JM_TUPLE(ml * self.ipctm)
            self.lastPoint = ml
        self.draw_curve(ml, q.ll, mb)
        self.draw_curve(mb, q.lr, mr)
        self.draw_curve(mr, q.ur, mt)
        self.draw_curve(mt, q.ul, ml)
        self.updateRect(q.rect)
        self.lastPoint = ml
        return self.lastPoint

    def draw_circle(self, center: point_like, radius: float) -> Point:
        """Draw a circle given its center and radius."""
        if not radius > EPSILON:
            raise ValueError("radius must be postive")
        center = Point(center)
        p1 = center - (radius, 0)
        return self.draw_sector(center, p1, 360, fullSector=False)

    def draw_curve(
        self,
        p1: point_like,
        p2: point_like,
        p3: point_like,
    ) -> Point:
        """Draw a curve between points using one control point."""
        kappa = 0.55228474983
        p1 = Point(p1)
        p2 = Point(p2)
        p3 = Point(p3)
        k1 = p1 + (p2 - p1) * kappa
        k2 = p3 + (p2 - p3) * kappa
        return self.draw_bezier(p1, k1, k2, p3)

    def draw_sector(
        self,
        center: point_like,
        point: point_like,
        beta: float,
        fullSector: bool = True,
    ) -> Point:
        """Draw a circle sector."""
        center = Point(center)
        point = Point(point)
        l3 = "%g %g m\n"
        l4 = "%g %g %g %g %g %g c\n"
        l5 = "%g %g l\n"
        betar = math.radians(-beta)
        w360 = math.radians(math.copysign(360, betar)) * (-1)
        w90 = math.radians(math.copysign(90, betar))
        w45 = w90 / 2
        while abs(betar) > 2 * math.pi:
            betar += w360  # bring angle below 360 degrees
        if not (self.lastPoint == point):
            self.draw_cont += l3 % JM_TUPLE(point * self.ipctm)
            self.lastPoint = point
        Q = Point(0, 0)  # just make sure it exists
        C = center
        P = point
        S = P - C  # vector 'center' -> 'point'
        rad = abs(S)  # circle radius

        if not rad > EPSILON:
            raise ValueError("radius must be positive")

        alfa = self.horizontal_angle(center, point)
        while abs(betar) > abs(w90):  # draw 90 degree arcs
            q1 = C.x + math.cos(alfa + w90) * rad
            q2 = C.y + math.sin(alfa + w90) * rad
            Q = Point(q1, q2)  # the arc's end point
            r1 = C.x + math.cos(alfa + w45) * rad / math.cos(w45)
            r2 = C.y + math.sin(alfa + w45) * rad / math.cos(w45)
            R = Point(r1, r2)  # crossing point of tangents
            kappah = (1 - math.cos(w45)) * 4 / 3 / abs(R - Q)
            kappa = kappah * abs(P - Q)
            cp1 = P + (R - P) * kappa  # control point 1
            cp2 = Q + (R - Q) * kappa  # control point 2
            self.draw_cont += l4 % JM_TUPLE(
                list(cp1 * self.ipctm) + list(cp2 * self.ipctm) + list(Q * self.ipctm)
            )

            betar -= w90  # reduce parm angle by 90 deg
            alfa += w90  # advance start angle by 90 deg
            P = Q  # advance to arc end point
        # draw (remaining) arc
        if abs(betar) > 1e-3:  # significant degrees left?
            beta2 = betar / 2
            q1 = C.x + math.cos(alfa + betar) * rad
            q2 = C.y + math.sin(alfa + betar) * rad
            Q = Point(q1, q2)  # the arc's end point
            r1 = C.x + math.cos(alfa + beta2) * rad / math.cos(beta2)
            r2 = C.y + math.sin(alfa + beta2) * rad / math.cos(beta2)
            R = Point(r1, r2)  # crossing point of tangents
            # kappa height is 4/3 of segment height
            kappah = (1 - math.cos(beta2)) * 4 / 3 / abs(R - Q)  # kappa height
            kappa = kappah * abs(P - Q) / (1 - math.cos(betar))
            cp1 = P + (R - P) * kappa  # control point 1
            cp2 = Q + (R - Q) * kappa  # control point 2
            self.draw_cont += l4 % JM_TUPLE(
                list(cp1 * self.ipctm) + list(cp2 * self.ipctm) + list(Q * self.ipctm)
            )
        if fullSector:
            self.draw_cont += l3 % JM_TUPLE(point * self.ipctm)
            self.draw_cont += l5 % JM_TUPLE(center * self.ipctm)
            self.draw_cont += l5 % JM_TUPLE(Q * self.ipctm)
        self.lastPoint = Q
        return self.lastPoint

    def draw_rect(self, rect: rect_like) -> Point:
        """Draw a rectangle."""
        r = Rect(rect)
        self.draw_cont += "%g %g %g %g re\n" % JM_TUPLE(
            list(r.bl * self.ipctm) + [r.width, r.height]
        )
        self.updateRect(r)
        self.lastPoint = r.tl
        return self.lastPoint

    def draw_quad(self, quad: quad_like) -> Point:
        """Draw a Quad."""
        q = Quad(quad)
        return self.draw_polyline([q.ul, q.ll, q.lr, q.ur, q.ul])

    def draw_zigzag(
        self,
        p1: point_like,
        p2: point_like,
        breadth: float = 2,
    ) -> Point:
        """Draw a zig-zagged line from p1 to p2."""
        p1 = Point(p1)
        p2 = Point(p2)
        S = p2 - p1  # vector start - end
        rad = abs(S)  # distance of points
        cnt = 4 * int(round(rad / (4 * breadth), 0))  # always take full phases
        if cnt < 4:
            raise ValueError("points too close")
        mb = rad / cnt  # revised breadth
        matrix = Matrix(util_hor_matrix(p1, p2))  # normalize line to x-axis
        i_mat = ~matrix  # get original position
        points = []  # stores edges
        for i in range(1, cnt):
            if i % 4 == 1:  # point "above" connection
                p = Point(i, -1) * mb
            elif i % 4 == 3:  # point "below" connection
                p = Point(i, 1) * mb
            else:  # ignore others
                continue
            points.append(p * i_mat)
        self.draw_polyline([p1] + points + [p2])  # add start and end points
        return p2

    def draw_squiggle(
        self,
        p1: point_like,
        p2: point_like,
        breadth=2,
    ) -> Point:
        """Draw a squiggly line from p1 to p2."""
        p1 = Point(p1)
        p2 = Point(p2)
        S = p2 - p1  # vector start - end
        rad = abs(S)  # distance of points
        cnt = 4 * int(round(rad / (4 * breadth), 0))  # always take full phases
        if cnt < 4:
            raise ValueError("points too close")
        mb = rad / cnt  # revised breadth
        matrix = Matrix(util_hor_matrix(p1, p2))  # normalize line to x-axis
        i_mat = ~matrix  # get original position
        k = 2.4142135623765633  # y of draw_curve helper point

        points = []  # stores edges
        for i in range(1, cnt):
            if i % 4 == 1:  # point "above" connection
                p = Point(i, -k) * mb
            elif i % 4 == 3:  # point "below" connection
                p = Point(i, k) * mb
            else:  # else on connection line
                p = Point(i, 0) * mb
            points.append(p * i_mat)

        points = [p1] + points + [p2]
        cnt = len(points)
        i = 0
        while i + 2 < cnt:
            self.draw_curve(points[i], points[i + 1], points[i + 2])
            i += 2
        return p2

    # ==============================================================================
    # Shape.insert_text
    # ==============================================================================
    def insert_text(
        self,
        point: point_like,
        buffer: typing.Union[str, list],
        fontsize: float = 11,
        lineheight: OptFloat = None,
        fontname: str = "helv",
        fontfile: OptStr = None,
        set_simple: bool = 0,
        encoding: int = 0,
        color: OptSeq = None,
        fill: OptSeq = None,
        render_mode: int = 0,
        border_width: float = 1,
        rotate: int = 0,
        morph: OptSeq = None,
        stroke_opacity: float = 1,
        fill_opacity: float = 1,
        oc: int = 0,
    ) -> int:

        # ensure 'text' is a list of strings, worth dealing with
        if not bool(buffer):
            return 0

        if type(buffer) not in (list, tuple):
            text = buffer.splitlines()
        else:
            text = buffer

        if not len(text) > 0:
            return 0

        point = Point(point)
        try:
            maxcode = max([ord(c) for c in " ".join(text)])
        except:
            return 0

        # ensure valid 'fontname'
        fname = fontname
        if fname.startswith("/"):
            fname = fname[1:]

        xref = self.page.insert_font(
            fontname=fname, fontfile=fontfile, encoding=encoding, set_simple=set_simple
        )
        fontinfo = CheckFontInfo(self.doc, xref)

        fontdict = fontinfo[1]
        ordering = fontdict["ordering"]
        simple = fontdict["simple"]
        bfname = fontdict["name"]
        ascender = fontdict["ascender"]
        descender = fontdict["descender"]
        if lineheight:
            lheight = fontsize * lineheight
        elif ascender - descender <= 1:
            lheight = fontsize * 1.2
        else:
            lheight = fontsize * (ascender - descender)

        if maxcode > 255:
            glyphs = self.doc.get_char_widths(xref, maxcode + 1)
        else:
            glyphs = fontdict["glyphs"]

        tab = []
        for t in text:
            if simple and bfname not in ("Symbol", "ZapfDingbats"):
                g = None
            else:
                g = glyphs
            tab.append(getTJstr(t, g, simple, ordering))
        text = tab

        color_str = ColorCode(color, "c")
        fill_str = ColorCode(fill, "f")
        if not fill and render_mode == 0:  # ensure fill color when 0 Tr
            fill = color
            fill_str = ColorCode(color, "f")

        morphing = CheckMorph(morph)
        rot = rotate
        if rot % 90 != 0:
            raise ValueError("bad rotate value")

        while rot < 0:
            rot += 360
        rot = rot % 360  # text rotate = 0, 90, 270, 180

        templ1 = "\nq\n%s%sBT\n%s1 0 0 1 %g %g Tm\n/%s %g Tf "
        templ2 = "TJ\n0 -%g TD\n"
        cmp90 = "0 1 -1 0 0 0 cm\n"  # rotates 90 deg counter-clockwise
        cmm90 = "0 -1 1 0 0 0 cm\n"  # rotates 90 deg clockwise
        cm180 = "-1 0 0 -1 0 0 cm\n"  # rotates by 180 deg.
        height = self.height
        width = self.width

        # setting up for standard rotation directions
        # case rotate = 0
        if morphing:
            m1 = Matrix(1, 0, 0, 1, morph[0].x + self.x, height - morph[0].y - self.y)
            mat = ~m1 * morph[1] * m1
            cm = "%g %g %g %g %g %g cm\n" % JM_TUPLE(mat)
        else:
            cm = ""
        top = height - point.y - self.y  # start of 1st char
        left = point.x + self.x  # start of 1. char
        space = top  # space available
        headroom = point.y + self.y  # distance to page border
        if rot == 90:
            left = height - point.y - self.y
            top = -point.x - self.x
            cm += cmp90
            space = width - abs(top)
            headroom = point.x + self.x

        elif rot == 270:
            left = -height + point.y + self.y
            top = point.x + self.x
            cm += cmm90
            space = abs(top)
            headroom = width - point.x - self.x

        elif rot == 180:
            left = -point.x - self.x
            top = -height + point.y + self.y
            cm += cm180
            space = abs(point.y + self.y)
            headroom = height - point.y - self.y

        optcont = self.page._get_optional_content(oc)
        if optcont != None:
            bdc = "/OC /%s BDC\n" % optcont
            emc = "EMC\n"
        else:
            bdc = emc = ""

        alpha = self.page._set_opacity(CA=stroke_opacity, ca=fill_opacity)
        if alpha == None:
            alpha = ""
        else:
            alpha = "/%s gs\n" % alpha
        nres = templ1 % (bdc, alpha, cm, left, top, fname, fontsize)
        if render_mode > 0:
            nres += "%i Tr " % render_mode
        if border_width != 1:
            nres += "%g w " % border_width
        if color is not None:
            nres += color_str
        if fill is not None:
            nres += fill_str

        # =========================================================================
        #   start text insertion
        # =========================================================================
        nres += text[0]
        nlines = 1  # set output line counter
        if len(text) > 1:
            nres += templ2 % lheight  # line 1
        else:
            nres += templ2[:2]
        for i in range(1, len(text)):
            if space < lheight:
                break  # no space left on page
            if i > 1:
                nres += "\nT* "
            nres += text[i] + templ2[:2]
            space -= lheight
            nlines += 1

        nres += "\nET\n%sQ\n" % emc

        # =========================================================================
        #   end of text insertion
        # =========================================================================
        # update the /Contents object
        self.text_cont += nres
        return nlines

    # ==============================================================================
    # Shape.insert_textbox
    # ==============================================================================
    def insert_textbox(
        self,
        rect: rect_like,
        buffer: typing.Union[str, list],
        fontname: OptStr = "helv",
        fontfile: OptStr = None,
        fontsize: float = 11,
        lineheight: OptFloat = None,
        set_simple: bool = 0,
        encoding: int = 0,
        color: OptSeq = None,
        fill: OptSeq = None,
        expandtabs: int = 1,
        border_width: float = 1,
        align: int = 0,
        render_mode: int = 0,
        rotate: int = 0,
        morph: OptSeq = None,
        stroke_opacity: float = 1,
        fill_opacity: float = 1,
        oc: int = 0,
    ) -> float:
        """Insert text into a given rectangle.

        Args:
            rect -- the textbox to fill
            buffer -- text to be inserted
            fontname -- a Base-14 font, font name or '/name'
            fontfile -- name of a font file
            fontsize -- font size
            lineheight -- overwrite the font property
            color -- RGB stroke color triple
            fill -- RGB fill color triple
            render_mode -- text rendering control
            border_width -- thickness of glyph borders
            expandtabs -- handles tabulators with string function
            align -- left, center, right, justified
            rotate -- 0, 90, 180, or 270 degrees
            morph -- morph box with a matrix and a fixpoint
        Returns:
            unused or deficit rectangle area (float)
        """
        rect = Rect(rect)
        if rect.is_empty or rect.is_infinite:
            raise ValueError("text box must be finite and not empty")

        color_str = ColorCode(color, "c")
        fill_str = ColorCode(fill, "f")
        if fill is None and render_mode == 0:  # ensure fill color for 0 Tr
            fill = color
            fill_str = ColorCode(color, "f")

        optcont = self.page._get_optional_content(oc)
        if optcont != None:
            bdc = "/OC /%s BDC\n" % optcont
            emc = "EMC\n"
        else:
            bdc = emc = ""

        # determine opacity / transparency
        alpha = self.page._set_opacity(CA=stroke_opacity, ca=fill_opacity)
        if alpha == None:
            alpha = ""
        else:
            alpha = "/%s gs\n" % alpha

        if rotate % 90 != 0:
            raise ValueError("rotate must be multiple of 90")

        rot = rotate
        while rot < 0:
            rot += 360
        rot = rot % 360

        # is buffer worth of dealing with?
        if not bool(buffer):
            return rect.height if rot in (0, 180) else rect.width

        cmp90 = "0 1 -1 0 0 0 cm\n"  # rotates counter-clockwise
        cmm90 = "0 -1 1 0 0 0 cm\n"  # rotates clockwise
        cm180 = "-1 0 0 -1 0 0 cm\n"  # rotates by 180 deg.
        height = self.height

        fname = fontname
        if fname.startswith("/"):
            fname = fname[1:]

        xref = self.page.insert_font(
            fontname=fname, fontfile=fontfile, encoding=encoding, set_simple=set_simple
        )
        fontinfo = CheckFontInfo(self.doc, xref)

        fontdict = fontinfo[1]
        ordering = fontdict["ordering"]
        simple = fontdict["simple"]
        glyphs = fontdict["glyphs"]
        bfname = fontdict["name"]
        ascender = fontdict["ascender"]
        descender = fontdict["descender"]

        if lineheight:
            lheight_factor = lineheight
        elif ascender - descender <= 1:
            lheight_factor = 1.2
        else:
            lheight_factor = ascender - descender
        lheight = fontsize * lheight_factor

        # create a list from buffer, split into its lines
        if type(buffer) in (list, tuple):
            t0 = "\n".join(buffer)
        else:
            t0 = buffer

        maxcode = max([ord(c) for c in t0])
        # replace invalid char codes for simple fonts
        if simple and maxcode > 255:
            t0 = "".join([c if ord(c) < 256 else "?" for c in t0])

        t0 = t0.splitlines()

        glyphs = self.doc.get_char_widths(xref, maxcode + 1)
        if simple and bfname not in ("Symbol", "ZapfDingbats"):
            tj_glyphs = None
        else:
            tj_glyphs = glyphs

        # ----------------------------------------------------------------------
        # calculate pixel length of a string
        # ----------------------------------------------------------------------
        def pixlen(x):
            """Calculate pixel length of x."""
            if ordering < 0:
                return sum([glyphs[ord(c)][1] for c in x]) * fontsize
            else:
                return len(x) * fontsize

        # ----------------------------------------------------------------------

        if ordering < 0:
            blen = glyphs[32][1] * fontsize  # pixel size of space character
        else:
            blen = fontsize

        text = ""  # output buffer

        if CheckMorph(morph):
            m1 = Matrix(
                1, 0, 0, 1, morph[0].x + self.x, self.height - morph[0].y - self.y
            )
            mat = ~m1 * morph[1] * m1
            cm = "%g %g %g %g %g %g cm\n" % JM_TUPLE(mat)
        else:
            cm = ""

        # ---------------------------------------------------------------------------
        # adjust for text orientation / rotation
        # ---------------------------------------------------------------------------
        progr = 1  # direction of line progress
        c_pnt = Point(0, fontsize * ascender)  # used for line progress
        if rot == 0:  # normal orientation
            point = rect.tl + c_pnt  # line 1 is 'lheight' below top
            pos = point.y + self.y  # y of first line
            maxwidth = rect.width  # pixels available in one line
            maxpos = rect.y1 + self.y  # lines must not be below this

        elif rot == 90:  # rotate counter clockwise
            c_pnt = Point(fontsize * ascender, 0)  # progress in x-direction
            point = rect.bl + c_pnt  # line 1 'lheight' away from left
            pos = point.x + self.x  # position of first line
            maxwidth = rect.height  # pixels available in one line
            maxpos = rect.x1 + self.x  # lines must not be right of this
            cm += cmp90

        elif rot == 180:  # text upside down
            # progress upwards in y direction
            c_pnt = -Point(0, fontsize * ascender)
            point = rect.br + c_pnt  # line 1 'lheight' above bottom
            pos = point.y + self.y  # position of first line
            maxwidth = rect.width  # pixels available in one line
            progr = -1  # subtract lheight for next line
            maxpos = rect.y0 + self.y  # lines must not be above this
            cm += cm180

        else:  # rotate clockwise (270 or -90)
            # progress from right to left
            c_pnt = -Point(fontsize * ascender, 0)
            point = rect.tr + c_pnt  # line 1 'lheight' left of right
            pos = point.x + self.x  # position of first line
            maxwidth = rect.height  # pixels available in one line
            progr = -1  # subtract lheight for next line
            maxpos = rect.x0 + self.x  # lines must not left of this
            cm += cmm90

        # =======================================================================
        # line loop
        # =======================================================================
        just_tab = []  # 'justify' indicators per line

        for i, line in enumerate(t0):
            line_t = line.expandtabs(expandtabs).split(" ")  # split into words
            lbuff = ""  # init line buffer
            rest = maxwidth  # available line pixels
            # ===================================================================
            # word loop
            # ===================================================================
            for word in line_t:
                pl_w = pixlen(word)  # pixel len of word
                if rest >= pl_w:  # will it fit on the line?
                    lbuff += word + " "  # yes, and append word
                    rest -= pl_w + blen  # update available line space
                    continue
                # word won't fit - output line (if not empty)
                if len(lbuff) > 0:
                    lbuff = lbuff.rstrip() + "\n"  # line full, append line break
                    text += lbuff  # append to total text
                    pos += lheight * progr  # increase line position
                    just_tab.append(True)  # line is justify candidate
                    lbuff = ""  # re-init line buffer
                rest = maxwidth  # re-init avail. space
                if pl_w <= maxwidth:  # word shorter than 1 line?
                    lbuff = word + " "  # start the line with it
                    rest = maxwidth - pl_w - blen  # update free space
                    continue
                # long word: split across multiple lines - char by char ...
                if len(just_tab) > 0:
                    just_tab[-1] = False  # reset justify indicator
                for c in word:
                    if pixlen(lbuff) <= maxwidth - pixlen(c):
                        lbuff += c
                    else:  # line full
                        lbuff += "\n"  # close line
                        text += lbuff  # append to text
                        pos += lheight * progr  # increase line position
                        just_tab.append(False)  # do not justify line
                        lbuff = c  # start new line with this char
                lbuff += " "  # finish long word
                rest = maxwidth - pixlen(lbuff)  # long word stored

            if lbuff != "":  # unprocessed line content?
                text += lbuff.rstrip()  # append to text
                just_tab.append(False)  # do not justify line
            if i < len(t0) - 1:  # not the last line?
                text += "\n"  # insert line break
                pos += lheight * progr  # increase line position

        more = (pos - maxpos) * progr  # difference to rect size limit

        if more > EPSILON:  # landed too much outside rect
            return (-1) * more  # return deficit, don't output

        more = abs(more)
        if more < EPSILON:
            more = 0  # don't bother with epsilons
        nres = "\nq\n%s%sBT\n" % (bdc, alpha) + cm  # initialize output buffer
        templ = "1 0 0 1 %g %g Tm /%s %g Tf "
        # center, right, justify: output each line with its own specifics
        text_t = text.splitlines()  # split text in lines again
        just_tab[-1] = False  # never justify last line
        for i, t in enumerate(text_t):
            pl = maxwidth - pixlen(t)  # length of empty line part
            pnt = point + c_pnt * (i * lheight_factor)  # text start of line
            if align == 1:  # center: right shift by half width
                if rot in (0, 180):
                    pnt = pnt + Point(pl / 2, 0) * progr
                else:
                    pnt = pnt - Point(0, pl / 2) * progr
            elif align == 2:  # right: right shift by full width
                if rot in (0, 180):
                    pnt = pnt + Point(pl, 0) * progr
                else:
                    pnt = pnt - Point(0, pl) * progr
            elif align == 3:  # justify
                spaces = t.count(" ")  # number of spaces in line
                if spaces > 0 and just_tab[i]:  # if any, and we may justify
                    spacing = pl / spaces  # make every space this much larger
                else:
                    spacing = 0  # keep normal space length
            top = height - pnt.y - self.y
            left = pnt.x + self.x
            if rot == 90:
                left = height - pnt.y - self.y
                top = -pnt.x - self.x
            elif rot == 270:
                left = -height + pnt.y + self.y
                top = pnt.x + self.x
            elif rot == 180:
                left = -pnt.x - self.x
                top = -height + pnt.y + self.y

            nres += templ % (left, top, fname, fontsize)
            if render_mode > 0:
                nres += "%i Tr " % render_mode
            if align == 3:
                nres += "%g Tw " % spacing

            if color is not None:
                nres += color_str
            if fill is not None:
                nres += fill_str
            if border_width != 1:
                nres += "%g w " % border_width
            nres += "%sTJ\n" % getTJstr(t, tj_glyphs, simple, ordering)

        nres += "ET\n%sQ\n" % emc

        self.text_cont += nres
        self.updateRect(rect)
        return more

    def finish(
        self,
        width: float = 1,
        color: OptSeq = (0,),
        fill: OptSeq = None,
        lineCap: int = 0,
        lineJoin: int = 0,
        dashes: OptStr = None,
        even_odd: bool = False,
        morph: OptSeq = None,
        closePath: bool = True,
        fill_opacity: float = 1,
        stroke_opacity: float = 1,
        oc: int = 0,
    ) -> None:
        """Finish the current drawing segment.

        Notes:
            Apply colors, opacity, dashes, line style and width, or
            morphing. Also whether to close the path
            by connecting last to first point.
        """
        if self.draw_cont == "":  # treat empty contents as no-op
            return

        if width == 0:  # border color makes no sense then
            color = None
        elif color == None:  # vice versa
            width = 0
        # if color == None and fill == None:
        #     raise ValueError("at least one of 'color' or 'fill' must be given")
        color_str = ColorCode(color, "c")  # ensure proper color string
        fill_str = ColorCode(fill, "f")  # ensure proper fill string

        optcont = self.page._get_optional_content(oc)
        if optcont is not None:
            self.draw_cont = "/OC /%s BDC\n" % optcont + self.draw_cont
            emc = "EMC\n"
        else:
            emc = ""

        alpha = self.page._set_opacity(CA=stroke_opacity, ca=fill_opacity)
        if alpha != None:
            self.draw_cont = "/%s gs\n" % alpha + self.draw_cont

        if width != 1 and width != 0:
            self.draw_cont += "%g w\n" % width

        if lineCap != 0:
            self.draw_cont = "%i J\n" % lineCap + self.draw_cont
        if lineJoin != 0:
            self.draw_cont = "%i j\n" % lineJoin + self.draw_cont

        if dashes not in (None, "", "[] 0"):
            self.draw_cont = "%s d\n" % dashes + self.draw_cont

        if closePath:
            self.draw_cont += "h\n"
            self.lastPoint = None

        if color is not None:
            self.draw_cont += color_str

        if fill is not None:
            self.draw_cont += fill_str
            if color is not None:
                if not even_odd:
                    self.draw_cont += "B\n"
                else:
                    self.draw_cont += "B*\n"
            else:
                if not even_odd:
                    self.draw_cont += "f\n"
                else:
                    self.draw_cont += "f*\n"
        else:
            self.draw_cont += "S\n"

        self.draw_cont += emc
        if CheckMorph(morph):
            m1 = Matrix(
                1, 0, 0, 1, morph[0].x + self.x, self.height - morph[0].y - self.y
            )
            mat = ~m1 * morph[1] * m1
            self.draw_cont = "%g %g %g %g %g %g cm\n" % JM_TUPLE(mat) + self.draw_cont

        self.totalcont += "\nq\n" + self.draw_cont + "Q\n"
        self.draw_cont = ""
        self.lastPoint = None
        return

    def commit(self, overlay: bool = True) -> None:
        """Update the page's /Contents object with Shape data. The argument controls whether data appear in foreground (default) or background."""
        CheckParent(self.page)  # doc may have died meanwhile
        self.totalcont += self.text_cont

        self.totalcont = self.totalcont.encode()

        if self.totalcont != b"":
            # make /Contents object with dummy stream
            xref = TOOLS._insert_contents(self.page, b" ", overlay)
            # update it with potential compression
            self.doc.update_stream(xref, self.totalcont)

        self.lastPoint = None  # clean up ...
        self.rect = None  #
        self.draw_cont = ""  # for potential ...
        self.text_cont = ""  # ...
        self.totalcont = ""  # re-use
        return

    # define deprecated aliases ------------------------------------------
    drawBezier = draw_bezier
    drawCircle = draw_circle
    drawCurve = draw_curve
    drawLine = draw_line
    drawOval = draw_oval
    drawPolyline = draw_polyline
    drawQuad = draw_quad
    drawRect = draw_rect
    drawSector = draw_sector
    drawSquiggle = draw_squiggle
    drawZigzag = draw_zigzag
    insertText = insert_text
    insertTextbox = insert_textbox


def apply_redactions(page: Page, images: int = 2) -> bool:
    """Apply the redaction annotations of the page.

    Args:
        page: the PDF page.
        images: 0 - ignore images, 1 - remove complete overlapping image,
                2 - blank out overlapping image parts.
    """

    def center_rect(annot_rect, text, font, fsize):
        """Calculate minimal sub-rectangle for the overlay text.

        Notes:
            Because 'insert_textbox' supports no vertical text centering,
            we calculate an approximate number of lines here and return a
            sub-rect with smaller height, which should still be sufficient.
        Args:
            annot_rect: the annotation rectangle
            text: the text to insert.
            font: the fontname. Must be one of the CJK or Base-14 set, else
                the rectangle is returned unchanged.
            fsize: the fontsize
        Returns:
            A rectangle to use instead of the annot rectangle.
        """
        if not text:
            return annot_rect
        try:
            text_width = get_text_length(text, font, fsize)
        except ValueError:  # unsupported font
            return annot_rect
        line_height = fsize * 1.2
        limit = annot_rect.width
        h = math.ceil(text_width / limit) * line_height  # estimate rect height
        if h >= annot_rect.height:
            return annot_rect
        r = annot_rect
        y = (annot_rect.tl.y + annot_rect.bl.y - h) * 0.5
        r.y0 = y
        return r

    CheckParent(page)
    doc = page.parent
    if doc.is_encrypted or doc.is_closed:
        raise ValueError("document closed or encrypted")
    if not doc.is_pdf:
        raise ValueError("is no PDF")

    redact_annots = []  # storage of annot values
    for annot in page.annots(types=(PDF_ANNOT_REDACT,)):  # loop redactions
        redact_annots.append(annot._get_redact_values())  # save annot values

    if redact_annots == []:  # any redactions on this page?
        return False  # no redactions

    rc = page._apply_redactions(images)  # call MuPDF redaction process step
    if not rc:  # should not happen really
        raise ValueError("Error applying redactions.")

    # now write replacement text in old redact rectangles
    shape = page.new_shape()
    for redact in redact_annots:
        annot_rect = redact["rect"]
        fill = redact["fill"]
        if fill:
            shape.draw_rect(annot_rect)  # colorize the rect background
            shape.finish(fill=fill, color=fill)
        if "text" in redact.keys():  # if we also have text
            text = redact["text"]
            align = redact.get("align", 0)
            fname = redact["fontname"]
            fsize = redact["fontsize"]
            color = redact["text_color"]
            # try finding vertical centered sub-rect
            trect = center_rect(annot_rect, text, fname, fsize)

            rc = -1
            while rc < 0 and fsize >= 4:  # while not enough room
                # (re-) try insertion
                rc = shape.insert_textbox(
                    trect,
                    text,
                    fontname=fname,
                    fontsize=fsize,
                    color=color,
                    align=align,
                )
                fsize -= 0.5  # reduce font if unsuccessful
    shape.commit()  # append new contents object
    return True


# ------------------------------------------------------------------------------
# Remove potentially sensitive data from a PDF. Similar to the Adobe
# Acrobat 'sanitize' function
# ------------------------------------------------------------------------------
def scrub(
    doc: Document,
    attached_files: bool = True,
    clean_pages: bool = True,
    embedded_files: bool = True,
    hidden_text: bool = True,
    javascript: bool = True,
    metadata: bool = True,
    redactions: bool = True,
    redact_images: int = 0,
    remove_links: bool = True,
    reset_fields: bool = True,
    reset_responses: bool = True,
    thumbnails: bool = True,
    xml_metadata: bool = True,
) -> None:
    def remove_hidden(cont_lines):
        """Remove hidden text from a PDF page.

        Args:
            cont_lines: list of lines with /Contents content. Should have status
                from after page.cleanContents().

        Returns:
            List of /Contents lines from which hidden text has been removed.

        Notes:
            The input must have been created after the page's /Contents object(s)
            have been cleaned with page.cleanContents(). This ensures a standard
            formatting: one command per line, single spaces between operators.
            This allows for drastic simplification of this code.
        """
        out_lines = []  # will return this
        in_text = False  # indicate if within BT/ET object
        suppress = False  # indicate text suppression active
        make_return = False
        for line in cont_lines:
            if line == b"BT":  # start of text object
                in_text = True  # switch on
                out_lines.append(line)  # output it
                continue
            if line == b"ET":  # end of text object
                in_text = False  # switch off
                out_lines.append(line)  # output it
                continue
            if line == b"3 Tr":  # text suppression operator
                suppress = True  # switch on
                make_return = True
                continue
            if line[-2:] == b"Tr" and line[0] != b"3":
                suppress = False  # text rendering changed
                out_lines.append(line)
                continue
            if line == b"Q":  # unstack command also switches off
                suppress = False
                out_lines.append(line)
                continue
            if suppress and in_text:  # suppress hidden lines
                continue
            out_lines.append(line)
        if make_return:
            return out_lines
        else:
            return None

    if not doc.is_pdf:  # only works for PDF
        raise ValueError("is no PDF")
    if doc.is_encrypted or doc.is_closed:
        raise ValueError("closed or encrypted doc")

    if clean_pages is False:
        hidden_text = False
        redactions = False

    if metadata:
        doc.set_metadata({})  # remove standard metadata

    for page in doc:
        if reset_fields:
            # reset form fields (widgets)
            for widget in page.widgets():
                widget.reset()

        if remove_links:
            links = page.get_links()  # list of all links on page
            for link in links:  # remove all links
                page.delete_link(link)

        found_redacts = False
        for annot in page.annots():
            if annot.type[0] == PDF_ANNOT_FILE_ATTACHMENT and attached_files:
                annot.fileUpd(buffer=b" ")  # set file content to empty
            if reset_responses:
                annot.delete_responses()
            if annot.type[0] == PDF_ANNOT_REDACT:
                found_redacts = True

        if redactions and found_redacts:
            page.apply_redactions(images=redact_images)

        if not (clean_pages or hidden_text):
            continue  # done with the page

        page.clean_contents()
        if not page.get_contents():
            continue
        if hidden_text:
            xref = page.get_contents()[0]  # only one b/o cleaning!
            cont = doc.xref_stream(xref)
            cont_lines = remove_hidden(cont.splitlines())  # remove hidden text
            if cont_lines:  # something was actually removed
                cont = b"\n".join(cont_lines)
                doc.update_stream(xref, cont)  # rewrite the page /Contents

        if thumbnails:  # remove page thumbnails?
            if doc.xref_get_key(page.xref, "Thumb")[0] != "null":
                doc.xref_set_key(page.xref, "Thumb", "null")

    # pages are scrubbed, now perform document-wide scrubbing
    # remove embedded files
    if embedded_files:
        for name in doc.embfile_names():
            doc.embfile_del(name)

    if xml_metadata:
        doc.del_xml_metadata()
    if not (xml_metadata or javascript):
        xref_limit = 0
    else:
        xref_limit = doc.xref_length()
    for xref in range(1, xref_limit):
        if not doc.xref_object(xref):
            msg = "bad xref %i - clean PDF before scrubbing" % xref
            raise ValueError(msg)
        if javascript and doc.xref_get_key(xref, "S")[1] == "/JavaScript":
            # a /JavaScript action object
            obj = "<</S/JavaScript/JS()>>"  # replace with a null JavaScript
            doc.update_object(xref, obj)  # update this object
            continue  # no further handling

        if not xml_metadata:
            continue

        if doc.xref_get_key(xref, "Type")[1] == "/Metadata":
            # delete any metadata object directly
            doc.update_object(xref, "<<>>")
            doc.update_stream(xref, b"deleted", new=True)
            continue

        if doc.xref_get_key(xref, "Metadata")[0] != "null":
            doc.xref_set_key(xref, "Metadata", "null")


def fill_textbox(
    writer: TextWriter,
    rect: rect_like,
    text: typing.Union[str, list],
    pos: point_like = None,
    font: typing.Optional[Font] = None,
    fontsize: float = 11,
    lineheight: OptFloat = None,
    align: int = 0,
    warn: bool = None,
    right_to_left: bool = False,
    small_caps: bool = False,
) -> tuple:
    """Fill a rectangle with text.

    Args:
        writer: TextWriter object (= "self")
        rect: rect-like to receive the text.
        text: string or list/tuple of strings.
        pos: point-like start position of first word.
        font: Font object (default Font('helv')).
        fontsize: the fontsize.
        lineheight: overwrite the font property
        align: (int) 0 = left, 1 = center, 2 = right, 3 = justify
        warn: (bool) text overflow action: none, warn, or exception
        right_to_left: (bool) indicate right-to-left language.
    """
    rect = Rect(rect)
    if rect.is_empty:
        raise ValueError("fill rect must not empty.")
    if type(font) is not Font:
        font = Font("helv")

    def textlen(x):
        """Return length of a string."""
        return font.text_length(
            x, fontsize=fontsize, small_caps=small_caps
        )  # abbreviation

    def char_lengths(x):
        """Return list of single character lengths for a string."""
        return font.char_lengths(x, fontsize=fontsize, small_caps=small_caps)

    def append_this(pos, text):
        return writer.append(
            pos, text, font=font, fontsize=fontsize, small_caps=small_caps
        )

    tolerance = fontsize * 0.2  # extra distance to left border
    space_len = textlen(" ")
    std_width = rect.width - tolerance
    std_start = rect.x0 + tolerance

    def norm_words(width, words):
        """Cut any word in pieces no longer than 'width'."""
        nwords = []
        word_lengths = []
        for w in words:
            wl_lst = char_lengths(w)
            wl = sum(wl_lst)
            if wl <= width:  # nothing to do - copy over
                nwords.append(w)
                word_lengths.append(wl)
                continue

            # word longer than rect width - split it in parts
            n = len(wl_lst)
            while n > 0:
                wl = sum(wl_lst[:n])
                if wl <= width:
                    nwords.append(w[: n + 1])
                    word_lengths.append(wl)
                    w = w[n + 1 :]
                    wl_lst = wl_lst[n + 1 :]
                    n = len(wl_lst)
                else:
                    n -= 1
        return nwords, word_lengths

    def output_justify(start, line):
        """Justified output of a line."""
        # ignore leading / trailing / multiple spaces
        words = [w for w in line.split(" ") if w != ""]
        nwords = len(words)
        if nwords == 0:
            return
        if nwords == 1:  # single word cannot be justified
            append_this(start, words[0])
            return
        tl = sum([textlen(w) for w in words])  # total word lengths
        gaps = nwords - 1  # number of word gaps
        gapl = (std_width - tl) / gaps  # width of each gap
        for w in words:
            _, lp = append_this(start, w)  # output one word
            start.x = lp.x + gapl  # next start at word end plus gap
        return

    asc = font.ascender
    dsc = font.descender
    if not lineheight:
        if asc - dsc <= 1:
            lheight = 1.2
        else:
            lheight = asc - dsc
    else:
        lheight = lineheight

    LINEHEIGHT = fontsize * lheight  # effective line height
    width = std_width  # available horizontal space

    # starting point of text
    if pos is not None:
        pos = Point(pos)
    else:  # default is just below rect top-left
        pos = rect.tl + (tolerance, fontsize * asc)
    if not pos in rect:
        raise ValueError("Text must start in rectangle.")

    # calculate displacement factor for alignment
    if align == TEXT_ALIGN_CENTER:
        factor = 0.5
    elif align == TEXT_ALIGN_RIGHT:
        factor = 1.0
    else:
        factor = 0

    # split in lines if just a string was given
    if type(text) is str:
        textlines = text.splitlines()
    else:
        textlines = []
        for line in text:
            textlines.extend(line.splitlines())

    max_lines = int((rect.y1 - pos.y) / LINEHEIGHT) + 1

    new_lines = []  # the final list of textbox lines
    no_justify = []  # no justify for these line numbers
    for i, line in enumerate(textlines):
        if line in ("", " "):
            new_lines.append((line, space_len))
            width = rect.width - tolerance
            no_justify.append((len(new_lines) - 1))
            continue
        if i == 0:
            width = rect.x1 - pos.x
        else:
            width = rect.width - tolerance

        if right_to_left:  # reverses Arabic / Hebrew text front to back
            line = writer.clean_rtl(line)
        tl = textlen(line)
        if tl <= width:  # line short enough
            new_lines.append((line, tl))
            no_justify.append((len(new_lines) - 1))
            continue

        # we need to split the line in fitting parts
        words = line.split(" ")  # the words in the line

        # cut in parts any words that are longer than rect width
        words, word_lengths = norm_words(std_width, words)

        n = len(words)
        while True:
            line0 = " ".join(words[:n])
            wl = sum(word_lengths[:n]) + space_len * (len(word_lengths[:n]) - 1)
            if wl <= width:
                new_lines.append((line0, wl))
                words = words[n:]
                word_lengths = word_lengths[n:]
                n = len(words)
                line0 = None
            else:
                n -= 1

            if len(words) == 0:
                break

    # -------------------------------------------------------------------------
    # List of lines created. Each item is (text, tl), where 'tl' is the PDF
    # output length (float) and 'text' is the text. Except for justified text,
    # this is output-ready.
    # -------------------------------------------------------------------------
    nlines = len(new_lines)
    if nlines > max_lines:
        msg = "Only fitting %i of %i lines." % (max_lines, nlines)
        if warn == True:
            print("Warning: " + msg)
        elif warn == False:
            raise ValueError(msg)

    start = Point()
    no_justify += [len(new_lines) - 1]  # no justifying of last line
    for i in range(max_lines):
        try:
            line, tl = new_lines.pop(0)
        except IndexError:
            break

        if right_to_left:  # Arabic, Hebrew
            line = "".join(reversed(line))

        if i == 0:  # may have different start for first line
            start = pos

        if align == TEXT_ALIGN_JUSTIFY and i not in no_justify and tl < std_width:
            output_justify(start, line)
            start.x = std_start
            start.y += LINEHEIGHT
            continue

        if i > 0 or pos.x == std_start:  # left, center, right alignments
            start.x += (width - tl) * factor

        append_this(start, line)
        start.x = std_start
        start.y += LINEHEIGHT

    return new_lines  # return non-written lines


# ------------------------------------------------------------------------
# Optional Content functions
# ------------------------------------------------------------------------
def get_oc(doc: Document, xref: int) -> int:
    """Return optional content object xref for an image or form xobject.

    Args:
        xref: (int) xref number of an image or form xobject.
    """
    if doc.is_closed or doc.is_encrypted:
        raise ValueError("document close or encrypted")
    t, name = doc.xref_get_key(xref, "Subtype")
    if t != "name" or name not in ("/Image", "/Form"):
        raise ValueError("bad object type at xref %i" % xref)
    t, oc = doc.xref_get_key(xref, "OC")
    if t != "xref":
        return 0
    rc = int(oc.replace("0 R", ""))
    return rc


def set_oc(doc: Document, xref: int, oc: int) -> None:
    """Attach optional content object to image or form xobject.

    Args:
        xref: (int) xref number of an image or form xobject
        oc: (int) xref number of an OCG or OCMD
    """
    if doc.is_closed or doc.is_encrypted:
        raise ValueError("document close or encrypted")
    t, name = doc.xref_get_key(xref, "Subtype")
    if t != "name" or name not in ("/Image", "/Form"):
        raise ValueError("bad object type at xref %i" % xref)
    if oc > 0:
        t, name = doc.xref_get_key(oc, "Type")
        if t != "name" or name not in ("/OCG", "/OCMD"):
            raise ValueError("bad object type at xref %i" % oc)
    if oc == 0 and "OC" in doc.xref_get_keys(xref):
        doc.xref_set_key(xref, "OC", "null")
        return None
    doc.xref_set_key(xref, "OC", "%i 0 R" % oc)
    return None


def set_ocmd(
    doc: Document,
    xref: int = 0,
    ocgs: typing.Union[list, None] = None,
    policy: OptStr = None,
    ve: typing.Union[list, None] = None,
) -> int:
    """Create or update an OCMD object in a PDF document.

    Args:
        xref: (int) 0 for creating a new object, otherwise update existing one.
        ocgs: (list) OCG xref numbers, which shall be subject to 'policy'.
        policy: one of 'AllOn', 'AllOff', 'AnyOn', 'AnyOff' (any casing).
        ve: (list) visibility expression. Use instead of 'ocgs' with 'policy'.

    Returns:
        Xref of the created or updated OCMD.
    """

    all_ocgs = set(doc.get_ocgs().keys())

    def ve_maker(ve):
        if type(ve) not in (list, tuple) or len(ve) < 2:
            raise ValueError("bad 've' format: %s" % ve)
        if ve[0].lower() not in ("and", "or", "not"):
            raise ValueError("bad operand: %s" % ve[0])
        if ve[0].lower() == "not" and len(ve) != 2:
            raise ValueError("bad 've' format: %s" % ve)
        item = "[/%s" % ve[0].title()
        for x in ve[1:]:
            if type(x) is int:
                if x not in all_ocgs:
                    raise ValueError("bad OCG %i" % x)
                item += " %i 0 R" % x
            else:
                item += " %s" % ve_maker(x)
        item += "]"
        return item

    text = "<</Type/OCMD"

    if ocgs and type(ocgs) in (list, tuple):  # some OCGs are provided
        s = set(ocgs).difference(all_ocgs)  # contains illegal xrefs
        if s != set():
            msg = "bad OCGs: %s" % s
            raise ValueError(msg)
        text += "/OCGs[" + " ".join(map(lambda x: "%i 0 R" % x, ocgs)) + "]"

    if policy:
        policy = str(policy).lower()
        pols = {
            "anyon": "AnyOn",
            "allon": "AllOn",
            "anyoff": "AnyOff",
            "alloff": "AllOff",
        }
        if policy not in ("anyon", "allon", "anyoff", "alloff"):
            raise ValueError("bad policy: %s" % policy)
        text += "/P/%s" % pols[policy]

    if ve:
        text += "/VE%s" % ve_maker(ve)

    text += ">>"

    # make new object or replace old OCMD (check type first)
    if xref == 0:
        xref = doc.get_new_xref()
    elif "/Type/OCMD" not in doc.xref_object(xref, compressed=True):
        raise ValueError("bad xref or not an OCMD")
    doc.update_object(xref, text)
    return xref


def get_ocmd(doc: Document, xref: int) -> dict:
    """Return the definition of an OCMD (optional content membership dictionary).

    Recognizes PDF dict keys /OCGs (PDF array of OCGs), /P (policy string) and
    /VE (visibility expression, PDF array). Via string manipulation, this
    info is converted to a Python dictionary with keys "xref", "ocgs", "policy"
    and "ve" - ready to recycle as input for 'set_ocmd()'.
    """

    if xref not in range(doc.xref_length()):
        raise ValueError("bad xref")
    text = doc.xref_object(xref, compressed=True)
    if "/Type/OCMD" not in text:
        raise ValueError("bad object type")
    textlen = len(text)

    p0 = text.find("/OCGs[")  # look for /OCGs key
    p1 = text.find("]", p0)
    if p0 < 0 or p1 < 0:  # no OCGs found
        ocgs = None
    else:
        ocgs = text[p0 + 6 : p1].replace("0 R", " ").split()
        ocgs = list(map(int, ocgs))

    p0 = text.find("/P/")  # look for /P policy key
    if p0 < 0:
        policy = None
    else:
        p1 = text.find("ff", p0)
        if p1 < 0:
            p1 = text.find("on", p0)
        if p1 < 0:  # some irregular syntax
            raise ValueError("bad object at xref")
        else:
            policy = text[p0 + 3 : p1 + 2]

    p0 = text.find("/VE[")  # look for /VE visibility expression key
    if p0 < 0:  # no visibility expression found
        ve = None
    else:
        lp = rp = 0  # find end of /VE by finding last ']'.
        p1 = p0
        while lp < 1 or lp != rp:
            p1 += 1
            if not p1 < textlen:  # some irregular syntax
                raise ValueError("bad object at xref")
            if text[p1] == "[":
                lp += 1
            if text[p1] == "]":
                rp += 1
        # p1 now positioned at the last "]"
        ve = text[p0 + 3 : p1 + 1]  # the PDF /VE array
        ve = (
            ve.replace("/And", '"and",')
            .replace("/Not", '"not",')
            .replace("/Or", '"or",')
        )
        ve = ve.replace(" 0 R]", "]").replace(" 0 R", ",").replace("][", "],[")
        try:
            ve = json.loads(ve)
        except:
            print("bad /VE key: ", ve)
            raise
    return {"xref": xref, "ocgs": ocgs, "policy": policy, "ve": ve}


"""
Handle page labels for PDF documents.

Reading
-------
* compute the label of a page
* find page number(s) having the given label.

Writing
-------
Supports setting (defining) page labels for PDF documents.

A big Thank You goes to WILLIAM CHAPMAN who contributed the idea and
significant parts of the following code during late December 2020
through early January 2021.
"""


def rule_dict(item):
    """Make a Python dict from a PDF page label rule.

    Args:
        item -- a tuple (pno, rule) with the start page number and the rule
                string like <</S/D...>>.
    Returns:
        A dict like
        {'startpage': int, 'prefix': str, 'style': str, 'firstpagenum': int}.
    """
    # Jorj McKie, 2021-01-06

    pno, rule = item
    rule = rule[2:-2].split("/")[1:]  # strip "<<" and ">>"
    d = {"startpage": pno, "prefix": "", "firstpagenum": 1}
    skip = False
    for i, item in enumerate(rule):
        if skip:  # this item has already been processed
            skip = False  # deactivate skipping again
            continue
        if item == "S":  # style specification
            d["style"] = rule[i + 1]  # next item has the style
            skip = True  # do not process next item again
            continue
        if item.startswith("P"):  # prefix specification: extract the string
            x = item[1:].replace("(", "").replace(")", "")
            d["prefix"] = x
            continue
        if item.startswith("St"):  # start page number specification
            x = int(item[2:])
            d["firstpagenum"] = x
    return d


def get_label_pno(pgNo, labels):
    """Return the label for this page number.

    Args:
        pgNo: page number, 0-based.
        labels: result of doc._get_page_labels().
    Returns:
        The label (str) of the page number. Errors return an empty string.
    """
    # Jorj McKie, 2021-01-06

    item = [x for x in labels if x[0] <= pgNo][-1]
    rule = rule_dict(item)
    prefix = rule.get("prefix", "")
    style = rule.get("style", "")
    pagenumber = pgNo - rule["startpage"] + rule["firstpagenum"]
    return construct_label(style, prefix, pagenumber)


def get_label(page):
    """Return the label for this PDF page.

    Args:
        page: page object.
    Returns:
        The label (str) of the page. Errors return an empty string.
    """
    # Jorj McKie, 2021-01-06

    labels = page.parent._get_page_labels()
    if not labels:
        return ""
    labels.sort()
    return get_label_pno(page.number, labels)


def get_page_numbers(doc, label, only_one=False):
    """Return a list of page numbers with the given label.

    Args:
        doc: PDF document object (resp. 'self').
        label: (str) label.
        only_one: (bool) stop searching after first hit.
    Returns:
        List of page numbers having this label.
    """
    # Jorj McKie, 2021-01-06

    numbers = []
    if not label:
        return numbers
    labels = doc._get_page_labels()
    if labels == []:
        return numbers
    for i in range(doc.page_count):
        plabel = get_label_pno(i, labels)
        if plabel == label:
            numbers.append(i)
            if only_one:
                break
    return numbers


def construct_label(style, prefix, pno) -> str:
    """Construct a label based on style, prefix and page number."""
    # William Chapman, 2021-01-06

    n_str = ""
    if style == "D":
        n_str = str(pno)
    elif style == "r":
        n_str = integerToRoman(pno).lower()
    elif style == "R":
        n_str = integerToRoman(pno).upper()
    elif style == "a":
        n_str = integerToLetter(pno).lower()
    elif style == "A":
        n_str = integerToLetter(pno).upper()
    result = prefix + n_str
    return result


def integerToLetter(i) -> str:
    """Returns letter sequence string for integer i."""
    # William Chapman, Jorj McKie, 2021-01-06

    ls = string.ascii_uppercase
    n, a = 1, i
    while pow(26, n) <= a:
        a -= int(math.pow(26, n))
        n += 1

    str_t = ""
    for j in reversed(range(n)):
        f, g = divmod(a, int(math.pow(26, j)))
        str_t += ls[f]
        a = g
    return str_t


def integerToRoman(num: int) -> str:
    """Return roman numeral for an integer."""
    # William Chapman, Jorj McKie, 2021-01-06

    roman = (
        (1000, "M"),
        (900, "CM"),
        (500, "D"),
        (400, "CD"),
        (100, "C"),
        (90, "XC"),
        (50, "L"),
        (40, "XL"),
        (10, "X"),
        (9, "IX"),
        (5, "V"),
        (4, "IV"),
        (1, "I"),
    )

    def roman_num(num):
        for r, ltr in roman:
            x, _ = divmod(num, r)
            yield ltr * x
            num -= r * x
            if num <= 0:
                break

    return "".join([a for a in roman_num(num)])


def get_page_labels(doc):
    """Return page label definitions in PDF document.

    Args:
        doc: PDF document (resp. 'self').
    Returns:
        A list of dictionaries with the following format:
        {'startpage': int, 'prefix': str, 'style': str, 'firstpagenum': int}.
    """
    # Jorj McKie, 2021-01-10
    return [rule_dict(item) for item in doc._get_page_labels()]


def set_page_labels(doc, labels):
    """Add / replace page label definitions in PDF document.

    Args:
        doc: PDF document (resp. 'self').
        labels: list of label dictionaries like:
        {'startpage': int, 'prefix': str, 'style': str, 'firstpagenum': int},
        as returned by get_page_labels().
    """
    # William Chapman, 2021-01-06

    def create_label_str(label):
        """Convert Python label dict to correspnding PDF rule string.

        Args:
            label: (dict) build rule for the label.
        Returns:
            PDF label rule string wrapped in "<<", ">>".
        """
        s = "%i<<" % label["startpage"]
        if label.get("prefix", "") != "":
            s += "/P(%s)" % label["prefix"]
        if label.get("style", "") != "":
            s += "/S/%s" % label["style"]
        if label.get("firstpagenum", 1) > 1:
            s += "/St %i" % label["firstpagenum"]
        s += ">>"
        return s

    def create_nums(labels):
        """Return concatenated string of all labels rules.

        Args:
            labels: (list) dictionaries as created by function 'rule_dict'.
        Returns:
            PDF compatible string for page label definitions, ready to be
            enclosed in PDF array 'Nums[...]'.
        """
        labels.sort(key=lambda x: x["startpage"])
        s = "".join([create_label_str(label) for label in labels])
        return s

    doc._set_page_labels(create_nums(labels))


# End of Page Label Code -------------------------------------------------


def has_links(doc: Document) -> bool:
    """Check whether there are links on any page."""
    if doc.is_closed:
        raise ValueError("document closed")
    if not doc.is_pdf:
        raise ValueError("is no PDF")
    for i in range(doc.page_count):
        for item in doc.page_annot_xrefs(i):
            if item[1] == PDF_ANNOT_LINK:
                return True
    return False


def has_annots(doc: Document) -> bool:
    """Check whether there are annotations on any page."""
    if doc.is_closed:
        raise ValueError("document closed")
    if not doc.is_pdf:
        raise ValueError("is no PDF")
    for i in range(doc.page_count):
        for item in doc.page_annot_xrefs(i):
            if not (item[1] == PDF_ANNOT_LINK or item[1] == PDF_ANNOT_WIDGET):
                return True
    return False


# -------------------------------------------------------------------
# Functions to recover the quad contained in a text extraction bbox
# -------------------------------------------------------------------
def recover_bbox_quad(line_dir: tuple, span: dict, bbox: tuple) -> Quad:
    """Compute the quad located inside the bbox.

    The bbox may be any of the resp. tuples occurring inside the given span.

    Args:
        line_dir: (tuple) 'line["dir"]' of the owning line or None.
        span: (dict) the span. May be from get_texttrace() method.
        bbox: (tuple) the bbox of the span or any of its characters.
    Returns:
        The quad which is wrapped by the bbox.
    """
    if line_dir == None:
        line_dir = span["dir"]
    cos, sin = line_dir
    bbox = Rect(bbox)  # make it a rect
    if TOOLS.set_small_glyph_heights():  # ==> just fontsize as height
        d = 1
    else:
        d = span["ascender"] - span["descender"]

    height = d * span["size"]  # the quad's rectangle height
    # The following are distances from the bbox corners, at wich we find the
    # respective quad points. The computat depends on in which circle
    # quadrant the text writing angle is located.
    hs = height * sin
    hc = height * cos
    if hc >= 0 and hs <= 0:  # quadrant 1
        ul = bbox.bl - (0, hc)
        ur = bbox.tr + (hs, 0)
        ll = bbox.bl - (hs, 0)
        lr = bbox.tr + (0, hc)
    elif hc <= 0 and hs <= 0:  # quadrant 2
        ul = bbox.br + (hs, 0)
        ur = bbox.tl - (0, hc)
        ll = bbox.br + (0, hc)
        lr = bbox.tl - (hs, 0)
    elif hc <= 0 and hs >= 0:  # quadrant 3
        ul = bbox.tr - (0, hc)
        ur = bbox.bl + (hs, 0)
        ll = bbox.tr - (hs, 0)
        lr = bbox.bl + (0, hc)
    else:  # quadrant 4
        ul = bbox.tl + (hs, 0)
        ur = bbox.br - (0, hc)
        ll = bbox.tl + (0, hc)
        lr = bbox.br - (hs, 0)
    return Quad(ul, ur, ll, lr)


def recover_quad(line_dir: tuple, span: dict) -> Quad:
    """Recover the quadrilateral of a text span.

    Args:
        line_dir: (tuple) 'line["dir"]' of the owning line.
        span: the span.
    Returns:
        The quadrilateral envelopping the span's text.
    """
    if type(line_dir) is not tuple or len(line_dir) != 2:
        raise ValueError("bad line dir argument")
    if type(span) is not dict:
        raise ValueError("bad span argument")
    return recover_bbox_quad(line_dir, span, span["bbox"])


def recover_line_quad(line: dict, spans: list = None) -> Quad:
    """Calculate the line quad for 'dict' / 'rawdict' text extractions.

    The lower quad points are those of the first, resp. last span quad.
    The upper points are determined by the maximum span quad height.
    From this, compute a rect with bottom-left in (0, 0), convert this to a
    quad and rotate and shift back to cover the text of the spans.

    Args:
        spans: (list, optional) sub-list of spans to consider.
    Returns:
        Quad covering selected spans.
    """
    if spans == None:  # no sub-selection
        spans = line["spans"]  # all spans
    if len(spans) == 0:
        raise ValueError("bad span list")
    line_dir = line["dir"]  # text direction
    cos, sin = line_dir
    q0 = recover_quad(line_dir, spans[0])  # quad of first span

    if len(spans) > 1:  # get quad of last span
        q1 = recover_quad(line_dir, spans[-1])
    else:
        q1 = q0  # last = first

    line_ll = q0.ll  # lower-left of line quad
    line_lr = q1.lr  # lower-right of line quad

    mat0 = planish_line(line_ll, line_lr)

    # map base line to x-axis such that line_ll goes to (0, 0)
    x_lr = line_lr * mat0

    small = TOOLS.set_small_glyph_heights()  # small glyph heights?

    h = max(
        [s["size"] * (1 if small else (s["ascender"] - s["descender"])) for s in spans]
    )

    line_rect = Rect(0, -h, x_lr.x, 0)  # line rectangle
    line_quad = line_rect.quad  # make it a quad and:
    line_quad *= ~mat0
    return line_quad


def recover_span_quad(line_dir: tuple, span: dict, chars: list = None) -> Quad:
    """Calculate the span quad for 'dict' / 'rawdict' text extractions.

    Notes:
        There are two execution paths:
        1. For the full span quad, the result of 'recover_quad' is returned.
        2. For the quad of a sub-list of characters, the char quads are
           computed and joined. This is only supported for the "rawdict"
           extraction option.

    Args:
        line_dir: (tuple) 'line["dir"]' of the owning line.
        span: (dict) the span.
        chars: (list, optional) sub-list of characters to consider.
    Returns:
        Quad covering selected characters.
    """
    if line_dir == None:  # must be a span from get_texttrace()
        line_dir = span["dir"]
    if chars == None:  # no sub-selection
        return recover_quad(line_dir, span)
    if not "chars" in span.keys():
        raise ValueError("need 'rawdict' option to sub-select chars")

    q0 = recover_char_quad(line_dir, span, chars[0])  # quad of first char
    if len(chars) > 1:  # get quad of last char
        q1 = recover_char_quad(line_dir, span, chars[-1])
    else:
        q1 = q0  # last = first

    span_ll = q0.ll  # lower-left of span quad
    span_lr = q1.lr  # lower-right of span quad
    mat0 = planish_line(span_ll, span_lr)
    # map base line to x-axis such that span_ll goes to (0, 0)
    x_lr = span_lr * mat0

    small = TOOLS.set_small_glyph_heights()  # small glyph heights?
    h = span["size"] * (1 if small else (span["ascender"] - span["descender"]))

    span_rect = Rect(0, -h, x_lr.x, 0)  # line rectangle
    span_quad = span_rect.quad  # make it a quad and:
    span_quad *= ~mat0  # rotate back and shift back
    return span_quad


def recover_char_quad(line_dir: tuple, span: dict, char: dict) -> Quad:
    """Recover the quadrilateral of a text character.

    This requires the "rawdict" option of text extraction.

    Args:
        line_dir: (tuple) 'line["dir"]' of the span's line.
        span: (dict) the span dict.
        char: (dict) the character dict.
    Returns:
        The quadrilateral envelopping the character.
    """
    if line_dir == None:
        line_dir = span["dir"]
    if type(line_dir) is not tuple or len(line_dir) != 2:
        raise ValueError("bad line dir argument")
    if type(span) is not dict:
        raise ValueError("bad span argument")
    if type(char) is dict:
        bbox = Rect(char["bbox"])
    elif type(char) is tuple:
        bbox = Rect(char[3])
    else:
        raise ValueError("bad span argument")

    return recover_bbox_quad(line_dir, span, bbox)


# -------------------------------------------------------------------
# Building font subsets using fontTools
# -------------------------------------------------------------------
def subset_fonts(doc: Document, verbose: bool = False) -> None:
    """Build font subsets of a PDF. Requires package 'fontTools'.

    Eligible fonts are potentially replaced by smaller versions. Page text is
    NOT rewritten and thus should retain properties like being hidden or
    controlled by optional content.
    """
    # Font binaries: -  "buffer" -> (names, xrefs, (unicodes, glyphs))
    # An embedded font is uniquely defined by its fontbuffer only. It may have
    # multiple names and xrefs.
    # Once the sets of used unicodes and glyphs are known, we compute a
    # smaller version of the buffer user package fontTools.
    font_buffers = {}

    def get_old_widths(xref):
        """Retrieve old font '/W' and '/DW' values."""
        df = doc.xref_get_key(xref, "DescendantFonts")
        if df[0] != "array":  # only handle xref specifications
            return None, None
        df_xref = int(df[1][1:-1].replace("0 R", ""))
        widths = doc.xref_get_key(df_xref, "W")
        if widths[0] != "array":  # no widths key found
            widths = None
        else:
            widths = widths[1]
        dwidths = doc.xref_get_key(df_xref, "DW")
        if dwidths[0] != "int":
            dwidths = None
        else:
            dwidths = dwidths[1]
        return widths, dwidths

    def set_old_widths(xref, widths, dwidths):
        """Restore the old '/W' and '/DW' in subsetted font.

        If either parameter is None or evaluates to False, the corresponding
        dictionary key will be set to null.
        """
        df = doc.xref_get_key(xref, "DescendantFonts")
        if df[0] != "array":  # only handle xref specs
            return None
        df_xref = int(df[1][1:-1].replace("0 R", ""))
        if (type(widths) is not str or not widths) and doc.xref_get_key(df_xref, "W")[
            0
        ] != "null":
            doc.xref_set_key(df_xref, "W", "null")
        else:
            doc.xref_set_key(df_xref, "W", widths)
        if (type(dwidths) is not str or not dwidths) and doc.xref_get_key(
            df_xref, "DW"
        )[0] != "null":
            doc.xref_set_key(df_xref, "DW", "null")
        else:
            doc.xref_set_key(df_xref, "DW", dwidths)
        return None

    def set_subset_fontname(new_xref):
        """Generate a name prefix to tag a font as subset.

        We use a random generator to select 6 upper case ASCII characters.
        The prefixed name must be put in the font xref as the "/BaseFont" value
        and in the FontDescriptor object as the '/FontName' value.
        """
        # The following generates a prefix like 'ABCDEF+'
        prefix = "".join(random.choices(tuple(string.ascii_uppercase), k=6)) + "+"
        font_str = doc.xref_object(new_xref, compressed=True)
        font_str = font_str.replace("/BaseFont/", "/BaseFont/" + prefix)
        df = doc.xref_get_key(new_xref, "DescendantFonts")
        if df[0] == "array":
            df_xref = int(df[1][1:-1].replace("0 R", ""))
            fd = doc.xref_get_key(df_xref, "FontDescriptor")
            if fd[0] == "xref":
                fd_xref = int(fd[1].replace("0 R", ""))
                fd_str = doc.xref_object(fd_xref, compressed=True)
                fd_str = fd_str.replace("/FontName/", "/FontName/" + prefix)
                doc.update_object(fd_xref, fd_str)
        doc.update_object(new_xref, font_str)
        return None

    def build_subset(buffer, unc_set, gid_set):
        """Build font subset using fontTools.

        Args:
            buffer: (bytes) the font given as a binary buffer.
            unc_set: (set) required glyph ids.
        Returns:
            Either None if subsetting is unsuccessful or the subset font buffer.
        """
        try:
            import fontTools.subset as fts
        except ImportError:
            print("This method requires fontTools to be installed.")
            raise
        tmp_dir = tempfile.gettempdir()
        oldfont_path = f"{tmp_dir}/oldfont.ttf"
        newfont_path = f"{tmp_dir}/newfont.ttf"
        uncfile_path = f"{tmp_dir}/uncfile.txt"
        args = [
            oldfont_path,
            "--retain-gids",
            f"--output-file={newfont_path}",
            "--layout-features='*'",
            "--passthrough-tables",
            "--ignore-missing-glyphs",
            "--ignore-missing-unicodes",
            "--symbol-cmap",
        ]

        unc_file = open(
            f"{tmp_dir}/uncfile.txt", "w"
        )  # store glyph ids or unicodes as file
        if 0xFFFD in unc_set:  # error unicode exists -> use glyphs
            args.append(f"--gids-file={uncfile_path}")
            gid_set.add(189)
            unc_list = list(gid_set)
            for unc in unc_list:
                unc_file.write("%i\n" % unc)
        else:
            args.append(f"--unicodes-file={uncfile_path}")
            unc_set.add(255)
            unc_list = list(unc_set)
            for unc in unc_list:
                unc_file.write("%04x\n" % unc)

        unc_file.close()
        fontfile = open(oldfont_path, "wb")  # store fontbuffer as a file
        fontfile.write(buffer)
        fontfile.close()
        try:
            os.remove(newfont_path)  # remove old file
        except:
            pass
        try:  # invoke fontTools subsetter
            fts.main(args)
            font = Font(fontfile=newfont_path)
            new_buffer = font.buffer
            if len(font.valid_codepoints()) == 0:
                new_buffer = None
        except:
            new_buffer = None
        try:
            os.remove(uncfile_path)
        except:
            pass
        try:
            os.remove(oldfont_path)
        except:
            pass
        try:
            os.remove(newfont_path)
        except:
            pass
        return new_buffer

    def repl_fontnames(doc):
        """Populate 'font_buffers'.

        For each font candidate, store its xref and the list of names
        by which PDF text may refer to it (there may be multiple).
        """

        def norm_name(name):
            """Recreate font name that contains PDF hex codes.

            E.g. #20 -> space, chr(32)
            """
            while "#" in name:
                p = name.find("#")
                c = int(name[p + 1 : p + 3], 16)
                name = name.replace(name[p : p + 3], chr(c))
            return name

        def get_fontnames(doc, item):
            """Return a list of fontnames for an item of page.get_fonts().

            There may be multiple names e.g. for Type0 fonts.
            """
            fontname = item[3]
            names = [fontname]
            fontname = doc.xref_get_key(item[0], "BaseFont")[1][1:]
            fontname = norm_name(fontname)
            if fontname not in names:
                names.append(fontname)
            descendents = doc.xref_get_key(item[0], "DescendantFonts")
            if descendents[0] != "array":
                return names
            descendents = descendents[1][1:-1]
            if descendents.endswith(" 0 R"):
                xref = int(descendents[:-4])
                descendents = doc.xref_object(xref, compressed=True)
            p1 = descendents.find("/BaseFont")
            if p1 >= 0:
                p2 = descendents.find("/", p1 + 1)
                p1 = min(descendents.find("/", p2 + 1), descendents.find(">>", p2 + 1))
                fontname = descendents[p2 + 1 : p1]
                fontname = norm_name(fontname)
                if fontname not in names:
                    names.append(fontname)
            return names

        for i in range(doc.page_count):
            for f in doc.get_page_fonts(i, full=True):
                font_xref = f[0]  # font xref
                font_ext = f[1]  # font file extension
                basename = f[3]  # font basename

                if font_ext not in (  # skip if not supported by fontTools
                    "otf",
                    "ttf",
                    "woff",
                    "woff2",
                ):
                    continue
                # skip fonts which already are subsets
                if len(basename) > 6 and basename[6] == "+":
                    continue

                extr = doc.extract_font(font_xref)
                fontbuffer = extr[-1]
                names = get_fontnames(doc, f)
                name_set, xref_set, subsets = font_buffers.get(
                    fontbuffer, (set(), set(), (set(), set()))
                )
                xref_set.add(font_xref)
                for name in names:
                    name_set.add(name)
                font = Font(fontbuffer=fontbuffer)
                name_set.add(font.name)
                del font
                font_buffers[fontbuffer] = (name_set, xref_set, subsets)
        return None

    def find_buffer_by_name(name):
        for buffer in font_buffers.keys():
            name_set, _, _ = font_buffers[buffer]
            if name in name_set:
                return buffer
        return None

    # -----------------
    # main function
    # -----------------
    repl_fontnames(doc)  # populate font information
    if not font_buffers:  # nothing found to do
        if verbose:
            print("No fonts to subset.")
        return 0

    old_fontsize = 0
    new_fontsize = 0
    for fontbuffer in font_buffers.keys():
        old_fontsize += len(fontbuffer)

    # Scan page text for usage of subsettable fonts
    for page in doc:
        # go through the text and extend set of used glyphs by font
        # we use a modified MuPDF trace device, which delivers us glyph ids.
        for span in page.get_texttrace():
            if type(span) is not dict:  # skip useless information
                continue
            fontname = span["font"][:33]  # fontname for the span
            buffer = find_buffer_by_name(fontname)
            if buffer is None:
                continue
            name_set, xref_set, (set_ucs, set_gid) = font_buffers[buffer]
            for c in span["chars"]:
                set_ucs.add(c[0])  # unicode
                set_gid.add(c[1])  # glyph id
            font_buffers[buffer] = (name_set, xref_set, (set_ucs, set_gid))

    # build the font subsets
    for old_buffer in font_buffers.keys():
        name_set, xref_set, subsets = font_buffers[old_buffer]
        new_buffer = build_subset(old_buffer, subsets[0], subsets[1])
        fontname = list(name_set)[0]
        if new_buffer == None or len(new_buffer) >= len(old_buffer):
            # subset was not created or did not get smaller
            if verbose:
                print(f"Cannot subset '{fontname}'.")
            continue
        if verbose:
            print(f"Built subset of font '{fontname}'.")
        val = doc._insert_font(fontbuffer=new_buffer)  # store subset font in PDF
        new_xref = val[0]  # get its xref
        set_subset_fontname(new_xref)  # tag fontname as subset font
        font_str = doc.xref_object(  # get its object definition
            new_xref,
            compressed=True,
        )
        # walk through the original font xrefs and replace each by the subset def
        for font_xref in xref_set:
            # we need the original '/W' and '/DW' width values
            width_table, def_width = get_old_widths(font_xref)
            # ... and replace original font definition at xref with it
            doc.update_object(font_xref, font_str)
            # now copy over old '/W' and '/DW' values
            if width_table or def_width:
                set_old_widths(font_xref, width_table, def_width)
        # 'new_xref' remains unused in the PDF and must be removed
        # by garbage collection.
        new_fontsize += len(new_buffer)

    return old_fontsize - new_fontsize


# -------------------------------------------------------------------
# Copy XREF object to another XREF
# -------------------------------------------------------------------
def xref_copy(doc: Document, source: int, target: int, *, keep: list = None) -> None:
    """Copy a PDF dictionary object to another one given their xref numbers.

    Args:
        doc: PDF document object
        source: source xref number
        target: target xref number, the xref must already exist
        keep: an optional list of 1st level keys in target that should not be
              removed before copying.
    Notes:
        This works similar to the copy() method of dictionaries in Python. The
        source may be a stream object.
    """
    if doc.xref_is_stream(source):
        # read new xref stream, maintaining compression
        stream = doc.xref_stream_raw(source)
        doc.update_stream(
            target,
            stream,
            compress=False,  # keeps source compression
            new=True,  # in case target is no stream
        )

    # empty the target completely, observe exceptions
    if keep is None:
        keep = []
    for key in doc.xref_get_keys(target):
        if key in keep:
            continue
        doc.xref_set_key(target, key, "null")
    # copy over all source dict items
    for key in doc.xref_get_keys(source):
        item = doc.xref_get_key(source, key)
        doc.xref_set_key(target, key, item[1])
    return None







PyMuPDF-1.21.1/fitz/version.i

%pythoncode %{
VersionFitz = "1.21.1" # MuPDF version.
VersionBind = "1.21.1" # PyMuPDF version.
VersionDate = "2022-12-13 00:00:01"
version = (VersionBind, VersionFitz, "20221213000001")
%}







PyMuPDF-1.21.1/pytest.ini

[pytest]
python_files =
    tests/test_*.py







PyMuPDF-1.21.1/setup.py

'''
Overview:

    We hard-code the URL of the MuPDF .tar.gz file that we require. This
    generally points to a particular source release on mupdf.com.

    Default behaviour:

        Building an sdist:
            We download the MuPDF .tar.gz file and embed within the sdist.

        Building PyMuPDF:
            If we are not in an sdist we first download the mupdf .tar.gz file.

            Then we extract and build MuPDF locally, before setuptools builds
            PyMuPDF. So PyMuPDF will always be built with the exact MuPDF
            release that we require.

Environmental variables:
    
    PYMUPDF_SETUP_DEVENV
        Location of devenv.com on Windows. If unset we search in some
        hard-coded default locations; if that fails we use just 'devenv.com'.
    
    PYMUPDF_SETUP_MUPDF_BUILD
        If set, overrides location of mupdf when building PyMuPDF:
            Empty string:
                Build PyMuPDF with the system mupdf.
            A string starting with 'git:':
                Use `git clone` to get a mupdf directory. We use the string in
                the git clone command; it must contain the git URL from which
                to clone, and can also contain other `git clone` args, for
                example:
                    PYMUPDF_SETUP_MUPDF_BUILD="git:--branch master https://github.com/ArtifexSoftware/mupdf.git"
            Otherwise:
                Location of mupdf directory.
    
    PYMUPDF_SETUP_MUPDF_BUILD_TYPE
        Unix only. Controls build type of MuPDF. Supported values are:
            debug
            memento
            release (default)

    PYMUPDF_SETUP_MUPDF_CLEAN
        If '1', we do a clean MuPDF build.

    PYMUPDF_SETUP_MUPDF_TGZ
        If set, overrides location of MuPDF .tar.gz file:
            Empty string:
                Do not download MuPDF .tar.gz file. Sdist's will not contain
                MuPDF.
            
            A string containing '://':
                The URL from which to download the MuPDF .tar.gz file. Leaf
                must match mupdf-*.tar.gz.
            
            Otherwise:
                The path of local mupdf git checkout. We put all files in this
                checkout known to git into a local tar archive.
    
Building MuPDF:
    When building MuPDF, we overwrite the mupdf's include/mupdf/fitz/config.h
    with fitz/_config.h and do a PyMuPDF-specific build.

Known build failures:
    Linux:
        *musllinux*.
    Windows:
        pp*:
            fitz_wrap.obj : error LNK2001: unresolved external symbol PyUnicode_DecodeRawUnicodeEscape

    When using cibuildwheel, one can avoid building these failing wheels with:
        CIBW_SKIP='*musllinux* pp*'
'''

import glob
import json
import os
import platform
import re
import shutil
import subprocess
import sys
import tarfile
import urllib.request

from setuptools import Extension, setup
from setuptools.command.build_py import build_py as build_py_orig


_log_prefix = None
def log( text):
    global _log_prefix
    if not _log_prefix:
        p = os.path.abspath( __file__)
        p, p1 = os.path.split( p)
        p, p0 = os.path.split( p)
        _log_prefix = os.path.join( p0, p1)
    print(f'{_log_prefix}: {text}', file=sys.stderr)
    sys.stderr.flush()


if 1:
    # For debugging.
    log(f'sys.argv: {sys.argv}')
    log(f'os.getcwd(): {os.getcwd()}')
    log(f'__file__: {__file__}')
    log(f'$PYTHON_ARCH: {os.environ.get("PYTHON_ARCH")!r}')
    log(f'os.environ ({len(os.environ)}):')
    for k, v in os.environ.items():
        log( f'    {k}: {v}')


def remove(path):
    '''
    Removes file or directory, without raising exception if it doesn't exist.

    We assert-fail if the path still exists when we return, in case of
    permission problems etc.
    '''
    try:
        os.remove( path)
    except Exception:
        pass
    shutil.rmtree( path, ignore_errors=1)
    assert not os.path.exists( path)


def tar_check(path, mode='r:gz', prefix=None, remove=False):
    '''
    Checks items in tar file have same <top-directory>, or <prefix> if not None.

    We fail if items in tar file have different top-level directory names.

    path:
        The tar file.
    mode:
        As tarfile.open().
    prefix:
        If not None, we fail if tar file's <top-directory> is not <prefix>.
    
    Returns the directory name (which will be <prefix> if not None).
    '''
    with tarfile.open( path, mode) as t:
        items = t.getnames()
        assert items
        item = items[0]
        assert not item.startswith('./') and not item.startswith('../')
        s = item.find('/')
        if s == -1:
            prefix_actual = item + '/'
        else:
            prefix_actual = item[:s+1]
        if prefix:
            assert prefix == prefix_actual, f'prefix={prefix} prefix_actual={prefix_actual}'
        for item in items[1:]:
            assert item.startswith( prefix_actual), f'prefix_actual={prefix_actual!r} != item={item!r}'
    return prefix_actual


def tar_extract(path, mode='r:gz', prefix=None, exists='raise'):
    '''
    Extracts tar file.
    
    We fail if items in tar file have different <top-directory>.

    path:
        The tar file.
    mode:
        As tarfile.open().
    prefix:
        If not None, we fail if tar file's <top-directory> is not <prefix>.
    exists:
        What to do if <top-directory> already exists:
            'raise': raise exception.
            'remove': remove existing file/directory before extracting.
            'return': return without extracting.
    
    Returns the directory name (which will be <prefix> if not None, with '/'
    appended if not already present).
    '''
    prefix_actual = tar_check( path, mode, prefix)
    if os.path.exists( prefix_actual):
        if exists == 'raise':
            raise Exception( f'Path already exists: {prefix_actual!r}')
        elif exists == 'remove':
            remove( prefix_actual)
        elif exists == 'return':
            log( f'Not extracting {path} because already exists: {prefix_actual}')
            return prefix_actual
        else:
            assert 0, f'Unrecognised exists={exists!r}'
    assert not os.path.exists( prefix_actual), f'Path already exists: {prefix_actual}'
    log( f'Extracting {path}')
    with tarfile.open( path, mode) as t:
        t.extractall()
    return prefix_actual


def get_gitfiles( directory, submodules=False):
    '''
    Returns list of all files known to git in <directory>; <directory> must be
    somewhere within a git checkout.

    Returned names are all relative to <directory>.

    If <directory>.git exists we use git-ls-files and write list of files to
    <directory>/jtest-git-files.

    Otherwise we require that <directory>/jtest-git-files already exists.
    '''
    def is_within_git_checkout( d):
        while 1:
            #log( '{d=}')
            if not d:
                break
            if os.path.isdir( f'{d}/.git'):
                return True
            d = os.path.dirname( d)

    if is_within_git_checkout( directory):
        command = 'cd ' + directory + ' && git ls-files'
        if submodules:
            command += ' --recurse-submodules'
        command += ' > jtest-git-files'
        log( f'Running: {command}')
        subprocess.run( command, shell=True, check=True)

    with open( '%s/jtest-git-files' % directory, 'r') as f:
        text = f.read()
    ret = text.strip().split( '\n')
    return ret


def get_git_id_raw( directory):
    if not os.path.isdir( '%s/.git' % directory):
        return
    text = system(
            f'cd {directory} && (PAGER= git show --pretty=oneline|head -n 1 && git diff)',
            out='return',
            )
    return text


def word_size():
    '''
    Returns integer word size (32 or 64) of build.
    '''
    # Looks like on Windows, cibuildwheel runs us with a 64-bit Python
    # interpreter even when building a 32-bit wheel. It appears to set
    # PYTHON_ARCH to indicate word size (this isn't documented anywhere?).
    #
    a = os.environ.get( 'PYTHON_ARCH')
    if a is None:
        if sys.maxsize == 2**31-1:
            return 32
        elif sys.maxsize == 2**63-1:
            return 64
        else:
            assert 0, 'Unrecognised sys.maxsize={sys.maxsize!r}'
    else:
        if a == '32':
            return 32
        elif a == '64':
            return 64
        else:
            assert 0, f'Unrecognised $PYTHON_ARCH={a!r}'


class build_ext_first(build_py_orig):
    """
    custom build_py command which runs build_ext first
    this is necessary because build_py needs the fitz.py which is only generated
    by SWIG in the build_ext step
    """
    def run(self):
        self.run_command("build_ext")
        return super().run()


DEFAULT = [
    "mupdf",
    "mupdf-third",
]

ALPINE = DEFAULT + [
    "jbig2dec",
    "jpeg",
    "openjp2",
    "harfbuzz",
]

ARCH_LINUX = DEFAULT + [
    "jbig2dec",
    "openjp2",
    "jpeg",
    "freetype",
    "gumbo",
]

NIX = ARCH_LINUX + [
    "harfbuzz",
]

OPENSUSE = NIX + [
    "png16",
]

DEBIAN = OPENSUSE + [
    "mujs",
]

FEDORA = NIX + [
    "leptonica",
    "tesseract",
]

LIBRARIES = {
    "default": DEFAULT,
    "ubuntu": DEBIAN,
    "arch": ARCH_LINUX,
    "manjaro": ARCH_LINUX,
    "artix": ARCH_LINUX,
    "opensuse": OPENSUSE,
    "fedora": FEDORA,
    "alpine": ALPINE,
    "nix": NIX,
    "debian": DEBIAN,
}


def load_libraries():
    if os.getenv("NIX_STORE"):
        return LIBRARIES["nix"]

    try:
        import distro

        os_id = distro.id()
    except:
        os_id = ""
    if os_id in list(LIBRARIES.keys()) + ["manjaro", "artix"]:
        return LIBRARIES[os_id]

    filepath = "/etc/os-release"
    if not os.path.exists(filepath):
        return LIBRARIES["default"]
    regex = re.compile("^([\\w]+)=(?:'|\")?(.*?)(?:'|\")?$")
    with open(filepath) as os_release:
        info = {
            regex.match(line.strip()).group(1): re.sub(
                r'\\([$"\'\\`])', r"\1", regex.match(line.strip()).group(2)
            )
            for line in os_release
            if regex.match(line.strip())
        }

    os_id = info["ID"]
    if os_id.startswith("opensuse"):
        os_id = "opensuse"
    if os_id not in LIBRARIES.keys():
        return LIBRARIES["default"]
    return LIBRARIES[os_id]


def get_git_id( directory, allow_none=False):
    '''
    Returns text where first line is '<git-sha> <commit summary>' and remaining
    lines contain output from 'git diff' in <directory>.

    directory:
        Root of git checkout.
    allow_none:
        If true, we return None if <directory> is not a git checkout and
        jtest-git-id file does not exist.
    '''
    filename = f'{directory}/jtest-git-id'
    text = get_git_id_raw( directory)
    if text:
        with open( filename, 'w') as f:
            f.write( text)
    elif os.path.isfile( filename):
        with open( filename) as f:
            text = f.read()
    else:
        if not allow_none:
            raise Exception( f'Not in git checkout, and no file called: {filename}.')
        text = None
    return text


mupdf_tgz = os.path.abspath( f'{__file__}/../mupdf.tgz')

def get_mupdf_tgz():
    '''
    Creates .tgz file containing MuPDF source, for inclusion in an sdist.
    
    What we do depends on environmental variable PYMUPDF_SETUP_MUPDF_TGZ; see
    docs at start of this file for details.

    Returns name of top-level directory within the .tgz file.
    '''
    mupdf_url_or_local = os.environ.get(
            'PYMUPDF_SETUP_MUPDF_TGZ',
            'https://mupdf.com/downloads/archive/mupdf-1.21.1-source.tar.gz',
            )
    log( f'mupdf_url_or_local={mupdf_url_or_local!r}')
    if mupdf_url_or_local == '':
        # No mupdf in sdist.
        log( 'mupdf_url_or_local is empty string so removing any mupdf_tgz={mupdf_tgz}')
        remove( mupdf_tgz)
        return
    
    if '://' in mupdf_url_or_local:
        # Download from URL into <mupdf_tgz>.
        mupdf_url = mupdf_url_or_local
        mupdf_url_leaf = os.path.basename( mupdf_url)
        leaf = '.tar.gz'
        assert mupdf_url_leaf.endswith(leaf), f'Unrecognised suffix in mupdf_url={mupdf_url!r}'
        mupdf_local = mupdf_url_leaf[ : -len(leaf)] + '/'
        assert mupdf_local.startswith( 'mupdf-')
        log(f'Downloading from: {mupdf_url}')
        remove( mupdf_url_leaf)
        urllib.request.urlretrieve( mupdf_url, mupdf_url_leaf)
        assert os.path.exists( mupdf_url_leaf)
        tar_check( mupdf_url_leaf, 'r:gz', mupdf_local)
        if mupdf_url_leaf != mupdf_tgz:
            remove( mupdf_tgz)
            os.rename( mupdf_url_leaf, mupdf_tgz)
        return mupdf_local
    
    else:
        # Create archive <mupdf_tgz> contining local mupdf directory's git
        # files.
        mupdf_local = mupdf_url_or_local
        if not mupdf_local.endswith( '/'):
            mupdf_local += '/'
        assert os.path.isdir( mupdf_local), f'Not a directory: {mupdf_local!r}'
        log( f'Creating .tgz from git files in: {mupdf_local}')
        remove( mupdf_tgz)
        with tarfile.open( mupdf_tgz, 'w:gz') as f:
            for name in get_gitfiles( mupdf_local, submodules=True):
                path = os.path.join( mupdf_local, name)
                if os.path.isfile( path):
                    f.add( path, f'mupdf/{name}', recursive=False)
        return mupdf_local


def get_mupdf():
    '''
    Downloads and/or extracts mupdf and returns location of mupdf directory.

    Exact behaviour depends on environmental variable
    PYMUPDF_SETUP_MUPDF_BUILD; see docs at start of this file for details.
    '''
    path = os.environ.get( 'PYMUPDF_SETUP_MUPDF_BUILD')
    if path is None:
        # Default.
        if os.path.exists( mupdf_tgz):
            log( f'mupdf_tgz already exists: {mupdf_tgz}')
        else:
            get_mupdf_tgz()
        return tar_extract( mupdf_tgz, exists='return')
    
    elif path == '':
        # Use system mupdf.
        log( f'PYMUPDF_SETUP_MUPDF_BUILD="", using system mupdf')
        return None
    
    git_prefix = 'git:'
    if path.startswith( git_prefix):
        # Get git clone of mupdf.
        #
        # `mupdf_url_or_local` is taken to be portion of a `git clone` command,
        # for example:
        #
        #   PYMUPDF_SETUP_MUPDF_BUILD="git:--branch master git://git.ghostscript.com/mupdf.git"
        #   PYMUPDF_SETUP_MUPDF_BUILD="git:--branch 1.20.x https://github.com/ArtifexSoftware/mupdf.git"
        #   PYMUPDF_SETUP_MUPDF_BUILD="git:--branch master https://github.com/ArtifexSoftware/mupdf.git"
        #
        # One would usually also set PYMUPDF_SETUP_MUPDF_TGZ= (empty string) to
        # avoid the need to download a .tgz into an sdist.
        #
        command_suffix = path[ len(git_prefix):]
        path = 'mupdf'
        assert not os.path.exists( path), \
                f'Cannot use git clone because local directory already exists: {path}'
        command = (''
                + f'git clone'
                + f' --recursive'
                #+ f' --single-branch'
                #+ f' --recurse-submodules'
                + f' --depth 1'
                + f' --shallow-submodules'
                #+ f' --branch {branch}'
                #+ f' git://git.ghostscript.com/mupdf.git'
                + f' {command_suffix}'
                + f' {path}'
                )
        log( f'Running: {command}')
        subprocess.run( command, shell=True, check=True)

        # Show sha of checkout.
        command = f'cd {path} && git show --pretty=oneline|head -n 1'
        log( f'Running: {command}')
        subprocess.run( command, shell=True, check=False)
    
    if 1:
        # Use custom mupdf directory.
        log( f'Using custom mupdf directory from $PYMUPDF_SETUP_MUPDF_BUILD: {path}')
        assert os.path.isdir( path), f'$PYMUPDF_SETUP_MUPDF_BUILD is not a directory: {path}'
        return path


include_dirs = []
library_dirs = []
libraries = []
extra_link_args = []
extra_compile_args = []

log( f'platform.system()={platform.system()!r}')
log( f'sys.platform={sys.platform!r}')

linux   = platform.system() == 'Linux'
openbsd = platform.system() == 'OpenBSD'
freebsd = platform.system() == 'FreeBSD'
darwin  = platform.system() == 'Darwin'
windows = platform.system() == 'Windows' or platform.system().startswith('CYGWIN')

if 'sdist' in sys.argv:
    # Create local mupdf.tgz, for inclusion in sdist.
    get_mupdf_tgz()


if ('-h' not in sys.argv and '--help' not in sys.argv
        and (0
            or 'bdist_wheel' in sys.argv
            or 'build' in sys.argv
            or 'bdist' in sys.argv
            or 'install' in sys.argv
            )
        ):

    # Build MuPDF before setuptools runs, so that it can link with the MuPDF
    # libraries.
    #
    mupdf_local = get_mupdf()
    if mupdf_local:
        if not mupdf_local.endswith( '/'):
            mupdf_local += '/'
    log( f'mupdf_local={mupdf_local!r}')
    unix_build_dir = None
    
    # Force clean build of MuPDF.
    #
    if mupdf_local and os.environ.get( 'PYMUPDF_SETUP_MUPDF_CLEAN') == '1':
        remove( f'{mupdf_local}build')

    # Always force clean build of PyMuPDF SWIG files etc, because setuptools
    # doesn't seem to notice when our mupdf headers etc are newer than the
    # SWIG-generated files.
    #
    remove( os.path.abspath( f'{__file__}/../build/'))
    remove( os.path.abspath( f'{__file__}/../install/'))
    
    # Copy PyMuPDF's config file into mupdf. For example this #define's TOFU,
    # which excludes various fonts in the MuPDF binaries.
    if mupdf_local:
        log( f'Building mupdf.')
        shutil.copy2( 'fitz/_config.h', f'{mupdf_local}include/mupdf/fitz/config.h')
    
        if windows:
            # Windows build.
            devenv = os.environ.get('PYMUPDF_SETUP_DEVENV')
            if not devenv:
                # Search for devenv in some known locations.
                devenv = glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/2019/*/Common7/IDE/devenv.com')
                if devenv:
                    devenv = devenv[0]
            if not devenv:
                devenv = 'devenv.com'
                log( f'Cannot find devenv.com in default locations, using: {devenv!r}')
            windows_config = 'Win32' if word_size()==32 else 'x64'
            command = (
                    f'cd {mupdf_local}&&'
                    f'"{devenv}"'
                    f' platform/win32/mupdf.sln'
                    f' /Build "ReleaseTesseract|{windows_config}"'
                    f' /Project mupdf'
                    )
        else:
            # Unix build.
            #
            
            flags = 'HAVE_X11=no HAVE_GLFW=no HAVE_GLUT=no HAVE_LEPTONICA=yes HAVE_TESSERACT=yes'
            flags += ' verbose=yes'
            env = ''
            make = 'make'
            if linux:
                env += ' CFLAGS="-fPIC"'
            if openbsd or freebsd:
                make = 'gmake'
                env += ' CFLAGS="-fPIC" CXX=clang++'
            
            unix_build_type = os.environ.get( 'PYMUPDF_SETUP_MUPDF_BUILD_TYPE', 'release')
            assert unix_build_type in ('debug', 'memento', 'release')
            flags += f' build={unix_build_type}'
            
            # This is for MacOS cross-compilation, where ARCHFLAGS can be
            # '-arch arm64'.
            #
            archflags = os.environ.get( 'ARCHFLAGS')
            if archflags:
                flags += f' XCFLAGS="{archflags}" XLIBS="{archflags}"'
            
            # We specify a build directory path containing 'pymupdf' so that we
            # coexist with non-pymupdf builds (because pymupdf builds have a
            # different config.h).
            #
            # We also append further text to try to allow different builds to
            # work if they reuse the mupdf directory.
            #
            # Using platform.machine() (e.g. 'amd64') ensures that different
            # builds of mupdf on a shared filesystem can coexist. Using
            # $_PYTHON_HOST_PLATFORM allows cross-compiled cibuildwheel builds
            # to coexist, e.g. on github.
            #
            build_prefix = f'pymupdf-{platform.machine()}-'
            build_prefix_extra = os.environ.get( '_PYTHON_HOST_PLATFORM')
            if build_prefix_extra:
                build_prefix += f'{build_prefix_extra}-'
            flags += f' build_prefix={build_prefix}'
            
            unix_build_dir = f'{mupdf_local}build/{build_prefix}{unix_build_type}'
            
            command = f'cd {mupdf_local} && {env} {make} {flags}'
            command += f' && echo {unix_build_dir}:'
            command += f' && ls -l build/{build_prefix}{unix_build_type}'
        
        log( f'Building MuPDF by running: {command}')
        subprocess.run( command, shell=True, check=True)
        log( f'Finished building mupdf.')
    else:
        # Use installed MuPDF.
        log( f'Using system mupdf.')
        unix_build_type = ''
    
    # Set include and library paths for building PyMuPDF.
    #
    if mupdf_local:
        assert os.path.isdir( mupdf_local), f'Not a directory: {mupdf_local!r}'
        include_dirs.append( f'{mupdf_local}include')
        include_dirs.append( f'{mupdf_local}include/mupdf')
        include_dirs.append( f'{mupdf_local}thirdparty/freetype/include')
        if unix_build_dir:
            library_dirs.append( unix_build_dir)

    if mupdf_local and (linux or openbsd or freebsd):
        # setuptools' link command always seems to put '-L
        # /usr/local/lib' before any <library_dirs> that we specify,
        # so '-l mupdf -l mupdf-third' will end up using the system
        # libmupdf.so (if installed) instead of the one we've built in
        # <mupdf_local>.
        #
        # So we force linking with our mupdf libraries by specifying
        # them in <extra_link_args>.
        #
        extra_link_args.append( f'{unix_build_dir}/libmupdf.a')
        extra_link_args.append( f'{unix_build_dir}/libmupdf-third.a')
        library_dirs = []
        libraries = []
        if openbsd or freebsd:
            if os.environ.get( 'PYMUPDF_SETUP_MUPDF_BUILD_TYPE') == 'memento':
                extra_link_args.append( f'-lexecinfo')
    
    elif mupdf_local and darwin:
        library_dirs.append(f'{unix_build_dir}')
        libraries = [
                f'mupdf',
                f'mupdf-third',
                ]
    
    elif linux:
        # Use system libraries.
        include_dirs.append( '/usr/include/mupdf')
        include_dirs.append( '/usr/local/include/mupdf')
        include_dirs.append( '/usr/include/freetype2')
        libraries = load_libraries()
        extra_link_args = []

    elif darwin or openbsd or freebsd:
        # Use system libraries.
        include_dirs.append("/usr/local/include/mupdf")
        include_dirs.append("/usr/local/include")
        include_dirs.append("/opt/homebrew/include/mupdf")
        library_dirs.append("/usr/local/lib")
        libraries = ["mupdf", "mupdf-third"]
        library_dirs.append("/opt/homebrew/lib")

        include_dirs.append("/usr/include/freetype2")
        include_dirs.append("/usr/local/include/freetype2")
        include_dirs.append("/usr/X11R6/include/freetype2")
        include_dirs.append("/opt/homebrew/include")
        include_dirs.append("/opt/homebrew/include/freetype2")

        library_dirs.append("/opt/homebrew/lib")

        if freebsd:
            libraries += [
                    'freetype',
                    'harfbuzz',
                    ]

    elif windows:
        # Windows.
        assert mupdf_local
        if word_size() == 32:
            library_dirs.append( f'{mupdf_local}platform/win32/ReleaseTesseract')
            library_dirs.append( f'{mupdf_local}platform/win32/Release')
        else:
            library_dirs.append( f'{mupdf_local}platform/win32/x64/ReleaseTesseract')
            library_dirs.append( f'{mupdf_local}platform/win32/x64/Release')
        libraries = [
            "libmupdf",
            "libresources",
            "libthirdparty",
        ]
        extra_link_args = ["/NODEFAULTLIB:MSVCRT"]
    
    else:
        assert 0, 'Unrecognised OS'
    
    if linux or openbsd or freebsd or darwin:
        extra_compile_args.append( '-Wno-incompatible-pointer-types')
        extra_compile_args.append( '-Wno-pointer-sign')
        extra_compile_args.append( '-Wno-sign-compare')
        if unix_build_type == 'memento':
            extra_compile_args.append( '-DMEMENTO')
    if openbsd:
        extra_compile_args.append( '-Wno-deprecated-declarations')

    # add any local include and library folders
    pymupdf_dirs = os.environ.get("PYMUPDF_DIRS", None)
    if pymupdf_dirs:
        with open(pymupdf_dirs) as dirfile:
            local_dirs = json.load(dirfile)
            include_dirs += local_dirs.get("include_dirs", [])
            library_dirs += local_dirs.get("library_dirs", [])

log( f'include_dirs={include_dirs}')
log( f'library_dirs={library_dirs}')
log( f'libraries={libraries}')
log( f'extra_compile_args={extra_compile_args}')
log( f'extra_link_args={extra_link_args}')

module = Extension(
    "fitz._fitz",
    ["fitz/fitz.i"],
    language="c++",
    include_dirs=include_dirs,
    library_dirs=library_dirs,
    libraries=libraries,
    extra_compile_args=extra_compile_args,
    extra_link_args=extra_link_args,
    # Disable bogus SWIG warning 509, 'Overloaded method ... effectively
    # ignored, as it is shadowed by ...'.
    swig_opts=['-w509']
)


setup_py_cwd = os.path.dirname(__file__)
classifiers = [
    "Development Status :: 5 - Production/Stable",
    "Intended Audience :: Developers",
    "Intended Audience :: Information Technology",
    "Operating System :: MacOS",
    "Operating System :: Microsoft :: Windows",
    "Operating System :: POSIX :: Linux",
    "Programming Language :: C",
    "Programming Language :: Python :: 3 :: Only",
    "Programming Language :: Python :: Implementation :: CPython",
    "Topic :: Utilities",
    "Topic :: Multimedia :: Graphics",
    "Topic :: Software Development :: Libraries",
]
with open(os.path.join(setup_py_cwd, "README.md"), encoding="utf-8") as f:
    readme = f.read()

setup(
    name="PyMuPDF",
    version="1.21.1",
    description="Python bindings for the PDF toolkit and renderer MuPDF",
    long_description=readme,
    long_description_content_type="text/markdown",
    classifiers=classifiers,
    url="https://github.com/pymupdf/PyMuPDF",
    author="Artifex",
    author_email="support@artifex.com",
    cmdclass={"build_py": build_ext_first},
    ext_modules=[module],
    python_requires=">=3.7",
    py_modules=["fitz.fitz", "fitz.utils", "fitz.__main__"],
    license="GNU AFFERO GPL 3.0",
    project_urls={
        "Documentation": "https://pymupdf.readthedocs.io/",
        "Source": "https://github.com/pymupdf/pymupdf",
        "Tracker": "https://github.com/pymupdf/PyMuPDF/issues",
        "Changelog": "https://pymupdf.readthedocs.io/en/latest/changes.html",
    },
)







PyMuPDF-1.21.1/signatures/version1/cla.json

{
  "signedContributors": [
    {
      "name": "julian-smith-artifex-com",
      "id": 83358719,
      "comment_id": 1337525697,
      "created_at": "2022-12-05T14:58:13Z",
      "repoId": 6105714,
      "pullRequestNo": 2103
    }
  ]
}






PyMuPDF-1.21.1/tests/README.md

# Testing your PyMuPDF Installation
This folder contains a number of basic tests to confirm that PyMuPDF is correctly installed.

The following areas are currently covered:
* encryption and decryption
* extraction of drawings
* "geometry": correct working of points, rectangles, matrices and operator algebra
* image bbox computation
* handling of embedded files
* image insertion
* PDF document joining
* computation of quadrilaterals for non-horizontal text
* extraction of non-unicode fontnames
* handling of PDF standard metadata
* handling of non-PDF document types
* programmatic editing of PDF object definition sources
* mass deletion of PDF pages
* handling of PDF page labels
* pixmap handling
* show PDF pages inside other PDF pages
* text extraction
* text searching
* handling of PDF Tables of Contents
* annotation handling
* field / widget handling
* image extraction

This is **_not a coverage test_**, although a significant part of the relevant Python part **_does_** get executed (ca. 80%). Achieving a much higher code coverage remains an ongoing task.

To use these scripts, you must have installed `pytest`:

`python -m pip install pytest`

Then simply execute `python -m pytest` in a terminal of this folder. `pytest` will automatically locate all scripts and execute them. All tests should run successfully and you will see an output like this:

```
pytest --cov=fitz
============================ test session starts =============================
platform linux -- Python 3.8.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /mnt/d/harald/desktop/fitzPython119/pymupdf
plugins: cov-2.12.0
collected 79 items

test_annots.py ...............                                          [ 18%]
test_badfonts.py .                                                      [ 20%]
test_crypting.py .                                                      [ 21%]
test_drawings.py ..                                                     [ 24%]
test_embeddedfiles.py .                                                 [ 25%]
test_font.py ..                                                         [ 27%]
test_general.py ............                                            [ 43%]
test_geometry.py .......                                                [ 51%]
test_imagebbox.py .                                                     [ 53%]
test_insertimage.py .                                                   [ 54%]
test_insertpdf.py .                                                     [ 55%]
test_linequad.py .                                                      [ 56%]
test_metadata.py ..                                                     [ 59%]
test_nonpdf.py ...                                                      [ 63%]
test_object_manipulation.py ...                                         [ 67%]
test_optional_content.py ..                                             [ 69%]
test_pagedelete.py .                                                    [ 70%]
test_pagelabels.py .                                                    [ 72%]
test_pixmap.py ......                                                   [ 79%]
test_showpdfpage.py .                                                   [ 81%]
test_textbox.py ....                                                    [ 86%]
test_textextract.py .                                                   [ 87%]
test_textsearch.py .                                                    [ 88%]
test_toc.py ....                                                        [ 93%]
test_widgets.py .....                                                   [100%]

----------- coverage: platform linux, python 3.8.5-final-0 -----------
Name                                                      Stmts   Miss  Cover
-----------------------------------------------------------------------------
/usr/local/lib/python3.8/dist-packages/fitz/__init__.py     335     13    96%
/usr/local/lib/python3.8/dist-packages/fitz/fitz.py        4183    740    82%
/usr/local/lib/python3.8/dist-packages/fitz/utils.py       2196    669    70%
-----------------------------------------------------------------------------
TOTAL                                                      6714   1422    79%


============================ 79 passed in 5.76s ==============================
```

## Known test failure with non-default build of MuPDF

If PyMuPDF has been built with a non-default build of MuPDF (using
environmental variable ``PYMUPDF_SETUP_MUPDF_BUILD``), it is possible that
``tests/test_textbox.py:test_textbox3()`` will fail, because it relies on MuPDF
having been built with PyMuPDF's customized configuration, ``fitz/_config.h``.

One can skip this particular test by adding ``-k 'not test_textbox3'`` to the
pytest command line.







PyMuPDF-1.21.1/tests/resources/001003ED.pdf




 EDITORIAL z



unaufhörlich rast die Zukunft auf uns zu und mehr oder weniger gekonnt 
werfen wir uns in den Strom der Zeit. Zukunft ist implizit auch das Thema 
dreier Beiträge in dieser Ausgabe: über das weltgrößte Observatorium, die 
drohende Grippepandemie sowie die Visionen von Ray Kurzweil über den 
Umbau des Menschen zu einer »Version 2.0«.



Als ich kürzlich in Argentinien an der Einweihungsfeier des Pierre-Auger-
Observatoriums zur Beobachtung kosmischer Strahlen teilnahm, sah ich, wie 
damit auch symbolisch ein Fenster zum Weltall weiter aufgestoßen wurde. 
Die Mikrogeschosse bringen die Forscher schier zur Verzweifl ung: Kein 
Mensch weiß, woher sie stammen – eines der letzten großen Rätsel der As-



trophysik (S. 12). Doch Ge-
heimnisse sind das Salz der 
Wissenschaft; und so bildete 
der Event in Argentinien nur 
einen Mosaikstein innerhalb 
der gerade laufenden Entde-
ckung des heißen Kosmos, 
angetrieben durch die Ge-
burt der Teilchenastrophysik 
im letzten Jahrzehnt. Das 
meint neuartige Detektoren 
und Observatorien, mit de-
nen derzeit nach Gravitations-
wellen, nach der kosmischen 



»Dunklen Energie« und nach Hochenergie-Gammastrahlen gespäht und re-
volutionäre Physik betrieben wird – mit Neutrinos und der direkten Bestim-
mung ihrer Masse. Ein neues Bild des Universums zeichnet sich ab.



Währenddessen bedrängen uns auf der Erde andere Fragen, die gleichfalls drohen – 
oder versprechen, unsere Zukunft zu dominieren. Es ist nicht die Frage, ob, 
sondern nur, wann ein hochansteckendes Infl uenzavirus die nächste Pande-
mie auslöst – darin sind sich Epidemiologen einig. Wie die Pläne aussehen, 
um dieser globalen Bedrohung zu begegnen, berichten wir ab S. 72. 



Mit solchen Details gibt sich Ray Kurzweil bei der Betrachtung der Zukunft 
nicht ab. Dem amerikanischen Erfi nder und Visionär geht es darum, sich (und 
uns) auszumalen, wie Technologien, die sich exponentiell entwickeln, in we-
nigen Jahrzehnten den Menschen verändern werden. Kurzweil, dessen Essay 
ich durchaus auch als Polemik verstehe, weitet seine vergangenen Prophe-
tien diesmal auf die biologische Neugestaltung des menschlichen Körpers 
und seines Gehirns aus. Dass er mit allem Recht hat, bezweifl e ich. Aber 
wenn auch nur ein Viertel davon eintreffen wird, dann gehen wir, wie die Chi-
nesen gerne sagen, »interessanten Zeiten« entgegen (S. 100).
Herzlich Ihr



Schöne neue Welten



Reinhard Breuer
Chefredakteur



Unglücklich der Geist, der um Künftiges bangt.
»Essais«, Michel de Montaigne (1533 – 1592)



SPEKTRUM DER WISSENSCHAFT Q JANUAR 2006 



RUBRIK_Editorial_01-06.indd 3RUBRIK_Editorial_01-06.indd   3 01.12.2005 16:53:06 Uhr01.12.2005   16:53:06 Uhr








			HAUPTÜBERSICHT


			Januar 01/2006


			SPEKTROGRAMM


			Urzeit-Godzilla


			Frühchristliche Mosaike im Knast


			Evolution auf Eis


			Entwarnung bei Kondensstreifen


			Spermatausch beim Schnecken-Sex


			Mehr Monde für Pluto


			Endlich ein Malaria-Impfstoff


			Spuren der ersten Sterne


			Bild des Monats





			FORSCHUNG AKTUELL


			Der Super-Teilchenfänger in der Pampa


			Auf der Fährte der Lepra


			Vampire gegen Schlaganfall


			Der Flug des Kolibris





			THEMEN


			Entwicklung von Spiralgalaxien


			Geschichtsträchtige Genspuren


			Was Sedimente verraten


			Von Baumringen und Regenmengen


			Software-Agenten in Not


			Künstlicher kalter Antiwasserstoff


			Rüsten gegen eine Pandemie


			Satelliten zeigen Lawinengefahr


			Provokante Verheißung: Update für den Menschen





			KOMMENTAR


			Springers Einwüfe: Holland, die Hydrometropole





			WISSENSCHAFT IM ...


			Alltag: Eine Decke für die Straße


			Rückblick: Mozarts Ohr • Per Auto zum Südpol u.a.





			JUNGE WISSENSCHAFT


			Ein Putzroboter für die Mama





			REZENSIONEN


			Vulkanismus verstehen und erleben


			Warum der Mensch glaubt


			Biomedizin und Ethik


			Mythos Meer


			Warum Frauen nicht schwach ... sind


			PISA, Bach, Pythagoras





			MATHEMATISCHE UNTERHALTUNGEN


			Himmliches Ballett





			WEITERE RUBRIKEN


			Editorial


			Leserbriefe/Impressum


			Preisrätsel


			Vorschau





















PyMuPDF-1.21.1/tests/resources/1.pdf




Jorj X


Something Special





Jorj X


Kommentar


this is a comment





Jorj X


Schreibmaschine


typewriter text





Jorj X


Text-Box


modified text field





Jorj X


Erläuterung


explanation text





Jorj X


Pfeil





Jorj X


Rechteck





Jorj X


Oval


comment in circle





Jorj X


Linienzug





Jorj X


Polygon





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift








2.7.9 (default, Dec 10 2014, 12:24:55) [MSC v.1500 32 bit (Intel)]
PyMuPDF 1.9.3: Python bindings for the MuPDF 1.9a library,
built on 2016-11-09 13:52:29
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104051923-04'00'", 'creationDate': "D:20161104051921-04'00'", 'name': 'Sold', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(38.30866622924805, 29.99896240234375, 283.5176696777344, 94.3599853515625)
type         ====> [12, 'Stamp']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 0.0], 'fill': []}
flags        ====> 28
info         ====> {'content': 'this is a comment', 'modDate': "D:20161104051957-04'00'", 'creationDate': "D:20161104051939-04'00'", 'name': 'Comment', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(339.59588623046875, 51.32275390625, 359.59588623046875, 69.32275390625)
type         ====> [0, 'Text']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 0.0, 'dashes': []}
colors       ====> {'default': [0.6862750053405762, 0.9333339929580688, 0.9333339929580688], 'fill': []}
flags        ====> 4
info         ====> {'content': 'typewriter text', 'modDate': "D:20161108150545-04'00'", 'creationDate': "D:20161104052009-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(396.85333251953125, 53.29669189453125, 506.6533203125, 65.29669189453125)
type         ====> [2, 'FreeText', 'FreeTextTypewriter']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [1, 'C'], 'hradius': '', 'width': 3.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'modified text field', 'modDate': "D:20161105091916-04'00'", 'creationDate': "D:20161104052030-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(49.683258056640625, 131.589111328125, 166.80604553222656, 166.71453857421875)
type         ====> [2, 'FreeText']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'explanation text', 'modDate': "D:20161104052130-04'00'", 'creationDate': "D:20161104052053-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'OpenArrow', 'end': ''}
rect         ====> fitz.Rect(211.27972412109375, 133.12445068359375, 343.1976318359375, 151.12445068359375)
type         ====> [2, 'FreeText', 'FreeTextCallout']
vertices     ====> [212.2474365234375, 704.700439453125, 231.19761657714844, 699.7655639648438, 243.19761657714844, 699.7655639648438]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105085923-04'00'", 'creationDate': "D:20161104052133-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'RClosedArrow', 'end': 'Diamond'}
rect         ====> fitz.Rect(386.5209045410156, 132.9107666015625, 480.52313232421875, 143.64208984375)
type         ====> [3, 'Line', 'LineArrow']
vertices     ====> [394.8789367675781, 703.7134399414062, 476.8163146972656, 704.700439453125]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': [0.7529420256614685, 0.7529420256614685, 0.7529420256614685]}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161108015351-04'00'", 'creationDate': "D:20161104052208-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(65.7791748046875, 190.2489013671875, 202.0124053955078, 236.63677978515625)
type         ====> [4, 'Square']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 2.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': [0.7529420256614685, 1.0, 1.0]}
flags        ====> 4
info         ====> {'content': 'comment in circle', 'modDate': "D:20161108150519-04'00'", 'creationDate': "D:20161106044139-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(247.78652954101562, 170.17724609375, 343.544677734375, 260.888427734375)
type         ====> [5, 'Circle']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052302-04'00'", 'creationDate': "D:20161104052251-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': 'OpenArrow'}
rect         ====> fitz.Rect(397.3605651855469, 178.933837890625, 504.1889343261719, 210.93402099609375)
type         ====> [7, 'PolyLine']
vertices     ====> [397.8405456542969, 656.338623046875, 404.75091552734375, 632.6512451171875, 438.31561279296875, 632.6512451171875, 447.2004089355469, 657.3256225585938, 471.8803405761719, 631.6642456054688, 503.47064208984375, 662.260498046875]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161106044025-04'00'", 'creationDate': "D:20161104052317-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(69.89996337890625, 255.60870361328125, 213.8157196044922, 317.83428955078125)
type         ====> [6, 'Polygon']
vertices     ====> [70.4776840209961, 567.9854125976562, 78.3752670288086, 526.532470703125, 158.33824157714844, 524.5585327148438, 212.6341094970703, 550.2199096679688, 135.63270568847656, 585.7510375976562]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052355-04'00'", 'creationDate': "D:20161104052347-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(283.20770263671875, 270.017822265625, 404.2485046386719, 318.91754150390625)
type         ====> [14, 'Ink']
vertices     ====> [[283.3256530761719, 563.5629272460938, 309.97998046875, 557.64111328125, 340.5830993652344, 556.6541137695312, 345.5190734863281, 551.71923828125, 341.5702819824219, 537.901611328125, 345.5190734863281, 534.940673828125, 367.2374267578125, 536.9146118164062, 393.8917541503906, 535.9276123046875, 397.8405456542969, 540.8624877929688, 400.8021240234375, 539.8755493164062, 403.7637023925781, 549.7453002929688], [395.86614990234375, 558.6280517578125, 385.9941711425781, 557.64111328125], [367.2374267578125, 550.7322387695312, 337.6214904785156, 530.0057983398438, 321.8263244628906, 524.0839233398438, 310.9671630859375, 525.0709228515625, 308.9927673339844, 530.0057983398438, 305.0439758300781, 535.9276123046875, 305.0439758300781, 549.7453002929688, 308.0055847167969, 553.6931762695312, 312.9415588378906, 558.6280517578125, 327.74951171875, 563.5629272460938, 355.39105224609375, 565.536865234375, 366.2502136230469, 570.4717407226562, 383.0325622558594, 570.4717407226562, 387.96856689453125, 566.5238647460938, 398.8277282714844, 563.5629272460938]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124032-04'00'", 'creationDate': "D:20161105124026-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(108.5757827758789, 365.8624267578125, 178.93264770507812, 406.0747985839844)
type         ====> [14, 'Ink']
vertices     ====> [[108.70982360839844, 463.3018798828125, 128.9523468017578, 469.29931640625, 139.44847106933594, 475.2967529296875, 139.44847106933594, 463.3018798828125, 143.94680786132812, 458.05413818359375], [121.45511627197266, 454.30572509765625, 130.4517822265625, 454.30572509765625, 132.70095825195312, 456.5547790527344, 131.95123291015625, 452.05670166015625, 134.20040893554688, 448.30828857421875, 136.44956970214844, 437.8127746582031, 144.69651794433594, 437.8127746582031, 164.9390411376953, 436.31341552734375], [161.1904296875, 469.29931640625, 168.68765258789062, 469.29931640625, 173.9357147216797, 465.5509338378906, 176.9346160888672, 461.0528564453125, 178.43405151367188, 446.05926513671875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124033-04'00'", 'creationDate': "D:20161105124033-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(161.1904296875, 386.3345947265625, 209.92242431640625, 387.3345947265625)
type         ====> [14, 'Ink']
vertices     ====> [[209.92242431640625, 455.055419921875, 161.1904296875, 455.055419921875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124036-04'00'", 'creationDate': "D:20161105124035-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(188.2412567138672, 367.2844543457031, 193.92710876464844, 399.61651611328125)
type         ====> [14, 'Ink']
vertices     ====> [[189.67990112304688, 474.5470886230469, 188.93017578125, 464.8012390136719, 191.92906188964844, 458.05413818359375, 193.4285125732422, 442.31085205078125]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124040-04'00'", 'creationDate': "D:20161105124037-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(88.03831481933594, 367.0860900878906, 245.77398681640625, 404.91131591796875)
type         ====> [14, 'Ink']
vertices     ====> [[235.41299438476562, 469.29931640625, 240.6610565185547, 465.5509338378906, 242.16050720214844, 459.5534973144531, 245.15939331054688, 458.05413818359375, 243.65994262695312, 453.5560607910156, 243.65994262695312, 449.8076477050781, 222.66770935058594, 440.06182861328125, 211.42185974121094, 438.5624694824219, 209.17269897460938, 437.8127746582031, 214.42076110839844, 452.05670166015625, 218.16937255859375, 455.8050842285156, 218.91909790039062, 462.5522155761719, 216.669921875, 464.05157470703125, 186.68101501464844, 464.05157470703125, 143.94680786132812, 468.5496520996094, 135.69984436035156, 465.5509338378906, 125.95345306396484, 464.8012390136719, 118.45622253417969, 461.8025207519531, 104.21148681640625, 461.8025207519531, 94.465087890625, 461.0528564453125, 92.96564483642578, 466.30059814453125, 88.4673080444336, 474.5470886230469]]

 test.pdf page 0  -  15 annotations, end of program




test1.txt












PyMuPDF-1.21.1/tests/resources/2.pdf




PyMuPDF Documentation



version 1.8



Ruikai Liu



Jorj McKie



November 20, 2015

















Contents
The PyMuPDF Documentation 1



Introduction 1



Note on the Name fitz 1



Installation 2



Step 1: Download PyMuPDF 2



Step 2: Download MuPDF 1.8 2



Step 3: Build / Setup PyMuPDF 2



Note on using UPX 2



Tutorial 3



Import the Bindings 3



Open a Document 3



Some Document methods and attributes 3



Access Meta Data 3



Work with Outlines 4



Some Outline methods and attributes 4



Some Outline.dest attributes 4



Work with Pages 4



Inspect the links on a Page 4



Render a Page 5



Save the page image in a file 5



Display the image in dialog managers 5



Text extraction 6



Text Searching 6



Output 6



Close 7



Example: Dynamically cleaning up corrupt PDF documents 7



Classes 9



Colorspace 10



Device 11



DisplayList 12



Document 13



Identity 16



IRect 17



Link 18



linkDest 19



Matrix 21



Shifting 23



Flipping 23



Shearing 24



Rotating 25











Outline 26



Page 27



Pixmap 28



Point 30



Rect 31



TextPage 33



TextSheet 34



Constants and Enumerations 35



Constants 35



Enumerations 35



Appendix 37



Example Outputs of Text Extraction Methods 37



TextPage.extractText() 37



TextPage.extractHTML() 37



TextPage.extractJSON() 37



TextPage.extractXML() 38



Resource Requirements of Text Extraction Methods 38



Performance 39



Data Sizes 39



Index 41











The PyMuPDF Documentation



Introduction



PyMuPDF (formerly known as python-fitz) is a Python binding for MuPDF - "a lightweight PDF and XPS viewer".



MuPDF can access files in PDF, XPS, OpenXPS, CBZ (comic book) and EPUB (e-book) formats.



These are files with extensions *.pdf, *.xps, *.oxps, *.cbz or *.epub (so in essence, with this binding you



can develop e-book viewers in Python ...)



PyMuPDF provides access to all important functions of MuPDF from within a Python environment. Nevertheless, we



are continuously expanding this function set.



MuPDF stands out among all similar products for its top rendering capability and unsurpassed processing speed.



You can check this out yourself: Compare the various free PDF-viewers. In terms of speed and rendering quality



SumatraPDF ranges at the top (apart from MuPDF's own standalone viewer) - and it is based on MuPDF!



While PyMuPDF has been available since several years for an earlier version of MuPDF (1.2), it was until only mid



May 2015, that its creator and a few co-workers decided to elevate it to support the current release of MuPDF (first



1,7a and, since November 2015, 1.8).



And we are determined to keep PyMuPDF current with future MuPDF changes!



This work is now completed.



PyMuPDF has been tested on Linux, Windows 7, Windows 10, Python 2 and Python 3 (x86 versions). Other



platforms should work too as long as MuPDF supports them.



The main differences compared to version 1.2 are



• A greatly simplified installation procedure: For Windows and Linux platforms it should come down to running



the python setup.py install command.



• The API has changed: it is now simpler and a lot less cryptic.



• The supported function set has been significantly increased: apart from rendering, MuPDF's traditional



strength, we now also offer a wide range of text extraction options.



• Demo code has been extended, and an additional examples directory is there to contain working programs.



Among them are an editor for a document's table of contents, a full featured document joiner and a



document-to-text conversion utility.



We invite you to join our efforts by contributing to the the wiki pages, by using what is there - and, of course, by



submitting issues and bugs to the site!



Note on the Name fitz



The Python import statement for this library is import fitz. Here is the reason why:



The original rendering library for MuPDF was called Libart. "After Artifex Software acquired the MuPDF project,



the development focus shifted on writing a new modern graphics library called Fitz. Fitz was originally intended as



an R&D project to replace the aging Ghostscript graphics library, but has instead become the rendering engine



powering MuPDF." (Quoted from Wikipedia).



The PyMuPDF Documentation



1





http://www.mupdf.com/


http://www.sumatrapdfreader.org/


https://en.wikipedia.org/wiki/MuPDF








Installation



This describes how to install PyMuPDF.



Step 1: Download PyMuPDF



Download this repository and unzip / decompress it. This will give you a folder, let us call it PyFitz.



Step 2: Download MuPDF 1.8



Download mupdf-1.8-source.tar.gz from MuPDF version 1.8 source, and unzip / decompress it. Let us call



the resulting folder mupdf18.



Put it inside PyFitz as a subdirectory, if you want to keep everything in one place.



If your platform is not Windows, you must generate MuPDF now. The MuPDF download includes generation



procedures / makefiles for numerous platforms.



On Windows, you have two options:



• if you have installed MS Visual Studio, generate MuPDF lib files now. The respective VS project files



are contained in ./PyFitz/mupdf18/platform/win32. If that worked fine, the lib files are now in



./PyFitz/mupdf18/platform/win32/Release. Update setup.py to reference this directory as



library_dirs=['./mupdf18/platform/win32/Release'].



• if you have not installed Visual Studio or if you do not want to generate MuPDF, you must download



PyMuPDF Optional Material now and unzip / decompress its content in directory



./PyFitz/PyMuPDF-optional-material. This optional material contains the lib files needed for



PyMuPDF generation.



Step 3: Build / Setup PyMuPDF



If necessary, adjust the setup.py script now. E.g. make sure that



• the include directory is correctly set in sync with your directory structure



• the object code libraries are correctly defined



Now perform a python setup.py install



Note on using UPX



In Windows systems, your PyMuPDF installation will end up with three files: __init__.py, fitz.py and



_fitz.pyd in the site-packages directory. The PYD file is Python's DLL version on Windows systems.



_fitz.pyd has a size of 9.5 to 10 MB.



You can reduce this by applying the compression utility UPX to it: upx -9 _fitz.pyd. This will reduce the file to



about 4.5 MB. This should reduce load times (import fitz statement) while keeping it fully functional.



Installation



2





http://mupdf.com/downloads/


https://github.com/JorjMcKie/PyMuPDF-optional-material/








Tutorial



This tutorial will show you the use of MuPDF in Python step by step.



Because MuPDF supports not only PDF, but also XPS, OpenXPS and EPUB formats, so does PyMuPDF.



Nevertheless we will only talk about PDF files for the sake of brevity.



As for string handling, MuPDF will pass back any string as UTF-8 encoded - no exceptions. Where this binding has



added functionality, we usually decode string to unicode. An example is the Document.ToC() method.



Import the Bindings



The Python bindings to MuPDF are made available by this import statement:



import fitz



Open a Document



In order to access a supported document, it must be opened with the following statement:



doc = fitz.Document(filename)



This will create doc as a Document object. filename must be a Python string or unicode object that specifies the



name of an existing file (with or without a fully or partially qualified path).



It is also possible to construct a document from memory data, i.e. without using a file. See Document for details.



A Document contains several attributes and functions. Among them are meta information (like "author" or "subject"),



number of total pages, outline and encryption information.



Some Document methods and attributes



Method / Attribute Description



Document.pageCount Number of pages of filename (integer).



Document.metadata Metadata of the Document (dictionary).



Document.outline First outline entry of Document



Document.ToC() Table of contents of Document (list).



Document.loadPage() Create a Page object.



Access Meta Data



Document.metadata is a Python dictionary with the following keys. For details of their meanings and formats



consult the PDF manuals, e.g. Adobe PDF Reference sixth edition 1.7 November 2006. Further information can also



be found in chapter Document. The meta data fields are of type string if not otherwise indicated and may be missing,



in which case they contain None.



Key Value



producer



Producer (producing software)



format



PDF format, e.g. 'PDF-1.4'



encryption



Encryption method used



author



Author



modDate



Date of last modification



Tutorial



3





http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf








keywords



Keywords



title



Title



creationDate



Date of creation



creator



Creating application



subject



Subject



Work with Outlines



Entering the documents outline tree works like this:



olItem = doc.outline    # the document's first outline item



This creates olItem as an Outline object.



Some Outline methods and attributes



Method / Attribute Description



Outline.saveText() Save table of contents as a text file



Outline.saveXML() Save table of contents as a quasi-XML file



Outline.next Next item of the same level



Outline.down Next item one level down



Outline.title Title of this item



Outline.dest Destination ('where does this entry point to?')



Some Outline.dest attributes



Attribute Description



Outline.dest.page Target page number



Outline.dest.lt Top-left corner of target rectangle



Outline.dest.rb Bottem-right corner of target rectangle



MuPDF also supports outline destinations to other files and to URIs. See Outline.



In order to get a document's table of contents as a Python list, use the following function:



toc = doc.ToC()       # [[level, title, page], ...], or []



Work with Pages



Tasks that can be performed with a Page are at the core of MuPDF's functionality. Among other things, you can



render a Page, optionally zooming, rotating or shearing it. You can write it's image to files (in PNG format), extract



text from it or perform searches for text elements. At first, a page object must be created:



page = doc.loadPage(n)        # represents page n of the document



Here are some typical uses of Page objects:



Inspect the links on a Page



Tutorial



4











Here is an example that displays all links and their types:



#-----------------------------------------------------------------------------------



# Get all links of the current page



#-----------------------------------------------------------------------------------



ln = page.loadLinks()



#-----------------------------------------------------------------------------------



# Links are organized as a single linked list. We need to check each occurrence



# to see what info we can get



#-----------------------------------------------------------------------------------



while ln:



    if ln.dest.kind == fitz.LINK_URI:



            print '[LINK]URI: %s' % ln.dest.uri



    elif ln.dest.kind == fitz.LINK_GOTO:



        print '[LINK]jump to page %d' % ln.dest.page



    else:



        pass



    ln = ln.next



Render a Page



This example creates an image out of a page's content:



#-----------------------------------------------------------------------------------



# Get the page's rectangle



#-----------------------------------------------------------------------------------



rect = page.bound()



#-----------------------------------------------------------------------------------



# create the smallest pixel area containing the rectangle



#-----------------------------------------------------------------------------------



irect = rect.round()



#-----------------------------------------------------------------------------------



# create an empty RGBA pixel map of the pixel area's size



#-----------------------------------------------------------------------------------



pix = fitz.Pixmap(fitz.Colorspace(fitz.CS_RGB), irect)



pix.clearWith(255)             # Initialize with color "white" and "no transparency"



dev = fitz.Device(pix)         # Create a draw device for the pixel map



page.run(dev, fitz.Identity)   # finally render the page with no changes



#-----------------------------------------------------------------------------------



# now pix contains an image of the page, ready to be used



#-----------------------------------------------------------------------------------



Save the page image in a file



We can simply store the image in a PNG file:



pix.writePNG("test.png")



Display the image in dialog managers



Or we convert the image into a bitmap usable by dialog managers. Pixmap.samples represents the area of bytes



of all the pixels as a Python bytearray. This area (or its str()-version), is directly usable by presumably most dialog



managers. Here are two examples.



wxPython:



data = pix.samples                   # data = bytearray of raw pixel data (RGBA)



bitmap = wx.BitmapFromBufferRGBA(irect.width,



            irect.height, str(data)) # wxPython only accepts strings, no bytearrays



Tkinter:



Tutorial



5











data = pix.samples



img = Image.frombytes("RGBA", [irect.width, irect.height], str(data))



photo = ImageTk.PhotoImage(img)



Text extraction



We can also extract all text of a page in a big chunk of string:



dl = fitz.DisplayList()                  # create a DisplayList



ts = fitz.TextSheet()                    # create a TextSheet



tp = fitz.TextPage()                     # create a TextPage



dev = fitz.Device(ts, tp)                # create a text Device



irect = page.bound()                     # the page's visible rectangle



page.run(dev, fitz.Identity)             # run the page on the device



# now run the display list with the page's data



dl.run(dev, fitz.Identity, irect)



# 4 methods exist to extract the text now contained in the TextPage:



# (1) plain text: with line breaks, no formatting, no position info



text = tp.extractText()



# (2) html: line breaks, alignment, grouping, no formatting, no positioning



html = tp.extractHTML()



# (3) json: full formatting info (except colors and fonts) down to spans



xml = tp.extractJSON()



# (4) xml: full formatting info (except colors) down to individual characters



xml = tp.extractXML()



To give you an idea about the output of these alternatives, we did extracts from this document's PDF version and



several other examples. See the appendix for details about implications on processing times and space



requirements.



Text Searching



If you are interested in the occurence of parts of text, you can determine, exactly where on a page a certain string



appears:



# search for at most 4 page locations with specific contents



res = tp.search('MuPDF', hit_max = 4)



The result res will now be [] or a list of no more than 4 Rect rectangles that contain the string 'MuPDF'. The



hit_max parameter (in our case set to 4) is optional (default is 16).



Output



Output capabilities of MuPDF (such as PDF generation) are currently very limited. However, a copy of the currently



opened document can be created.



We support this with the method Document.save(). If the document had been successfully decrypted before,



save() will create a decrypted copy.



In addition, this method will also perform some clean-up:



If the document containes invalid or broken xrefs, the saved version will have them corrected, which makes it



readable by other Python PDF software, like pdfrw or PyPDF2. In many cases, the saved version will also be smaller



than the original.



Document.save() now supports all options of MuPDF's standalone utility mutool clean.



Option Effect



Tutorial



6





https://github.com/pmaupin/pdfrw


http://mstamy2.github.io/PyPDF2








garbage = 1 garbage collect unused objects



garbage = 2 in addition to 1, compact xref tables



garbage = 3 in addition to 2, merge duplicate objects



clean = 1 clean content streams (avoid / use with care)



deflate = 1 deflate uncompressed streams



ascii = 1 convert data to ASCII format



linear = 1 create a linearized document version



expand = 1 create a decompressed version



incremental = 1 only save data that have changed



Please note, that Document.save(), according to MuPDF's documentation, is still being further developed, so



expect changes in the future here.



Like with mutool clean, not all combinations of the above options may work for all documents - so be ready to



experiment a little.



We have found, that the fastest and very stable combination is mutool clean -ggg -z, giving good compression



results. In PyMuPDF this corresponds to doc.save(filename, garbage=3, deflate=1).



In some cases, best compression factors result, if expand and deflate are used together, though they seem to



be contradictory. This works, because MuPDF is forced to expand and then re-compress all objects, which will



correct poor compressions during document creation.



Close



In some situations it is desirable to "close" a Document such that it becomes fully available again to the OS while



your program is still running.



This can be achieved by the Document.close() method. Apart from closing the file, all buffer areas associated



with the document will be freed. If the document has been created from memory data, no underlying file is opened



by MuPDF, so only the buffer release will take place.



Caution:



As with normal file objects, after close, the document and all objects referencing it will be invalid and must no
longer be used. This binding protects against most such invalid uses by disabling properties and methods of the



Document and any associated Document.loadPage() objects.



However, re-opening a previously closed file by a new Document is no problem. Please also do have a look at the



following valid example:



doc = fitz.Document(f_old)           # open a document



<... some statements ...>            # e.g. decryption



doc.save(fnew, garbage=3, deflate=1) # save a decrypted / compressed version



doc.close()                          # close input file



os.remove(f_old)                     # remove it



os.rename(f_new, f_old)              # rename the decrypted / cleaned version



doc = fitz.Document(f_old)           # use it as input for MuPDF



Example: Dynamically cleaning up corrupt PDF documents



This shows a potential use of PyMuPDF with another Python PDF library (pdfrw).



If a PDF is broken or needs to be decrypted, one could dynamically invoke PyMuPDF to recover from problems like



so:



import sys



from pdfrw import PdfReader



import fitz



from cStringIO import StringIO



Tutorial



7











#---------------------------------------



# 'tolerant' PDF reader



#---------------------------------------



def reader(fname):



    ifile = open(fname, "rb")



    idata = ifile.read()                # put in memory



    ifile.close()



    ibuffer = StringIO(idata)           # convert to stream



    try:



        return PdfReader(ibuffer)       # let us try



    except:                             # problem! see if PyMuPDF can heal it



        doc = fitz.Document("application/pdf",



                            idata,



                            len(idata)) # scan pdf data in memory



        doc.save("test.pdf",            # may want to use a temp file



                 garbage=3,



                 deflate=1)             # save a cleaned version



        ifile = open("test.pdf", "rb")  # open it



        idata = ifile.read()            # put in memory



        ifile.close()



        ibuffer = StringIO(idata)       # convert to stream



        return PdfReader(ibuffer)       # now let pdfrw retry



#---------------------------------------



pdf = reader(sys.argv[1])



print pdf.Info



# do further processing



With the command line utility pdftk a similar result can be achieved, see here. It even supports buffers for input



and output. However you must invoke it as a separate process via subprocess.Popen, using stdin and stdout as



communication vehicles.



Tutorial



8





http://www.overthere.co.uk/2013/07/22/improving-pypdf2-with-pdftk/








Classes



The list of PyMuPDF classes, accessible via the prefix fitz. if your import statement was import fitz



Class Short Description



Colorspace Define the color space of a Pixmap.



Device Target object for rendering or text extraction.



DisplayList A list containing drawing commands.



Document Basic class for dealing with files.



Identity The do-nothing Matrix



IRect A rectangle (pixel coordinates).



Link A destination



linkDest The destination of an outline entry



Matrix A 3x3 matrix used for transformations.



Outline Outline element (a.k.a. bookmark).



Page A document page.



Pixmap A pixel map (for rendering).



Point Represents a point in the plane.



Rect A rectangle (float coordinates).



TextPage Text content of a page.



TextSheet A list of text styles used in a page.



Classes



9











Colorspace



Represents the color space of a Pixmap.



Class API



class Colorspace



__init__ (self, colorspace, irect)
Constructor



colorspace



A number identifying the colorspace. Supported colorspaces are CS_RGB, CS_GRAY and CS_CMYK.



Type: int



irect



A IRect object representing the area of the image.



Type: instance



Classes



10











Device



The different format handlers (pdf, xps, etc.) interpret pages to a "device". These devices are the basis for



everything that can be done with a page: rendering, text extraction and searching. The device type is determined by



the selected construction method.



Class API



class Device



__init__ (self, object)
Constructor for either a pixel map or a display list device.



object



An object representing one of Pixmap, or DisplayList



Type: instance



__init__ (self, textsheet, textpage)
Constructor for a text page device.



textsheet



A TextSheet object.



Type: instance



textpage



A TextPage object.



Type: instance



Classes



11











DisplayList



DisplayList is a list containing drawing commands (text, images, etc.). The intent is two-fold:



1. as a caching-mechanism to reduce parsing of a page



2. as a data structure in multi-threading setups, where one thread parses the page and another one renders



pages.



A DisplayList is populated with objects from a page by running Page.run() on a Device. Replay the list (once



or many times) by invoking the display list's run() function.



Method Short Description



run() (Re)-run a display list through a device.



Class API



class DisplayList



fitz.DisplayList (self)
Create a rendering device for a display list.



When the device is rendering a page it will populate the display list with drawing commands (text, images, etc.).



The display list can later be reused to render a page many times without having to re-interpret the page from the



document file.



Return type: Device



run (self, dev, ctm, area)



Parameters:
• dev (Device) -- Device obtained from Device



• ctm (Matrix) -- Transform matrix to apply to display list contents.



• area (IRect) -- Only the part of the contents of the display list visible within this area



will be considered when the list is run through the device. This does not imply for tile



objects contained in the display list.



Classes



12











Document



This class represents a document. It can be constructed from a file or from memory. See below for details.



Method / Attribute Short Description



Document.authenticate() Decrypts the document



Document.loadPage() Reads a page



Document.save() Saves a copy of the document



Document.ToC() Creates a table of contents



Document.close() Closes the document



Document.isClosed Has document been closed?



Document.outline First Outline item



Document.name filename of document



Document.needsPass Is document is encrypted?



Document.pageCount The document's number of pages



Document.metadata The document's meta data



Class API



class Document



__init__ (self, filename)
Constructs a Document object from a file.



Parameters: filename (string) -- A string (UTF-8 or unicode) containing the path / name of the



document file to be used. The file will be opened and remain open until either explicitely



closed (see below) or until end of program.



Return type: Document



Returns: A Document object.



__init__ (self, filetype, stream=data, streamlen=len(data))
Constructs a Document object from memory data.



Parameters:
• filetype (string) -- A string specifying the type of document contained in stream.



This may be either something that looks like a filename (e.g. x.pdf), in which case



MuPDF uses the extension to determine the type, or a mime type like



application/pdf. Recommended is using the filename scheme, or even the



name of the original file for documentation purposes.



• stream (string) -- A string of data representing the content of a supported document



type.



• streamlen (int) -- An integer specifying the length of the stream.



Return type: Document



Returns: A Document object.



authenticate (password)
Decrypts the document with the string password. If successfull, the document's data can be accessed (e.g. for



rendering).



Parameters: password (string) -- The password to be used.



Return type: int



Returns: True (1) if decryption with password was successfull, False (0) otherwise.



loadPage (number)
Loads a Page for further processing like rendering, text searching, etc. See the Page object.



Classes



13











Parameters: number (int) -- page number, zero-based (0 is the first page of the document).



Return type: Page



save (outfile, garbage=0, clean=0, deflate=0, incremental=0, ascii=0, expand=0, linear=0)
Saves a copy of the document under outfile (include path specifications as necessary). Internally the



document may have changed. E.g. after a successfull authenticate, a decrypted copy will be saved, and, in



addition (even without any of the optional parameters), some basic cleaning of the document data will also have



occurred, e.g. broken xref tables will have been corrected as far as possible.



Parameters:
• outfile (string) -- The file name to save to. Must be different from the original



filename / filetype value or else a ValueError will be raised.



• garbage (int) -- Do garbage collection: 0 = none, 1 = remove unused objects, 2 = in



addition compact xref tables, 3 = in addition merge duplicate objects.



• clean (int) -- Clean content streams: 0 = False, 1 = True.



• deflate (int) -- Deflate uncompressed streams: 0 = False, 1 = True.



• incremental (int) -- Only save changed objects: 0 = False, 1 = True.



• ascii (int) -- Where possible make the output ASCII: 0 = False, 1 = True.



• expand (int) -- One byte bitfield to decompress contents: 0 = none, 1 = images, 2 =



fonts, 255 = all. This convenience option generates a decompressed file version that



can be better read by some other programs.



• linear (int) -- Save a linearised version of the document: 0 = False, 1 = True. This



option creates a file format for improved performance when read via internet



connections.



Return type: int



Returns: Count of errors that occurred during save. Note: PyMuPDF will recover from many errors



encountered in a PDF and continue processing.



ToC ()
A convenience function that creates a table of contents from the outline entries. If none exist [] will be



returned, otherwise a Python list [[level, title, page], [...], ...]. Note that the title entries have



already been decoded to unicode here. Page numbers are 1-based, but zero if and only if the entry points to a



place outside this document.



Return type: list



close ()
Releases space allocations associated with the document, and, if created from a file, closes filename thus



releasing control of it to the OS.



outline



Contains either None or the first Outline entry of the document. Can be used as a starting point to walk through



all outline items.



Return type: Outline



isClosed



False (0) if document is still open, True (1) otherwise. If closed, most other attributes and all methods will



have been deleted / disabled. In addition, Page objects referring to this document (i.e. created with



Document.loadPage()) will no longer be usable. For reference purposes, Document.name still exists and



will contain the filename of the original document.



Return type: int



needsPass



Contains an indicator showing whether the document is encrypted (True = 1) or not (False = 0).



Return type: bool



Classes



14











metadata



Contains the document's meta data as a Python dictionary. Its keys are format, encryption, title,



author, subject, keywords, creator, producer, creationDate, modDate. All item values are strings or



None.



Except format and encryption, the key names correspond in an obvious way to a PDF's "official" meta data



fields /Creator, /Producer, /CreationDate, /ModDate, /Title, /Author, /Subject, /Keywords



respectively.



The value of format contains the version of the PDF format (e.g. 'PDF-1.6').



The value of encryption either contains None (not encrypted), or a string naming the used encryption



method (e.g. 'Standard V4 R4 128-bit RC4'). Note that if the document is encrypted, the other meta



data values may be encrypted, too.



If the date fields contain meaningfull data (which need not be the case), they are strings in the PDF-internal



timestamp format "D:<TS><TZ>", where



<TS> is the 12 character ISO timestamp YYYMMDDhhmmss (YYYY - year, MM - month, DD - day, hh - hour,



mm - minute, ss - second), and



<TZ> is a time zone value (time intervall relative to GMT) containing a sign ('+' or '-'), the hour (hh), and the



minute ('mm', attention: enclose in apostrophies!).



For example, a Venezuelan value might look like D:20150415131602-04'30', which corresponds to the



timestamp April 15, 2015, at 1:16:02 pm local time Venezuela.



Return type: dict



name



Contains the filename or filetype value with which Document was created.



Return type: string



pageCount



Contains the number of pages of the document. May return 0 for documents with no pages.



Return type: int



Classes



15











Identity



Identity is just a Matrix that performs no action, to be used whenever the syntax requires a Matrix, but no actual



transformation should take place.



Caution: Identity is a constant in the C code and therefore readonly, do not try to modify its properties in any



way, i.e. you must not manipulate its [a,b,c,d,e,f], neither apply any method.



Matrix(1, 1) creates a matrix that acts like Identity, but it may be changed. Use this when you need a starting



point for further modification, e.g. by one of the Matrix methods.



In other words:



# the following will not work - the interpreter will crash!



m = fitz.Identity.preRotate(90)



# do this instead:



m = fitz.Matrix(1, 1).preRotate(90)



Classes



16











IRect



IRect is a rectangular bounding box similar to Rect, except that all corner coordinates are integers. IRect is used to



specify an area of pixels, e.g. to receive image data during rendering.



Attribute Short Description



IRect.width Width of the bounding box



IRect.height Height of the bounding box



IRect.x0 X-coordinate of the top left corner



IRect.y0 Y-coordinate of the top left corner



IRect.x1 X-coordinate of the bottom right corner



IRect.y1 Y-coordinate of the bottom right corner



Class API



class IRect



__init__ (self, x0=0, y0=0, x1=0, y1=0)
Constructor. The default values will create an empty rectangle. Function Rect.round() creates the smallest



IRect containing Rect.



width



Contains the width of the bounding box. Equals x1 - x0.



Type: int



height



Contains the height of the bounding box. Equals y1 - y0.



Type: int



x0



X-coordinate of the top left corner.



Type: int



y0



Y-coordinate of the top left corner.



Type: int



x1



X-coordinate of the bottom right corner.



Type: int



y1



Y-coordinate of the bottom right corner.



Type: int



Classes



17











Link



Represents a pointer to somewhere (this document, other documents, the internet). Links exist per document page,



and they are forward-chained to each other, starting from an initial link which is accessible by the



Page.loadLinks() method.



Attribute Short Description



Link.rect Clickable area in untransformed coordinates.



Link.dest Kind of link destination.



Link.next Link to next link



Class API



class Link



rect



The area that can be clicked in untransformed coordinates.



Return type: Rect



dest



The link destination kind. An integer to be interpreted as one of the FZ_LINK_* values.



Return type: int



next



The next Link or None



Return type: Link



Classes



18











linkDest



Class representing the dest property of an outline entry.



Attribute Short Description



linkDest.dest Destination



linkDest.fileSpec File specification (path, filename)



linkDest.flags Descriptive flags



linkDest.isMap Is this a MAP?



linkDest.isUri Is this an URI?



linkDest.kind Kind of destination



linkDest.lt Top left coordinates



linkDest.named Name if named destination



linkDest.newWindow Name of new window



linkDest.page Page number



linkDest.rb Bottom right coordinates



linkDest.uri URI



Class API



class linkDest



dest



Destination of linkDest.



Return type: Link



fileSpec



Contains the filename (including any path specifications) this link points to, if applicable.



Return type: string



flags



A one-byte bitfield consisting of indicators describing the validity and meaning of the different aspects of the



destination. As far as possible, link destinations are constructed such that e.g. linkDest.lt and



linkDest.rb can be treated as defining a bounding box, though the validity flags (see LINK_FLAG_* values)



indicate which of the values were actually specified. Note that the numerical values for each of the LINK_FLAGs



are powers of 2 and thus indicate the position of the bit to be tested. More than one bit can be True, so do not



test for the value of the integer.



Return type: int



isMap



This flag specifies whether to track the mouse position when the URI is resolved. Default value: False.



Return type: bool



isUri



Specifies whether this destination is an internet resource.



Return type: bool



kind



Indicates the type of this destination, like a place in this document, a URI, a file launch, an action or a place in



another file. Look at index entries FZ_LINK_* to see the names and numerical values.



Return type: int



Classes



19











lt



The top left Point of the destination.



Return type: Point



named



This destination refers to some named resource of the document (see Adobe PDF documentation).



Return type: int



newWindow



This destination refers to an action that will open a new window.



Return type: bool



page



The page number (in this document) this destination points to.



Return type: int



rb



The bottom right Point of this destination.



Return type: Point



uri



The name of the URI this destination points to.



Return type: string



Classes



20











Matrix



Matrix is a row-major 3x3 matrix used by image transformations in MuPDF. With matrices you can manipulate the



rendered image of a page in a variety of ways: (parts of) the page can be rotated, zoomed, flipped, sheared and



shifted by setting some or all of just six numerical values.



Since all points or pixels live in a two-dimensional space, one column vector of that matrix is a constant unit vector,



and only the remaining six elements are used for manipulations. These six elements are usually represented by



[a,b,c,d,e,f]. Here is how they are positioned in the matrix:



It should be noted, that



• the below methods are just convenience functions - everything they do, can also be achieved by directly



manipulating [a,b,c,d,e,f]



• all manipulations can be combined - you can construct a matrix that does a rotate and a shear and a scale



and a shift etc. in one go



Method / Attribute Description



Matrix.__init__() Constructor.



Matrix.preRotate() Perform a rotation



Matrix.preScale() Perform a scaling



Matrix.preShear() Perform a shearing



Matrix.a Zoom factor X direction



Matrix.b Shearing effect Y direction



Matrix.c Shearing effect X direction



Matrix.d Zoom factor Y direction



Matrix.e Horizontal shift



Matrix.f Vertical shift



Class API



class Matrix



__init__ (self, a=1, b=0, c=0, d=1, e=0, f=0)
Constructor. Matrix(1, 1) will construct a modifyable version of the Identity matrix.



preRotate (deg)
Performs a clockwise rotation for positive deg degrees, else counterclockwise. This will change the matrix



elements in the following way: a = cos(deg), b = sin(deg), c = -sin(deg), d = cos(deg). e and f



will remain unchanged.



Parameters: deg (float) -- The rotation angle in degrees (use conventional notation based on Pi = 180



degrees).



Return type: Matrix



preScale (sx, sy)
Scales by the zoom factors sx and sy. Has effects on attributes a and d only.



Classes



21











Parameters:
• sx (float) -- Zoom factor in X direction. For the effect see description of attribute a.



• sy (float) -- Zoom factor in Y direction. For the effect see description of attribute d.



Return type: Matrix



preShear (sx, sy)
Performs shearing, i.e. transformation of rectangles into parallelograms (rhomboids). Has effects on attributes



b and c only.



Parameters:
• sx (float) -- Shearing effect in X direction. See attribute c.



• sy (float) -- Shearing effect in Y direction. See attribute b.



Return type: Matrix



a



Scaling in X-direction (width). For example, a value of 0.5 performs a shrink of the width by a factor of 2. If a <



0, a (additional) vertical flip will occur, i.e. the rectangle's picture will be mirrored along the Y axis.



Type: float



b



Causes a shearing effect: each Point(x, y) will become Point(x, y - b*x). Therefore, looking from left



to right, e.g. horizontal lines will be "tilt" - downwards if b > 0, upwards otherwise (b is the tangens of the tilting



angle).



Type: float



c



Causes a shearing effect: each Point(x, y) will become Point(x - c*y, y). Therefore, looking



upwards, vertical lines will be "tilt" - to the left if c > 0, to the right otherwise (c ist the tangens of the tilting



angle).



Type: float



d



Scaling in Y-direction (height). For example, a value of 1.5 performs a stretch of the height by 50%. If d < 0, a



(additional) horizontal flip will occur, i.e. the rectangle's picture will be mirrored along the X axis.



Type: float



e



Causes a horizontal shift effect: Each Point(x, y) will be shifted right to become Point(x + e, y). Note



that negative values of e will shift left.



Type: float



f



Causes a vertical shift effect: Each Point(x, y) will be shifted down to become Point(x, y - f). Note



that negative values of f will shift up.



Type: float



Examples



Here are examples to illustrate some of the effects achievable with matrices. The following pictures start with a page



of the PDF version of this help file. We show what will happen when a matrix is being applied (though always full



pages are created, only parts are displayed here to save space).



This is the original page image



Classes



22











Shifting



We transform it with a matrix where e = 100 (right shift by 100 pixels)



Next we do a down shift by 100 pixels: f = 100



Flipping



Classes



23











Flip the page vertically (a = -1)



Flip horizontally (d = -1)



Shearing



First a shear in Y direction (b = 0.5)



Second a shear in X direction (c = 0.5)



Classes



24











Rotating



Finally a rotation by 60 degrees



Classes



25











Outline



outline is a property of Document. If not None, it stands for the first outline item of the document. Its properties in



turn define the characteristics of this item and also point to other outline items in "horizontal" direction by property



Outline.next to the next item of same level, and "downwards" by property Outline.down to the next item one



level lower. The full tree of all outline items for e.g. a conventional table of contents can be recovered by following



these "pointers".



Method / Attribute Short Description



Outline.down Next item downwards



Outline.next Next item same level



Outline.dest Link destination



Outline.title Title



Outline.saveText() Prints a conventional table of contents to a file



Outline.saveXML() Prints an XML-like table of contents to a file



Class API



class Outline



down



The next outline item on the next level down. Is None if the item has no children.



Return type: Outline



next



The next outline item at the same level as this item. Is None if the item is the last one in its level.



Return type: Outline



dest



The destination this entry points to. Can be a place in this or another document, or an internet resource. It can



include actions to perform like opening a new window, invoking a javascript or opening another document.



Return type: linkDest



title



The item's title as a string or None.



Return type: string



saveText ()
The chain of outline items is being processed and printed to the file filename as a conventional table of



contents. Each line of this file has the format <tab>...<tab><title><tab><page#>, where the number of



leading tabs is (n-1), with n equal to the outline level of the entry. Page numbers are 1-based in this case, while



page# = 0 if and only if the outline entry points to a place outside this document. If no title was specified for



this outline entry, it appears as a tab character in this file.



Parameters: filename (string) -- Name of the file to write to.



saveXML ()
The chain of outline items is being processed and printed to a file filename as an XML-like table of contents.



Each line of this file has the format <outline title="..." page="n"/>, if the entry has no children.



Otherwise the format is <outline title="..." page="n">, and child entries will follow. The parent entry



will be finished by a line containing </outline>.



Parameters: filename (string) -- Name of the file to write to.



Classes



26











Page



Page interface, created by Document.loadPage().



Method / Attribute Short Description



Page.bound() The Page's rectangle



Page.loadLinks() Get all the links in a page



Page.run() Run a page through a device



Page.number Page number



Class API



class Page



bound ()
Determine the a page's rectangle (before transformation).



Return type: Rect



loadLinks ()
Get all the links in a page.



Return type: list



Returns: A python list of Link. An empty list is returned if there's no link in the page.



run (dev, transform)
Run a page through a device.



Parameters:
• dev (Device) -- Device, obtained from one of the Device constructors.



• transform (Matrix) -- Transformation to apply to the page. May include for example



scaling and rotation, see Matrix.preScale() and Matrix.preRotate(). Set it



to Identity if no transformation is desired.



number



The page number



Return type: int



Classes



27











Pixmap



Pixmaps represent a set of pixels for a 2 dimensional region. Each pixel consists of n bytes ("components"), plus



always an alpha. The data is in premultiplied alpha when rendering, but non-premultiplied for colorspace



conversions and rescaling.



Method / Attribute Short Description



Pixmap.clearWith() Clears a pixmap (with given value)



Pixmap.writePNG() Saves a pixmap as a png file



Pixmap.invertIRect() Invert the pixels of a given bounding box



Pixmap.samples The components data for all pixels



Pixmap.h Height of the region in pixels



Pixmap.w Width of the region in pixels



Pixmap.x X-coordinate of top-left corner of pixmap



Pixmap.y Y-coordinate of top-left corner of pixmap



Pixmap.n Number of components per pixel



Pixmap.xres Resolution in X-direction



Pixmap.yres Resolution in Y-direction



Pixmap.interpolate Interpolation method indicator



Class API



class Pixmap



clearWith (self, value=0)
Clears a pixmap.



Parameters: value (int) -- Values in the range 0 to 255 are valid. Each color byte of each pixel will be



set to this value, while alpha will always be set to 255 (non-transparent). Default is 0.



samples



The color and transparency values for all pixels. Samples is a memory area of size width * height * n



bytes. The first n bytes are components 0 to n-1 for the pixel at point (x,y). Each successive n bytes gives



another pixel in scanline order. Subsequent scanlines follow each other with no padding. E.g. for an RGBA



colorspace this means, samples is a bytearray like ..., R, G, B, A, ..., and the four byte values R, G,



B, A describe one pixel.



Return type: bytearray



w



The width of the region in pixels.



Return type: int



h



The height of the region in pixels.



Return type: int



x



X-coordinate of top-left corner



Return type: int



y



Y-coordinate of top-left corner



Classes



28











Return type: int



n



Number of components per pixel. This number depends on the chosen colorspace: CS_GRAY = 2, CS_RGB =



4, CS_CMYK = 5.



Return type: int



xres



Horizontal resolution in pixels per inch.



Return type: int



yres



Vertical resolution in pixels per inch



Return type: int



invertIRect (self, irect)
Invert all pixels in IRect. All components except alpha are inverted.



Parameters: irect -- Invert all the pixels in the irect. If omitted, the whole pixmap will be inverted.



writePNG (self, filename, savealpha=False)
Save a pixmap as a png file.



Parameters:
• filename (string) -- The filename to save as (including extension).



• savealpha (bool) -- Save alpha or not.



interpolate



A boolean flag set to True if the image will be drawn using linear interpolation, or set to False if image is



created using nearest neighbour sampling.



Return type: bool



Classes



29











Point



Point represents a point in the plane, defined by its x and y coordinates.



Attribute Short Description



Point.x The X-coordinate



Point.y The Y-coordinate



Class API



class Point



__init__ (self, x=0, y=0)
Constructor, defaulting to "top left".



x



Type: float



y



Type: float



Classes



30











Rect



Rect represents a rectangle defined by its top left and its bottom right Point objects, in coordinates: ((x0, y0), (x1,



y1)).



Rectangle borders are always in parallel with the respective X- and Y-axes. A rectangle is called "finite" if x0 <= x1



and y0 <= y1 is true, else "infinite".



Methods / Attributes Short Description



Rect.round() creates the smallest IRect containing Rect



Rect.transform() transform Rect with a Matrix



Rect.height Rect height



Rect.width Rect width



Rect.x0 Top left corner's X-coordinate



Rect.y0 Top left corner's Y-coordinate



Rect.x1 Bottom right corner's X-coordinate



Rect.y1 Bottom right corner's Y-coordinate



Class API



class Rect



__init__ (self, x0=0, y0=0, x1=0, y1=0)
Constructor. The default values will create an empty rectangle.



round ()
Creates the smallest IRect that contains Rect.



Return type: IRect



transform (m)



Transforms Rect with a Matrix.



Parameters: m -- A Matrix to be used for the transformation.



Return type: Rect



width



Contains the width of the rectangle. Equals x1 - x0.



Return type: float



height



Contains the height of the rectangle. Equals y1 - y0.



Return type: float



x0



X-coordinate of the top left corner.



Type: float



y0



Y-coordinate of the top left corner.



Type: float



x1



X-coordinate of the bottom right corner.



Classes



31











Type: float



y1



Y-coordinate of the bottom right corner.



Type: float



Classes



32











TextPage



TextPage represents the text of a page.



Method Short Description



TextPage.extractText() Extract the page's plain text



TextPage.extractHTML() Extract the page's text in HTML format



TextPage.extractJSON() Extract the page's text in JSON format



TextPage.extractXML() Extract the page's text in XML format



TextPage.search() Search for a string in the page



Class API



class TextPage



extractText (basic=0)
Extract the text from a TextPage object. Returns a string of the page's complete text. If the default value 0 for



basic is used, the text is returned as close as possible to its natural reading order (top-left to bottom-right), and



unicode encoded. This is based on the output of extractXML, see below. Usage of basic=1 is provided



primarily for debugging purposes. In this case no attempt is being made to adhere to a natutal reading



sequence, instead the text is returned in the same sequence as the PDF creator specified it. In addition, in this



case, the text string is UTF-8 encoded (as it is an original MuPDF value).



param basic: An integer specifying whether basic (1 (True)) or advanced text output (the default)



should be provided.



type basic: int



Return type: string



extractHTML ()
Extract the text from a TextPage object in HTML format. This version contains some more formatting



information about how the text is being dislayed on the page. See the tutorial chapter for an example.



Return type: string



extractJSON ()
Extract the text from a TextPage object in JSON format. This version contains significantly more formatting



information about how the text is being dislayed on the page. It is almost as complete as the extractXML



version, except that positioning information is detailed down to the span level, not a single character. See the



tutorial chapter for an example.



Return type: string



extractXML ()
Extract the text from a TextPage object in XML format. This contains complete formatting information about



every single text character on the page: font, size, line, paragraph, location, etc. This may easily reach several



hundred kilobytes of uncompressed data for a text oriented page. See the tutorial chapter for an example.



Return type: string



search (string, hit_max = 16)
Search for the string string.



Parameters:
• string (string) -- The string to search for.



• hit_max (int) -- Maximum number of expected hits (default 16).



Return type: list



Returns: A python list. If not empty, each element of the list is a Rect (without transformation)



surrounding a found string occurrence.



Classes



33











TextSheet



TextSheet contains a list of distinct text styles used on a page (or a series of pages).



Classes



34











Constants and Enumerations



Constants and enumerations of MuPDF as implemented by PyMuPDF. If your import statement was import fitz



then each of the following variables var is accessible as fitz.var.



Constants



Constant Description



CS_RGB



1 - Type of Colorspace is RGBA



CS_GRAY



2 - Type of Colorspace is GRAY



CS_CMYK



3 - Type of Colorspace is CMYK



VersionBind



'1.8.0' - Version of PyMuPDF (this binding)



VersionFitz



'1.8' - Version of MuPDF



Enumerations



Possible values of linkDest.kind (link destination type). For details consult Adobe PDF Reference sixth edition



1.7 November 2006, chapter 8.2 on page 581 ff.



Value Description



LINK_NONE



0 - No destination



LINK_GOTO



1 - Points to a place in this document



LINK_URI



2 - Points to an URI



LINK_LAUNCH



3 - Launch (open) another document



LINK_NAMED



4 - Perform some action



LINK_GOTOR



5 - Points to another document



Possible values of linkDest.flags (link destination flags). Attention: The rightmost byte of this integer is a bit



field. The values represent boolean indicators showing whether the associated statement is True.



Value Description



LINK_FLAG_L_VALID



1 (bit 0) Top left x value is valid



LINK_FLAG_T_VALID



2 (bit 1) Top left y value is valid



LINK_FLAG_R_VALID



4 (bit 2) Bottom right x value is valid



LINK_FLAG_B_VALID



8 (bit 3) Bottom right y value is valid



LINK_FLAG_FIT_H



16 (bit 4) Horizontal fit



Constants and Enumerations



35





http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf


http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf








LINK_FLAG_FIT_V



32 (bit 5) Vertical fit



LINK_FLAG_R_IS_ZOOM



64 (bit 6) Bottom right x is a zoom figure



Constants and Enumerations



36











Appendix



This chapter contains additional comments and examples.



Example Outputs of Text Extraction Methods



Text information contained in a TextPage adheres to the following hierarchy:



<page> (width and height)



    <block> (its rectangle)



            <line> (its rectangle)



                    <span> (its rectangle and font information)



                            <char> (its rectangle, (x, y) coordinates and value)



A text page consists of blocks (= roughly paragraphs). A block consists of lines. A line consists of spans. A span



consists of characters with the same properties. E.g. a different font will cause a new span.



TextPage.extractText()



This is the output of a page of this tutorial's PDF version:



Tutorial



This tutorial will show you the use of MuPDF in Python step by step.



Because MuPDF supports not only PDF, but also XPS, OpenXPS and EPUB formats, so does PyMuPDF.



Nevertheless we will only talk about PDF files for the sake of brevity.



...



TextPage.extractHTML()



The HTML version looks like this:



<div class="page">



<div class="block"><p>



<div class="metaline"><div class="line"><div class="cell" style="width:0%;align:left"><span 



</div></p></div>



<div class="block"><p>



<div class="line"><div class="cell" style="width:0%;align:left"><span class="s1">This tutorial will show you the use of MuPDF in Python step by step.



</div></p></div>



<div class="block"><p>



<div class="line"><div class="cell" style="width:0%;align:left"><span class="s1">Because MuPDF supports not only PDF, but also XPS, OpenXPS and EPUB formats, so does PyMuPDF.



<div class="line"><div class="cell" style="width:0%;align:left"><span class="s1">Nevertheless we will only talk about PDF files for the sake of brevity.



</div></p></div>



...



TextPage.extractJSON()



JSON output looks like so:



{



 "len":35,"width":595.2756,"height":841.8898,



 "blocks":[



  {"type":"text","bbox":[40.01575, 53.730354, 98.68775, 76.08236],



   "lines":[



      {"bbox":[40.01575, 53.730354, 98.68775, 76.08236],



       "spans":[



         {"bbox":[40.01575, 53.730354, 98.68775, 76.08236],



          "text":"Tutorial"



         }



       ]



      }



Appendix



37











   ]



  },



  {"type":"text","bbox":[40.01575, 79.300354, 340.6957, 93.04035],



   "lines":[



      {"bbox":[40.01575, 79.300354, 340.6957, 93.04035],



       "spans":[



         {"bbox":[40.01575, 79.300354, 340.6957, 93.04035],



          "text":"This tutorial will show you the use of MuPDF in Python step by step."



         }



       ]



      }



   ]



  },



...



TextPage.extractXML()



Now the XML version:



<page width="595.2756" height="841.8898">



<block bbox="40.01575 53.730354 98.68775 76.08236">



<line bbox="40.01575 53.730354 98.68775 76.08236">



<span bbox="40.01575 53.730354 98.68775 76.08236" font="Helvetica-Bold" size="16">



<char bbox="40.01575 53.730354 49.79175 76.08236" x="40.01575" y="70.85036" c="T"/>



<char bbox="49.79175 53.730354 59.56775 76.08236" x="49.79175" y="70.85036" c="u"/>



<char bbox="59.56775 53.730354 64.89575 76.08236" x="59.56775" y="70.85036" c="t"/>



<char bbox="64.89575 53.730354 74.67175 76.08236" x="64.89575" y="70.85036" c="o"/>



<char bbox="74.67175 53.730354 80.89575 76.08236" x="74.67175" y="70.85036" c="r"/>



<char bbox="80.89575 53.730354 85.34375 76.08236" x="80.89575" y="70.85036" c="i"/>



<char bbox="85.34375 53.730354 94.23975 76.08236" x="85.34375" y="70.85036" c="a"/>



<char bbox="94.23975 53.730354 98.68775 76.08236" x="94.23975" y="70.85036" c="l"/>



</span>



</line>



</block>



<block bbox="40.01575 79.300354 340.6957 93.04035">



<line bbox="40.01575 79.300354 340.6957 93.04035">



<span bbox="40.01575 79.300354 340.6957 93.04035" font="Helvetica" size="10">



<char bbox="40.01575 79.300354 46.12575 93.04035" x="40.01575" y="90.050354" c="T"/>



<char bbox="46.12575 79.300354 51.685753 93.04035" x="46.12575" y="90.050354" c="h"/>



<char bbox="51.685753 79.300354 53.90575 93.04035" x="51.685753" y="90.050354" c="i"/>



<char bbox="53.90575 79.300354 58.90575 93.04035" x="53.90575" y="90.050354" c="s"/>



<char bbox="58.90575 79.300354 61.685753 93.04035" x="58.90575" y="90.050354" c=" "/>



<char bbox="61.685753 79.300354 64.46575 93.04035" x="61.685753" y="90.050354" c="t"/>



<char bbox="64.46575 79.300354 70.02576 93.04035" x="64.46575" y="90.050354" c="u"/>



<char bbox="70.02576 79.300354 72.805756 93.04035" x="70.02576" y="90.050354" c="t"/>



<char bbox="72.805756 79.300354 78.36575 93.04035" x="72.805756" y="90.050354" c="o"/>



<char bbox="78.36575 79.300354 81.695755 93.04035" x="78.36575" y="90.050354" c="r"/>



<char bbox="81.695755 79.300354 83.91576 93.04035" x="81.695755" y="90.050354" c="i"/>



...



Resource Requirements of Text Extraction Methods



The four text extraction methods of a TextPage differ significantly: in terms of information they supply (see above),



and in terms of resource requirements. More information of course means that more processing is required and a



higher data volume is generated.



For testing performance, we have run several example PDFs through these methods and found the following



information. This data is not statistically secured in any way - just take it as an idea for what you should expect to



see.



Appendix



38











As a low end example we took this manual's PDF version (45+ pages, text oriented, 500 KB). The high end case



was Adobe's PDF manual (1310 pages, text oriented, 32 MB). The other test cases were Spektrum magazines of



the year 2015 (the German version of Scientific American, 100+ pages, text with lots of complex interspersed



images, 10 to 25 MB each).



Performance



Performance of text extraction has improved significantly in MuPDF 1.8! As of updating this documentation (mid



November 2015), data hint at an improvement factor greater than 2. Especially the complex extraction methods



have a much lower effort penalty.



If we set the simplest extraction method, extractText(basic=True) to 1, the old relationship was



MuPDF 1.7: (Text : HTML : JSON : XML) ~ (1 : 2 : 145 : 4120)



We now observe



MuPDF 1.8: (Text : HTML : JSON : XML) ~ (1 : 1 : 3 : 52)



On a higher level Win10 machine (8 processors at 4 GHz, 8 GB RAM), the figure for extractXML() corresponds



to anything between 0.2 and 0.5 seconds per page. This still means that you can extract extremely detailed text



information of a complex 100-page magazine in less than a minute. This is about 3 times faster than text extraction



with other free PDF utilities, e.g. Nitro 3.



If you use PDF2TextJS.py of the example directory, you have a text extraction utility which is more than 60 times



faster than Nitro!



Data Sizes



The sizes of the returned text strings follow this pattern, again extractText(basic=True) is set to 1:



(Text : HTML : JSON : XML) ~ (1 : 4 : 6 : 87)



The number 87 for extractXML() corresponds to values between 200 and 400 KB per page.



The details can be seen here:



Appendix



39





http://www.spektrum.de/


https://www.gonitro.com/pdf-reader














Index



_



__init__() (Colorspace method)



(Device method) [1]



(Document method) [1]



(IRect method)



(Matrix method)



(Point method)



(Rect method)



A



a (Matrix attribute)



authenticate() (Document method)



author (built-in variable)



B



b (Matrix attribute)



bound() (Page method)



C



c (Matrix attribute)



clearWith() (Pixmap method)



close() (Document method)



Colorspace (built-in class)



colorspace (Colorspace attribute)



creationDate (built-in variable)



creator (built-in variable)



CS_CMYK (built-in variable)



CS_GRAY (built-in variable)



CS_RGB (built-in variable)



D



d (Matrix attribute)



dest (Link attribute)



(Outline attribute)



(linkDest attribute)



Device (built-in class)



DisplayList (built-in class)



DisplayList() (DisplayList.fitz method)



Document (built-in class)



down (Outline attribute)



E



e (Matrix attribute)



encryption (built-in variable)



extractHTML() (TextPage method)



extractJSON() (TextPage method)



extractText() (TextPage method)



extractXML() (TextPage method)



F



f (Matrix attribute)



fileSpec (linkDest attribute)



flags (linkDest attribute)



format (built-in variable)



H



h (Pixmap attribute)



height (IRect attribute)



(Rect attribute)



I



interpolate (Pixmap attribute)



invertIRect() (Pixmap method)



IRect (built-in class)



irect (Colorspace attribute)



isClosed (Document attribute)



isMap (linkDest attribute)



isUri (linkDest attribute)



K



keywords (built-in variable)



kind (linkDest attribute)



L



Link (built-in class)



LINK_FLAG_B_VALID (built-in variable)



LINK_FLAG_FIT_H (built-in variable)



LINK_FLAG_FIT_V (built-in variable)



LINK_FLAG_L_VALID (built-in variable)



LINK_FLAG_R_IS_ZOOM (built-in variable)



LINK_FLAG_R_VALID (built-in variable)



LINK_FLAG_T_VALID (built-in variable)



LINK_GOTO (built-in variable)



LINK_GOTOR (built-in variable)





file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Device.__init__')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Device.__init__')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Document.__init__')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Document.__init__')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#IRect.__init__')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Matrix.__init__')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Point.__init__')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Rect.__init__')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Outline.dest')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#linkDest.dest')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Rect.height')








LINK_LAUNCH (built-in variable)



LINK_NAMED (built-in variable)



LINK_NONE (built-in variable)



LINK_URI (built-in variable)



linkDest (built-in class)



loadLinks() (Page method)



loadPage() (Document method)



lt (linkDest attribute)



M



Matrix (built-in class)



metadata (Document attribute)



modDate (built-in variable)



N



n (Pixmap attribute)



name (Document attribute)



named (linkDest attribute)



needsPass (Document attribute)



newWindow (linkDest attribute)



next (Link attribute)



(Outline attribute)



number (Page attribute)



O



object (Device attribute)



Outline (built-in class)



outline (Document attribute)



P



Page (built-in class)



page (linkDest attribute)



pageCount (Document attribute)



Pixmap (built-in class)



Point (built-in class)



preRotate() (Matrix method)



preScale() (Matrix method)



preShear() (Matrix method)



producer (built-in variable)



R



rb (linkDest attribute)



Rect (built-in class)



rect (Link attribute)



round() (Rect method)



run() (DisplayList method)



(Page method)



S



samples (Pixmap attribute)



save() (Document method)



saveText() (Outline method)



saveXML() (Outline method)



search() (TextPage method)



subject (built-in variable)



T



TextPage (built-in class)



textpage (Device attribute)



textsheet (Device attribute)



title (built-in variable)



(Outline attribute)



ToC() (Document method)



transform (Rect attribute)



U



uri (linkDest attribute)



V



VersionBind (built-in variable)



VersionFitz (built-in variable)



W



w (Pixmap attribute)



width (IRect attribute)



(Rect attribute)



writePNG() (Pixmap method)



X



x (Pixmap attribute)



(Point attribute)



x0 (IRect attribute)



(Rect attribute)



x1 (IRect attribute)



(Rect attribute)



xres (Pixmap attribute)





file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Outline.next')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Page.run')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Outline.title')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Rect.width')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Point.x')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Rect.x0')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Rect.x1')








Y



y (Pixmap attribute)



(Point attribute)



y0 (IRect attribute)



(Rect attribute)



y1 (IRect attribute)



(Rect attribute)



yres (Pixmap attribute)





file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Point.y')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Rect.y0')


file://C:\Users\Harald\Desktop\PyMuPDF-doc\/('',u'#Rect.y1')





			The PyMuPDF Documentation


			Introduction


			Note on the Name fitz





			Installation


			Step 1: Download PyMuPDF


			Step 2: Download MuPDF 1.8


			Step 3: Build / Setup PyMuPDF


			Note on using UPX





			Tutorial


			Import the Bindings


			Open a Document


			Some Document methods and attributes


			Access Meta Data


			Work with Outlines


			Some Outline methods and attributes


			Some Outline.dest attributes


			Work with Pages


			Inspect the links on a Page


			Render a Page


			Save the page image in a file


			Display the image in dialog managers


			Text extraction


			Text Searching





			Output


			Close


			Example: Dynamically cleaning up corrupt PDF documents





			Classes


			Colorspace


			Device


			DisplayList


			Document


			Identity


			IRect


			Link


			linkDest


			Matrix


			Shifting


			Flipping


			Shearing


			Rotating





			Outline


			Page


			Pixmap


			Point


			Rect


			TextPage


			TextSheet





			Constants and Enumerations


			Constants


			Enumerations





			Appendix


			Example Outputs of Text Extraction Methods


			TextPage.extractText()


			TextPage.extractHTML()


			TextPage.extractJSON()


			TextPage.extractXML()





			Resource Requirements of Text Extraction Methods


			Performance


			Data Sizes











			Index









PyMuPDF-1.21.1/tests/resources/3.pdf




Jorj X


Something Special





Jorj X


Kommentar


this is a comment





Jorj X


Schreibmaschine


typewriter text





Jorj X


Text-Box


modified text field





Jorj X


Erläuterung


explanation text





Jorj X


Pfeil





Jorj X


Rechteck





Jorj X


Oval


comment in circle





Jorj X


Linienzug





Jorj X


Polygon





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift








2.7.9 (default, Dec 10 2014, 12:24:55) [MSC v.1500 32 bit (Intel)]
PyMuPDF 1.9.3: Python bindings for the MuPDF 1.9a library,
built on 2016-11-09 13:52:29
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104051923-04'00'", 'creationDate': "D:20161104051921-04'00'", 'name': 'Sold', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(38.30866622924805, 29.99896240234375, 283.5176696777344, 94.3599853515625)
type         ====> [12, 'Stamp']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 0.0], 'fill': []}
flags        ====> 28
info         ====> {'content': 'this is a comment', 'modDate': "D:20161104051957-04'00'", 'creationDate': "D:20161104051939-04'00'", 'name': 'Comment', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(339.59588623046875, 51.32275390625, 359.59588623046875, 69.32275390625)
type         ====> [0, 'Text']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 0.0, 'dashes': []}
colors       ====> {'default': [0.6862750053405762, 0.9333339929580688, 0.9333339929580688], 'fill': []}
flags        ====> 4
info         ====> {'content': 'typewriter text', 'modDate': "D:20161108150545-04'00'", 'creationDate': "D:20161104052009-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(396.85333251953125, 53.29669189453125, 506.6533203125, 65.29669189453125)
type         ====> [2, 'FreeText', 'FreeTextTypewriter']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [1, 'C'], 'hradius': '', 'width': 3.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'modified text field', 'modDate': "D:20161105091916-04'00'", 'creationDate': "D:20161104052030-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(49.683258056640625, 131.589111328125, 166.80604553222656, 166.71453857421875)
type         ====> [2, 'FreeText']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'explanation text', 'modDate': "D:20161104052130-04'00'", 'creationDate': "D:20161104052053-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'OpenArrow', 'end': ''}
rect         ====> fitz.Rect(211.27972412109375, 133.12445068359375, 343.1976318359375, 151.12445068359375)
type         ====> [2, 'FreeText', 'FreeTextCallout']
vertices     ====> [212.2474365234375, 704.700439453125, 231.19761657714844, 699.7655639648438, 243.19761657714844, 699.7655639648438]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105085923-04'00'", 'creationDate': "D:20161104052133-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'RClosedArrow', 'end': 'Diamond'}
rect         ====> fitz.Rect(386.5209045410156, 132.9107666015625, 480.52313232421875, 143.64208984375)
type         ====> [3, 'Line', 'LineArrow']
vertices     ====> [394.8789367675781, 703.7134399414062, 476.8163146972656, 704.700439453125]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': [0.7529420256614685, 0.7529420256614685, 0.7529420256614685]}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161108015351-04'00'", 'creationDate': "D:20161104052208-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(65.7791748046875, 190.2489013671875, 202.0124053955078, 236.63677978515625)
type         ====> [4, 'Square']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 2.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': [0.7529420256614685, 1.0, 1.0]}
flags        ====> 4
info         ====> {'content': 'comment in circle', 'modDate': "D:20161108150519-04'00'", 'creationDate': "D:20161106044139-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(247.78652954101562, 170.17724609375, 343.544677734375, 260.888427734375)
type         ====> [5, 'Circle']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052302-04'00'", 'creationDate': "D:20161104052251-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': 'OpenArrow'}
rect         ====> fitz.Rect(397.3605651855469, 178.933837890625, 504.1889343261719, 210.93402099609375)
type         ====> [7, 'PolyLine']
vertices     ====> [397.8405456542969, 656.338623046875, 404.75091552734375, 632.6512451171875, 438.31561279296875, 632.6512451171875, 447.2004089355469, 657.3256225585938, 471.8803405761719, 631.6642456054688, 503.47064208984375, 662.260498046875]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161106044025-04'00'", 'creationDate': "D:20161104052317-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(69.89996337890625, 255.60870361328125, 213.8157196044922, 317.83428955078125)
type         ====> [6, 'Polygon']
vertices     ====> [70.4776840209961, 567.9854125976562, 78.3752670288086, 526.532470703125, 158.33824157714844, 524.5585327148438, 212.6341094970703, 550.2199096679688, 135.63270568847656, 585.7510375976562]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052355-04'00'", 'creationDate': "D:20161104052347-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(283.20770263671875, 270.017822265625, 404.2485046386719, 318.91754150390625)
type         ====> [14, 'Ink']
vertices     ====> [[283.3256530761719, 563.5629272460938, 309.97998046875, 557.64111328125, 340.5830993652344, 556.6541137695312, 345.5190734863281, 551.71923828125, 341.5702819824219, 537.901611328125, 345.5190734863281, 534.940673828125, 367.2374267578125, 536.9146118164062, 393.8917541503906, 535.9276123046875, 397.8405456542969, 540.8624877929688, 400.8021240234375, 539.8755493164062, 403.7637023925781, 549.7453002929688], [395.86614990234375, 558.6280517578125, 385.9941711425781, 557.64111328125], [367.2374267578125, 550.7322387695312, 337.6214904785156, 530.0057983398438, 321.8263244628906, 524.0839233398438, 310.9671630859375, 525.0709228515625, 308.9927673339844, 530.0057983398438, 305.0439758300781, 535.9276123046875, 305.0439758300781, 549.7453002929688, 308.0055847167969, 553.6931762695312, 312.9415588378906, 558.6280517578125, 327.74951171875, 563.5629272460938, 355.39105224609375, 565.536865234375, 366.2502136230469, 570.4717407226562, 383.0325622558594, 570.4717407226562, 387.96856689453125, 566.5238647460938, 398.8277282714844, 563.5629272460938]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124032-04'00'", 'creationDate': "D:20161105124026-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(108.5757827758789, 365.8624267578125, 178.93264770507812, 406.0747985839844)
type         ====> [14, 'Ink']
vertices     ====> [[108.70982360839844, 463.3018798828125, 128.9523468017578, 469.29931640625, 139.44847106933594, 475.2967529296875, 139.44847106933594, 463.3018798828125, 143.94680786132812, 458.05413818359375], [121.45511627197266, 454.30572509765625, 130.4517822265625, 454.30572509765625, 132.70095825195312, 456.5547790527344, 131.95123291015625, 452.05670166015625, 134.20040893554688, 448.30828857421875, 136.44956970214844, 437.8127746582031, 144.69651794433594, 437.8127746582031, 164.9390411376953, 436.31341552734375], [161.1904296875, 469.29931640625, 168.68765258789062, 469.29931640625, 173.9357147216797, 465.5509338378906, 176.9346160888672, 461.0528564453125, 178.43405151367188, 446.05926513671875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124033-04'00'", 'creationDate': "D:20161105124033-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(161.1904296875, 386.3345947265625, 209.92242431640625, 387.3345947265625)
type         ====> [14, 'Ink']
vertices     ====> [[209.92242431640625, 455.055419921875, 161.1904296875, 455.055419921875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124036-04'00'", 'creationDate': "D:20161105124035-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(188.2412567138672, 367.2844543457031, 193.92710876464844, 399.61651611328125)
type         ====> [14, 'Ink']
vertices     ====> [[189.67990112304688, 474.5470886230469, 188.93017578125, 464.8012390136719, 191.92906188964844, 458.05413818359375, 193.4285125732422, 442.31085205078125]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124040-04'00'", 'creationDate': "D:20161105124037-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(88.03831481933594, 367.0860900878906, 245.77398681640625, 404.91131591796875)
type         ====> [14, 'Ink']
vertices     ====> [[235.41299438476562, 469.29931640625, 240.6610565185547, 465.5509338378906, 242.16050720214844, 459.5534973144531, 245.15939331054688, 458.05413818359375, 243.65994262695312, 453.5560607910156, 243.65994262695312, 449.8076477050781, 222.66770935058594, 440.06182861328125, 211.42185974121094, 438.5624694824219, 209.17269897460938, 437.8127746582031, 214.42076110839844, 452.05670166015625, 218.16937255859375, 455.8050842285156, 218.91909790039062, 462.5522155761719, 216.669921875, 464.05157470703125, 186.68101501464844, 464.05157470703125, 143.94680786132812, 468.5496520996094, 135.69984436035156, 465.5509338378906, 125.95345306396484, 464.8012390136719, 118.45622253417969, 461.8025207519531, 104.21148681640625, 461.8025207519531, 94.465087890625, 461.0528564453125, 92.96564483642578, 466.30059814453125, 88.4673080444336, 474.5470886230469]]

 test.pdf page 0  -  15 annotations, end of program




test1.txt












PyMuPDF-1.21.1/tests/resources/4.pdf




Jorj X


Something Special





Jorj X


Kommentar


this is a comment





Jorj X


Schreibmaschine


typewriter text





Jorj X


Text-Box


modified text field





Jorj X


Erläuterung


explanation text





Jorj X


Pfeil





Jorj X


Rechteck





Jorj X


Oval


comment in circle





Jorj X


Linienzug





Jorj X


Polygon





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift








2.7.9 (default, Dec 10 2014, 12:24:55) [MSC v.1500 32 bit (Intel)]
PyMuPDF 1.9.3: Python bindings for the MuPDF 1.9a library,
built on 2016-11-09 13:52:29
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104051923-04'00'", 'creationDate': "D:20161104051921-04'00'", 'name': 'Sold', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(38.30866622924805, 29.99896240234375, 283.5176696777344, 94.3599853515625)
type         ====> [12, 'Stamp']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 0.0], 'fill': []}
flags        ====> 28
info         ====> {'content': 'this is a comment', 'modDate': "D:20161104051957-04'00'", 'creationDate': "D:20161104051939-04'00'", 'name': 'Comment', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(339.59588623046875, 51.32275390625, 359.59588623046875, 69.32275390625)
type         ====> [0, 'Text']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 0.0, 'dashes': []}
colors       ====> {'default': [0.6862750053405762, 0.9333339929580688, 0.9333339929580688], 'fill': []}
flags        ====> 4
info         ====> {'content': 'typewriter text', 'modDate': "D:20161108150545-04'00'", 'creationDate': "D:20161104052009-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(396.85333251953125, 53.29669189453125, 506.6533203125, 65.29669189453125)
type         ====> [2, 'FreeText', 'FreeTextTypewriter']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [1, 'C'], 'hradius': '', 'width': 3.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'modified text field', 'modDate': "D:20161105091916-04'00'", 'creationDate': "D:20161104052030-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(49.683258056640625, 131.589111328125, 166.80604553222656, 166.71453857421875)
type         ====> [2, 'FreeText']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'explanation text', 'modDate': "D:20161104052130-04'00'", 'creationDate': "D:20161104052053-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'OpenArrow', 'end': ''}
rect         ====> fitz.Rect(211.27972412109375, 133.12445068359375, 343.1976318359375, 151.12445068359375)
type         ====> [2, 'FreeText', 'FreeTextCallout']
vertices     ====> [212.2474365234375, 704.700439453125, 231.19761657714844, 699.7655639648438, 243.19761657714844, 699.7655639648438]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105085923-04'00'", 'creationDate': "D:20161104052133-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'RClosedArrow', 'end': 'Diamond'}
rect         ====> fitz.Rect(386.5209045410156, 132.9107666015625, 480.52313232421875, 143.64208984375)
type         ====> [3, 'Line', 'LineArrow']
vertices     ====> [394.8789367675781, 703.7134399414062, 476.8163146972656, 704.700439453125]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': [0.7529420256614685, 0.7529420256614685, 0.7529420256614685]}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161108015351-04'00'", 'creationDate': "D:20161104052208-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(65.7791748046875, 190.2489013671875, 202.0124053955078, 236.63677978515625)
type         ====> [4, 'Square']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 2.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': [0.7529420256614685, 1.0, 1.0]}
flags        ====> 4
info         ====> {'content': 'comment in circle', 'modDate': "D:20161108150519-04'00'", 'creationDate': "D:20161106044139-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(247.78652954101562, 170.17724609375, 343.544677734375, 260.888427734375)
type         ====> [5, 'Circle']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052302-04'00'", 'creationDate': "D:20161104052251-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': 'OpenArrow'}
rect         ====> fitz.Rect(397.3605651855469, 178.933837890625, 504.1889343261719, 210.93402099609375)
type         ====> [7, 'PolyLine']
vertices     ====> [397.8405456542969, 656.338623046875, 404.75091552734375, 632.6512451171875, 438.31561279296875, 632.6512451171875, 447.2004089355469, 657.3256225585938, 471.8803405761719, 631.6642456054688, 503.47064208984375, 662.260498046875]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161106044025-04'00'", 'creationDate': "D:20161104052317-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(69.89996337890625, 255.60870361328125, 213.8157196044922, 317.83428955078125)
type         ====> [6, 'Polygon']
vertices     ====> [70.4776840209961, 567.9854125976562, 78.3752670288086, 526.532470703125, 158.33824157714844, 524.5585327148438, 212.6341094970703, 550.2199096679688, 135.63270568847656, 585.7510375976562]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052355-04'00'", 'creationDate': "D:20161104052347-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(283.20770263671875, 270.017822265625, 404.2485046386719, 318.91754150390625)
type         ====> [14, 'Ink']
vertices     ====> [[283.3256530761719, 563.5629272460938, 309.97998046875, 557.64111328125, 340.5830993652344, 556.6541137695312, 345.5190734863281, 551.71923828125, 341.5702819824219, 537.901611328125, 345.5190734863281, 534.940673828125, 367.2374267578125, 536.9146118164062, 393.8917541503906, 535.9276123046875, 397.8405456542969, 540.8624877929688, 400.8021240234375, 539.8755493164062, 403.7637023925781, 549.7453002929688], [395.86614990234375, 558.6280517578125, 385.9941711425781, 557.64111328125], [367.2374267578125, 550.7322387695312, 337.6214904785156, 530.0057983398438, 321.8263244628906, 524.0839233398438, 310.9671630859375, 525.0709228515625, 308.9927673339844, 530.0057983398438, 305.0439758300781, 535.9276123046875, 305.0439758300781, 549.7453002929688, 308.0055847167969, 553.6931762695312, 312.9415588378906, 558.6280517578125, 327.74951171875, 563.5629272460938, 355.39105224609375, 565.536865234375, 366.2502136230469, 570.4717407226562, 383.0325622558594, 570.4717407226562, 387.96856689453125, 566.5238647460938, 398.8277282714844, 563.5629272460938]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124032-04'00'", 'creationDate': "D:20161105124026-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(108.5757827758789, 365.8624267578125, 178.93264770507812, 406.0747985839844)
type         ====> [14, 'Ink']
vertices     ====> [[108.70982360839844, 463.3018798828125, 128.9523468017578, 469.29931640625, 139.44847106933594, 475.2967529296875, 139.44847106933594, 463.3018798828125, 143.94680786132812, 458.05413818359375], [121.45511627197266, 454.30572509765625, 130.4517822265625, 454.30572509765625, 132.70095825195312, 456.5547790527344, 131.95123291015625, 452.05670166015625, 134.20040893554688, 448.30828857421875, 136.44956970214844, 437.8127746582031, 144.69651794433594, 437.8127746582031, 164.9390411376953, 436.31341552734375], [161.1904296875, 469.29931640625, 168.68765258789062, 469.29931640625, 173.9357147216797, 465.5509338378906, 176.9346160888672, 461.0528564453125, 178.43405151367188, 446.05926513671875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124033-04'00'", 'creationDate': "D:20161105124033-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(161.1904296875, 386.3345947265625, 209.92242431640625, 387.3345947265625)
type         ====> [14, 'Ink']
vertices     ====> [[209.92242431640625, 455.055419921875, 161.1904296875, 455.055419921875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124036-04'00'", 'creationDate': "D:20161105124035-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(188.2412567138672, 367.2844543457031, 193.92710876464844, 399.61651611328125)
type         ====> [14, 'Ink']
vertices     ====> [[189.67990112304688, 474.5470886230469, 188.93017578125, 464.8012390136719, 191.92906188964844, 458.05413818359375, 193.4285125732422, 442.31085205078125]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124040-04'00'", 'creationDate': "D:20161105124037-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(88.03831481933594, 367.0860900878906, 245.77398681640625, 404.91131591796875)
type         ====> [14, 'Ink']
vertices     ====> [[235.41299438476562, 469.29931640625, 240.6610565185547, 465.5509338378906, 242.16050720214844, 459.5534973144531, 245.15939331054688, 458.05413818359375, 243.65994262695312, 453.5560607910156, 243.65994262695312, 449.8076477050781, 222.66770935058594, 440.06182861328125, 211.42185974121094, 438.5624694824219, 209.17269897460938, 437.8127746582031, 214.42076110839844, 452.05670166015625, 218.16937255859375, 455.8050842285156, 218.91909790039062, 462.5522155761719, 216.669921875, 464.05157470703125, 186.68101501464844, 464.05157470703125, 143.94680786132812, 468.5496520996094, 135.69984436035156, 465.5509338378906, 125.95345306396484, 464.8012390136719, 118.45622253417969, 461.8025207519531, 104.21148681640625, 461.8025207519531, 94.465087890625, 461.0528564453125, 92.96564483642578, 466.30059814453125, 88.4673080444336, 474.5470886230469]]

 test.pdf page 0  -  15 annotations, end of program




test1.txt












PyMuPDF-1.21.1/tests/resources/Bezier.epub










Bézier Circles


and other shapes



The Fun with Numbers Series







by G. Adam Stanislav









Bézier Circles and other shapes


A book in the Fun with Numbers series.



Copyright © 2014 G. Adam Stanislav.



All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author.



Published by  Time Travel Press.



Smashwords edition.



Mathematical notation typeset in .



Thank you for downloading this ebook. This book remains the copyrighted property of the author, and may not be redistributed to others for commercial or non-commercial purposes. If you enjoyed this book, please encourage your friends to download their own copy from their favorite authorized retailer. Thank you for your support.









Drawing a Circle with Bézier Curves







Introduction



If you have come to the conclusion it is not possible to draw a perfect circle using Bézier curves, well… You are right.



Fortunately, the human eye does not have to be looking at a perfect circle for the human mind to say: “Hey, that is a circle.”



So, while you indeed cannot draw a circle using Bézier curves, you can emulate one very closely.



Why draw circles with Bézier curves?



That is a perfectly legitimate question. Why should you use Bézier curves to emulate a circle, when you can draw one using just about any graphics library?



The answer is simple: Sometimes you cannot. For example, if you are designing a Postcript font (such as the now popular OTF type), you are limited to very few graphics primitives: You can draw a line, and you can draw a curve. A cubic Bézier curve, to be more specific.




I originally wrote this in 1998 and posted it on my website, where you can still see it. The comment about the “surprisingly few resources” was true back then. (In this 2014 ebook I have inserted annotations in parentheses and in this color. They were not in the original 1998 text.)







Resources



There are a surprisingly few resources in computer graphics literature explaining how to use Bézier curves to emulate a circle. In all the years of studying computer graphics, (as of 1998) I have seen only one book that touched the topic. And it came up with a wrong solution.



Yet, someone has figured it out. Just about any major commercial drawing program which allows you to export a graphic as a glyph of a Postcript font will do it properly. But, for whatever reason, they do not seem to let others know how they do it.



Several years ago (i.e., several years before 1998), I decided to solve the puzzle, based on the knowledge of basic geometry and principles of computerized typesetting. After I solved the puzzle, I posted the solution in one of Fidonet’s discussion groups (Laserpub).



Many have thanked me for the solution, yet the knowledge seemed to remain with those who read my message.



That is why (in 1998) I have decided to post the solution here on this Internet page (and in 2014 in this ebook).



Analysis



Let us consider some basic properties of a circle:



A circle is a set of points on a plane, each equally distant from a center point. If we run a vertical line through the center, we divide the circle into two semicircles, each of which is the exact mirror image of the other. We can do the same using a horizontal line.



If we use both, a vertical and a horizontal line, we divide the circle into four sections, all mirror images of the rest (the mirror can be horizontal, vertical, or both).



That means that if we can figure out a way to draw one of the quadrants, we know how to draw all four of them.



Secondly, if we draw a tangent to the circle at each point of intersection of our horizontal or vertical line with the circumference of the circle, the tangent itself will be either horizontal or vertical.







If we are to emulate any of the quadrants with cubic Bézier curves (as used in Postscript fonts), we need to draw a curve which has a starting point, an ending point, and two control points.



If we connect the starting point with the nearest control point, and the ending point with its nearest control point, we will have drawn two line segments: One of them horizontal, the other vertical (depending on the quadrant).



Further, both line segments will be of the same length l.



There is an infinite number of curves that have these properties (since there is, at least in theory, an infinite number of lengths l we can use). None of them will yield a perfect circle.



Solution



As I said in the introduction, we cannot draw a perfect circle but we can produce a very close approximation. The trick is in finding the right l.



The value of l is different for each circle, depending on its radius r. That is not a problem. All we need to do is find the l for the special case where r = 1. The result will be a constant, which I shall call kappa (the first letter of the Greek word kyklos, circle). It is hard on the Internet to draw Greek letters, so I am transliterating it as kappa.



Once we have determined the value of kappa as being the l of a circle with r = 1, we can emulate any circle of radius r by using the formula:




l = r . kappa











The Right kappa



The right value of kappa will draw a curve that is as close to a quadrant of a circle as we can get. It is my contention that we get the closest to a real circle if we draw the one curve with properties already discussed, and with the center point of the curve lying at the same point that the center point of the circumference of a true quadrant of a circle would lie at.



I am not going to bore you with the details of deriving the value of such a kappa. I will just say that:




kappa = 0.5522847498







Simple as 1-2-3-4



Unfortunately, kappa is not a rational number. But you do not have to memorize its value to use it, nor do you you have to come back here every time you need to use it.



Fortunately, the formula to derive kappa is very simple: Just remember the phrase “As simple as 1-2-3-4”. That will help you in remembering the full formula which I will describe verbally:




Subtract one


from the square root of two,


divide the result by three,


and multiply by four.











Summary



To emulate a near perfect circle of radius r with cubic Bézier curves, draw four curves such that one of the line segments connecting the starting point with the nearest control point, or the ending point with its nearest control point, is vertical, while the other one is horizontal. The length l of each such segment equals r multiplied by kappa.



To draw an ellipse, follow the same rule. But you will have two different radii: You need to multiply kappa with the radius that is parallel to the line segment connecting the starting/ending point with the nearest control point. If the radii of the ellipse are not horizontal and vertical, you will need to rotate the result using methods described in just about any computer graphics handbook.





The Proof of the kappa







Introduction



Both, my original Fidonet posting and my 1998 web page, were aimed at vector graphic artists. Most of them were not interested in how I determined the value of kappa. They were just happy to have a way of producing good looking circles using nothing but cubic Bézier curves, which were back then, as they are now, the main method of creating vector graphics.



Eventually, however, some people agreed it looked right but were wondering if it really was the right value, or if I had just pulled it out of my fedora. That was a fair question, as in mathematics any claim needs to be proven. So, in 2005 I added another page which showed the proof. But, due to my failing health at the time, I did not make that page as detailed and thorough as I wanted. I am going to do that here and now, in this chapter.



But first, let’s take a brief look at how vector graphics work. If you know the mathematics of vector graphics in general and Bézier curves in particular, feel free to skip to the proof. Otherwise, keep reading.



The Plotter Analogy



One of the earliest devices used to create a vector image was the plotter. A plotter can produce two-dimensional plots (line drawings) by moving a sheet of paper (or some other surface, such as plastics) forward and backward and a pen or a knife leftward and rightward. The paper movement represents one axis, the pen another. The two axes represent the two dimensions of a two-dimensional drawing. Their respective movements are independent of each other.







But both movements are a function of time, that is, the movements start somewhere along the axes at time t = 0 and continue, again independently of each other, at discrete increments, toward some final time, say, t = 1. By breaking the movements into small chunks, simple line or curve segments, each defined as starting at t = 0 and ending at t = 1 (a different t = 0 and t = 1 for each segment), a very complex graphic, such as the picture of a Bratislava street on the left, can be plotted as a series of very simple movements.



This fact of the movement along each axis being independent of each other but dependent on time is the heart of the way vector graphics work.



Parametric Equations



You are probably familiar with the mathematical concept of a function with an independent variable x and a dependent variable y, usually expressed as y = f(x), meaning y is a function of x, which maps at most one value of y to each value of x. By themselves, such functions would not be useful in computer graphics, where we often require a number of values of y for any value of x.



The problem is solved by the use of parametric equations which, like the plotter, make both, the x (horizontal) and the y (vertical), axes dependent on time (typically marked u) but not on each other. And the variable u is only used within a limited range, from some lowest value to some highest value, so it only describes a curve segment rather than some unbound curve, which would perhaps expand from infinity to infinity. For example, the parametric equation of a circle of radius r is:











The  notation after these two equations (right before the equation numbers) means the equations are valid for any u from negative pi to positive pi, inclusive. Outside that range the equations must not be used to draw a circle. A real life renderer would evaluate them in many small steps. How many steps? That depends on the resolution of the device to render the circle to—the higher the resolution, the more and the smaller the steps.



Many digital graphics engines, especially the early ones, are not capable of calculating the sine and the cosine, but all are perfectly capable of addition and multiplication. That is why vector graphics are often limited to forming curve segments by using cubic parametric equations. A cubic equation can be easily computed by using Horner’s rule, a total of three additions and just as few multiplications, like this:







A two-dimensional cubic curve segment can then be expressed in the parametric form thus:











The  notation after these two equations—and many other equations to come—means the equations are only valid for any u from 0 to 1, inclusive. Outside that range, the equations cannot be used to draw whatever curve segment the equations are describing. Another way of saying the same is, the equations are valid if and only if , that is, if and only if u is greater than or equal to 0 and lesser than or equal to 1.



While this is the standard mathematical way of describing a cubic curve segment, for the u between 0 and 1 inclusive, it is very non-intuitive for a graphic designer, as it makes it difficult to visualize what the curve segment described this way actually looks like. Sure, we can easily determine the starting and ending point of the curve segment. Since at the starting point u = 0, we can tell that the a, b and c constants are all multiplied by a zero at the starting point, and only the d constant is unaffected. Therefore, the curve segment starts at x(0) = dx and at y(0) = dy. 



And since at the end of the curve segment u = 1, we can tell the coordinates of the final point will equal a + b + c + d. Therefore, the curve segment ends at x(1) = ax + bx + cx + dx and y(1) = ay + by + cy + dy. But we do not know how it gets from the start to the end, i.e., we do not know what the shape of the curve is. Actually, to be fair, a mathematician can have a good idea of what the curve looks like, but most of the rest of us…



To illustrate this difficulty, I am asking you to consider this specific example:











Just by looking at the two equations, we can tell this curve segment starts at x = 180 and  y = 180 coordinates. From equation (6) we can calculate that it ends at x = - 60 + 90 + 90 + 180 = 300, which is to the right of the starting point. And from equation (7) we can also calculate that it ends at y = 633 - 783 + 270 + 180 = 300, which is above the starting point. But while we can determine the starting coordinates of [180,180] just by looking at the equations, the values of the ending coordinates of [300,300] appear nowhere in either equation and have to be calculated. Depending on how good you are at math, you may need to use a calculator to do that.



What’s worse, there is no intuitive way for most of us, yours truly included, to tell the shape of the curve. Is it concave? Is it convex? Or does it start off concave, then change to convex? Or perhaps starts off convex, then changes to concave? As the image shows, it is the latter. But there are many other possibilities. The curve could be forming a loop, or it could look like the head of a mushroom, etc. But none of that is obvious from the standard parametric cubic equations.



Worst of all, however, a graphic designer with a certain shape in mind cannot even start guessing what values a, b and c should have. He only knows what d should be, since it determines the starting point of the curve segment.



Cubic Bézier Curves







It is much more convenient and intuitive to express cubic parametric equations as cubic Bézier curves, which describe the curve segments using four points—p0, p1, p2 and p3—where p0 lists the x and y coordinates of the starting point of the curve segment, just as dx and dy do in equations  (4) and (5). Point p3 lists the coordinates of the ending point of the curve segment, which we had to calculate on our own when using the form of equations (4) and (5).



The remaining two points, p1 and p2, control the shape of the curve segment. The line p0p1 is tangent to the start of the curve, showing the direction in which the curve is moving at the beginning. Its length controls how fast the curve is curving at the beginning. In our example the line is relatively short, so the curve starts off curving slowly and does not move far from the starting point before the other control point starts affecting it. The position of p1 relative to the line p0p3 determines the flatness (or straightness) of the beginning of the curve segment, as well as its convexity or concavity. If it was lying on the p0p3 line itself, the tangent of the start of the segment would be the same as the overall direction of the curve (which the p0p3 line shows) and the start of the curve would, therefore, look like a straight line. In our example, the curve starts off convex, though the convex portion of the curve is much smaller than the concave rest of the curve, which is also seen by the triangle p0p1Q being much smaller than the p3p2Q triangle.



The p2 control point affects the ending of the curve segment. It does for p3 what p1 does for p0. Because, in our example, the length of p2p3 is much greater than the length of p0p1, and the p3p2Q triangle is much larger than the p0p1Q triangle, the ending concavity is much more pronounced than the initial convexity.



Since the p1p2 line crosses the curve, we can also know (even if we did not have the picture) that the curve changes between convexity and concavity. It does so at the point where p1p2 crosses the curve.







Advanced Topic: The point where p1p2 crosses the curve is called the point of inflection. Its coordinates can be calculated using calculus and vector mathematics as , where  is the derivative of p and  is the second derivative of p. In a parametric cubic equation with ,  and . It is way beyond the scope of this book to go more into it.



Clearly then, a cubic Bézier curve is much more intuitive to a graphic designer than just a standard cubic curve. That is why just about all graphics software uses Bézier curves. The designer can simply draw a curve segment from the starting point p0 to the ending point p3 and adjust the shape of the curve segment by moving the p1 and p2 control points (which such software usually refers to as the “handles” of the curve; it also usually just refers to the curve segment as a “curve”, dropping the word “segment”).



It is no harder on the digital graphics engines to render cubic Bézier equations, as, after applying Horner’s rule (3), it still involves only one extra operation other than addition and multiplication, namely negation. The cubic Bézier formula is:











That is a shortcut way of saying 



 is the summation symbol. It tells us to add up whatever formula follows, and to do so for every i from 0 to 3.



0! = 1, 1! = 1, 2! = 2 and 3! = 6, so t0 = 1, t1 = 3, t2 = 3 and t3 = 1. If that makes no sense to you, see Factorial on Wikipedia.



Since cubic Bézier equations are just a different way of expressing standard cubic equations, any standard cubic equation can be converted to a cubic Bézier equation, and any cubic Bézier equation can be converted to a standard cubic equation. So, an alternative for a digital graphics engine is to convert the cubic Bézier curve to a standard cubic curve before rendering it. That will allow it to render faster and use less memory in the process.



I will discuss the conversion in another chapter, but for now here is what our example curve segment from equations (6) and (7) converts to in the cubic Bézier notation. Please note that p0, p1, p2 and p3 are two-dimensional vectors, or 2-tuples, or doubles, or two-dimensional arrays, depending on whom you ask. At any rate, the first number is for the x axis, the second for the y axis.







And now we can easily draw the curve. For example, we can create an SVG graphic like this:








<?xml version='1.0'?> standalone="no"



<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">




<!-- Copyright © 2014 G. Adam Stanislav -->



<svg height='124pt' version='1.1' viewBox='0 -124 124 124' width='124pt' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'>



<g transform='matrix(1 0 0 1 -178 178)'>



<path d='M180 -180C210 -270 270 -99 300 -300' fill='none' stroke='#660000' stroke-width='2.0'/>




</g>



</svg>











It’s as simple as that!



Note that here we have expressed the y coordinates as negative numbers. That is because in SVG y = 0 is on the top of the screen, while in Bézier curves y = 0 is at the bottom of the screen. If we used EPS, we would not need to negate the y coordinates:








%!PS-Adobe-3.0 EPSF-3.0



%%BoundingBox: 178 178 302 302



%%Pages: 0



%%Creator: G. Adam Stanislav



%%CreationDate: September 6, 2014




%%EndComments



%%EndProlog







newpath



2 setlinewidth



180 180 moveto



210 270 270 99 300 300 curveto




stroke



showpage







%%EOF







Unlike with SVG, in our EPS code we did not set the color. That is because of the different nature of the two formats. SVG defines a full, self-standing graphic meant to be shown at a computer (or computer-like device) monitor. EPS defines a graphic that is meant to be encapsulated in some other PostScript file, so by leaving the color undefined, we give the author of the PostScript file the freedom to use any color he wants. And if he does not, it will default to black.



The kappa



We can now prove that  is true.







Please note that regardless of the value of the radius r, given the definition of the circle as a set of points all being of the same distance from its center, marked O in the image. That distance is the radius of the circle. So, in our image the lengths of OA, OB, as well as OC is r. Additionally, the line AA’ is parallel with the line OB and is, therefore, vertical. Similarly the line BB’ is parallel to the line OA and is, therefore, horizontal. The length of both, AA’ and BB’ is .



Also please note that using Bézier curves we have two ways of drawing the upper right quadrant of the circle. One way is to draw it counterclockwise, so, as per equation (8), p0 = A, p1 = A’, p2 = B’, and p3 = B. The other is to draw it clockwise, so p0 = B, p1 = B’, p2 = A’, and p3 = A. While the result happens to look the same in this particular image, sometimes we need to draw one way or the other, as it affects how a closed path is filled. Either way, though, the coordinates of A, A’, B’ and B remain the same. So, if we prove the validity of  for drawing it one way, we have proven it for the other.



In the Drawing a Circle with Bézier Curves chapter, I stated the following axiom:



“The right value of kappa will draw a curve that is as close to a quadrant of a circle as we can get.It is my contention that we get the closest to a real circle if we draw the one curve with properties already discussed, and with the center point of the curve lying at the same point that the center point of the circumference of a true quadrant of a circle would lie at.”






In the figure to the right, the center point is marked C. Its coordinates are cx and cy. Because cx lies on the x coordinate, . And because cy lies on the y coordinate, .



From that we know that both,  and , are right triangles. Additionally, cx = cy, which means both,  and , are isosceles triangles.







 means the line going through the points C and cx is perpendicular (at the right angle) to the line going through the points O and cx.



Similarly,  means the line going through the points C and cy is perpendicular to the line going through the points O and cy.



 means the triangle produced by connecting the points O, C and cx. And  means the triangle produced by connecting the points O, C and cy.



From that, using the Pythagorean theorem, we can calculate the value of both cx and cy in a real circle drawn by equations (1) and (2), for a circle of any radius r. And since cx = cy, we will just use a c to represent both:







Line (17) is just another way of expressing the result in line (16), obtained by multiplying both, the nominator and the denominator of (16), by . Not only does (17) look better to us humans, it is also a lot easier to compute than (16), both by humans and computers. Both are the correct solution for the value of c = cx = cy. We can use whichever we prefer, or whichever makes our calculations clearer.



Now we are ready for our first proof. For starters, let us assume that, in the image on the right, we have a circle with the radius r = 1. Going counterclockwise, the coordinates of the four points are:







We will only be concerned with one axis for our first proof, let’s choose x, whose coordinates are:







If we plug these values into equation (8) and  is valid, the calculation of x(0.5) must give us the value of cx which, given that r = 1, must equal . And since 1 - 0.5 = 0.5, we will replace all occurences of  with the constant . Here then is the calculation:







Since x(0.5) = =c, this calculation proves that  is correct, at least for the x axis when drawing counterclockwise when r = 1, and also for the y axis when drawing clockwise, and r = 1, because the only difference between a clockwise and a counterclockwise drawing is that clockwise y = counterclockwise x.



Now that we understand the mathematical principles behind Bézier curves, we are ready to move on to prove that  is the right value of kappa for the emulation of the circle of any radius r.







The Proof



To prove that  is the right value of kappa for the emulation of the circle of any radius r, we will calculate equation (8) with the values of u = 0.5 where the lengths of both AA’ and BB’ is . We will do so separately for the x axis and the y axis. If necessary, we will do so for both, the clockwise and the conterclockwise, use. It will only be necessary if their four p points are different. So, for example, if we find that the counterclockwise x is the same as the clockwise y and the counterclockwise y is the same as the clockwise x, it will not be necessary, since in that case the proof that  is the right value for the x axis of a counterclockwise drawing also proves it is the right value for the y axis of a clockwise drawing. And if we prove it is the right value for the y axis of the counterclockwise drawing, it also proves  is the right kappa for the x axis of a clockwise drawing.



If, in every case the result of the calculation equals , as required by (17), then and only then is  the correct value of kappa for any radius r. Otherwise, it is not.



Also please note that our proof only concentrates on circles with O = [0 0]. This is because translating a drawing (i.e., moving its center to some other position) does not affect its shape. A circle remains a circle no matter where we move it. So our proof is valid even for any Bézier circle regardless of the position of its O.



Here are the values of p for any counterclockwise circle with radius r using our kappa:







And here are the values of p for any clockwise circle with radius r using our kappa:







As you can see, the x axis of the clockwise circle is the same as the y axis of the counterclockwise circle. And the y axis of the clockwise circle is the same as the x axis of the counterclockwise circle. Considering the symmetry of a circle, this is not surprising at all.



It also means that proving the validity of  for the counterclockwise circle also proves it for the clockwise circle. Again, this is not surprising since a circle is a circle no matter what direction we chose to draw it in. We will, therefore, only provide the proof for the counterclockwise values.



As before, we will replace all occurences of  with the constant . For the counterclockwise x axis, as well as for the clockwise y axis, our calculation will be:







And for the counterclockwise y axis, as well as the clockwise x axis:







We have shown that for any value of radius r, on both, the x axis and the y axis, counterclockwise or clockwise p(0.5) = . Therefore,  is the correct value to emulate a circle with cubic Bézier curves.



QED



A Visual Test



We can easily test it visually. Here is, test.eps, an encapsulated PostScript file that draws a seven-point thick circle using the kappa, then draws a two-point thick red circle over it using the PostScript arc command. The picture on the right shows how it is rendered with PS_View, a free PostScript previewer. As you can see, the two circles overlap perfectly, producing the illusion of a red circle inside a black frame.








%!PS-Adobe-3.0 EPSF-3.0



%%BoundingBox: -104 -104 104 104



%%Creator: G. Adam Stanislav



%%CreationDate: September 13, 2014




%%EndComments



%%EndProlog







/kappa {



2 sqrt



1 sub



4 mul



3 div



} bind def



/lpos { % r * kappa



100 kappa mul



} bind def



/lneg { % -r * kappa



-100 kappa mul



} bind def



newpath



7 setlinewidth



% First Quadrant



100 0 moveto



100 lpos



lpos 100



0 100 curveto



% Second Quadrant



lneg 100



-100 lpos



-100 0 curveto



% Third Quadrant



-100 lneg



lneg -100



0 -100 curveto



% Fourth Quadrant



lpos -100



100 lneg



100 0 curveto




closepath



stroke



newpath







2 setlinewidth



1 0 0 setrgbcolor



0 0



100



0 360 arc




stroke



showpage







%%EOF









Playing with the kappa







Introduction



Now that we have determined  is the right kappa to draw a circle, let’s play with it a little and see what kind of other shapes we would get if we multiplied or divided it by several small prime numbers.








A prime number is an integer greater than 1 that can only be divided by 1 or by itself and still give an integer result. Ancient Greeks loved prime numbers, especially the small ones, such as 2, 3, 5, 7 and 11. It so happens I love them, too.







We can do that by simply modifying the definition of the kappa variable in our test.eps from our last chapter. To recapture, this was the relevant section of test.eps:




/kappa {



2 sqrt



1 sub



4 mul



3 div



} bind def







Dividing the kappa







Let’s start our experiments by dividing the value of kappa by the first prime number 2. To do so, we simply multiply the 3 before the div by 2 and replace it with the result, 6, like this:




/kappa {



2 sqrt



1 sub



4 mul



6 div



} bind def







The result, as the picture on the right shows, is no longer a circle. It is a sort of a rounded square with its corners on the top, left, bottom and right. It is completely inside the red circle, touching it at the four corners.








In the image, it appears the four corners actually extend beyond the red circle. This is because we have set the line width of the red circle to two PostScipt units and the width of the test image to seven PostScript units. If they were both of the same line width, the test image would be touching the red circle at the four corner points. It would not extend beyond it.



This is true in all of our examples of this chapter. After all, in our test.eps we have set the four corners to lie exactly at the radius distance from the origin O. And by the definition of a circle, all of the red circle’s points lie exactly at the radius distance from the origin O. Therefore, the four corners of any of our tests, in this chapter, can lie neither outside nor inside the red circle. They always lie on the circle.



All the rest of our test points will lie inside the circle when we use a length lesser than the radius multiplied by the kappa (as in our division tests) and outside the circle when we use a length greater than the radius multiplied by the kappa. As we have seen in the last chapter, when we use the length equal to the radius multiplied by the kappa, then and only then do all the points lie on the circle. In none of these cases do the test images cross the circle.



Give yourself extra credit if you can tell what would happen if we used a value greater than the radius multiplied by the kappa on the x axis and lesser than the radius multiplied by the kappa on the y axis. And what would happen if one of the axes used a value equal to the radius multiplied by the kappa and the other would not? If you are not sure, rewrite test.eps to try it. Better yet, try it even if you think you are sure.











While it is not a circle, it is still a shape we may use in graphics design. Let’s play with it a little more by adding the following right before the first newpath in our test.ps:



45 rotate






This will rotate the entire drawing by 45° counterclockwise. The result, seen on the left, is a shape we may want to use for a web button, just to name one example. Or perhaps a very old TV, to name another.







Now, let’s delete the 45 rotate statement and see what happens if we try dividing the kappa by 3. Since 3*3 = 9, we need to place a 9 before the div, like this:




/kappa {



2 sqrt



1 sub



4 mul



9 div



} bind def







The result, on the right, does not look that much different from when we divided kappa by 2. But it is flatter than that, so it is different.







Moving on, the next prime number is five, so we change our divisor to 5*3 = 15, like this:




/kappa {



2 sqrt



1 sub



4 mul



15 div



} bind def







Again, the result, on the left, is flatter than before. That brings about the question, will it ever be completely flat, so that it is just a square with no roundness.



The answer is that theoretically it will never become completely flat. Practically, however, we are dealing with outputting the drawings on physical devices, whether in print or on a monitor. Because these devices have a limited resolution, they will all come to a point where the roundness is too subtle for them to render. At that point, and anything beyond, the rendered image will become a regular flat square, albeit with its corners on the top, left, bottom and right. Of course, as we have seen, we can rotate the image to our liking.







For our final division of kappa, the picture on the right shows what would happen if we divided kappa by the next prime number, 7. We would do so by setting the value of the div operator to 7*3=21. This image is hard to distinguish from the previous one. If we pressed on with more divisions, we would see less and less difference, so we will stop here and move on to experimenting with multiplying the kappa instead.



I will still point out, however, that while the differences may be too small for graphic design, going further and then showing all the images in sequence on a video would make for a very nice animation. If you want to do that, the Math Is Fun web site has a list of prime numbers from 2 to 9973. There are many such sites, just search the web for list of prime numbers to find them.



Multiplying the kappa



To experiment with multiplying the kappa we need to restore the value before the div operator of test.eps to 3. We will proceed to multiply the 4 before the mul operator by various small prime numbers.



While before we saw the results appear inside the red circle, now we expect them to expand outside of it, while still touching it at the same four points as before. Additionally, the images will grow, so we will probably have to change the bounding box in the second line of our file. But not yet with our first experiment.







For the first prime number, 2, we need to multiply the 4 by 2, and change the 4 to 8:




/kappa {



2 sqrt



1 sub



8 mul



3 div



} bind def







The result, on the left, looks like a square with rounded corners. But is it? There is only one way to find out, by plugging 2*kappa into our trusted equation (8) and calculate the result of p(0.5). If the result is greater than the radius r, the looks are deceiving as it means the vertical lines have to move to the right in the first and fourth quadrant and to the left in the second and third quadrant before curving. Similarly the horizontal lines with moving up or down.



If, on the other hand, the result is less than the radius r, especially slightly less, using 2*kappa would give us a really nice and elegant way of producing a square with rounded edges.



So let’s do the math:











We would get the same result had we calculated it for the y coordinate. Feel free to calculate it if you don’t believe.



Since 0.91421 is slightly less than 1, we can use 2*kappa to create a smooth shape the human eye cannot distinguish from a square with rounded corners any more than it can tell kappa from a circle.



On the right you can see the result of the same test.eps, just without the red circle and without setting the line width to 7. Oh, and without going through PS_View.







Moving on to 3*kappa, we set the multiplier to 3*4=12, like this:




/kappa {



2 sqrt



1 sub



12 mul



3 div



} bind def







But we also need a bigger bounding box, so we change the second line of test.eps to this:




%%BoundingBox: -118 -118 118 118







That is because, as the image on the left shows, we are now extended way out from the square around the original circle. Without changing the bounding box our drawing would be clipped.



This is another smooth shape we can use the kappa for, by simply multiplying it by three.







The next prime number is five, so we set the multiplier to 5*4= 20.




/kappa {



2 sqrt



1 sub



20 mul



3 div



} bind def







Once again, we have to enlarge our bounding box for that:




%%BoundingBox: -162 -162 162 162







This time p(0.5) is clearly so much larger than the radius r that the curve loops at the four edges. Yet it does so without the need to insert any additional Bézier curves. Producing loops is a perfectly acceptable use of Bézier curves.



There is an exception in designing fonts, as these would look good while filled, but not when stroked.







For our final exercise, we will use the next prime number, seven, and set the multiplier to 7*4=28.




/kappa {



2 sqrt



1 sub



28 mul



3 div



} bind def







And we will enlarge our bounding box, as we always have to as we increase the multiplier (the only exception was when we multiplied by two). All through these experiments we have been figuring out the right bounding box by trial and error, though we certainly could have calculated the p(0.5) for every new case, added half of the width of the line and rounded it up to an integer. But trial and error works just as good.




%%BoundingBox: -208 -208 208 208







As you can see, on the right, the size of the loops got larger. And if we went with further prime numbers, they would get larger and larger yet. So, once again, you may be asking whether we could go far enough to make the underlying square so small that it would disappear.



This time the answer is never. Not theoretically and not practically. The thing is, the box is actually not getting smaller as the “ears” are getting bigger. The box is always outside the red circle, and that circle never changes its size. It may appear smaller in our illustrations because we asked PS_View to always fit the bounding box in the same window.



What if we made the radius r extremely small and used a very large kappa multiplier? It still doesn’t do it. As the multiplier approaches infinity, the curves of the “ears” turn more and more into straight lines, so the desired effect just isn’t there.



Please, don’t take my word for it, though. Try it yourself!




About the Author






Born 23 April 1950 in Bratislava, Stanislav was graduated in 1968 from Gymnázium Jura Hronca in Bratislava, with specialization in mathematics and computer programming. He holds graduate degrees in psychology from Komenský University in Bratislava and in canon law from Gregorian University in Rome. His writing, both fiction and non-fiction, was published in Slovakia, Czech Republic, Italy, Vatican and the United States. He has lived in Bratislava, Český Krumlov, Vienna, Rome, Washington and Pittsburgh. He is currently retired in Wisconsin. He was active in the anti-Communist underground in Czechoslovakia until he escaped to Austria in 1979. He became a US citizen in 1990 on the same day his home country rebelled against Communism in the Velvet Revolution. He enjoys visiting his beloved Bratislava as often as his financial situation and his failing health permit.



Also by this Author



Precious Ratios







For thousands of years mathematicians and artists studied the golden ratio. Later they developed the silver ratio. An ebook in the Fun with Numbers series, published by Time Travel Press, Precious Ratios develops the general formula for creating any number of precious ratios, compatible with the ideas behind the golden and silver ratios. As an example, it shows how to create and compute the values of the iridium ratio and the platinum ratio. It includes C++ classes to compute the value of any precious ratio, and a sample C++ code showing how to use the classes.



Look for Precious Ratios at your favorite ebook retailer or ask for it in your local library. Its ISBN is 978-0-9716461-0-0.



























































































PyMuPDF-1.21.1/tests/resources/bug1945.pdf




News



Putin declares four areas of Ukraine as
Russian in illegal annexation



WORLD



What Russian annexation means for Ukraine's regions
EUROPE



Hurricane Ian: Maps and images showing destruction
US & CANADA



The US push to make salaries public
WORKLIFE



The phenomenon of eye colour change
FUTURE



SearchBBC





https://www.bbc.com/news


https://www.bbc.com/news/live/world-63077272


https://www.bbc.com/news/world-europe-63086767


https://www.bbc.com/news/world-us-canada-63078606


https://www.bbc.com/worklife/article/20220929-the-us-push-for-pay-transparency


https://www.bbc.com/future/article/20220929-how-our-eyes-change-colour-throughout-our-lives


https://www.bbc.com/news/live/world-63077272


https://www.bbc.com/news/world


https://www.bbc.com/news/world-europe-63086767


https://www.bbc.com/news/world/europe


https://www.bbc.com/news/world-us-canada-63078606


https://www.bbc.com/news/world/us_and_canada


https://www.bbc.com/worklife/article/20220929-the-us-push-for-pay-transparency


http://www.bbc.com/worklife


https://www.bbc.com/future/article/20220929-how-our-eyes-change-colour-throughout-our-lives


http://www.bbc.com/future


https://search.bbc.co.uk/search?scope=all&destination=HOMEPAGE_GNL


https://www.bbc.com/


https://session.bbc.com/session?ptrt=https%3A%2F%2Fwww.bbc.com%2F&context=homepage&userOrigin=HOMEPAGE_GNL








Sport



Visit Reel



The most amazing videos from the BBC



Putin raises stakes in speech full of anti-Western bile
EUROPE



Hurricane Ian nears Carolinas aer battering Florida
US & CANADA



Survivors describe 'brutal' storm as Florida counts cost
US & CANADA



Pakistan eye big total against England aer Babar-led recovery
CRICKET



Why Brazil’s famous yellow shirt has become a political symbol
SPORT



Sainz fastest in Singapore second practice
FORMULA 1





https://www.bbc.com/sport


https://www.bbc.com/news/world-europe-63094561


https://www.bbc.com/news/live/world-us-canada-63064253


https://www.bbc.com/news/world-us-canada-63084460


https://www.bbc.com/sport/live/cricket/62423003


https://www.bbc.co.uk/sport/football/62887765


https://www.bbc.com/sport/formula1/63089240


https://www.bbc.com/reel


https://www.bbc.com/news/world-europe-63094561


https://www.bbc.com/news/world/europe


https://www.bbc.com/news/live/world-us-canada-63064253


https://www.bbc.com/news/world/us_and_canada


https://www.bbc.com/news/world-us-canada-63084460


https://www.bbc.com/news/world/us_and_canada


https://www.bbc.com/sport/live/cricket/62423003


https://www.bbc.com/sport/cricket


https://www.bbc.co.uk/sport/football/62887765


http://www.bbc.com/sport


https://www.bbc.com/sport/formula1/63089240


https://www.bbc.com/sport/formula1








What do Napoleon’s secret love letters reveal about him?



How an ancient civilisation discovered the equator











Editor’s Picks



A quick exercise that gives your brain a boost



New Zealand's overlooked cuisine
TRAVEL





https://www.bbc.com/travel/article/20220929-new-zealands-overlooked-indigenous-cuisine


https://www.bbc.com/travel/article/20220929-new-zealands-overlooked-indigenous-cuisine


https://www.bbc.com/travel








LATEST BUSINESS NEWS



1 EU agrees windfall tax on energy firms



2 PM rebuffs calls to bring forward watchdog's
analysis



3 US suggests Russia could be behind gas pipe
leaks



4
Nike feels squeeze from strong dollar and
di t



The surprising power of memes
FUTURE



The hidden overwork buried in jobs
WORKLIFE



11 films to watch this October
CULTURE



Nasa and SpaceX consider Hubble re-boost mission
SCIENCE & ENVIRONMENT



Trevor Noah to step down as host of The Daily Show
ENTERTAINMENT & ARTS



Young non-smokers told not to take up vaping
HEALTH





https://www.bbc.com/news/business-63089222


https://www.bbc.com/news/uk-politics-63089314


https://www.bbc.com/news/business-63084613


https://www.bbc.com/news/business-63084747


https://www.bbc.com/future/article/20220928-the-surprising-power-of-internet-memes


https://www.bbc.com/worklife/article/20220928-the-hidden-overwork-that-creeps-into-so-many-jobs


https://www.bbc.com/culture/article/20220929-11-of-the-best-films-to-watch-this-october


https://www.bbc.com/news/science-environment-63084707


https://www.bbc.com/news/entertainment-arts-63084082


https://www.bbc.com/news/health-63076876


https://www.bbc.com/future/article/20220928-the-surprising-power-of-internet-memes


http://www.bbc.com/future


https://www.bbc.com/worklife/article/20220928-the-hidden-overwork-that-creeps-into-so-many-jobs


http://www.bbc.com/worklife


https://www.bbc.com/culture/article/20220929-11-of-the-best-films-to-watch-this-october


http://www.bbc.com/culture


https://www.bbc.com/news/science-environment-63084707


https://www.bbc.com/news/science_and_environment


https://www.bbc.com/news/entertainment-arts-63084082


https://www.bbc.com/news/entertainment_and_arts


https://www.bbc.com/news/health-63076876


https://www.bbc.com/news/health








4 discounts



5 Liz Truss' path to regain market credibility



Visit



Solutions for a sustainable world



Future Planet



Will Venice succumb to the sea?





https://www.bbc.com/news/business-63084747


https://www.bbc.com/news/business-63085416


https://www.bbc.com/future/future-planet








India's sustainable cooling solution



Why fast fashion needs a makeover











TECHNOLOGY OF BUSINESS



BUSINESS



Finland wants to transform how we make
clothes



ADVERTISEMENT



SELECT





https://www.bbc.com/news/business-62806565


https://www.bbc.com/news/business-11428889


https://www.bbc.com/news/business


https://www.bbc.com/news/business-62806565


https://www.bbcselect.com/








BBC WORLD SERVICE  ON AIR: BBC OS



Featured video



 Jewish sect members escape facility in Mexico
LATIN AMERICA & CARIBBEAN



Relati
ASIA



NOW STREAMING



Why Trump's political comeback is not
guaranteed





http://www.bbc.co.uk/worldserviceradio/


http://www.bbc.co.uk/programmes/p01k2bx3


https://www.bbc.com/news/world-63094687


https://www.bbc.com/news/world-latin-america-63092359


https://www.bbc.com/news/world-asia-63091162


https://www.bbc.com/news/world-latin-america-63092359


https://www.bbc.com/news/world/latin_america


https://www.bbc.com/news/world-asia-63091162


https://www.bbc.com/news/world/asia


https://www.bbcselect.com/watch/trump-the-comeback/?utm_source=BBC.com&utm_medium=Homepage&utm_campaign=Trump+The+Comeback


https://www.bbcselect.com/


https://www.bbcselect.com/watch/trump-the-comeback/?utm_source=BBC.com&utm_medium=Homepage&utm_campaign=Trump+The+Comeback








More around the BBC



'Shiny, sparkly object' in James Webb space image
SCIENCE & ENVIRONMENT



Steve Wright hosts final Radio 2 aernoon show
ENTERTAINMENT & ARTS



Google to close Stadia service and refund gamers
TECHNOLOGY



Why is Uganda's Ebola outbreak so serious?
AFRICA



Revealed: Huge gas flaring emissions never reported
SCIENCE & ENVIRONMENT



UK must brace for big, early wave of flu - experts
HEALTH



First coins featuring King Charles are unveiled





https://www.bbc.com/news/science-environment-63090818


https://www.bbc.com/news/entertainment-arts-63088080


https://www.bbc.com/news/technology-63082320


https://www.bbc.com/news/world-africa-63080543


https://www.bbc.com/news/science-environment-62917498


https://www.bbc.com/news/health-63045190


https://www.bbc.com/news/business-63073983


https://www.bbc.com/news/science-environment-63090818


https://www.bbc.com/news/science_and_environment


https://www.bbc.com/news/entertainment-arts-63088080


https://www.bbc.com/news/entertainment_and_arts


https://www.bbc.com/news/technology-63082320


https://www.bbc.com/news/technology


https://www.bbc.com/news/world-africa-63080543


https://www.bbc.com/news/world/africa


https://www.bbc.com/news/science-environment-62917498


https://www.bbc.com/news/science_and_environment


https://www.bbc.com/news/health-63045190


https://www.bbc.com/news/health


https://www.bbc.com/news/business-63073983








FROM OUR CORRESPONDENTS



How a massive data breach has exposed Australia
By Tiffanie Turnbull



Why Indian firms don't want workers to have two jobs
By Zoya Mateen



IMF's stinging rebuke is without a clear precedent
By Faisal Islam



Tim Cook: No excuse for lack of women in tech
By Zoe Kleinman



Unanswered questions in India sisters' hanging
By Geeta Pandey and Vineet Khare



BUSINESS



CEO SECRETS





https://www.bbc.com/news/world-australia-63056838


https://www.bbc.com/news/world-asia-india-62978201


https://www.bbc.co.uk/news/business-63056417


https://www.bbc.com/news/technology-63033078


https://www.bbc.com/news/world-asia-india-62994857


https://www.bbc.com/news/business-63073983


https://www.bbc.com/news/business


https://www.bbc.com/news/business-33712313








World in pictures







The banker who swapped finances for fighting
BUSINESS



TECHNOLOGY OF BUSINESS



Is Finland's Wood City the future of building?
BUSINESS





https://www.bbc.com/news/in_pictures


https://www.bbc.com/news/business-63033554


https://www.bbc.com/news/business-62798950


https://www.bbc.com/news/business-63033554


https://www.bbc.com/news/business


https://www.bbc.com/news/business-11428889


https://www.bbc.com/news/business-62798950


https://www.bbc.com/news/business








Persian
تظاهرات زاهدان؛ منابع محلی



می گویند «ده ها نفر کشته و زخمی
شده اند»



Spanish
"No es negociable": Putin confirma la
anexión a Rusia de cuatro regiones de
Ucrania



Urdu
آڈیو لیکس: ’ڈپلومیٹک سائفر کی کاپی وزیراعظم ہاؤس کے ریکارڈ سے غائب ہے۔‘ 



BBC IN OTHER LANGUAGES







In pictures: Floridians take in Hurricane Ian’s
impact



US & CANADA



Guernsey sunrise wins Pic of the Season
NEWS



Africa's top shots: Prayer, pride and pacing
AFRICA



Filming climate change in action for Frozen Planet
NE SCOTLAND, ORKNEY & SHETLAND





https://www.bbc.com/persian/


https://www.bbc.com/persian/iran-63091455


https://www.bbc.com/mundo/


https://www.bbc.com/mundo/noticias-internacional-63076417


https://www.bbc.com/urdu/


https://www.bbc.com/urdu/live/pakistan-62975815


https://www.bbc.com/worldserviceradio


https://www.bbc.com/news/world-us-canada-63080969


https://www.bbc.co.uk/weather/features/63078910


https://www.bbc.com/news/world-africa-63072006


https://www.bbc.com/news/uk-scotland-north-east-orkney-shetland-62925833


https://www.bbc.com/news/world-us-canada-63080969


https://www.bbc.com/news/world/us_and_canada


https://www.bbc.co.uk/weather/features/63078910


http://www.bbc.com/news/in_pictures/


https://www.bbc.com/news/world-africa-63072006


https://www.bbc.com/news/world/africa


https://www.bbc.com/news/uk-scotland-north-east-orkney-shetland-62925833


https://www.bbc.com/news/scotland/north_east_orkney_and_shetland








Arabic عربي Azeri AZƏRBAYCAN



Bangla বাংলা Burmese 



Chinese 中文网 French AFRIQUE



Hausa HAUSA Hindi िह�दी



Indonesian INDONESIA Japanese 日本語



Kinyarwanda GAHUZA Kirundi KIRUNDI



Kyrgyz Кыргыз Marathi मराठी



Nepali नेपाली Pashto پښتو



Persian فارسی Portuguese BRASIL



Russian НА РУССКОМ Sinhala 



Somali SOMALI Spanish MUNDO



Swahili SWAHILI Tamil தமிழ்



Turkish TÜRKÇE Ukrainian УКРАЇНСЬКA



Urdu اردو Uzbek O'ZBEK



Vietnamese TIẾNG VIẸ� T



More Languages



Explore the BBC



Home News



Sport Reel





https://www.bbc.com/arabic/


https://www.bbc.com/azeri/


https://www.bbc.com/bengali/


https://www.bbc.com/burmese/


https://www.bbc.com/zhongwen/simp/


https://www.bbc.com/afrique/


https://www.bbc.com/hausa/


https://www.bbc.com/hindi/


https://www.bbc.com/indonesia/


https://www.bbc.com/japanese/


https://www.bbc.com/gahuza/


https://www.bbc.com/gahuza/


https://www.bbc.com/kyrgyz/


https://www.bbc.com/marathi/


https://www.bbc.com/nepali/


https://www.bbc.com/pashto/


https://www.bbc.com/persian/


https://www.bbc.com/portuguese/


https://www.bbc.com/russian/


https://www.bbc.com/sinhala/


https://www.bbc.com/somali/


https://www.bbc.com/mundo/


https://www.bbc.com/swahili/


https://www.bbc.com/tamil/


https://www.bbc.com/turkce/


https://www.bbc.com/ukrainian/


https://www.bbc.com/urdu/


https://www.bbc.com/uzbek/


https://www.bbc.com/vietnamese/


https://www.bbc.com/ws/languages


https://www.bbc.com/


https://www.bbc.com/news


https://www.bbc.com/sport


https://www.bbc.com/reel


https://www.bbc.com/worklife


https://www.bbc.com/travel








Copyright © 2022 BBC. The BBC is not responsible for the content of external sites.
Read about our approach to external linking.



Worklife Travel



Future Culture



TV Weather



Sounds



Terms of Use About the BBC



Privacy Policy Cookies



Accessibility Help Parental Guidance



Contact the BBC BBC emails for you



Advertise with us AdChoices / Do Not Sell My Info





https://www.bbc.co.uk/editorialguidelines/guidance/feeds-and-links


https://www.bbc.com/worklife


https://www.bbc.com/travel


https://www.bbc.com/future


https://www.bbc.com/culture


https://www.bbc.co.uk/schedules/p00fzl9m


https://www.bbc.com/weather


https://www.bbc.co.uk/sounds


https://www.bbc.co.uk/usingthebbc/terms/


https://www.bbc.co.uk/aboutthebbc


https://www.bbc.co.uk/usingthebbc/privacy/


https://www.bbc.co.uk/usingthebbc/cookies/


https://www.bbc.co.uk/accessibility/


https://www.bbc.co.uk/guidance


https://www.bbc.co.uk/contact


https://www.bbc.co.uk/bbcnewsletter


https://www.bbcglobalnews.com/


https://www.bbc.com/usingthebbc/cookies/how-does-the-bbc-use-cookies-for-advertising/









PyMuPDF-1.21.1/tests/resources/bug1971.pdf











PyMuPDF-1.21.1/tests/resources/circular-toc.pdf




Page1











Page2








			A Good Beginning


			A Good Ending









PyMuPDF-1.21.1/tests/resources/full_toc.txt

[1, 'HAUPTÜBERSICHT', -1, {'kind': 3, 'xref': 2, 'file': '../SDW2006.PDF', 'zoom': 0.0}][1, 'Januar 01/2006', -1, {'kind': 3, 'xref': 3, 'file': '01004INH.pdf', 'collapse': False, 'zoom': 0.0}][2, 'SPEKTROGRAMM', -1, {'kind': 0, 'xref': 4, 'page': -1, 'collapse': False, 'zoom': 0.0}][3, 'Urzeit-Godzilla', -1, {'kind': 5, 'xref': 87, 'file': '01008SP.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Frühchristliche Mosaike im Knast', -1, {'kind': 5, 'xref': 102, 'file': '01008SP.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Evolution auf Eis', -1, {'kind': 5, 'xref': 100, 'file': '01008SP.pdf', 'page': 1, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Entwarnung bei Kondensstreifen', -1, {'kind': 5, 'xref': 98, 'file': '01008SP.pdf', 'page': 1, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Spermatausch beim Schnecken-Sex', -1, {'kind': 5, 'xref': 96, 'file': '01008SP.pdf', 'page': 1, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Mehr Monde für Pluto', -1, {'kind': 5, 'xref': 94, 'file': '01008SP.pdf', 'page': 2, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Endlich ein Malaria-Impfstoff', -1, {'kind': 5, 'xref': 92, 'file': '01008SP.pdf', 'page': 2, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Spuren der ersten Sterne', -1, {'kind': 5, 'xref': 90, 'file': '01008SP.pdf', 'page': 2, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Bild des Monats', -1, {'kind': 5, 'xref': 88, 'file': '01008SP.pdf', 'page': 3, 'to': Point(0.0, 0.0), 'zoom': 0.0}][2, 'FORSCHUNG AKTUELL', -1, {'kind': 0, 'xref': 23, 'page': -1, 'collapse': False, 'zoom': 0.0}][3, 'Der Super-Teilchenfänger in der Pampa', -1, {'kind': 5, 'xref': 24, 'file': '01012FA.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Auf der Fährte der Lepra', -1, {'kind': 5, 'xref': 29, 'file': '01012FA.pdf', 'page': 2, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Vampire gegen Schlaganfall', -1, {'kind': 5, 'xref': 27, 'file': '01012FA.pdf', 'page': 4, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Der Flug des Kolibris', -1, {'kind': 5, 'xref': 25, 'file': '01012FA.pdf', 'page': 7, 'to': Point(0.0, 0.0), 'zoom': 0.0}][2, 'THEMEN', -1, {'kind': 0, 'xref': 20, 'page': -1, 'collapse': False, 'zoom': 0.0}][3, 'Entwicklung von Spiralgalaxien', -1, {'kind': 3, 'xref': 21, 'file': '01022HA.pdf', 'zoom': 0.0}][3, 'Geschichtsträchtige Genspuren', -1, {'kind': 3, 'xref': 46, 'file': '01030HA.pdf', 'zoom': 0.0}][3, 'Was Sedimente verraten', -1, {'kind': 3, 'xref': 44, 'file': '01042HA.pdf', 'zoom': 0.0}][3, 'Von Baumringen und Regenmengen', -1, {'kind': 3, 'xref': 42, 'file': '01050HA.pdf', 'zoom': 0.0}][3, 'Software-Agenten in Not', -1, {'kind': 3, 'xref': 40, 'file': '01056HA.pdf', 'zoom': 0.0}][3, 'Künstlicher kalter Antiwasserstoff', -1, {'kind': 3, 'xref': 38, 'file': '01062HA.pdf', 'zoom': 0.0}][3, 'Rüsten gegen eine Pandemie', -1, {'kind': 3, 'xref': 36, 'file': '01072HA.pdf', 'zoom': 0.0}][3, 'Satelliten zeigen Lawinengefahr', -1, {'kind': 3, 'xref': 34, 'file': '01084HA.pdf', 'zoom': 0.0}][3, 'Provokante Verheißung: Update für den Menschen', -1, {'kind': 3, 'xref': 22, 'file': '01100HA.pdf', 'zoom': 0.0}][2, 'KOMMENTAR', -1, {'kind': 0, 'xref': 18, 'page': -1, 'collapse': False, 'zoom': 0.0}][3, 'Springers Einwüfe: Holland, die Hydrometropole', -1, {'kind': 5, 'xref': 19, 'file': '01012FA.pdf', 'page': 8, 'to': Point(0.0, 0.0), 'zoom': 0.0}][2, 'WISSENSCHAFT IM ...', -1, {'kind': 0, 'xref': 15, 'page': -1, 'collapse': False, 'zoom': 0.0}][3, 'Alltag: Eine Decke für die Straße', -1, {'kind': 5, 'xref': 16, 'file': '01040WA.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Rückblick: Mozarts Ohr • Per Auto zum Südpol u.a.', -1, {'kind': 5, 'xref': 17, 'file': '01081IR.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][2, 'JUNGE WISSENSCHAFT', -1, {'kind': 0, 'xref': 13, 'page': -1, 'collapse': False, 'zoom': 0.0}][3, 'Ein Putzroboter für die Mama', -1, {'kind': 5, 'xref': 14, 'file': '01082JW.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][2, 'REZENSIONEN', -1, {'kind': 0, 'xref': 10, 'page': -1, 'collapse': False, 'zoom': 0.0}][3, 'Vulkanismus verstehen und erleben', -1, {'kind': 5, 'xref': 11, 'file': '01090RE.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Warum der Mensch glaubt', -1, {'kind': 5, 'xref': 72, 'file': '01090RE.pdf', 'page': 1, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Biomedizin und Ethik', -1, {'kind': 5, 'xref': 70, 'file': '01090RE.pdf', 'page': 2, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Mythos Meer', -1, {'kind': 5, 'xref': 68, 'file': '01090RE.pdf', 'page': 3, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Warum Frauen nicht schwach ... sind', -1, {'kind': 5, 'xref': 66, 'file': '01090RE.pdf', 'page': 4, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'PISA, Bach, Pythagoras', -1, {'kind': 5, 'xref': 12, 'file': '01090RE.pdf', 'page': 5, 'to': Point(0.0, 0.0), 'zoom': 0.0}][2, 'MATHEMATISCHE UNTERHALTUNGEN', -1, {'kind': 0, 'xref': 8, 'page': -1, 'collapse': False, 'zoom': 0.0}][3, 'Himmliches Ballett', -1, {'kind': 5, 'xref': 9, 'file': '01098MU.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][2, 'WEITERE RUBRIKEN', -1, {'kind': 0, 'xref': 5, 'page': -1, 'collapse': False, 'zoom': 0.0}][3, 'Editorial', -1, {'kind': 5, 'xref': 6, 'file': '01003ED.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Leserbriefe/Impressum', -1, {'kind': 5, 'xref': 81, 'file': '01006LB.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Preisrätsel', -1, {'kind': 5, 'xref': 79, 'file': '01090RE.pdf', 'page': 6, 'to': Point(0.0, 0.0), 'zoom': 0.0}][3, 'Vorschau', -1, {'kind': 5, 'xref': 7, 'file': '01106VO.pdf', 'page': 0, 'to': Point(0.0, 0.0), 'zoom': 0.0}]






PyMuPDF-1.21.1/tests/resources/github_sample.pdf




NOTES TO FINANCIAL STATEMENTS
October 31, 2018



NOTE A
Significant Accounting Policies
AB Bond Fund, Inc. (the “Company”) is registered under the Investment
Company Act of 1940 as an open-end management investment company.
The Company, which is a Maryland corporation, operates as a series com-
pany comprised of nine portfolios currently in operation. Each portfolio is
considered to be a separate entity for financial reporting and tax purposes.
This report relates only to the AB Income Fund, Inc. (the “Fund”), a diversified
portfolio. The fund acquired the assets and liabilities of the AllianceBernstein
Income Fund, Inc., a closed-end fund (the “Predecessor Fund”) that was
effective at the close of business April 21, 2016 (the “Reorganization”). The
Reorganization was approved by the Predecessor Fund’s Board of Directors
(the “Board”) and shareholders pursuant to an Agreement and Plan of
Acquisition and Dissolution (the “Reorganization Agreement”), see Note I for
additional information. The Predecessor Fund was the accounting survivor in
the Reorganization and as such, the financial statements and the Advisor
Class shares financial highlights reflect the financial information of the Prede-
cessor Fund through April 21, 2016. The Fund has authorized the issuance of
Class A, Class B, Class C, Advisor Class, Class R, Class K, Class I, Class Z,
Class T, Class 1 and Class 2 shares. Class B, Class K, Class R, Class I,
Class Z, Class T, Class 1 and Class 2 shares have not been issued. Class A
shares are sold with a front-end sales charge of up to 4.25% for purchases
not exceeding $1,000,000. With respect to purchases of $1,000,000 or
more, Class A shares redeemed within one year of purchase may be subject
to a contingent deferred sales charge of 1%. Class C shares are subject to a
contingent deferred sales charge of 1% on redemptions made within the first
year after purchase, and 0% after the first year of purchase. Effective April 10,
2017, Class C shares will automatically convert to Class A shares ten years
after the end of the calendar month of purchase. Advisor Class shares are
sold without any initial or contingent deferred sales charge and are not sub-
ject to ongoing distribution expenses. All eleven classes of shares have
identical voting, dividend, liquidation and other rights, except that the classes
bear different distribution and transfer agency expenses. Each class has
exclusive voting rights with respect to its distribution plan. The financial
statements have been prepared in conformity with U.S. generally accepted
accounting principles (“U.S. GAAP”) which require management to make
certain estimates and assumptions that affect the reported amounts of assets
and liabilities in the financial statements and amounts of income and
expenses during the reporting period. Actual results could differ from those
estimates. The Fund is an investment company under U.S. GAAP and follows
the accounting and reporting guidance applicable to investment companies.
The following is a summary of significant accounting policies followed by the
Fund.



74 | AB INCOME FUND abfunds.com












PyMuPDF-1.21.1/tests/resources/has-bad-fonts.pdf




N/M结汇退税



佛山



佛山市柏年建材有限公司 4 4 0 6 9 6 1 4 8 5 江海 船舶



一般贸易 一般征免



加拿大 TORONTO,CANADA 佛佛



CFR



BM1701022 650 纸纸 20150.00 19890.00



3530.00



1x20'ft



佛佛佛佛佛佛佛佛佛佛佛 4 4 0 6 9 6 1 4 8 5



加拿大



69072290
00



001 釉釉釉
300X600MM
铺地砖无牌



子



936  平方米 加拿大 USD   照章征免7.3643 6893.00












PyMuPDF-1.21.1/tests/resources/image-file1.pdf











PyMuPDF-1.21.1/tests/resources/img-transparent.png





PyMuPDF-1.21.1/tests/resources/joined.pdf




Jorj X


Something Special





Jorj X


Kommentar


this is a comment





Jorj X


Schreibmaschine


typewriter text





Jorj X


Text-Box


modified text field





Jorj X


Erläuterung


explanation text





Jorj X


Pfeil





Jorj X


Rechteck





Jorj X


Oval


comment in circle





Jorj X


Linienzug





Jorj X


Polygon





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift








2.7.9 (default, Dec 10 2014, 12:24:55) [MSC v.1500 32 bit (Intel)]
PyMuPDF 1.9.3: Python bindings for the MuPDF 1.9a library,
built on 2016-11-09 13:52:29
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104051923-04'00'", 'creationDate': "D:20161104051921-04'00'", 'name': 'Sold', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(38.30866622924805, 29.99896240234375, 283.5176696777344, 94.3599853515625)
type         ====> [12, 'Stamp']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 0.0], 'fill': []}
flags        ====> 28
info         ====> {'content': 'this is a comment', 'modDate': "D:20161104051957-04'00'", 'creationDate': "D:20161104051939-04'00'", 'name': 'Comment', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(339.59588623046875, 51.32275390625, 359.59588623046875, 69.32275390625)
type         ====> [0, 'Text']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 0.0, 'dashes': []}
colors       ====> {'default': [0.6862750053405762, 0.9333339929580688, 0.9333339929580688], 'fill': []}
flags        ====> 4
info         ====> {'content': 'typewriter text', 'modDate': "D:20161108150545-04'00'", 'creationDate': "D:20161104052009-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(396.85333251953125, 53.29669189453125, 506.6533203125, 65.29669189453125)
type         ====> [2, 'FreeText', 'FreeTextTypewriter']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [1, 'C'], 'hradius': '', 'width': 3.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'modified text field', 'modDate': "D:20161105091916-04'00'", 'creationDate': "D:20161104052030-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(49.683258056640625, 131.589111328125, 166.80604553222656, 166.71453857421875)
type         ====> [2, 'FreeText']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'explanation text', 'modDate': "D:20161104052130-04'00'", 'creationDate': "D:20161104052053-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'OpenArrow', 'end': ''}
rect         ====> fitz.Rect(211.27972412109375, 133.12445068359375, 343.1976318359375, 151.12445068359375)
type         ====> [2, 'FreeText', 'FreeTextCallout']
vertices     ====> [212.2474365234375, 704.700439453125, 231.19761657714844, 699.7655639648438, 243.19761657714844, 699.7655639648438]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105085923-04'00'", 'creationDate': "D:20161104052133-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'RClosedArrow', 'end': 'Diamond'}
rect         ====> fitz.Rect(386.5209045410156, 132.9107666015625, 480.52313232421875, 143.64208984375)
type         ====> [3, 'Line', 'LineArrow']
vertices     ====> [394.8789367675781, 703.7134399414062, 476.8163146972656, 704.700439453125]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': [0.7529420256614685, 0.7529420256614685, 0.7529420256614685]}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161108015351-04'00'", 'creationDate': "D:20161104052208-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(65.7791748046875, 190.2489013671875, 202.0124053955078, 236.63677978515625)
type         ====> [4, 'Square']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 2.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': [0.7529420256614685, 1.0, 1.0]}
flags        ====> 4
info         ====> {'content': 'comment in circle', 'modDate': "D:20161108150519-04'00'", 'creationDate': "D:20161106044139-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(247.78652954101562, 170.17724609375, 343.544677734375, 260.888427734375)
type         ====> [5, 'Circle']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052302-04'00'", 'creationDate': "D:20161104052251-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': 'OpenArrow'}
rect         ====> fitz.Rect(397.3605651855469, 178.933837890625, 504.1889343261719, 210.93402099609375)
type         ====> [7, 'PolyLine']
vertices     ====> [397.8405456542969, 656.338623046875, 404.75091552734375, 632.6512451171875, 438.31561279296875, 632.6512451171875, 447.2004089355469, 657.3256225585938, 471.8803405761719, 631.6642456054688, 503.47064208984375, 662.260498046875]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161106044025-04'00'", 'creationDate': "D:20161104052317-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(69.89996337890625, 255.60870361328125, 213.8157196044922, 317.83428955078125)
type         ====> [6, 'Polygon']
vertices     ====> [70.4776840209961, 567.9854125976562, 78.3752670288086, 526.532470703125, 158.33824157714844, 524.5585327148438, 212.6341094970703, 550.2199096679688, 135.63270568847656, 585.7510375976562]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052355-04'00'", 'creationDate': "D:20161104052347-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(283.20770263671875, 270.017822265625, 404.2485046386719, 318.91754150390625)
type         ====> [14, 'Ink']
vertices     ====> [[283.3256530761719, 563.5629272460938, 309.97998046875, 557.64111328125, 340.5830993652344, 556.6541137695312, 345.5190734863281, 551.71923828125, 341.5702819824219, 537.901611328125, 345.5190734863281, 534.940673828125, 367.2374267578125, 536.9146118164062, 393.8917541503906, 535.9276123046875, 397.8405456542969, 540.8624877929688, 400.8021240234375, 539.8755493164062, 403.7637023925781, 549.7453002929688], [395.86614990234375, 558.6280517578125, 385.9941711425781, 557.64111328125], [367.2374267578125, 550.7322387695312, 337.6214904785156, 530.0057983398438, 321.8263244628906, 524.0839233398438, 310.9671630859375, 525.0709228515625, 308.9927673339844, 530.0057983398438, 305.0439758300781, 535.9276123046875, 305.0439758300781, 549.7453002929688, 308.0055847167969, 553.6931762695312, 312.9415588378906, 558.6280517578125, 327.74951171875, 563.5629272460938, 355.39105224609375, 565.536865234375, 366.2502136230469, 570.4717407226562, 383.0325622558594, 570.4717407226562, 387.96856689453125, 566.5238647460938, 398.8277282714844, 563.5629272460938]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124032-04'00'", 'creationDate': "D:20161105124026-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(108.5757827758789, 365.8624267578125, 178.93264770507812, 406.0747985839844)
type         ====> [14, 'Ink']
vertices     ====> [[108.70982360839844, 463.3018798828125, 128.9523468017578, 469.29931640625, 139.44847106933594, 475.2967529296875, 139.44847106933594, 463.3018798828125, 143.94680786132812, 458.05413818359375], [121.45511627197266, 454.30572509765625, 130.4517822265625, 454.30572509765625, 132.70095825195312, 456.5547790527344, 131.95123291015625, 452.05670166015625, 134.20040893554688, 448.30828857421875, 136.44956970214844, 437.8127746582031, 144.69651794433594, 437.8127746582031, 164.9390411376953, 436.31341552734375], [161.1904296875, 469.29931640625, 168.68765258789062, 469.29931640625, 173.9357147216797, 465.5509338378906, 176.9346160888672, 461.0528564453125, 178.43405151367188, 446.05926513671875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124033-04'00'", 'creationDate': "D:20161105124033-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(161.1904296875, 386.3345947265625, 209.92242431640625, 387.3345947265625)
type         ====> [14, 'Ink']
vertices     ====> [[209.92242431640625, 455.055419921875, 161.1904296875, 455.055419921875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124036-04'00'", 'creationDate': "D:20161105124035-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(188.2412567138672, 367.2844543457031, 193.92710876464844, 399.61651611328125)
type         ====> [14, 'Ink']
vertices     ====> [[189.67990112304688, 474.5470886230469, 188.93017578125, 464.8012390136719, 191.92906188964844, 458.05413818359375, 193.4285125732422, 442.31085205078125]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124040-04'00'", 'creationDate': "D:20161105124037-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(88.03831481933594, 367.0860900878906, 245.77398681640625, 404.91131591796875)
type         ====> [14, 'Ink']
vertices     ====> [[235.41299438476562, 469.29931640625, 240.6610565185547, 465.5509338378906, 242.16050720214844, 459.5534973144531, 245.15939331054688, 458.05413818359375, 243.65994262695312, 453.5560607910156, 243.65994262695312, 449.8076477050781, 222.66770935058594, 440.06182861328125, 211.42185974121094, 438.5624694824219, 209.17269897460938, 437.8127746582031, 214.42076110839844, 452.05670166015625, 218.16937255859375, 455.8050842285156, 218.91909790039062, 462.5522155761719, 216.669921875, 464.05157470703125, 186.68101501464844, 464.05157470703125, 143.94680786132812, 468.5496520996094, 135.69984436035156, 465.5509338378906, 125.95345306396484, 464.8012390136719, 118.45622253417969, 461.8025207519531, 104.21148681640625, 461.8025207519531, 94.465087890625, 461.0528564453125, 92.96564483642578, 466.30059814453125, 88.4673080444336, 474.5470886230469]]

 test.pdf page 0  -  15 annotations, end of program




test1.txt











PyMuPDF Documentation



version 1.8



Ruikai Liu



Jorj McKie



November 20, 2015

















Contents
The PyMuPDF Documentation 1



Introduction 1



Note on the Name fitz 1



Installation 2



Step 1: Download PyMuPDF 2



Step 2: Download MuPDF 1.8 2



Step 3: Build / Setup PyMuPDF 2



Note on using UPX 2



Tutorial 3



Import the Bindings 3



Open a Document 3



Some Document methods and attributes 3



Access Meta Data 3



Work with Outlines 4



Some Outline methods and attributes 4



Some Outline.dest attributes 4



Work with Pages 4



Inspect the links on a Page 4



Render a Page 5



Save the page image in a file 5



Display the image in dialog managers 5



Text extraction 6



Text Searching 6



Output 6



Close 7



Example: Dynamically cleaning up corrupt PDF documents 7



Classes 9



Colorspace 10



Device 11



DisplayList 12



Document 13



Identity 16



IRect 17



Link 18



linkDest 19



Matrix 21



Shifting 23



Flipping 23



Shearing 24



Rotating 25











Outline 26



Page 27



Pixmap 28



Point 30



Rect 31



TextPage 33



TextSheet 34



Constants and Enumerations 35



Constants 35



Enumerations 35



Appendix 37



Example Outputs of Text Extraction Methods 37



TextPage.extractText() 37



TextPage.extractHTML() 37



TextPage.extractJSON() 37



TextPage.extractXML() 38



Resource Requirements of Text Extraction Methods 38



Performance 39



Data Sizes 39



Index 41











The PyMuPDF Documentation



Introduction



PyMuPDF (formerly known as python-fitz) is a Python binding for MuPDF - "a lightweight PDF and XPS viewer".



MuPDF can access files in PDF, XPS, OpenXPS, CBZ (comic book) and EPUB (e-book) formats.



These are files with extensions *.pdf, *.xps, *.oxps, *.cbz or *.epub (so in essence, with this binding you



can develop e-book viewers in Python ...)



PyMuPDF provides access to all important functions of MuPDF from within a Python environment. Nevertheless, we



are continuously expanding this function set.



MuPDF stands out among all similar products for its top rendering capability and unsurpassed processing speed.



You can check this out yourself: Compare the various free PDF-viewers. In terms of speed and rendering quality



SumatraPDF ranges at the top (apart from MuPDF's own standalone viewer) - and it is based on MuPDF!



While PyMuPDF has been available since several years for an earlier version of MuPDF (1.2), it was until only mid



May 2015, that its creator and a few co-workers decided to elevate it to support the current release of MuPDF (first



1,7a and, since November 2015, 1.8).



And we are determined to keep PyMuPDF current with future MuPDF changes!



This work is now completed.



PyMuPDF has been tested on Linux, Windows 7, Windows 10, Python 2 and Python 3 (x86 versions). Other



platforms should work too as long as MuPDF supports them.



The main differences compared to version 1.2 are



• A greatly simplified installation procedure: For Windows and Linux platforms it should come down to running



the python setup.py install command.



• The API has changed: it is now simpler and a lot less cryptic.



• The supported function set has been significantly increased: apart from rendering, MuPDF's traditional



strength, we now also offer a wide range of text extraction options.



• Demo code has been extended, and an additional examples directory is there to contain working programs.



Among them are an editor for a document's table of contents, a full featured document joiner and a



document-to-text conversion utility.



We invite you to join our efforts by contributing to the the wiki pages, by using what is there - and, of course, by



submitting issues and bugs to the site!



Note on the Name fitz



The Python import statement for this library is import fitz. Here is the reason why:



The original rendering library for MuPDF was called Libart. "After Artifex Software acquired the MuPDF project,



the development focus shifted on writing a new modern graphics library called Fitz. Fitz was originally intended as



an R&D project to replace the aging Ghostscript graphics library, but has instead become the rendering engine



powering MuPDF." (Quoted from Wikipedia).



The PyMuPDF Documentation



1





http://www.mupdf.com/


http://www.sumatrapdfreader.org/


https://en.wikipedia.org/wiki/MuPDF








Installation



This describes how to install PyMuPDF.



Step 1: Download PyMuPDF



Download this repository and unzip / decompress it. This will give you a folder, let us call it PyFitz.



Step 2: Download MuPDF 1.8



Download mupdf-1.8-source.tar.gz from MuPDF version 1.8 source, and unzip / decompress it. Let us call



the resulting folder mupdf18.



Put it inside PyFitz as a subdirectory, if you want to keep everything in one place.



If your platform is not Windows, you must generate MuPDF now. The MuPDF download includes generation



procedures / makefiles for numerous platforms.



On Windows, you have two options:



• if you have installed MS Visual Studio, generate MuPDF lib files now. The respective VS project files



are contained in ./PyFitz/mupdf18/platform/win32. If that worked fine, the lib files are now in



./PyFitz/mupdf18/platform/win32/Release. Update setup.py to reference this directory as



library_dirs=['./mupdf18/platform/win32/Release'].



• if you have not installed Visual Studio or if you do not want to generate MuPDF, you must download



PyMuPDF Optional Material now and unzip / decompress its content in directory



./PyFitz/PyMuPDF-optional-material. This optional material contains the lib files needed for



PyMuPDF generation.



Step 3: Build / Setup PyMuPDF



If necessary, adjust the setup.py script now. E.g. make sure that



• the include directory is correctly set in sync with your directory structure



• the object code libraries are correctly defined



Now perform a python setup.py install



Note on using UPX



In Windows systems, your PyMuPDF installation will end up with three files: __init__.py, fitz.py and



_fitz.pyd in the site-packages directory. The PYD file is Python's DLL version on Windows systems.



_fitz.pyd has a size of 9.5 to 10 MB.



You can reduce this by applying the compression utility UPX to it: upx -9 _fitz.pyd. This will reduce the file to



about 4.5 MB. This should reduce load times (import fitz statement) while keeping it fully functional.



Installation



2





http://mupdf.com/downloads/


https://github.com/JorjMcKie/PyMuPDF-optional-material/








Tutorial



This tutorial will show you the use of MuPDF in Python step by step.



Because MuPDF supports not only PDF, but also XPS, OpenXPS and EPUB formats, so does PyMuPDF.



Nevertheless we will only talk about PDF files for the sake of brevity.



As for string handling, MuPDF will pass back any string as UTF-8 encoded - no exceptions. Where this binding has



added functionality, we usually decode string to unicode. An example is the Document.ToC() method.



Import the Bindings



The Python bindings to MuPDF are made available by this import statement:



import fitz



Open a Document



In order to access a supported document, it must be opened with the following statement:



doc = fitz.Document(filename)



This will create doc as a Document object. filename must be a Python string or unicode object that specifies the



name of an existing file (with or without a fully or partially qualified path).



It is also possible to construct a document from memory data, i.e. without using a file. See Document for details.



A Document contains several attributes and functions. Among them are meta information (like "author" or "subject"),



number of total pages, outline and encryption information.



Some Document methods and attributes



Method / Attribute Description



Document.pageCount Number of pages of filename (integer).



Document.metadata Metadata of the Document (dictionary).



Document.outline First outline entry of Document



Document.ToC() Table of contents of Document (list).



Document.loadPage() Create a Page object.



Access Meta Data



Document.metadata is a Python dictionary with the following keys. For details of their meanings and formats



consult the PDF manuals, e.g. Adobe PDF Reference sixth edition 1.7 November 2006. Further information can also



be found in chapter Document. The meta data fields are of type string if not otherwise indicated and may be missing,



in which case they contain None.



Key Value



producer



Producer (producing software)



format



PDF format, e.g. 'PDF-1.4'



encryption



Encryption method used



author



Author



modDate



Date of last modification



Tutorial



3





http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf








keywords



Keywords



title



Title



creationDate



Date of creation



creator



Creating application



subject



Subject



Work with Outlines



Entering the documents outline tree works like this:



olItem = doc.outline    # the document's first outline item



This creates olItem as an Outline object.



Some Outline methods and attributes



Method / Attribute Description



Outline.saveText() Save table of contents as a text file



Outline.saveXML() Save table of contents as a quasi-XML file



Outline.next Next item of the same level



Outline.down Next item one level down



Outline.title Title of this item



Outline.dest Destination ('where does this entry point to?')



Some Outline.dest attributes



Attribute Description



Outline.dest.page Target page number



Outline.dest.lt Top-left corner of target rectangle



Outline.dest.rb Bottem-right corner of target rectangle



MuPDF also supports outline destinations to other files and to URIs. See Outline.



In order to get a document's table of contents as a Python list, use the following function:



toc = doc.ToC()       # [[level, title, page], ...], or []



Work with Pages



Tasks that can be performed with a Page are at the core of MuPDF's functionality. Among other things, you can



render a Page, optionally zooming, rotating or shearing it. You can write it's image to files (in PNG format), extract



text from it or perform searches for text elements. At first, a page object must be created:



page = doc.loadPage(n)        # represents page n of the document



Here are some typical uses of Page objects:



Inspect the links on a Page



Tutorial



4











Here is an example that displays all links and their types:



#-----------------------------------------------------------------------------------



# Get all links of the current page



#-----------------------------------------------------------------------------------



ln = page.loadLinks()



#-----------------------------------------------------------------------------------



# Links are organized as a single linked list. We need to check each occurrence



# to see what info we can get



#-----------------------------------------------------------------------------------



while ln:



    if ln.dest.kind == fitz.LINK_URI:



            print '[LINK]URI: %s' % ln.dest.uri



    elif ln.dest.kind == fitz.LINK_GOTO:



        print '[LINK]jump to page %d' % ln.dest.page



    else:



        pass



    ln = ln.next



Render a Page



This example creates an image out of a page's content:



#-----------------------------------------------------------------------------------



# Get the page's rectangle



#-----------------------------------------------------------------------------------



rect = page.bound()



#-----------------------------------------------------------------------------------



# create the smallest pixel area containing the rectangle



#-----------------------------------------------------------------------------------



irect = rect.round()



#-----------------------------------------------------------------------------------



# create an empty RGBA pixel map of the pixel area's size



#-----------------------------------------------------------------------------------



pix = fitz.Pixmap(fitz.Colorspace(fitz.CS_RGB), irect)



pix.clearWith(255)             # Initialize with color "white" and "no transparency"



dev = fitz.Device(pix)         # Create a draw device for the pixel map



page.run(dev, fitz.Identity)   # finally render the page with no changes



#-----------------------------------------------------------------------------------



# now pix contains an image of the page, ready to be used



#-----------------------------------------------------------------------------------



Save the page image in a file



We can simply store the image in a PNG file:



pix.writePNG("test.png")



Display the image in dialog managers



Or we convert the image into a bitmap usable by dialog managers. Pixmap.samples represents the area of bytes



of all the pixels as a Python bytearray. This area (or its str()-version), is directly usable by presumably most dialog



managers. Here are two examples.



wxPython:



data = pix.samples                   # data = bytearray of raw pixel data (RGBA)



bitmap = wx.BitmapFromBufferRGBA(irect.width,



            irect.height, str(data)) # wxPython only accepts strings, no bytearrays



Tkinter:



Tutorial



5











data = pix.samples



img = Image.frombytes("RGBA", [irect.width, irect.height], str(data))



photo = ImageTk.PhotoImage(img)



Text extraction



We can also extract all text of a page in a big chunk of string:



dl = fitz.DisplayList()                  # create a DisplayList



ts = fitz.TextSheet()                    # create a TextSheet



tp = fitz.TextPage()                     # create a TextPage



dev = fitz.Device(ts, tp)                # create a text Device



irect = page.bound()                     # the page's visible rectangle



page.run(dev, fitz.Identity)             # run the page on the device



# now run the display list with the page's data



dl.run(dev, fitz.Identity, irect)



# 4 methods exist to extract the text now contained in the TextPage:



# (1) plain text: with line breaks, no formatting, no position info



text = tp.extractText()



# (2) html: line breaks, alignment, grouping, no formatting, no positioning



html = tp.extractHTML()



# (3) json: full formatting info (except colors and fonts) down to spans



xml = tp.extractJSON()



# (4) xml: full formatting info (except colors) down to individual characters



xml = tp.extractXML()



To give you an idea about the output of these alternatives, we did extracts from this document's PDF version and



several other examples. See the appendix for details about implications on processing times and space



requirements.



Text Searching



If you are interested in the occurence of parts of text, you can determine, exactly where on a page a certain string



appears:



# search for at most 4 page locations with specific contents



res = tp.search('MuPDF', hit_max = 4)



The result res will now be [] or a list of no more than 4 Rect rectangles that contain the string 'MuPDF'. The



hit_max parameter (in our case set to 4) is optional (default is 16).



Output



Output capabilities of MuPDF (such as PDF generation) are currently very limited. However, a copy of the currently



opened document can be created.



We support this with the method Document.save(). If the document had been successfully decrypted before,



save() will create a decrypted copy.



In addition, this method will also perform some clean-up:



If the document containes invalid or broken xrefs, the saved version will have them corrected, which makes it



readable by other Python PDF software, like pdfrw or PyPDF2. In many cases, the saved version will also be smaller



than the original.



Document.save() now supports all options of MuPDF's standalone utility mutool clean.



Option Effect



Tutorial



6





https://github.com/pmaupin/pdfrw


http://mstamy2.github.io/PyPDF2








garbage = 1 garbage collect unused objects



garbage = 2 in addition to 1, compact xref tables



garbage = 3 in addition to 2, merge duplicate objects



clean = 1 clean content streams (avoid / use with care)



deflate = 1 deflate uncompressed streams



ascii = 1 convert data to ASCII format



linear = 1 create a linearized document version



expand = 1 create a decompressed version



incremental = 1 only save data that have changed



Please note, that Document.save(), according to MuPDF's documentation, is still being further developed, so



expect changes in the future here.



Like with mutool clean, not all combinations of the above options may work for all documents - so be ready to



experiment a little.



We have found, that the fastest and very stable combination is mutool clean -ggg -z, giving good compression



results. In PyMuPDF this corresponds to doc.save(filename, garbage=3, deflate=1).



In some cases, best compression factors result, if expand and deflate are used together, though they seem to



be contradictory. This works, because MuPDF is forced to expand and then re-compress all objects, which will



correct poor compressions during document creation.



Close



In some situations it is desirable to "close" a Document such that it becomes fully available again to the OS while



your program is still running.



This can be achieved by the Document.close() method. Apart from closing the file, all buffer areas associated



with the document will be freed. If the document has been created from memory data, no underlying file is opened



by MuPDF, so only the buffer release will take place.



Caution:



As with normal file objects, after close, the document and all objects referencing it will be invalid and must no
longer be used. This binding protects against most such invalid uses by disabling properties and methods of the



Document and any associated Document.loadPage() objects.



However, re-opening a previously closed file by a new Document is no problem. Please also do have a look at the



following valid example:



doc = fitz.Document(f_old)           # open a document



<... some statements ...>            # e.g. decryption



doc.save(fnew, garbage=3, deflate=1) # save a decrypted / compressed version



doc.close()                          # close input file



os.remove(f_old)                     # remove it



os.rename(f_new, f_old)              # rename the decrypted / cleaned version



doc = fitz.Document(f_old)           # use it as input for MuPDF



Example: Dynamically cleaning up corrupt PDF documents



This shows a potential use of PyMuPDF with another Python PDF library (pdfrw).



If a PDF is broken or needs to be decrypted, one could dynamically invoke PyMuPDF to recover from problems like



so:



import sys



from pdfrw import PdfReader



import fitz



from cStringIO import StringIO



Tutorial



7











#---------------------------------------



# 'tolerant' PDF reader



#---------------------------------------



def reader(fname):



    ifile = open(fname, "rb")



    idata = ifile.read()                # put in memory



    ifile.close()



    ibuffer = StringIO(idata)           # convert to stream



    try:



        return PdfReader(ibuffer)       # let us try



    except:                             # problem! see if PyMuPDF can heal it



        doc = fitz.Document("application/pdf",



                            idata,



                            len(idata)) # scan pdf data in memory



        doc.save("test.pdf",            # may want to use a temp file



                 garbage=3,



                 deflate=1)             # save a cleaned version



        ifile = open("test.pdf", "rb")  # open it



        idata = ifile.read()            # put in memory



        ifile.close()



        ibuffer = StringIO(idata)       # convert to stream



        return PdfReader(ibuffer)       # now let pdfrw retry



#---------------------------------------



pdf = reader(sys.argv[1])



print pdf.Info



# do further processing



With the command line utility pdftk a similar result can be achieved, see here. It even supports buffers for input



and output. However you must invoke it as a separate process via subprocess.Popen, using stdin and stdout as



communication vehicles.



Tutorial



8





http://www.overthere.co.uk/2013/07/22/improving-pypdf2-with-pdftk/








Classes



The list of PyMuPDF classes, accessible via the prefix fitz. if your import statement was import fitz



Class Short Description



Colorspace Define the color space of a Pixmap.



Device Target object for rendering or text extraction.



DisplayList A list containing drawing commands.



Document Basic class for dealing with files.



Identity The do-nothing Matrix



IRect A rectangle (pixel coordinates).



Link A destination



linkDest The destination of an outline entry



Matrix A 3x3 matrix used for transformations.



Outline Outline element (a.k.a. bookmark).



Page A document page.



Pixmap A pixel map (for rendering).



Point Represents a point in the plane.



Rect A rectangle (float coordinates).



TextPage Text content of a page.



TextSheet A list of text styles used in a page.



Classes



9











Colorspace



Represents the color space of a Pixmap.



Class API



class Colorspace



__init__ (self, colorspace, irect)
Constructor



colorspace



A number identifying the colorspace. Supported colorspaces are CS_RGB, CS_GRAY and CS_CMYK.



Type: int



irect



A IRect object representing the area of the image.



Type: instance



Classes



10











Device



The different format handlers (pdf, xps, etc.) interpret pages to a "device". These devices are the basis for



everything that can be done with a page: rendering, text extraction and searching. The device type is determined by



the selected construction method.



Class API



class Device



__init__ (self, object)
Constructor for either a pixel map or a display list device.



object



An object representing one of Pixmap, or DisplayList



Type: instance



__init__ (self, textsheet, textpage)
Constructor for a text page device.



textsheet



A TextSheet object.



Type: instance



textpage



A TextPage object.



Type: instance



Classes



11











DisplayList



DisplayList is a list containing drawing commands (text, images, etc.). The intent is two-fold:



1. as a caching-mechanism to reduce parsing of a page



2. as a data structure in multi-threading setups, where one thread parses the page and another one renders



pages.



A DisplayList is populated with objects from a page by running Page.run() on a Device. Replay the list (once



or many times) by invoking the display list's run() function.



Method Short Description



run() (Re)-run a display list through a device.



Class API



class DisplayList



fitz.DisplayList (self)
Create a rendering device for a display list.



When the device is rendering a page it will populate the display list with drawing commands (text, images, etc.).



The display list can later be reused to render a page many times without having to re-interpret the page from the



document file.



Return type: Device



run (self, dev, ctm, area)



Parameters:
• dev (Device) -- Device obtained from Device



• ctm (Matrix) -- Transform matrix to apply to display list contents.



• area (IRect) -- Only the part of the contents of the display list visible within this area



will be considered when the list is run through the device. This does not imply for tile



objects contained in the display list.



Classes



12











Document



This class represents a document. It can be constructed from a file or from memory. See below for details.



Method / Attribute Short Description



Document.authenticate() Decrypts the document



Document.loadPage() Reads a page



Document.save() Saves a copy of the document



Document.ToC() Creates a table of contents



Document.close() Closes the document



Document.isClosed Has document been closed?



Document.outline First Outline item



Document.name filename of document



Document.needsPass Is document is encrypted?



Document.pageCount The document's number of pages



Document.metadata The document's meta data



Class API



class Document



__init__ (self, filename)
Constructs a Document object from a file.



Parameters: filename (string) -- A string (UTF-8 or unicode) containing the path / name of the



document file to be used. The file will be opened and remain open until either explicitely



closed (see below) or until end of program.



Return type: Document



Returns: A Document object.



__init__ (self, filetype, stream=data, streamlen=len(data))
Constructs a Document object from memory data.



Parameters:
• filetype (string) -- A string specifying the type of document contained in stream.



This may be either something that looks like a filename (e.g. x.pdf), in which case



MuPDF uses the extension to determine the type, or a mime type like



application/pdf. Recommended is using the filename scheme, or even the



name of the original file for documentation purposes.



• stream (string) -- A string of data representing the content of a supported document



type.



• streamlen (int) -- An integer specifying the length of the stream.



Return type: Document



Returns: A Document object.



authenticate (password)
Decrypts the document with the string password. If successfull, the document's data can be accessed (e.g. for



rendering).



Parameters: password (string) -- The password to be used.



Return type: int



Returns: True (1) if decryption with password was successfull, False (0) otherwise.



loadPage (number)
Loads a Page for further processing like rendering, text searching, etc. See the Page object.



Classes



13











Parameters: number (int) -- page number, zero-based (0 is the first page of the document).



Return type: Page



save (outfile, garbage=0, clean=0, deflate=0, incremental=0, ascii=0, expand=0, linear=0)
Saves a copy of the document under outfile (include path specifications as necessary). Internally the



document may have changed. E.g. after a successfull authenticate, a decrypted copy will be saved, and, in



addition (even without any of the optional parameters), some basic cleaning of the document data will also have



occurred, e.g. broken xref tables will have been corrected as far as possible.



Parameters:
• outfile (string) -- The file name to save to. Must be different from the original



filename / filetype value or else a ValueError will be raised.



• garbage (int) -- Do garbage collection: 0 = none, 1 = remove unused objects, 2 = in



addition compact xref tables, 3 = in addition merge duplicate objects.



• clean (int) -- Clean content streams: 0 = False, 1 = True.



• deflate (int) -- Deflate uncompressed streams: 0 = False, 1 = True.



• incremental (int) -- Only save changed objects: 0 = False, 1 = True.



• ascii (int) -- Where possible make the output ASCII: 0 = False, 1 = True.



• expand (int) -- One byte bitfield to decompress contents: 0 = none, 1 = images, 2 =



fonts, 255 = all. This convenience option generates a decompressed file version that



can be better read by some other programs.



• linear (int) -- Save a linearised version of the document: 0 = False, 1 = True. This



option creates a file format for improved performance when read via internet



connections.



Return type: int



Returns: Count of errors that occurred during save. Note: PyMuPDF will recover from many errors



encountered in a PDF and continue processing.



ToC ()
A convenience function that creates a table of contents from the outline entries. If none exist [] will be



returned, otherwise a Python list [[level, title, page], [...], ...]. Note that the title entries have



already been decoded to unicode here. Page numbers are 1-based, but zero if and only if the entry points to a



place outside this document.



Return type: list



close ()
Releases space allocations associated with the document, and, if created from a file, closes filename thus



releasing control of it to the OS.



outline



Contains either None or the first Outline entry of the document. Can be used as a starting point to walk through



all outline items.



Return type: Outline



isClosed



False (0) if document is still open, True (1) otherwise. If closed, most other attributes and all methods will



have been deleted / disabled. In addition, Page objects referring to this document (i.e. created with



Document.loadPage()) will no longer be usable. For reference purposes, Document.name still exists and



will contain the filename of the original document.



Return type: int



needsPass



Contains an indicator showing whether the document is encrypted (True = 1) or not (False = 0).



Return type: bool



Classes



14











metadata



Contains the document's meta data as a Python dictionary. Its keys are format, encryption, title,



author, subject, keywords, creator, producer, creationDate, modDate. All item values are strings or



None.



Except format and encryption, the key names correspond in an obvious way to a PDF's "official" meta data



fields /Creator, /Producer, /CreationDate, /ModDate, /Title, /Author, /Subject, /Keywords



respectively.



The value of format contains the version of the PDF format (e.g. 'PDF-1.6').



The value of encryption either contains None (not encrypted), or a string naming the used encryption



method (e.g. 'Standard V4 R4 128-bit RC4'). Note that if the document is encrypted, the other meta



data values may be encrypted, too.



If the date fields contain meaningfull data (which need not be the case), they are strings in the PDF-internal



timestamp format "D:<TS><TZ>", where



<TS> is the 12 character ISO timestamp YYYMMDDhhmmss (YYYY - year, MM - month, DD - day, hh - hour,



mm - minute, ss - second), and



<TZ> is a time zone value (time intervall relative to GMT) containing a sign ('+' or '-'), the hour (hh), and the



minute ('mm', attention: enclose in apostrophies!).



For example, a Venezuelan value might look like D:20150415131602-04'30', which corresponds to the



timestamp April 15, 2015, at 1:16:02 pm local time Venezuela.



Return type: dict



name



Contains the filename or filetype value with which Document was created.



Return type: string



pageCount



Contains the number of pages of the document. May return 0 for documents with no pages.



Return type: int



Classes



15











Identity



Identity is just a Matrix that performs no action, to be used whenever the syntax requires a Matrix, but no actual



transformation should take place.



Caution: Identity is a constant in the C code and therefore readonly, do not try to modify its properties in any



way, i.e. you must not manipulate its [a,b,c,d,e,f], neither apply any method.



Matrix(1, 1) creates a matrix that acts like Identity, but it may be changed. Use this when you need a starting



point for further modification, e.g. by one of the Matrix methods.



In other words:



# the following will not work - the interpreter will crash!



m = fitz.Identity.preRotate(90)



# do this instead:



m = fitz.Matrix(1, 1).preRotate(90)



Classes



16











IRect



IRect is a rectangular bounding box similar to Rect, except that all corner coordinates are integers. IRect is used to



specify an area of pixels, e.g. to receive image data during rendering.



Attribute Short Description



IRect.width Width of the bounding box



IRect.height Height of the bounding box



IRect.x0 X-coordinate of the top left corner



IRect.y0 Y-coordinate of the top left corner



IRect.x1 X-coordinate of the bottom right corner



IRect.y1 Y-coordinate of the bottom right corner



Class API



class IRect



__init__ (self, x0=0, y0=0, x1=0, y1=0)
Constructor. The default values will create an empty rectangle. Function Rect.round() creates the smallest



IRect containing Rect.



width



Contains the width of the bounding box. Equals x1 - x0.



Type: int



height



Contains the height of the bounding box. Equals y1 - y0.



Type: int



x0



X-coordinate of the top left corner.



Type: int



y0



Y-coordinate of the top left corner.



Type: int



x1



X-coordinate of the bottom right corner.



Type: int



y1



Y-coordinate of the bottom right corner.



Type: int



Classes



17











Link



Represents a pointer to somewhere (this document, other documents, the internet). Links exist per document page,



and they are forward-chained to each other, starting from an initial link which is accessible by the



Page.loadLinks() method.



Attribute Short Description



Link.rect Clickable area in untransformed coordinates.



Link.dest Kind of link destination.



Link.next Link to next link



Class API



class Link



rect



The area that can be clicked in untransformed coordinates.



Return type: Rect



dest



The link destination kind. An integer to be interpreted as one of the FZ_LINK_* values.



Return type: int



next



The next Link or None



Return type: Link



Classes



18











linkDest



Class representing the dest property of an outline entry.



Attribute Short Description



linkDest.dest Destination



linkDest.fileSpec File specification (path, filename)



linkDest.flags Descriptive flags



linkDest.isMap Is this a MAP?



linkDest.isUri Is this an URI?



linkDest.kind Kind of destination



linkDest.lt Top left coordinates



linkDest.named Name if named destination



linkDest.newWindow Name of new window



linkDest.page Page number



linkDest.rb Bottom right coordinates



linkDest.uri URI



Class API



class linkDest



dest



Destination of linkDest.



Return type: Link



fileSpec



Contains the filename (including any path specifications) this link points to, if applicable.



Return type: string



flags



A one-byte bitfield consisting of indicators describing the validity and meaning of the different aspects of the



destination. As far as possible, link destinations are constructed such that e.g. linkDest.lt and



linkDest.rb can be treated as defining a bounding box, though the validity flags (see LINK_FLAG_* values)



indicate which of the values were actually specified. Note that the numerical values for each of the LINK_FLAGs



are powers of 2 and thus indicate the position of the bit to be tested. More than one bit can be True, so do not



test for the value of the integer.



Return type: int



isMap



This flag specifies whether to track the mouse position when the URI is resolved. Default value: False.



Return type: bool



isUri



Specifies whether this destination is an internet resource.



Return type: bool



kind



Indicates the type of this destination, like a place in this document, a URI, a file launch, an action or a place in



another file. Look at index entries FZ_LINK_* to see the names and numerical values.



Return type: int



Classes



19











lt



The top left Point of the destination.



Return type: Point



named



This destination refers to some named resource of the document (see Adobe PDF documentation).



Return type: int



newWindow



This destination refers to an action that will open a new window.



Return type: bool



page



The page number (in this document) this destination points to.



Return type: int



rb



The bottom right Point of this destination.



Return type: Point



uri



The name of the URI this destination points to.



Return type: string



Classes



20











Matrix



Matrix is a row-major 3x3 matrix used by image transformations in MuPDF. With matrices you can manipulate the



rendered image of a page in a variety of ways: (parts of) the page can be rotated, zoomed, flipped, sheared and



shifted by setting some or all of just six numerical values.



Since all points or pixels live in a two-dimensional space, one column vector of that matrix is a constant unit vector,



and only the remaining six elements are used for manipulations. These six elements are usually represented by



[a,b,c,d,e,f]. Here is how they are positioned in the matrix:



It should be noted, that



• the below methods are just convenience functions - everything they do, can also be achieved by directly



manipulating [a,b,c,d,e,f]



• all manipulations can be combined - you can construct a matrix that does a rotate and a shear and a scale



and a shift etc. in one go



Method / Attribute Description



Matrix.__init__() Constructor.



Matrix.preRotate() Perform a rotation



Matrix.preScale() Perform a scaling



Matrix.preShear() Perform a shearing



Matrix.a Zoom factor X direction



Matrix.b Shearing effect Y direction



Matrix.c Shearing effect X direction



Matrix.d Zoom factor Y direction



Matrix.e Horizontal shift



Matrix.f Vertical shift



Class API



class Matrix



__init__ (self, a=1, b=0, c=0, d=1, e=0, f=0)
Constructor. Matrix(1, 1) will construct a modifyable version of the Identity matrix.



preRotate (deg)
Performs a clockwise rotation for positive deg degrees, else counterclockwise. This will change the matrix



elements in the following way: a = cos(deg), b = sin(deg), c = -sin(deg), d = cos(deg). e and f



will remain unchanged.



Parameters: deg (float) -- The rotation angle in degrees (use conventional notation based on Pi = 180



degrees).



Return type: Matrix



preScale (sx, sy)
Scales by the zoom factors sx and sy. Has effects on attributes a and d only.



Classes



21











Parameters:
• sx (float) -- Zoom factor in X direction. For the effect see description of attribute a.



• sy (float) -- Zoom factor in Y direction. For the effect see description of attribute d.



Return type: Matrix



preShear (sx, sy)
Performs shearing, i.e. transformation of rectangles into parallelograms (rhomboids). Has effects on attributes



b and c only.



Parameters:
• sx (float) -- Shearing effect in X direction. See attribute c.



• sy (float) -- Shearing effect in Y direction. See attribute b.



Return type: Matrix



a



Scaling in X-direction (width). For example, a value of 0.5 performs a shrink of the width by a factor of 2. If a <



0, a (additional) vertical flip will occur, i.e. the rectangle's picture will be mirrored along the Y axis.



Type: float



b



Causes a shearing effect: each Point(x, y) will become Point(x, y - b*x). Therefore, looking from left



to right, e.g. horizontal lines will be "tilt" - downwards if b > 0, upwards otherwise (b is the tangens of the tilting



angle).



Type: float



c



Causes a shearing effect: each Point(x, y) will become Point(x - c*y, y). Therefore, looking



upwards, vertical lines will be "tilt" - to the left if c > 0, to the right otherwise (c ist the tangens of the tilting



angle).



Type: float



d



Scaling in Y-direction (height). For example, a value of 1.5 performs a stretch of the height by 50%. If d < 0, a



(additional) horizontal flip will occur, i.e. the rectangle's picture will be mirrored along the X axis.



Type: float



e



Causes a horizontal shift effect: Each Point(x, y) will be shifted right to become Point(x + e, y). Note



that negative values of e will shift left.



Type: float



f



Causes a vertical shift effect: Each Point(x, y) will be shifted down to become Point(x, y - f). Note



that negative values of f will shift up.



Type: float



Examples



Here are examples to illustrate some of the effects achievable with matrices. The following pictures start with a page



of the PDF version of this help file. We show what will happen when a matrix is being applied (though always full



pages are created, only parts are displayed here to save space).



This is the original page image



Classes



22











Shifting



We transform it with a matrix where e = 100 (right shift by 100 pixels)



Next we do a down shift by 100 pixels: f = 100



Flipping



Classes



23











Flip the page vertically (a = -1)



Flip horizontally (d = -1)



Shearing



First a shear in Y direction (b = 0.5)



Second a shear in X direction (c = 0.5)



Classes



24











Rotating



Finally a rotation by 60 degrees



Classes



25











Outline



outline is a property of Document. If not None, it stands for the first outline item of the document. Its properties in



turn define the characteristics of this item and also point to other outline items in "horizontal" direction by property



Outline.next to the next item of same level, and "downwards" by property Outline.down to the next item one



level lower. The full tree of all outline items for e.g. a conventional table of contents can be recovered by following



these "pointers".



Method / Attribute Short Description



Outline.down Next item downwards



Outline.next Next item same level



Outline.dest Link destination



Outline.title Title



Outline.saveText() Prints a conventional table of contents to a file



Outline.saveXML() Prints an XML-like table of contents to a file



Class API



class Outline



down



The next outline item on the next level down. Is None if the item has no children.



Return type: Outline



next



The next outline item at the same level as this item. Is None if the item is the last one in its level.



Return type: Outline



dest



The destination this entry points to. Can be a place in this or another document, or an internet resource. It can



include actions to perform like opening a new window, invoking a javascript or opening another document.



Return type: linkDest



title



The item's title as a string or None.



Return type: string



saveText ()
The chain of outline items is being processed and printed to the file filename as a conventional table of



contents. Each line of this file has the format <tab>...<tab><title><tab><page#>, where the number of



leading tabs is (n-1), with n equal to the outline level of the entry. Page numbers are 1-based in this case, while



page# = 0 if and only if the outline entry points to a place outside this document. If no title was specified for



this outline entry, it appears as a tab character in this file.



Parameters: filename (string) -- Name of the file to write to.



saveXML ()
The chain of outline items is being processed and printed to a file filename as an XML-like table of contents.



Each line of this file has the format <outline title="..." page="n"/>, if the entry has no children.



Otherwise the format is <outline title="..." page="n">, and child entries will follow. The parent entry



will be finished by a line containing </outline>.



Parameters: filename (string) -- Name of the file to write to.



Classes



26











Page



Page interface, created by Document.loadPage().



Method / Attribute Short Description



Page.bound() The Page's rectangle



Page.loadLinks() Get all the links in a page



Page.run() Run a page through a device



Page.number Page number



Class API



class Page



bound ()
Determine the a page's rectangle (before transformation).



Return type: Rect



loadLinks ()
Get all the links in a page.



Return type: list



Returns: A python list of Link. An empty list is returned if there's no link in the page.



run (dev, transform)
Run a page through a device.



Parameters:
• dev (Device) -- Device, obtained from one of the Device constructors.



• transform (Matrix) -- Transformation to apply to the page. May include for example



scaling and rotation, see Matrix.preScale() and Matrix.preRotate(). Set it



to Identity if no transformation is desired.



number



The page number



Return type: int



Classes



27











Pixmap



Pixmaps represent a set of pixels for a 2 dimensional region. Each pixel consists of n bytes ("components"), plus



always an alpha. The data is in premultiplied alpha when rendering, but non-premultiplied for colorspace



conversions and rescaling.



Method / Attribute Short Description



Pixmap.clearWith() Clears a pixmap (with given value)



Pixmap.writePNG() Saves a pixmap as a png file



Pixmap.invertIRect() Invert the pixels of a given bounding box



Pixmap.samples The components data for all pixels



Pixmap.h Height of the region in pixels



Pixmap.w Width of the region in pixels



Pixmap.x X-coordinate of top-left corner of pixmap



Pixmap.y Y-coordinate of top-left corner of pixmap



Pixmap.n Number of components per pixel



Pixmap.xres Resolution in X-direction



Pixmap.yres Resolution in Y-direction



Pixmap.interpolate Interpolation method indicator



Class API



class Pixmap



clearWith (self, value=0)
Clears a pixmap.



Parameters: value (int) -- Values in the range 0 to 255 are valid. Each color byte of each pixel will be



set to this value, while alpha will always be set to 255 (non-transparent). Default is 0.



samples



The color and transparency values for all pixels. Samples is a memory area of size width * height * n



bytes. The first n bytes are components 0 to n-1 for the pixel at point (x,y). Each successive n bytes gives



another pixel in scanline order. Subsequent scanlines follow each other with no padding. E.g. for an RGBA



colorspace this means, samples is a bytearray like ..., R, G, B, A, ..., and the four byte values R, G,



B, A describe one pixel.



Return type: bytearray



w



The width of the region in pixels.



Return type: int



h



The height of the region in pixels.



Return type: int



x



X-coordinate of top-left corner



Return type: int



y



Y-coordinate of top-left corner



Classes



28











Return type: int



n



Number of components per pixel. This number depends on the chosen colorspace: CS_GRAY = 2, CS_RGB =



4, CS_CMYK = 5.



Return type: int



xres



Horizontal resolution in pixels per inch.



Return type: int



yres



Vertical resolution in pixels per inch



Return type: int



invertIRect (self, irect)
Invert all pixels in IRect. All components except alpha are inverted.



Parameters: irect -- Invert all the pixels in the irect. If omitted, the whole pixmap will be inverted.



writePNG (self, filename, savealpha=False)
Save a pixmap as a png file.



Parameters:
• filename (string) -- The filename to save as (including extension).



• savealpha (bool) -- Save alpha or not.



interpolate



A boolean flag set to True if the image will be drawn using linear interpolation, or set to False if image is



created using nearest neighbour sampling.



Return type: bool



Classes



29











Point



Point represents a point in the plane, defined by its x and y coordinates.



Attribute Short Description



Point.x The X-coordinate



Point.y The Y-coordinate



Class API



class Point



__init__ (self, x=0, y=0)
Constructor, defaulting to "top left".



x



Type: float



y



Type: float



Classes



30











Rect



Rect represents a rectangle defined by its top left and its bottom right Point objects, in coordinates: ((x0, y0), (x1,



y1)).



Rectangle borders are always in parallel with the respective X- and Y-axes. A rectangle is called "finite" if x0 <= x1



and y0 <= y1 is true, else "infinite".



Methods / Attributes Short Description



Rect.round() creates the smallest IRect containing Rect



Rect.transform() transform Rect with a Matrix



Rect.height Rect height



Rect.width Rect width



Rect.x0 Top left corner's X-coordinate



Rect.y0 Top left corner's Y-coordinate



Rect.x1 Bottom right corner's X-coordinate



Rect.y1 Bottom right corner's Y-coordinate



Class API



class Rect



__init__ (self, x0=0, y0=0, x1=0, y1=0)
Constructor. The default values will create an empty rectangle.



round ()
Creates the smallest IRect that contains Rect.



Return type: IRect



transform (m)



Transforms Rect with a Matrix.



Parameters: m -- A Matrix to be used for the transformation.



Return type: Rect



width



Contains the width of the rectangle. Equals x1 - x0.



Return type: float



height



Contains the height of the rectangle. Equals y1 - y0.



Return type: float



x0



X-coordinate of the top left corner.



Type: float



y0



Y-coordinate of the top left corner.



Type: float



x1



X-coordinate of the bottom right corner.



Classes



31











Type: float



y1



Y-coordinate of the bottom right corner.



Type: float



Classes



32











TextPage



TextPage represents the text of a page.



Method Short Description



TextPage.extractText() Extract the page's plain text



TextPage.extractHTML() Extract the page's text in HTML format



TextPage.extractJSON() Extract the page's text in JSON format



TextPage.extractXML() Extract the page's text in XML format



TextPage.search() Search for a string in the page



Class API



class TextPage



extractText (basic=0)
Extract the text from a TextPage object. Returns a string of the page's complete text. If the default value 0 for



basic is used, the text is returned as close as possible to its natural reading order (top-left to bottom-right), and



unicode encoded. This is based on the output of extractXML, see below. Usage of basic=1 is provided



primarily for debugging purposes. In this case no attempt is being made to adhere to a natutal reading



sequence, instead the text is returned in the same sequence as the PDF creator specified it. In addition, in this



case, the text string is UTF-8 encoded (as it is an original MuPDF value).



param basic: An integer specifying whether basic (1 (True)) or advanced text output (the default)



should be provided.



type basic: int



Return type: string



extractHTML ()
Extract the text from a TextPage object in HTML format. This version contains some more formatting



information about how the text is being dislayed on the page. See the tutorial chapter for an example.



Return type: string



extractJSON ()
Extract the text from a TextPage object in JSON format. This version contains significantly more formatting



information about how the text is being dislayed on the page. It is almost as complete as the extractXML



version, except that positioning information is detailed down to the span level, not a single character. See the



tutorial chapter for an example.



Return type: string



extractXML ()
Extract the text from a TextPage object in XML format. This contains complete formatting information about



every single text character on the page: font, size, line, paragraph, location, etc. This may easily reach several



hundred kilobytes of uncompressed data for a text oriented page. See the tutorial chapter for an example.



Return type: string



search (string, hit_max = 16)
Search for the string string.



Parameters:
• string (string) -- The string to search for.



• hit_max (int) -- Maximum number of expected hits (default 16).



Return type: list



Returns: A python list. If not empty, each element of the list is a Rect (without transformation)



surrounding a found string occurrence.



Classes



33











TextSheet



TextSheet contains a list of distinct text styles used on a page (or a series of pages).



Classes



34











Constants and Enumerations



Constants and enumerations of MuPDF as implemented by PyMuPDF. If your import statement was import fitz



then each of the following variables var is accessible as fitz.var.



Constants



Constant Description



CS_RGB



1 - Type of Colorspace is RGBA



CS_GRAY



2 - Type of Colorspace is GRAY



CS_CMYK



3 - Type of Colorspace is CMYK



VersionBind



'1.8.0' - Version of PyMuPDF (this binding)



VersionFitz



'1.8' - Version of MuPDF



Enumerations



Possible values of linkDest.kind (link destination type). For details consult Adobe PDF Reference sixth edition



1.7 November 2006, chapter 8.2 on page 581 ff.



Value Description



LINK_NONE



0 - No destination



LINK_GOTO



1 - Points to a place in this document



LINK_URI



2 - Points to an URI



LINK_LAUNCH



3 - Launch (open) another document



LINK_NAMED



4 - Perform some action



LINK_GOTOR



5 - Points to another document



Possible values of linkDest.flags (link destination flags). Attention: The rightmost byte of this integer is a bit



field. The values represent boolean indicators showing whether the associated statement is True.



Value Description



LINK_FLAG_L_VALID



1 (bit 0) Top left x value is valid



LINK_FLAG_T_VALID



2 (bit 1) Top left y value is valid



LINK_FLAG_R_VALID



4 (bit 2) Bottom right x value is valid



LINK_FLAG_B_VALID



8 (bit 3) Bottom right y value is valid



LINK_FLAG_FIT_H



16 (bit 4) Horizontal fit



Constants and Enumerations



35





http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf


http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf








LINK_FLAG_FIT_V



32 (bit 5) Vertical fit



LINK_FLAG_R_IS_ZOOM



64 (bit 6) Bottom right x is a zoom figure



Constants and Enumerations



36











Appendix



This chapter contains additional comments and examples.



Example Outputs of Text Extraction Methods



Text information contained in a TextPage adheres to the following hierarchy:



<page> (width and height)



    <block> (its rectangle)



            <line> (its rectangle)



                    <span> (its rectangle and font information)



                            <char> (its rectangle, (x, y) coordinates and value)



A text page consists of blocks (= roughly paragraphs). A block consists of lines. A line consists of spans. A span



consists of characters with the same properties. E.g. a different font will cause a new span.



TextPage.extractText()



This is the output of a page of this tutorial's PDF version:



Tutorial



This tutorial will show you the use of MuPDF in Python step by step.



Because MuPDF supports not only PDF, but also XPS, OpenXPS and EPUB formats, so does PyMuPDF.



Nevertheless we will only talk about PDF files for the sake of brevity.



...



TextPage.extractHTML()



The HTML version looks like this:



<div class="page">



<div class="block"><p>



<div class="metaline"><div class="line"><div class="cell" style="width:0%;align:left"><span 



</div></p></div>



<div class="block"><p>



<div class="line"><div class="cell" style="width:0%;align:left"><span class="s1">This tutorial will show you the use of MuPDF in Python step by step.



</div></p></div>



<div class="block"><p>



<div class="line"><div class="cell" style="width:0%;align:left"><span class="s1">Because MuPDF supports not only PDF, but also XPS, OpenXPS and EPUB formats, so does PyMuPDF.



<div class="line"><div class="cell" style="width:0%;align:left"><span class="s1">Nevertheless we will only talk about PDF files for the sake of brevity.



</div></p></div>



...



TextPage.extractJSON()



JSON output looks like so:



{



 "len":35,"width":595.2756,"height":841.8898,



 "blocks":[



  {"type":"text","bbox":[40.01575, 53.730354, 98.68775, 76.08236],



   "lines":[



      {"bbox":[40.01575, 53.730354, 98.68775, 76.08236],



       "spans":[



         {"bbox":[40.01575, 53.730354, 98.68775, 76.08236],



          "text":"Tutorial"



         }



       ]



      }



Appendix



37











   ]



  },



  {"type":"text","bbox":[40.01575, 79.300354, 340.6957, 93.04035],



   "lines":[



      {"bbox":[40.01575, 79.300354, 340.6957, 93.04035],



       "spans":[



         {"bbox":[40.01575, 79.300354, 340.6957, 93.04035],



          "text":"This tutorial will show you the use of MuPDF in Python step by step."



         }



       ]



      }



   ]



  },



...



TextPage.extractXML()



Now the XML version:



<page width="595.2756" height="841.8898">



<block bbox="40.01575 53.730354 98.68775 76.08236">



<line bbox="40.01575 53.730354 98.68775 76.08236">



<span bbox="40.01575 53.730354 98.68775 76.08236" font="Helvetica-Bold" size="16">



<char bbox="40.01575 53.730354 49.79175 76.08236" x="40.01575" y="70.85036" c="T"/>



<char bbox="49.79175 53.730354 59.56775 76.08236" x="49.79175" y="70.85036" c="u"/>



<char bbox="59.56775 53.730354 64.89575 76.08236" x="59.56775" y="70.85036" c="t"/>



<char bbox="64.89575 53.730354 74.67175 76.08236" x="64.89575" y="70.85036" c="o"/>



<char bbox="74.67175 53.730354 80.89575 76.08236" x="74.67175" y="70.85036" c="r"/>



<char bbox="80.89575 53.730354 85.34375 76.08236" x="80.89575" y="70.85036" c="i"/>



<char bbox="85.34375 53.730354 94.23975 76.08236" x="85.34375" y="70.85036" c="a"/>



<char bbox="94.23975 53.730354 98.68775 76.08236" x="94.23975" y="70.85036" c="l"/>



</span>



</line>



</block>



<block bbox="40.01575 79.300354 340.6957 93.04035">



<line bbox="40.01575 79.300354 340.6957 93.04035">



<span bbox="40.01575 79.300354 340.6957 93.04035" font="Helvetica" size="10">



<char bbox="40.01575 79.300354 46.12575 93.04035" x="40.01575" y="90.050354" c="T"/>



<char bbox="46.12575 79.300354 51.685753 93.04035" x="46.12575" y="90.050354" c="h"/>



<char bbox="51.685753 79.300354 53.90575 93.04035" x="51.685753" y="90.050354" c="i"/>



<char bbox="53.90575 79.300354 58.90575 93.04035" x="53.90575" y="90.050354" c="s"/>



<char bbox="58.90575 79.300354 61.685753 93.04035" x="58.90575" y="90.050354" c=" "/>



<char bbox="61.685753 79.300354 64.46575 93.04035" x="61.685753" y="90.050354" c="t"/>



<char bbox="64.46575 79.300354 70.02576 93.04035" x="64.46575" y="90.050354" c="u"/>



<char bbox="70.02576 79.300354 72.805756 93.04035" x="70.02576" y="90.050354" c="t"/>



<char bbox="72.805756 79.300354 78.36575 93.04035" x="72.805756" y="90.050354" c="o"/>



<char bbox="78.36575 79.300354 81.695755 93.04035" x="78.36575" y="90.050354" c="r"/>



<char bbox="81.695755 79.300354 83.91576 93.04035" x="81.695755" y="90.050354" c="i"/>



...



Resource Requirements of Text Extraction Methods



The four text extraction methods of a TextPage differ significantly: in terms of information they supply (see above),



and in terms of resource requirements. More information of course means that more processing is required and a



higher data volume is generated.



For testing performance, we have run several example PDFs through these methods and found the following



information. This data is not statistically secured in any way - just take it as an idea for what you should expect to



see.



Appendix



38











As a low end example we took this manual's PDF version (45+ pages, text oriented, 500 KB). The high end case



was Adobe's PDF manual (1310 pages, text oriented, 32 MB). The other test cases were Spektrum magazines of



the year 2015 (the German version of Scientific American, 100+ pages, text with lots of complex interspersed



images, 10 to 25 MB each).



Performance



Performance of text extraction has improved significantly in MuPDF 1.8! As of updating this documentation (mid



November 2015), data hint at an improvement factor greater than 2. Especially the complex extraction methods



have a much lower effort penalty.



If we set the simplest extraction method, extractText(basic=True) to 1, the old relationship was



MuPDF 1.7: (Text : HTML : JSON : XML) ~ (1 : 2 : 145 : 4120)



We now observe



MuPDF 1.8: (Text : HTML : JSON : XML) ~ (1 : 1 : 3 : 52)



On a higher level Win10 machine (8 processors at 4 GHz, 8 GB RAM), the figure for extractXML() corresponds



to anything between 0.2 and 0.5 seconds per page. This still means that you can extract extremely detailed text



information of a complex 100-page magazine in less than a minute. This is about 3 times faster than text extraction



with other free PDF utilities, e.g. Nitro 3.



If you use PDF2TextJS.py of the example directory, you have a text extraction utility which is more than 60 times



faster than Nitro!



Data Sizes



The sizes of the returned text strings follow this pattern, again extractText(basic=True) is set to 1:



(Text : HTML : JSON : XML) ~ (1 : 4 : 6 : 87)



The number 87 for extractXML() corresponds to values between 200 and 400 KB per page.



The details can be seen here:



Appendix



39





http://www.spektrum.de/


https://www.gonitro.com/pdf-reader














Index



_



__init__() (Colorspace method)



(Device method) [1]



(Document method) [1]



(IRect method)



(Matrix method)



(Point method)



(Rect method)



A



a (Matrix attribute)



authenticate() (Document method)



author (built-in variable)



B



b (Matrix attribute)



bound() (Page method)



C



c (Matrix attribute)



clearWith() (Pixmap method)



close() (Document method)



Colorspace (built-in class)



colorspace (Colorspace attribute)



creationDate (built-in variable)



creator (built-in variable)



CS_CMYK (built-in variable)



CS_GRAY (built-in variable)



CS_RGB (built-in variable)



D



d (Matrix attribute)



dest (Link attribute)



(Outline attribute)



(linkDest attribute)



Device (built-in class)



DisplayList (built-in class)



DisplayList() (DisplayList.fitz method)



Document (built-in class)



down (Outline attribute)



E



e (Matrix attribute)



encryption (built-in variable)



extractHTML() (TextPage method)



extractJSON() (TextPage method)



extractText() (TextPage method)



extractXML() (TextPage method)



F



f (Matrix attribute)



fileSpec (linkDest attribute)



flags (linkDest attribute)



format (built-in variable)



H



h (Pixmap attribute)



height (IRect attribute)



(Rect attribute)



I



interpolate (Pixmap attribute)



invertIRect() (Pixmap method)



IRect (built-in class)



irect (Colorspace attribute)



isClosed (Document attribute)



isMap (linkDest attribute)



isUri (linkDest attribute)



K



keywords (built-in variable)



kind (linkDest attribute)



L



Link (built-in class)



LINK_FLAG_B_VALID (built-in variable)



LINK_FLAG_FIT_H (built-in variable)



LINK_FLAG_FIT_V (built-in variable)



LINK_FLAG_L_VALID (built-in variable)



LINK_FLAG_R_IS_ZOOM (built-in variable)



LINK_FLAG_R_VALID (built-in variable)



LINK_FLAG_T_VALID (built-in variable)



LINK_GOTO (built-in variable)



LINK_GOTOR (built-in variable)











LINK_LAUNCH (built-in variable)



LINK_NAMED (built-in variable)



LINK_NONE (built-in variable)



LINK_URI (built-in variable)



linkDest (built-in class)



loadLinks() (Page method)



loadPage() (Document method)



lt (linkDest attribute)



M



Matrix (built-in class)



metadata (Document attribute)



modDate (built-in variable)



N



n (Pixmap attribute)



name (Document attribute)



named (linkDest attribute)



needsPass (Document attribute)



newWindow (linkDest attribute)



next (Link attribute)



(Outline attribute)



number (Page attribute)



O



object (Device attribute)



Outline (built-in class)



outline (Document attribute)



P



Page (built-in class)



page (linkDest attribute)



pageCount (Document attribute)



Pixmap (built-in class)



Point (built-in class)



preRotate() (Matrix method)



preScale() (Matrix method)



preShear() (Matrix method)



producer (built-in variable)



R



rb (linkDest attribute)



Rect (built-in class)



rect (Link attribute)



round() (Rect method)



run() (DisplayList method)



(Page method)



S



samples (Pixmap attribute)



save() (Document method)



saveText() (Outline method)



saveXML() (Outline method)



search() (TextPage method)



subject (built-in variable)



T



TextPage (built-in class)



textpage (Device attribute)



textsheet (Device attribute)



title (built-in variable)



(Outline attribute)



ToC() (Document method)



transform (Rect attribute)



U



uri (linkDest attribute)



V



VersionBind (built-in variable)



VersionFitz (built-in variable)



W



w (Pixmap attribute)



width (IRect attribute)



(Rect attribute)



writePNG() (Pixmap method)



X



x (Pixmap attribute)



(Point attribute)



x0 (IRect attribute)



(Rect attribute)



x1 (IRect attribute)



(Rect attribute)



xres (Pixmap attribute)











Y



y (Pixmap attribute)



(Point attribute)



y0 (IRect attribute)



(Rect attribute)



y1 (IRect attribute)



(Rect attribute)



yres (Pixmap attribute)











Jorj X


Something Special





Jorj X


Kommentar


this is a comment





Jorj X


Schreibmaschine


typewriter text





Jorj X


Text-Box


modified text field





Jorj X


Erläuterung


explanation text





Jorj X


Pfeil





Jorj X


Rechteck





Jorj X


Oval


comment in circle





Jorj X


Linienzug





Jorj X


Polygon





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift








2.7.9 (default, Dec 10 2014, 12:24:55) [MSC v.1500 32 bit (Intel)]
PyMuPDF 1.9.3: Python bindings for the MuPDF 1.9a library,
built on 2016-11-09 13:52:29
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104051923-04'00'", 'creationDate': "D:20161104051921-04'00'", 'name': 'Sold', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(38.30866622924805, 29.99896240234375, 283.5176696777344, 94.3599853515625)
type         ====> [12, 'Stamp']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 0.0], 'fill': []}
flags        ====> 28
info         ====> {'content': 'this is a comment', 'modDate': "D:20161104051957-04'00'", 'creationDate': "D:20161104051939-04'00'", 'name': 'Comment', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(339.59588623046875, 51.32275390625, 359.59588623046875, 69.32275390625)
type         ====> [0, 'Text']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 0.0, 'dashes': []}
colors       ====> {'default': [0.6862750053405762, 0.9333339929580688, 0.9333339929580688], 'fill': []}
flags        ====> 4
info         ====> {'content': 'typewriter text', 'modDate': "D:20161108150545-04'00'", 'creationDate': "D:20161104052009-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(396.85333251953125, 53.29669189453125, 506.6533203125, 65.29669189453125)
type         ====> [2, 'FreeText', 'FreeTextTypewriter']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [1, 'C'], 'hradius': '', 'width': 3.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'modified text field', 'modDate': "D:20161105091916-04'00'", 'creationDate': "D:20161104052030-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(49.683258056640625, 131.589111328125, 166.80604553222656, 166.71453857421875)
type         ====> [2, 'FreeText']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'explanation text', 'modDate': "D:20161104052130-04'00'", 'creationDate': "D:20161104052053-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'OpenArrow', 'end': ''}
rect         ====> fitz.Rect(211.27972412109375, 133.12445068359375, 343.1976318359375, 151.12445068359375)
type         ====> [2, 'FreeText', 'FreeTextCallout']
vertices     ====> [212.2474365234375, 704.700439453125, 231.19761657714844, 699.7655639648438, 243.19761657714844, 699.7655639648438]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105085923-04'00'", 'creationDate': "D:20161104052133-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'RClosedArrow', 'end': 'Diamond'}
rect         ====> fitz.Rect(386.5209045410156, 132.9107666015625, 480.52313232421875, 143.64208984375)
type         ====> [3, 'Line', 'LineArrow']
vertices     ====> [394.8789367675781, 703.7134399414062, 476.8163146972656, 704.700439453125]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': [0.7529420256614685, 0.7529420256614685, 0.7529420256614685]}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161108015351-04'00'", 'creationDate': "D:20161104052208-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(65.7791748046875, 190.2489013671875, 202.0124053955078, 236.63677978515625)
type         ====> [4, 'Square']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 2.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': [0.7529420256614685, 1.0, 1.0]}
flags        ====> 4
info         ====> {'content': 'comment in circle', 'modDate': "D:20161108150519-04'00'", 'creationDate': "D:20161106044139-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(247.78652954101562, 170.17724609375, 343.544677734375, 260.888427734375)
type         ====> [5, 'Circle']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052302-04'00'", 'creationDate': "D:20161104052251-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': 'OpenArrow'}
rect         ====> fitz.Rect(397.3605651855469, 178.933837890625, 504.1889343261719, 210.93402099609375)
type         ====> [7, 'PolyLine']
vertices     ====> [397.8405456542969, 656.338623046875, 404.75091552734375, 632.6512451171875, 438.31561279296875, 632.6512451171875, 447.2004089355469, 657.3256225585938, 471.8803405761719, 631.6642456054688, 503.47064208984375, 662.260498046875]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161106044025-04'00'", 'creationDate': "D:20161104052317-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(69.89996337890625, 255.60870361328125, 213.8157196044922, 317.83428955078125)
type         ====> [6, 'Polygon']
vertices     ====> [70.4776840209961, 567.9854125976562, 78.3752670288086, 526.532470703125, 158.33824157714844, 524.5585327148438, 212.6341094970703, 550.2199096679688, 135.63270568847656, 585.7510375976562]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052355-04'00'", 'creationDate': "D:20161104052347-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(283.20770263671875, 270.017822265625, 404.2485046386719, 318.91754150390625)
type         ====> [14, 'Ink']
vertices     ====> [[283.3256530761719, 563.5629272460938, 309.97998046875, 557.64111328125, 340.5830993652344, 556.6541137695312, 345.5190734863281, 551.71923828125, 341.5702819824219, 537.901611328125, 345.5190734863281, 534.940673828125, 367.2374267578125, 536.9146118164062, 393.8917541503906, 535.9276123046875, 397.8405456542969, 540.8624877929688, 400.8021240234375, 539.8755493164062, 403.7637023925781, 549.7453002929688], [395.86614990234375, 558.6280517578125, 385.9941711425781, 557.64111328125], [367.2374267578125, 550.7322387695312, 337.6214904785156, 530.0057983398438, 321.8263244628906, 524.0839233398438, 310.9671630859375, 525.0709228515625, 308.9927673339844, 530.0057983398438, 305.0439758300781, 535.9276123046875, 305.0439758300781, 549.7453002929688, 308.0055847167969, 553.6931762695312, 312.9415588378906, 558.6280517578125, 327.74951171875, 563.5629272460938, 355.39105224609375, 565.536865234375, 366.2502136230469, 570.4717407226562, 383.0325622558594, 570.4717407226562, 387.96856689453125, 566.5238647460938, 398.8277282714844, 563.5629272460938]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124032-04'00'", 'creationDate': "D:20161105124026-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(108.5757827758789, 365.8624267578125, 178.93264770507812, 406.0747985839844)
type         ====> [14, 'Ink']
vertices     ====> [[108.70982360839844, 463.3018798828125, 128.9523468017578, 469.29931640625, 139.44847106933594, 475.2967529296875, 139.44847106933594, 463.3018798828125, 143.94680786132812, 458.05413818359375], [121.45511627197266, 454.30572509765625, 130.4517822265625, 454.30572509765625, 132.70095825195312, 456.5547790527344, 131.95123291015625, 452.05670166015625, 134.20040893554688, 448.30828857421875, 136.44956970214844, 437.8127746582031, 144.69651794433594, 437.8127746582031, 164.9390411376953, 436.31341552734375], [161.1904296875, 469.29931640625, 168.68765258789062, 469.29931640625, 173.9357147216797, 465.5509338378906, 176.9346160888672, 461.0528564453125, 178.43405151367188, 446.05926513671875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124033-04'00'", 'creationDate': "D:20161105124033-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(161.1904296875, 386.3345947265625, 209.92242431640625, 387.3345947265625)
type         ====> [14, 'Ink']
vertices     ====> [[209.92242431640625, 455.055419921875, 161.1904296875, 455.055419921875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124036-04'00'", 'creationDate': "D:20161105124035-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(188.2412567138672, 367.2844543457031, 193.92710876464844, 399.61651611328125)
type         ====> [14, 'Ink']
vertices     ====> [[189.67990112304688, 474.5470886230469, 188.93017578125, 464.8012390136719, 191.92906188964844, 458.05413818359375, 193.4285125732422, 442.31085205078125]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124040-04'00'", 'creationDate': "D:20161105124037-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(88.03831481933594, 367.0860900878906, 245.77398681640625, 404.91131591796875)
type         ====> [14, 'Ink']
vertices     ====> [[235.41299438476562, 469.29931640625, 240.6610565185547, 465.5509338378906, 242.16050720214844, 459.5534973144531, 245.15939331054688, 458.05413818359375, 243.65994262695312, 453.5560607910156, 243.65994262695312, 449.8076477050781, 222.66770935058594, 440.06182861328125, 211.42185974121094, 438.5624694824219, 209.17269897460938, 437.8127746582031, 214.42076110839844, 452.05670166015625, 218.16937255859375, 455.8050842285156, 218.91909790039062, 462.5522155761719, 216.669921875, 464.05157470703125, 186.68101501464844, 464.05157470703125, 143.94680786132812, 468.5496520996094, 135.69984436035156, 465.5509338378906, 125.95345306396484, 464.8012390136719, 118.45622253417969, 461.8025207519531, 104.21148681640625, 461.8025207519531, 94.465087890625, 461.0528564453125, 92.96564483642578, 466.30059814453125, 88.4673080444336, 474.5470886230469]]

 test.pdf page 0  -  15 annotations, end of program




test1.txt











Jorj X


Something Special





Jorj X


Kommentar


this is a comment





Jorj X


Schreibmaschine


typewriter text





Jorj X


Text-Box


modified text field





Jorj X


Erläuterung


explanation text





Jorj X


Pfeil





Jorj X


Rechteck





Jorj X


Oval


comment in circle





Jorj X


Linienzug





Jorj X


Polygon





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift





Jorj X


Stift








2.7.9 (default, Dec 10 2014, 12:24:55) [MSC v.1500 32 bit (Intel)]
PyMuPDF 1.9.3: Python bindings for the MuPDF 1.9a library,
built on 2016-11-09 13:52:29
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104051923-04'00'", 'creationDate': "D:20161104051921-04'00'", 'name': 'Sold', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(38.30866622924805, 29.99896240234375, 283.5176696777344, 94.3599853515625)
type         ====> [12, 'Stamp']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 0.0], 'fill': []}
flags        ====> 28
info         ====> {'content': 'this is a comment', 'modDate': "D:20161104051957-04'00'", 'creationDate': "D:20161104051939-04'00'", 'name': 'Comment', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(339.59588623046875, 51.32275390625, 359.59588623046875, 69.32275390625)
type         ====> [0, 'Text']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 0.0, 'dashes': []}
colors       ====> {'default': [0.6862750053405762, 0.9333339929580688, 0.9333339929580688], 'fill': []}
flags        ====> 4
info         ====> {'content': 'typewriter text', 'modDate': "D:20161108150545-04'00'", 'creationDate': "D:20161104052009-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(396.85333251953125, 53.29669189453125, 506.6533203125, 65.29669189453125)
type         ====> [2, 'FreeText', 'FreeTextTypewriter']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [1, 'C'], 'hradius': '', 'width': 3.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'modified text field', 'modDate': "D:20161105091916-04'00'", 'creationDate': "D:20161104052030-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': ''}
rect         ====> fitz.Rect(49.683258056640625, 131.589111328125, 166.80604553222656, 166.71453857421875)
type         ====> [2, 'FreeText']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 1.0, 1.0], 'fill': []}
flags        ====> 4
info         ====> {'content': 'explanation text', 'modDate': "D:20161104052130-04'00'", 'creationDate': "D:20161104052053-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'OpenArrow', 'end': ''}
rect         ====> fitz.Rect(211.27972412109375, 133.12445068359375, 343.1976318359375, 151.12445068359375)
type         ====> [2, 'FreeText', 'FreeTextCallout']
vertices     ====> [212.2474365234375, 704.700439453125, 231.19761657714844, 699.7655639648438, 243.19761657714844, 699.7655639648438]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105085923-04'00'", 'creationDate': "D:20161104052133-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'RClosedArrow', 'end': 'Diamond'}
rect         ====> fitz.Rect(386.5209045410156, 132.9107666015625, 480.52313232421875, 143.64208984375)
type         ====> [3, 'Line', 'LineArrow']
vertices     ====> [394.8789367675781, 703.7134399414062, 476.8163146972656, 704.700439453125]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': [0.7529420256614685, 0.7529420256614685, 0.7529420256614685]}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161108015351-04'00'", 'creationDate': "D:20161104052208-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(65.7791748046875, 190.2489013671875, 202.0124053955078, 236.63677978515625)
type         ====> [4, 'Square']
vertices     ====> []
================================================================================
border       ====> {'style': '', 'vradius': '', 'effect': [], 'hradius': '', 'width': 2.0, 'dashes': []}
colors       ====> {'default': [0.0, 0.0, 1.0], 'fill': [0.7529420256614685, 1.0, 1.0]}
flags        ====> 4
info         ====> {'content': 'comment in circle', 'modDate': "D:20161108150519-04'00'", 'creationDate': "D:20161106044139-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(247.78652954101562, 170.17724609375, 343.544677734375, 260.888427734375)
type         ====> [5, 'Circle']
vertices     ====> []
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052302-04'00'", 'creationDate': "D:20161104052251-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {'start': 'None', 'end': 'OpenArrow'}
rect         ====> fitz.Rect(397.3605651855469, 178.933837890625, 504.1889343261719, 210.93402099609375)
type         ====> [7, 'PolyLine']
vertices     ====> [397.8405456542969, 656.338623046875, 404.75091552734375, 632.6512451171875, 438.31561279296875, 632.6512451171875, 447.2004089355469, 657.3256225585938, 471.8803405761719, 631.6642456054688, 503.47064208984375, 662.260498046875]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161106044025-04'00'", 'creationDate': "D:20161104052317-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(69.89996337890625, 255.60870361328125, 213.8157196044922, 317.83428955078125)
type         ====> [6, 'Polygon']
vertices     ====> [70.4776840209961, 567.9854125976562, 78.3752670288086, 526.532470703125, 158.33824157714844, 524.5585327148438, 212.6341094970703, 550.2199096679688, 135.63270568847656, 585.7510375976562]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161104052355-04'00'", 'creationDate': "D:20161104052347-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(283.20770263671875, 270.017822265625, 404.2485046386719, 318.91754150390625)
type         ====> [14, 'Ink']
vertices     ====> [[283.3256530761719, 563.5629272460938, 309.97998046875, 557.64111328125, 340.5830993652344, 556.6541137695312, 345.5190734863281, 551.71923828125, 341.5702819824219, 537.901611328125, 345.5190734863281, 534.940673828125, 367.2374267578125, 536.9146118164062, 393.8917541503906, 535.9276123046875, 397.8405456542969, 540.8624877929688, 400.8021240234375, 539.8755493164062, 403.7637023925781, 549.7453002929688], [395.86614990234375, 558.6280517578125, 385.9941711425781, 557.64111328125], [367.2374267578125, 550.7322387695312, 337.6214904785156, 530.0057983398438, 321.8263244628906, 524.0839233398438, 310.9671630859375, 525.0709228515625, 308.9927673339844, 530.0057983398438, 305.0439758300781, 535.9276123046875, 305.0439758300781, 549.7453002929688, 308.0055847167969, 553.6931762695312, 312.9415588378906, 558.6280517578125, 327.74951171875, 563.5629272460938, 355.39105224609375, 565.536865234375, 366.2502136230469, 570.4717407226562, 383.0325622558594, 570.4717407226562, 387.96856689453125, 566.5238647460938, 398.8277282714844, 563.5629272460938]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124032-04'00'", 'creationDate': "D:20161105124026-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(108.5757827758789, 365.8624267578125, 178.93264770507812, 406.0747985839844)
type         ====> [14, 'Ink']
vertices     ====> [[108.70982360839844, 463.3018798828125, 128.9523468017578, 469.29931640625, 139.44847106933594, 475.2967529296875, 139.44847106933594, 463.3018798828125, 143.94680786132812, 458.05413818359375], [121.45511627197266, 454.30572509765625, 130.4517822265625, 454.30572509765625, 132.70095825195312, 456.5547790527344, 131.95123291015625, 452.05670166015625, 134.20040893554688, 448.30828857421875, 136.44956970214844, 437.8127746582031, 144.69651794433594, 437.8127746582031, 164.9390411376953, 436.31341552734375], [161.1904296875, 469.29931640625, 168.68765258789062, 469.29931640625, 173.9357147216797, 465.5509338378906, 176.9346160888672, 461.0528564453125, 178.43405151367188, 446.05926513671875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124033-04'00'", 'creationDate': "D:20161105124033-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(161.1904296875, 386.3345947265625, 209.92242431640625, 387.3345947265625)
type         ====> [14, 'Ink']
vertices     ====> [[209.92242431640625, 455.055419921875, 161.1904296875, 455.055419921875]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124036-04'00'", 'creationDate': "D:20161105124035-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(188.2412567138672, 367.2844543457031, 193.92710876464844, 399.61651611328125)
type         ====> [14, 'Ink']
vertices     ====> [[189.67990112304688, 474.5470886230469, 188.93017578125, 464.8012390136719, 191.92906188964844, 458.05413818359375, 193.4285125732422, 442.31085205078125]]
================================================================================
border       ====> {}
colors       ====> {'default': [1.0, 0.0, 0.0], 'fill': []}
flags        ====> 4
info         ====> {'content': '', 'modDate': "D:20161105124040-04'00'", 'creationDate': "D:20161105124037-04'00'", 'name': '', 'title': 'Jorj X'}
lineEnds     ====> {}
rect         ====> fitz.Rect(88.03831481933594, 367.0860900878906, 245.77398681640625, 404.91131591796875)
type         ====> [14, 'Ink']
vertices     ====> [[235.41299438476562, 469.29931640625, 240.6610565185547, 465.5509338378906, 242.16050720214844, 459.5534973144531, 245.15939331054688, 458.05413818359375, 243.65994262695312, 453.5560607910156, 243.65994262695312, 449.8076477050781, 222.66770935058594, 440.06182861328125, 211.42185974121094, 438.5624694824219, 209.17269897460938, 437.8127746582031, 214.42076110839844, 452.05670166015625, 218.16937255859375, 455.8050842285156, 218.91909790039062, 462.5522155761719, 216.669921875, 464.05157470703125, 186.68101501464844, 464.05157470703125, 143.94680786132812, 468.5496520996094, 135.69984436035156, 465.5509338378906, 125.95345306396484, 464.8012390136719, 118.45622253417969, 461.8025207519531, 104.21148681640625, 461.8025207519531, 94.465087890625, 461.0528564453125, 92.96564483642578, 466.30059814453125, 88.4673080444336, 474.5470886230469]]

 test.pdf page 0  -  15 annotations, end of program




test1.txt












PyMuPDF-1.21.1/tests/resources/metadata.txt

{"format": "PDF 1.6", "title": "RUBRIK_Editorial_01-06.indd", "author": "Natalie Schaefer", "subject": "", "keywords": "", "creator": "", "producer": "Acrobat Distiller 7.0.5 (Windows)", "creationDate": "D:20070113191400+01'00'", "modDate": "D:20070120104154+01'00'", "trapped": "", "encryption": null}






PyMuPDF-1.21.1/tests/resources/nur-ruhig.jpg





PyMuPDF-1.21.1/tests/resources/quad-calc-0.pdf




PyMuPDFPyMuPDFPyMuPDF angle 327












PyMuPDF-1.21.1/tests/resources/simple_toc.txt

[1, 'HAUPTÜBERSICHT', -1][1, 'Januar 01/2006', -1][2, 'SPEKTROGRAMM', -1][3, 'Urzeit-Godzilla', -1][3, 'Frühchristliche Mosaike im Knast', -1][3, 'Evolution auf Eis', -1][3, 'Entwarnung bei Kondensstreifen', -1][3, 'Spermatausch beim Schnecken-Sex', -1][3, 'Mehr Monde für Pluto', -1][3, 'Endlich ein Malaria-Impfstoff', -1][3, 'Spuren der ersten Sterne', -1][3, 'Bild des Monats', -1][2, 'FORSCHUNG AKTUELL', -1][3, 'Der Super-Teilchenfänger in der Pampa', -1][3, 'Auf der Fährte der Lepra', -1][3, 'Vampire gegen Schlaganfall', -1][3, 'Der Flug des Kolibris', -1][2, 'THEMEN', -1][3, 'Entwicklung von Spiralgalaxien', -1][3, 'Geschichtsträchtige Genspuren', -1][3, 'Was Sedimente verraten', -1][3, 'Von Baumringen und Regenmengen', -1][3, 'Software-Agenten in Not', -1][3, 'Künstlicher kalter Antiwasserstoff', -1][3, 'Rüsten gegen eine Pandemie', -1][3, 'Satelliten zeigen Lawinengefahr', -1][3, 'Provokante Verheißung: Update für den Menschen', -1][2, 'KOMMENTAR', -1][3, 'Springers Einwüfe: Holland, die Hydrometropole', -1][2, 'WISSENSCHAFT IM ...', -1][3, 'Alltag: Eine Decke für die Straße', -1][3, 'Rückblick: Mozarts Ohr • Per Auto zum Südpol u.a.', -1][2, 'JUNGE WISSENSCHAFT', -1][3, 'Ein Putzroboter für die Mama', -1][2, 'REZENSIONEN', -1][3, 'Vulkanismus verstehen und erleben', -1][3, 'Warum der Mensch glaubt', -1][3, 'Biomedizin und Ethik', -1][3, 'Mythos Meer', -1][3, 'Warum Frauen nicht schwach ... sind', -1][3, 'PISA, Bach, Pythagoras', -1][2, 'MATHEMATISCHE UNTERHALTUNGEN', -1][3, 'Himmliches Ballett', -1][2, 'WEITERE RUBRIKEN', -1][3, 'Editorial', -1][3, 'Leserbriefe/Impressum', -1][3, 'Preisrätsel', -1][3, 'Vorschau', -1]






PyMuPDF-1.21.1/tests/resources/symbol-list.pdf




arrow (easy)
caro (easy)
clover (easy)
diamond (easy)
do not enter (medium)
frowney (medium)
hand (complex)
heart (easy)



HB pencil (very complex)
smiley (easy)












PyMuPDF-1.21.1/tests/resources/symbols.txt

[{'closePath': True,
  'color': (1.0, 1.0, 1.0),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (1.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('l', (50.0, 50.0), (50.0, 100.0)),
            ('l', (50.0, 100.0), (100.0, 75.0))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (50.0, 50.0, 100.0, 100.0),
  'seqno': 1,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 1.0},
 {'closePath': True,
  'color': (1.0, 1.0, 1.0),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (1.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('c',
             (50.0, 135.0),
             (63.807098388671875, 135.0),
             (75.0, 123.8070068359375),
             (75.0, 110.0)),
            ('c',
             (75.0, 110.0),
             (75.0, 123.8070068359375),
             (86.19290161132812, 135.0),
             (100.0, 135.0)),
            ('c',
             (100.0, 135.0),
             (86.19290161132812, 135.0),
             (75.0, 146.1929931640625),
             (75.0, 160.0)),
            ('c',
             (75.0, 160.0),
             (75.0, 146.1929931640625),
             (63.807098388671875, 135.0),
             (50.0, 135.0))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (50.0, 110.0, 100.0, 160.0),
  'seqno': 3,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 1.0},
 {'closePath': True,
  'color': (0.0, 1.0, 0.0),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (0.0, 1.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('c', (75.0, 195.0), (50.0, 170.0), (100.0, 170.0), (75.0, 195.0)),
            ('c', (75.0, 195.0), (100.0, 170.0), (100.0, 220.0), (75.0, 195.0)),
            ('c', (75.0, 195.0), (50.0, 220.0), (50.0, 170.0), (75.0, 195.0)),
            ('c', (75.0, 195.0), (100.0, 220.0), (50.0, 220.0), (75.0, 195.0))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (50.0, 170.0, 100.0, 220.0),
  'seqno': 5,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 0.30000001192092896},
 {'closePath': True,
  'color': (1.0, 1.0, 1.0),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (1.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('l', (75.0, 230.0), (100.0, 255.0)),
            ('l', (100.0, 255.0), (75.0, 280.0)),
            ('l', (75.0, 280.0), (50.0, 255.0))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (50.0, 230.0, 100.0, 280.0),
  'seqno': 7,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 1.0},
 {'closePath': False,
  'color': (1.0, 1.0, 1.0),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (0.8039219975471497, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('c',
             (50.0, 315.0),
             (50.0, 328.8070068359375),
             (61.192901611328125, 340.0),
             (75.0, 340.0)),
            ('c',
             (75.0, 340.0),
             (88.80709838867188, 340.0),
             (100.0, 328.8070068359375),
             (100.0, 315.0)),
            ('c',
             (100.0, 315.0),
             (100.0, 301.1929931640625),
             (88.80709838867188, 290.0),
             (75.0, 290.0)),
            ('c',
             (75.0, 290.0),
             (61.192901611328125, 290.0),
             (50.0, 301.1929931640625),
             (50.0, 315.0))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (50.0, 290.0, 100.0, 340.0),
  'seqno': 9,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 2.0},
 {'closePath': True,
  'color': (0.0, 0.0, 0.0),
  'dashes': '[] 0',
  'items': [('c',
             (50.0, 315.0),
             (50.0, 328.8070068359375),
             (61.192901611328125, 340.0),
             (75.0, 340.0)),
            ('c',
             (75.0, 340.0),
             (88.80709838867188, 340.0),
             (100.0, 328.8070068359375),
             (100.0, 315.0)),
            ('c',
             (100.0, 315.0),
             (100.0, 301.1929931640625),
             (88.80709838867188, 290.0),
             (75.0, 290.0)),
            ('c',
             (75.0, 290.0),
             (61.192901611328125, 290.0),
             (50.0, 301.1929931640625),
             (50.0, 315.0))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (50.0, 290.0, 100.0, 340.0),
  'seqno': 10,
  'stroke_opacity': 1.0,
  'type': 's',
  'width': 1.0},
 {'closePath': False,
  'color': (1.0, 1.0, 1.0),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (1.0, 1.0, 1.0),
  'fill_opacity': 1.0,
  'items': [('re', (56.5, 312.5, 93.5, 317.5), 1)],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (56.5, 312.5, 93.5, 317.5),
  'seqno': 12,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 3.0},
 {'closePath': False,
  'even_odd': False,
  'fill': (1.0, 1.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('c',
             (50.0, 375.0),
             (50.0, 388.8070068359375),
             (61.192901611328125, 400.0),
             (75.0, 400.0)),
            ('c',
             (75.0, 400.0),
             (88.80709838867188, 400.0),
             (100.0, 388.8070068359375),
             (100.0, 375.0)),
            ('c',
             (100.0, 375.0),
             (100.0, 361.1929931640625),
             (88.80709838867188, 350.0),
             (75.0, 350.0)),
            ('c',
             (75.0, 350.0),
             (61.192901611328125, 350.0),
             (50.0, 361.1929931640625),
             (50.0, 375.0))],
  'rect': (50.0, 350.0, 100.0, 400.0),
  'seqno': 13,
  'type': 'f'},
 {'closePath': False,
  'even_odd': False,
  'fill': (0.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('c',
             (60.0, 368.75),
             (60.0, 372.2019958496094),
             (62.23860168457031, 375.0),
             (65.0, 375.0)),
            ('c',
             (65.0, 375.0),
             (67.76139831542969, 375.0),
             (70.0, 372.2019958496094),
             (70.0, 368.75)),
            ('c',
             (70.0, 368.75),
             (70.0, 365.2980041503906),
             (67.76139831542969, 362.5),
             (65.0, 362.5)),
            ('c',
             (65.0, 362.5),
             (62.23860168457031, 362.5),
             (60.0, 365.2980041503906),
             (60.0, 368.75)),
            ('c',
             (80.0, 368.75),
             (80.0, 372.2019958496094),
             (82.23860168457031, 375.0),
             (85.0, 375.0)),
            ('c',
             (85.0, 375.0),
             (87.76139831542969, 375.0),
             (90.0, 372.2019958496094),
             (90.0, 368.75)),
            ('c',
             (90.0, 368.75),
             (90.0, 365.2980041503906),
             (87.76139831542969, 362.5),
             (85.0, 362.5)),
            ('c',
             (85.0, 362.5),
             (82.23860168457031, 362.5),
             (80.0, 365.2980041503906),
             (80.0, 368.75))],
  'rect': (60.0, 362.5, 90.0, 375.0),
  'seqno': 14,
  'type': 'f'},
 {'color': (0.0, 0.0, 0.0),
  'dashes': '[] 0',
  'items': [('c',
             (60.0, 387.5),
             (68.2843017578125, 380.59600830078125),
             (81.7156982421875, 380.59600830078125),
             (90.0, 387.5))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (60.0, 380.59600830078125, 90.0, 387.5),
  'seqno': 15,
  'stroke_opacity': 1.0,
  'type': 's',
  'width': 1.0},
 {'closePath': False,
  'color': (1.0, 0.6470590233802795, 0.0),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (1.0, 0.8274509906768799, 0.6078429818153381),
  'fill_opacity': 1.0,
  'items': [('c',
             (50.0, 433.6669921875),
             (60.30929946899414, 433.6669921875),
             (68.66670227050781, 426.50299072265625),
             (68.66670227050781, 417.6669921875)),
            ('c',
             (68.66670227050781, 417.6669921875),
             (74.55770111083984, 416.1940002441406),
             (74.55770111083984, 423.35699462890625),
             (68.66670227050781, 433.6669921875)),
            ('l',
             (68.66670227050781, 433.6669921875),
             (95.33329772949219, 433.6669921875)),
            ('c',
             (95.33329772949219, 433.6669921875),
             (100.66699981689453, 433.6669921875),
             (100.66699981689453, 439.0),
             (95.33329772949219, 439.0)),
            ('l', (95.33329772949219, 439.0), (79.33329772949219, 439.0)),
            ('l', (79.33329772949219, 439.0), (87.33329772949219, 439.0)),
            ('c',
             (87.33329772949219, 439.0),
             (92.66670227050781, 439.0),
             (92.66670227050781, 444.3330078125),
             (87.33329772949219, 444.3330078125)),
            ('l',
             (87.33329772949219, 444.3330078125),
             (79.33329772949219, 444.3330078125)),
            ('l',
             (79.33329772949219, 444.3330078125),
             (84.66670227050781, 444.3330078125)),
            ('c',
             (84.66670227050781, 444.3330078125),
             (90.0, 444.3330078125),
             (90.0, 449.6669921875),
             (84.66670227050781, 449.6669921875)),
            ('l',
             (84.66670227050781, 449.6669921875),
             (79.33329772949219, 449.6669921875)),
            ('l',
             (79.33329772949219, 449.6669921875),
             (83.33329772949219, 449.6669921875)),
            ('c',
             (83.33329772949219, 449.6669921875),
             (88.66670227050781, 449.6669921875),
             (88.66670227050781, 455.0),
             (83.33329772949219, 455.0)),
            ('l', (83.33329772949219, 455.0), (50.0, 455.0))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (50.0, 416.1940002441406, 100.66699981689453, 455.0),
  'seqno': 17,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 1.0},
 {'closePath': True,
  'color': (1.0, 0.0, 0.0),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (1.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('c', (75.0, 485.0), (62.5, 470.0), (50.0, 490.0), (75.0, 510.0)),
            ('c', (75.0, 485.0), (87.5, 470.0), (100.0, 490.0), (75.0, 510.0))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (50.0, 470.0, 100.0, 510.0),
  'seqno': 19,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 1.0},
 {'closePath': False,
  'color': (0.9333329796791077, 0.8470590114593506, 0.6823530197143555),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (0.7215690016746521, 0.5254899859428406, 0.04313730075955391),
  'fill_opacity': 1.0,
  'items': [('re',
             (56.52170181274414,
              547.753173828125,
              85.5072021484375,
              562.2459716796875),
             1)],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (56.52170181274414,
           547.753173828125,
           85.5072021484375,
           562.2459716796875),
  'seqno': 21,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 0.07246380299329758},
 {'closePath': False,
  'color': (0.9333329796791077, 0.8470590114593506, 0.6823530197143555),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (0.9333329796791077, 0.8470590114593506, 0.6823530197143555),
  'fill_opacity': 1.0,
  'items': [('l',
             (56.52170181274414, 547.7540283203125),
             (59.4202995300293, 550.6519775390625)),
            ('l',
             (59.4202995300293, 550.6519775390625),
             (59.4202995300293, 559.3480224609375)),
            ('l',
             (59.4202995300293, 559.3480224609375),
             (56.52170181274414, 562.2459716796875)),
            ('l',
             (85.5072021484375, 547.7540283203125),
             (82.60870361328125, 550.6519775390625)),
            ('l',
             (82.60870361328125, 550.6519775390625),
             (82.60870361328125, 559.3480224609375)),
            ('l',
             (82.60870361328125, 559.3480224609375),
             (85.5072021484375, 562.2459716796875))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (56.52170181274414,
           547.7540283203125,
           85.5072021484375,
           562.2459716796875),
  'seqno': 23,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 0.07246380299329758},
 {'color': (0.8039219975471497, 0.7294120192527771, 0.5882350206375122),
  'dashes': '[] 0',
  'items': [('l',
             (59.4202995300293, 550.6519775390625),
             (82.60870361328125, 550.6519775390625)),
            ('l',
             (59.4202995300293, 559.3480224609375),
             (82.60870361328125, 559.3480224609375))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (59.4202995300293,
           550.6519775390625,
           82.60870361328125,
           559.3480224609375),
  'seqno': 24,
  'stroke_opacity': 1.0,
  'type': 's',
  'width': 0.07246380299329758},
 {'closePath': False,
  'even_odd': False,
  'fill': (0.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('re',
             (56.52170181274414,
              547.753173828125,
              63.76808166503906,
              562.2459716796875),
             1)],
  'rect': (56.52170181274414,
           547.753173828125,
           63.76808166503906,
           562.2459716796875),
  'seqno': 25,
  'type': 'f'},
 {'closePath': False,
  'even_odd': False,
  'fill': (1.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('c',
             (56.52170181274414, 547.7540283203125),
             (47.82609939575195, 547.7540283203125),
             (47.82609939575195, 562.2459716796875),
             (56.52170181274414, 562.2459716796875))],
  'rect': (47.82609939575195,
           547.7540283203125,
           56.52170181274414,
           562.2459716796875),
  'seqno': 26,
  'type': 'f'},
 {'closePath': False,
  'even_odd': False,
  'fill': (0.9333329796791077, 0.8470590114593506, 0.6823530197143555),
  'fill_opacity': 1.0,
  'items': [('l', (85.5072021484375, 547.7540283203125), (100.0, 555.0)),
            ('l', (100.0, 555.0), (85.5072021484375, 562.2459716796875))],
  'rect': (85.5072021484375, 547.7540283203125, 100.0, 562.2459716796875),
  'seqno': 27,
  'type': 'f'},
 {'closePath': True,
  'color': (0.7215690016746521, 0.5254899859428406, 0.04313730075955391),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (0.7215690016746521, 0.5254899859428406, 0.04313730075955391),
  'fill_opacity': 1.0,
  'items': [('c',
             (85.5072021484375, 547.7540283203125),
             (86.30770111083984, 548.553955078125),
             (85.00990295410156, 549.8519897460938),
             (82.60870361328125, 550.6519775390625))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (82.60870361328125,
           547.7540283203125,
           86.30770111083984,
           550.6519775390625),
  'seqno': 29,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 0.07246380299329758},
 {'closePath': True,
  'color': (0.7215690016746521, 0.5254899859428406, 0.04313730075955391),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (0.7215690016746521, 0.5254899859428406, 0.04313730075955391),
  'fill_opacity': 1.0,
  'items': [('c',
             (82.60870361328125, 550.6519775390625),
             (87.2510986328125, 553.052978515625),
             (87.2510986328125, 556.947021484375),
             (82.60870361328125, 559.3480224609375))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (82.60870361328125,
           550.6519775390625,
           87.2510986328125,
           559.3480224609375),
  'seqno': 31,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 0.07246380299329758},
 {'closePath': True,
  'color': (0.7215690016746521, 0.5254899859428406, 0.04313730075955391),
  'dashes': '[] 0',
  'even_odd': False,
  'fill': (0.7215690016746521, 0.5254899859428406, 0.04313730075955391),
  'fill_opacity': 1.0,
  'items': [('c',
             (82.60870361328125, 559.3480224609375),
             (85.00990295410156, 560.1480102539062),
             (86.30770111083984, 561.446044921875),
             (85.5072021484375, 562.2459716796875))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (82.60870361328125,
           559.3480224609375,
           86.30770111083984,
           562.2459716796875),
  'seqno': 33,
  'stroke_opacity': 1.0,
  'type': 'fs',
  'width': 0.07246380299329758},
 {'closePath': False,
  'even_odd': False,
  'fill': (0.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('l', (94.2029037475586, 552.1010131835938), (100.0, 555.0)),
            ('l', (100.0, 555.0), (94.2029037475586, 557.8989868164062)),
            ('c',
             (94.2029037475586, 552.1010131835938),
             (92.60209655761719, 553.7020263671875),
             (92.60209655761719, 556.2979736328125),
             (94.2029037475586, 557.8989868164062))],
  'rect': (92.60209655761719, 552.1010131835938, 100.0, 557.8989868164062),
  'seqno': 34,
  'type': 'f'},
 {'color': (0.7215690016746521, 0.5254899859428406, 0.04313730075955391),
  'dashes': '[] 0',
  'items': [('l',
             (85.5072021484375, 547.7540283203125),
             (82.60870361328125, 550.6519775390625)),
            ('l',
             (82.60870361328125, 550.6519775390625),
             (82.60870361328125, 559.3480224609375)),
            ('l',
             (82.60870361328125, 559.3480224609375),
             (85.5072021484375, 562.2459716796875))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (82.60870361328125,
           547.7540283203125,
           85.5072021484375,
           562.2459716796875),
  'seqno': 35,
  'stroke_opacity': 1.0,
  'type': 's',
  'width': 0.07246380299329758},
 {'color': (0.0, 0.0, 0.0),
  'dashes': '[] 0',
  'items': [('l',
             (63.76810073852539, 547.7540283203125),
             (85.5072021484375, 547.7540283203125)),
            ('l', (85.5072021484375, 547.7540283203125), (100.0, 555.0)),
            ('l', (100.0, 555.0), (85.5072021484375, 562.2459716796875)),
            ('l',
             (85.5072021484375, 562.2459716796875),
             (63.76810073852539, 562.2459716796875))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (63.76810073852539, 547.7540283203125, 100.0, 562.2459716796875),
  'seqno': 36,
  'stroke_opacity': 1.0,
  'type': 's',
  'width': 1.0},
 {'closePath': False,
  'even_odd': False,
  'fill': (0.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('re',
             (65.94200134277344,
              552.826171875,
              73.18838500976562,
              557.1740112304688),
             1),
            ('c',
             (73.18840026855469, 552.8259887695312),
             (75.18939971923828, 554.0269775390625),
             (75.18939971923828, 555.9730224609375),
             (73.18840026855469, 557.1740112304688)),
            ('c',
             (65.94200134277344, 552.8259887695312),
             (63.941001892089844, 554.0269775390625),
             (63.941001892089844, 555.9730224609375),
             (65.94200134277344, 557.1740112304688))],
  'rect': (63.941001892089844,
           552.826171875,
           75.18939971923828,
           557.1740112304688),
  'seqno': 37,
  'type': 'f'},
 {'closePath': True,
  'color': (1.0, 1.0, 1.0),
  'dashes': '[] 0',
  'items': [('l',
             (58.937198638916016, 548.47802734375),
             (58.937198638916016, 561.52197265625)),
            ('l',
             (61.352699279785156, 548.47802734375),
             (61.352699279785156, 561.52197265625))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (58.937198638916016,
           548.47802734375,
           61.352699279785156,
           561.52197265625),
  'seqno': 38,
  'stroke_opacity': 1.0,
  'type': 's',
  'width': 1.1594200134277344},
 {'closePath': False,
  'even_odd': False,
  'fill': (1.0, 1.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('c',
             (50.0, 615.0),
             (50.0, 628.8070068359375),
             (61.192901611328125, 640.0),
             (75.0, 640.0)),
            ('c',
             (75.0, 640.0),
             (88.80709838867188, 640.0),
             (100.0, 628.8070068359375),
             (100.0, 615.0)),
            ('c',
             (100.0, 615.0),
             (100.0, 601.1929931640625),
             (88.80709838867188, 590.0),
             (75.0, 590.0)),
            ('c',
             (75.0, 590.0),
             (61.192901611328125, 590.0),
             (50.0, 601.1929931640625),
             (50.0, 615.0))],
  'rect': (50.0, 590.0, 100.0, 640.0),
  'seqno': 39,
  'type': 'f'},
 {'closePath': False,
  'even_odd': False,
  'fill': (0.0, 0.0, 0.0),
  'fill_opacity': 1.0,
  'items': [('c',
             (60.0, 608.75),
             (60.0, 612.2020263671875),
             (62.23860168457031, 615.0),
             (65.0, 615.0)),
            ('c',
             (65.0, 615.0),
             (67.76139831542969, 615.0),
             (70.0, 612.2020263671875),
             (70.0, 608.75)),
            ('c',
             (70.0, 608.75),
             (70.0, 605.2979736328125),
             (67.76139831542969, 602.5),
             (65.0, 602.5)),
            ('c',
             (65.0, 602.5),
             (62.23860168457031, 602.5),
             (60.0, 605.2979736328125),
             (60.0, 608.75)),
            ('c',
             (80.0, 608.75),
             (80.0, 612.2020263671875),
             (82.23860168457031, 615.0),
             (85.0, 615.0)),
            ('c',
             (85.0, 615.0),
             (87.76139831542969, 615.0),
             (90.0, 612.2020263671875),
             (90.0, 608.75)),
            ('c',
             (90.0, 608.75),
             (90.0, 605.2979736328125),
             (87.76139831542969, 602.5),
             (85.0, 602.5)),
            ('c',
             (85.0, 602.5),
             (82.23860168457031, 602.5),
             (80.0, 605.2979736328125),
             (80.0, 608.75))],
  'rect': (60.0, 602.5, 90.0, 615.0),
  'seqno': 40,
  'type': 'f'},
 {'color': (0.0, 0.0, 0.0),
  'dashes': '[] 0',
  'items': [('c',
             (60.0, 624.375),
             (68.2843017578125, 633.0040283203125),
             (81.7156982421875, 633.0040283203125),
             (90.0, 624.375))],
  'lineCap': (0, 0, 0),
  'lineJoin': 0.0,
  'rect': (60.0, 624.375, 90.0, 633.0040283203125),
  'seqno': 41,
  'stroke_opacity': 1.0,
  'type': 's',
  'width': 1.0}]







PyMuPDF-1.21.1/tests/resources/test_1645_expected.pdf




arrow (easy)
caro (easy)
clover (easy)
diamond (easy)
do not enter (medium)
frowney (medium)
hand (complex)
heart (easy)



HB pencil (very complex)
smiley (easy)





TEST












PyMuPDF-1.21.1/tests/resources/test_1824.pdf











PyMuPDF-1.21.1/tests/resources/type3font.pdf




��
��
��
��












PyMuPDF-1.21.1/tests/resources/widgettest.pdf




simple Text field:



CheckBox:



ListBox:



ComboBox:



multiline Text field:








			Textfield-1: Times-Roman


			Button-1: Yes


			ListBox-1: [Potsdam]


			ComboBox-1: [Griechenland]


			textfield-2: This
	is
		a
			multi-
		line
	text.












PyMuPDF-1.21.1/tests/test_annots.py

# -*- coding: utf-8 -*-
"""
Test PDF annotation insertions.
"""
import fitz
import os

fitz.TOOLS.set_annot_stem("jorj")

red = (1, 0, 0)
blue = (0, 0, 1)
gold = (1, 1, 0)
green = (0, 1, 0)

displ = fitz.Rect(0, 50, 0, 50)
r = fitz.Rect(72, 72, 220, 100)
t1 = u"têxt üsès Lätiñ charß,\nEUR: €, mu: µ, super scripts: ²³!"
rect = fitz.Rect(100, 100, 200, 200)


def test_caret():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_caret_annot(rect.tl)
    assert annot.type == (14, "Caret")
    annot.update(rotate=20)
    page.annot_names()
    page.annot_xrefs()


def test_freetext():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_freetext_annot(
        rect,
        t1,
        fontsize=10,
        rotate=90,
        text_color=blue,
        fill_color=gold,
        align=fitz.TEXT_ALIGN_CENTER,
    )
    annot.set_border(width=0.3, dashes=[2])
    annot.update(text_color=blue, fill_color=gold)
    assert annot.type == (2, "FreeText")


def test_text():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_text_annot(r.tl, t1)
    assert annot.type == (0, "Text")


def test_highlight():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_highlight_annot(rect)
    assert annot.type == (8, "Highlight")


def test_underline():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_underline_annot(rect)
    assert annot.type == (9, "Underline")


def test_squiggly():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_squiggly_annot(rect)
    assert annot.type == (10, "Squiggly")


def test_strikeout():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_strikeout_annot(rect)
    assert annot.type == (11, "StrikeOut")
    page.delete_annot(annot)


def test_polyline():
    doc = fitz.open()
    page = doc.new_page()
    rect = page.rect + (100, 36, -100, -36)
    cell = fitz.make_table(rect, rows=10)
    for i in range(10):
        annot = page.add_polyline_annot((cell[i][0].bl, cell[i][0].br))
        annot.set_line_ends(i, i)
        annot.update()
    for i, annot in enumerate(page.annots()):
        assert annot.line_ends == (i, i)
    assert annot.type == (7, "PolyLine")


def test_polygon():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_polygon_annot([rect.bl, rect.tr, rect.br, rect.tl])
    assert annot.type == (6, "Polygon")


def test_line():
    doc = fitz.open()
    page = doc.new_page()
    rect = page.rect + (100, 36, -100, -36)
    cell = fitz.make_table(rect, rows=10)
    for i in range(10):
        annot = page.add_line_annot(cell[i][0].bl, cell[i][0].br)
        annot.set_line_ends(i, i)
        annot.update()
    for i, annot in enumerate(page.annots()):
        assert annot.line_ends == (i, i)
    assert annot.type == (3, "Line")


def test_square():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_rect_annot(rect)
    assert annot.type == (4, "Square")


def test_circle():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_circle_annot(rect)
    assert annot.type == (5, "Circle")


def test_fileattachment():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_file_annot(rect.tl, b"just anything for testing", "testdata.txt")
    assert annot.type == (17, "FileAttachment")


def test_stamp():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_stamp_annot(r, stamp=10)
    assert annot.type == (13, "Stamp")
    annot_id = annot.info["id"]
    annot_xref = annot.xref
    a1 = page.load_annot(annot_id)
    a2 = page.load_annot(annot_xref)
    page = doc.reload_page(page)


def test_redact():
    doc = fitz.open()
    page = doc.new_page()
    annot = page.add_redact_annot(r, text="Hello")
    annot.update(
        cross_out=True,
        rotate=-1,
    )
    assert annot.type == (12, "Redact")
    x = annot._get_redact_values()
    pix = annot.get_pixmap()
    info = annot.info
    annot.set_info(info)
    assert not annot.has_popup
    annot.set_popup(r)
    s = annot.popup_rect
    assert s == r
    page.apply_redactions()

def test_1645():
    '''
    Test fix for #1645.
    '''
    path_in = os.path.abspath( f'{__file__}/../resources/symbol-list.pdf')
    path_expected = os.path.abspath( f'{__file__}/../resources/test_1645_expected.pdf')
    path_out = os.path.abspath( f'{__file__}/../test_1645_out.pdf')
    doc = fitz.open(path_in)
    page = doc[0]
    page_bounds = page.bound()
    annot_loc = fitz.Rect(page_bounds.x0, page_bounds.y0, page_bounds.x0 + 75, page_bounds.y0 + 15)
    page.add_freetext_annot(annot_loc * page.derotation_matrix, "TEST", fontsize=18,
    fill_color=fitz.utils.getColor("FIREBRICK1"), rotate=page.rotation)
    doc.save(path_out, garbage=1, deflate=True, no_new_id=True)
    print(f'Have created {path_out}. comparing with {path_expected}.')
    with open( path_out, 'rb') as f:
        out = f.read()
    with open( path_expected, 'rb') as f:
        expected = f.read()
    assert out == expected, f'Files differ: {path_out} {path_expected}'

def test_1824():
    '''
    Test for fix for #1824: SegFault when applying redactions overlapping a
    transparent image.
    '''
    path = os.path.abspath( f'{__file__}/../resources/test_1824.pdf')
    doc=fitz.open(path)
    page=doc[0]
    page.apply_redactions()







PyMuPDF-1.21.1/tests/test_badfonts.py

"""
Ensure we can deal with non-Latin font names.
"""
import os

import fitz


def test_survive_names():
    scriptdir = os.path.abspath(os.path.dirname(__file__))
    filename = os.path.join(scriptdir, "resources", "has-bad-fonts.pdf")
    doc = fitz.open(filename)
    print("File '%s' uses the following fonts on page 0:" % doc.name)
    for f in doc.get_page_fonts(0):
        print(f)







PyMuPDF-1.21.1/tests/test_crypting.py

"""
Check PDF encryption:
* make a PDF with owber and user passwords
* open and decrypt as owner or user
"""
import fitz


def test_encryption():
    text = "some secret information"  # keep this data secret
    perm = int(
        fitz.PDF_PERM_ACCESSIBILITY  # always use this
        | fitz.PDF_PERM_PRINT  # permit printing
        | fitz.PDF_PERM_COPY  # permit copying
        | fitz.PDF_PERM_ANNOTATE  # permit annotations
    )
    owner_pass = "owner"  # owner password
    user_pass = "user"  # user password
    encrypt_meth = fitz.PDF_ENCRYPT_AES_256  # strongest algorithm
    doc = fitz.open()  # empty pdf
    page = doc.new_page()  # empty page
    page.insert_text((50, 72), text)  # insert the data
    tobytes = doc.tobytes(
        encryption=encrypt_meth,  # set the encryption method
        owner_pw=owner_pass,  # set the owner password
        user_pw=user_pass,  # set the user password
        permissions=perm,  # set permissions
    )
    doc.close()
    doc = fitz.open("pdf", tobytes)
    assert doc.needs_pass
    assert doc.is_encrypted
    rc = doc.authenticate("owner")
    assert rc == 4
    assert not doc.is_encrypted
    doc.close()
    doc = fitz.open("pdf", tobytes)
    rc = doc.authenticate("user")
    assert rc == 2







PyMuPDF-1.21.1/tests/test_docs_samples.py

'''
Test sample scripts in docs/samples/.
'''

import glob
import os
import pytest
import runpy

# We only look at sample scripts that can run standalone (i.e. don't require
# sys.argv).
#
root = os.path.abspath(f'{__file__}/../..')
samples = []
for p in glob.glob(f'{root}/docs/samples/*.py'):
    if os.path.basename(p) in (
             'make-bold.py',    # Needs sys.argv[1].
             'multiprocess-gui.py', # GUI.
             'multiprocess-render.py',  # Needs sys.argv[1].
             'text-lister.py',  # Needs sys.argv[1].
            ):
        print(f'Not testing: {p}')
    else:
        samples.append(p)

# We use pytest.mark.parametrize() to run sample scripts via a fn, which
# ensures that pytest treats each script as a test.
#
@pytest.mark.parametrize('sample', samples)
def test_docs_samples(sample):
    runpy.run_path(sample)







PyMuPDF-1.21.1/tests/test_drawings.py

"""
Extract drawings of a PDF page and compare with stored expected result.
"""
import io
import os
import sys
import pprint

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "symbol-list.pdf")
symbols = os.path.join(scriptdir, "resources", "symbols.txt")


def test_drawings1():
    symbols_text = open(symbols).read()  # expected result
    doc = fitz.open(filename)
    page = doc[0]
    paths = page.get_cdrawings()
    out = io.StringIO()  # pprint output goes here
    pprint.pprint(paths, stream=out)
    assert symbols_text == out.getvalue()


def test_drawings2():
    delta = (0, 20, 0, 20)
    doc = fitz.open()
    page = doc.new_page()

    r = fitz.Rect(100, 100, 200, 200)
    page.draw_circle(r.br, 2, color=0)
    r += delta

    page.draw_line(r.tl, r.br, color=0)
    r += delta

    page.draw_oval(r, color=0)
    r += delta

    page.draw_rect(r, color=0)
    r += delta

    page.draw_quad(r.quad, color=0)
    r += delta

    page.draw_polyline((r.tl, r.tr, r.br), color=0)
    r += delta

    page.draw_bezier(r.tl, r.tr, r.br, r.bl, color=0)
    r += delta

    page.draw_curve(r.tl, r.tr, r.br, color=0)
    r += delta

    page.draw_squiggle(r.tl, r.br, color=0)
    r += delta

    rects = [p["rect"] for p in page.get_cdrawings()]
    bboxes = [b[1] for b in page.get_bboxlog()]
    for i, r in enumerate(rects):
        assert fitz.Rect(r) in fitz.Rect(bboxes[i])


def _dict_difference(a, b):
    '''
    Returns `(keys_a, keys_b, key_values)`, information about differences
    between dicts `a` and `b`.
    
    `keys_a` is the set of keys that are in `a` but not in `b`.

    `keys_b` is the set of keys that are in `b` but not in `a`.

    `key_values` is a dict with keys that are in both `a` and `b` but where the
    values differ; the values in this dict are `(value_a, value_b)`.
    '''
    keys_a = set()
    keys_b = set()
    key_values = dict()
    for key in a:
        if key not in b:
            keys_a.add( key)
    for key in b:
        if key not in a:
            keys_b.add( key)
    for key, va in a.items():
        if key in b:
            vb = b[key]
            if va != vb:
                key_values[key] = (va, vb)
    return keys_a, keys_b, key_values


def test_drawings3():
    doc = fitz.open()

    page1 = doc.new_page()
    shape1 = page1.new_shape()
    shape1.draw_line((10, 10), (10, 50))
    shape1.draw_line((10, 50), (100, 100))
    shape1.finish(closePath=False, color=(0,0,0), width=5)
    shape1.commit()
    drawings1 = list(page1.get_drawings())

    page2 = doc.new_page()
    shape2 = page2.new_shape()
    shape2.draw_line((10, 10), (10, 50))
    shape2.draw_line((10, 50), (100, 100))
    shape2.finish(closePath=True, color=(0,0,0), width=5)
    shape2.commit()
    drawings2 = list(page2.get_drawings())

    page3 = doc.new_page()
    shape3 = page3.new_shape()
    shape3.draw_line((10, 10), (10, 50))
    shape3.draw_line((10, 50), (100, 100))
    shape3.draw_line((100, 100), (50, 70))
    shape3.finish(closePath=False, color=(0,0,0), width=5)
    shape3.commit()
    drawings3 = list(page3.get_drawings())

    page4 = doc.new_page()
    shape4 = page4.new_shape()
    shape4.draw_line((10, 10), (10, 50))
    shape4.draw_line((10, 50), (100, 100))
    shape4.draw_line((100, 100), (50, 70))
    shape4.finish(closePath=True, color=(0,0,0), width=5)
    shape4.commit()
    drawings4 = list(page4.get_drawings())

    assert len(drawings1) == len(drawings2) == 1
    drawings1 = drawings1[0]
    drawings2 = drawings2[0]
    diff = _dict_difference( drawings1, drawings2)
    assert diff == (set(), set(), {'closePath': (False, True)})
    
    assert len(drawings3) == len(drawings4) == 1
    drawings3 = drawings3[0]
    drawings4 = drawings4[0]
    diff = _dict_difference( drawings3, drawings4)
    assert diff == (set(), set(), {'closePath': (False, True)})
    







PyMuPDF-1.21.1/tests/test_embeddedfiles.py

"""
Tests for PDF EmbeddedFiles functions.
"""
import fitz


def test_embedded1():
    doc = fitz.open()
    buffer = b"123456678790qwexcvnmhofbnmfsdg4589754uiofjkb-"
    doc.embfile_add(
        "file1",
        buffer,
        filename="testfile.txt",
        ufilename="testfile-u.txt",
        desc="Description of some sort",
    )
    assert doc.embfile_count() == 1
    assert doc.embfile_names() == ["file1"]
    assert doc.embfile_info(0)["name"] == "file1"
    doc.embfile_upd(0, filename="new-filename.txt")
    assert doc.embfile_info(0)["filename"] == "new-filename.txt"
    assert doc.embfile_get(0) == buffer
    doc.embfile_del(0)
    assert doc.embfile_count() == 0






PyMuPDF-1.21.1/tests/test_extractimage.py

"""
Extract images from a PDF file, confirm number of images found.
"""
import os
import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "joined.pdf")
known_image_count = 21


def test_extract_image():
    doc = fitz.open(filename)

    image_count = 1
    for xref in range(1, doc.xref_length() - 1):
        if doc.xref_get_key(xref, "Subtype")[1] != "/Image":
            continue
        img = doc.extract_image(xref)
        if isinstance(img, dict):
            image_count += 1

    assert image_count == known_image_count  # this number is know about the file







PyMuPDF-1.21.1/tests/test_font.py

"""
Tests for the Font class.
"""
import fitz


def test_font1():
    text = "PyMuPDF"
    font = fitz.Font("helv")
    assert font.name == "Helvetica"
    tl = font.text_length(text, fontsize=20)
    cl = font.char_lengths(text, fontsize=20)
    assert len(text) == len(cl)
    assert abs(sum(cl) - tl) < fitz.EPSILON
    for i in range(len(cl)):
        assert cl[i] == font.glyph_advance(ord(text[i])) * 20
    font2 = fitz.Font(fontbuffer=font.buffer)
    assert font2.valid_codepoints() == font.valid_codepoints()


def test_font2():
    """Old and new length computation must be the same."""
    font = fitz.Font("helv")
    text = "PyMuPDF"
    assert font.text_length(text) == fitz.get_text_length(text)






PyMuPDF-1.21.1/tests/test_general.py

# encoding utf-8
"""
* Confirm sample doc has no links and no annots.
* Confirm proper release of file handles via Document.close()
* Confirm properly raising exceptions in document creation
"""
import io
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "001003ED.pdf")


def test_haslinks():
    doc = fitz.open(filename)
    assert doc.has_links() == False


def test_hasannots():
    doc = fitz.open(filename)
    assert doc.has_annots() == False


def test_haswidgets():
    doc = fitz.open(filename)
    assert doc.is_form_pdf == False


def test_isrepaired():
    doc = fitz.open(filename)
    assert doc.is_repaired == False
    fitz.TOOLS.mupdf_warnings()


def test_isdirty():
    doc = fitz.open(filename)
    assert doc.is_dirty == False


def test_cansaveincrementally():
    doc = fitz.open(filename)
    assert doc.can_save_incrementally() == True


def test_iswrapped():
    doc = fitz.open(filename)
    page = doc[0]
    assert page.is_wrapped


def test_wrapcontents():
    doc = fitz.open(filename)
    page = doc[0]
    page.wrap_contents()
    xref = page.get_contents()[0]
    cont = page.read_contents()
    doc.update_stream(xref, cont)
    page.set_contents(xref)
    assert len(page.get_contents()) == 1
    page.clean_contents()


def test_config():
    assert fitz.TOOLS.fitz_config["py-memory"] in (True, False)


def test_glyphnames():
    name = "infinity"
    infinity = fitz.glyph_name_to_unicode(name)
    assert fitz.unicode_to_glyph_name(infinity) == name


def test_rgbcodes():
    sRGB = 0xFFFFFF
    assert fitz.sRGB_to_pdf(sRGB) == (1, 1, 1)
    assert fitz.sRGB_to_rgb(sRGB) == (255, 255, 255)


def test_pdfstring():
    fitz.get_pdf_now()
    fitz.get_pdf_str("Beijing, chinesisch 北京")
    fitz.get_text_length("Beijing, chinesisch 北京", fontname="china-s")
    fitz.get_pdf_str("Latin characters êßöäü")


def test_open_exceptions():
    try:
        doc = fitz.open(filename, filetype="xps")
    except RuntimeError as e:
        assert repr(e).startswith("FileDataError")

    try:
        doc = fitz.open(filename, filetype="xxx")
    except Exception as e:
        assert repr(e).startswith("ValueError")

    try:
        doc = fitz.open("x.y")
    except Exception as e:
        assert repr(e).startswith("FileNotFoundError")

    try:
        doc = fitz.open("pdf", b"")
    except RuntimeError as e:
        assert repr(e).startswith("EmptyFileError")


def test_bug1945():
    pdf = fitz.open(f'{scriptdir}/resources/bug1945.pdf')
    buffer_ = io.BytesIO()
    pdf.save(buffer_, clean=True)


def test_bug1971():
    for _ in range(2):
        doc = fitz.Document(f'{scriptdir}/resources/bug1971.pdf')
        page = next(doc.pages())
        page.get_drawings()
        doc.close()

def test_default_font():
    f = fitz.Font()
    assert str(f) == "Font('Noto Serif Regular')"
    assert repr(f) == "Font('Noto Serif Regular')"







PyMuPDF-1.21.1/tests/test_geometry.py

"""
* Check various construction methods of rects, points, matrices
* Check matrix inversions in variations
* Check algebra constructs
"""
import fitz


def test_rect():
    assert tuple(fitz.Rect()) == (0, 0, 0, 0)
    p1 = fitz.Point(10, 20)
    p2 = fitz.Point(100, 200)
    p3 = fitz.Point(150, 250)
    r = fitz.Rect(10, 20, 100, 200)
    r_tuple = tuple(r)
    assert tuple(fitz.Rect(p1, p2)) == r_tuple
    assert tuple(fitz.Rect(p1, 100, 200)) == r_tuple
    assert tuple(fitz.Rect(10, 20, p2)) == r_tuple
    assert tuple(r.include_point(p3)) == (10, 20, 150, 250)
    r = fitz.Rect(10, 20, 100, 200)
    assert tuple(r.include_rect((100, 200, 110, 220))) == (10, 20, 110, 220)
    r = fitz.Rect(10, 20, 100, 200)
    # include empty rect makes no change
    assert tuple(r.include_rect((0, 0, 0, 0))) == r_tuple
    # include invalid rect makes no change
    assert tuple(r.include_rect((1, 1, -1, -1))) == r_tuple
    r = fitz.Rect()
    for i in range(4):
        r[i] = i + 1
    assert r == fitz.Rect(1, 2, 3, 4)
    assert fitz.Rect() / 5 == fitz.Rect()
    assert fitz.Rect(1, 1, 2, 2) / fitz.Identity == fitz.Rect(1, 1, 2, 2)
    failed = False
    try:
        r = fitz.Rect(1)
    except:
        failed = True
    assert failed
    failed = False
    try:
        r = fitz.Rect(1, 2, 3, 4, 5)
    except:
        failed = True
    assert failed
    failed = False
    try:
        r = fitz.Rect((1, 2, 3, 4, 5))
    except:
        failed = True
    assert failed
    failed = False
    try:
        r = fitz.Rect(1, 2, 3, "x")
    except:
        failed = True
    assert failed
    failed = False
    try:
        r = fitz.Rect()
        r[5] = 1
    except:
        failed = True
    assert failed


def test_irect():
    p1 = fitz.Point(10, 20)
    p2 = fitz.Point(100, 200)
    p3 = fitz.Point(150, 250)
    r = fitz.IRect(10, 20, 100, 200)
    r_tuple = tuple(r)
    assert tuple(fitz.IRect(p1, p2)) == r_tuple
    assert tuple(fitz.IRect(p1, 100, 200)) == r_tuple
    assert tuple(fitz.IRect(10, 20, p2)) == r_tuple
    assert tuple(r.include_point(p3)) == (10, 20, 150, 250)
    r = fitz.IRect(10, 20, 100, 200)
    assert tuple(r.include_rect((100, 200, 110, 220))) == (10, 20, 110, 220)
    r = fitz.IRect(10, 20, 100, 200)
    # include empty rect makes no change
    assert tuple(r.include_rect((0, 0, 0, 0))) == r_tuple
    r = fitz.IRect()
    for i in range(4):
        r[i] = i + 1
    assert r == fitz.IRect(1, 2, 3, 4)

    failed = False
    try:
        r = fitz.IRect(1)
    except:
        failed = True
    assert failed
    failed = False
    try:
        r = fitz.IRect(1, 2, 3, 4, 5)
    except:
        failed = True
    assert failed
    failed = False
    try:
        r = fitz.IRect((1, 2, 3, 4, 5))
    except:
        failed = True
    assert failed
    failed = False
    try:
        r = fitz.IRect(1, 2, 3, "x")
    except:
        failed = True
    assert failed
    failed = False
    try:
        r = fitz.IRect()
        r[5] = 1
    except:
        failed = True
    assert failed


def test_inversion():
    alpha = 255
    m1 = fitz.Matrix(alpha)
    m2 = fitz.Matrix(-alpha)
    m3 = m1 * m2  # should equal identity matrix
    assert abs(m3 - fitz.Identity) < fitz.EPSILON
    m = fitz.Matrix(1, 0, 1, 0, 1, 0)  # not invertible!
    # inverted matrix must be zero
    assert ~m == fitz.Matrix()


def test_matrix():
    assert tuple(fitz.Matrix()) == (0, 0, 0, 0, 0, 0)
    m45p = fitz.Matrix(45)
    m45m = fitz.Matrix(-45)
    m90 = fitz.Matrix(90)
    assert abs(m90 - m45p * m45p) < fitz.EPSILON
    assert abs(fitz.Identity - m45p * m45m) < fitz.EPSILON
    assert abs(m45p - ~m45m) < fitz.EPSILON
    assert fitz.Matrix(2, 3, 1) == fitz.Matrix(1, 3, 2, 1, 0, 0)
    m = fitz.Matrix(2, 3, 1)
    m.invert()
    assert abs(m * fitz.Matrix(2, 3, 1) - fitz.Identity) < fitz.EPSILON
    assert fitz.Matrix(1, 1).pretranslate(2, 3) == fitz.Matrix(1, 0, 0, 1, 2, 3)
    assert fitz.Matrix(1, 1).prescale(2, 3) == fitz.Matrix(2, 0, 0, 3, 0, 0)
    assert fitz.Matrix(1, 1).preshear(2, 3) == fitz.Matrix(1, 3, 2, 1, 0, 0)
    assert abs(fitz.Matrix(1, 1).prerotate(30) - fitz.Matrix(30)) < fitz.EPSILON
    small = 1e-6
    assert fitz.Matrix(1, 1).prerotate(90 + small) == fitz.Matrix(90)
    assert fitz.Matrix(1, 1).prerotate(180 + small) == fitz.Matrix(180)
    assert fitz.Matrix(1, 1).prerotate(270 + small) == fitz.Matrix(270)
    assert fitz.Matrix(1, 1).prerotate(small) == fitz.Matrix(0)
    assert fitz.Matrix(1, 1).concat(
        fitz.Matrix(1, 2), fitz.Matrix(3, 4)
    ) == fitz.Matrix(3, 0, 0, 8, 0, 0)
    assert fitz.Matrix(1, 2, 3, 4, 5, 6) / 1 == fitz.Matrix(1, 2, 3, 4, 5, 6)
    assert m[0] == m.a
    assert m[1] == m.b
    assert m[2] == m.c
    assert m[3] == m.d
    assert m[4] == m.e
    assert m[5] == m.f
    m = fitz.Matrix()
    for i in range(6):
        m[i] = i + 1
    assert m == fitz.Matrix(1, 2, 3, 4, 5, 6)
    failed = False
    try:
        m = fitz.Matrix(1, 2, 3)
    except:
        failed = True
    assert failed
    failed = False
    try:
        m = fitz.Matrix(1, 2, 3, 4, 5, 6, 7)
    except:
        failed = True
    assert failed

    failed = False
    try:
        m = fitz.Matrix((1, 2, 3, 4, 5, 6, 7))
    except:
        failed = True
    assert failed

    failed = False
    try:
        m = fitz.Matrix(1, 2, 3, 4, 5, "x")
    except:
        failed = True
    assert failed

    failed = False
    try:
        m = fitz.Matrix(1, 0, 1, 0, 1, 0)
        n = fitz.Matrix(1, 1) / m
    except:
        failed = True
    assert failed


def test_point():
    assert tuple(fitz.Point()) == (0, 0)
    assert fitz.Point(1, -1).unit == fitz.Point(5, -5).unit
    assert fitz.Point(-1, -1).abs_unit == fitz.Point(1, 1).unit
    assert fitz.Point(1, 1).distance_to(fitz.Point(1, 1)) == 0
    assert fitz.Point(1, 1).distance_to(fitz.Rect(1, 1, 2, 2)) == 0
    assert fitz.Point().distance_to((1, 1, 2, 2)) > 0
    failed = False
    try:
        p = fitz.Point(1, 2, 3)
    except:
        failed = True
    assert failed

    failed = False
    try:
        p = fitz.Point((1, 2, 3))
    except:
        failed = True
    assert failed

    failed = False
    try:
        p = fitz.Point(1, "x")
    except:
        failed = True
    assert failed

    failed = False
    try:
        p = fitz.Point()
        p[3] = 1
    except:
        failed = True
    assert failed


def test_algebra():
    p = fitz.Point(1, 2)
    m = fitz.Matrix(1, 2, 3, 4, 5, 6)
    r = fitz.Rect(1, 1, 2, 2)
    assert p + p == p * 2
    assert p - p == fitz.Point()
    assert m + m == m * 2
    assert m - m == fitz.Matrix()
    assert r + r == r * 2
    assert r - r == fitz.Rect()
    assert p + 5 == fitz.Point(6, 7)
    assert m + 5 == fitz.Matrix(6, 7, 8, 9, 10, 11)
    assert r.tl in r
    assert r.tr not in r
    assert r.br not in r
    assert r.bl not in r
    assert p * m == fitz.Point(12, 16)
    assert r * m == fitz.Rect(9, 12, 13, 18)
    assert (fitz.Rect(1, 1, 2, 2) & fitz.Rect(2, 2, 3, 3)).is_empty
    assert not fitz.Rect(1, 1, 2, 2).intersects((2, 2, 4, 4))
    failed = False
    try:
        x = m + p
    except:
        failed = True
    assert failed
    failed = False
    try:
        x = m + r
    except:
        failed = True
    assert failed
    failed = False
    try:
        x = p + r
    except:
        failed = True
    assert failed
    failed = False
    try:
        x = r + m
    except:
        failed = True
    assert failed
    assert m not in r


def test_quad():
    r = fitz.Rect(10, 10, 20, 20)
    q = r.quad
    assert q.is_rectangular
    assert not q.is_empty
    assert q.is_convex
    q *= fitz.Matrix(1, 1).preshear(2, 3)
    assert not q.is_rectangular
    assert not q.is_empty
    assert q.is_convex
    assert r.tl not in q
    assert r not in q
    assert r.quad not in q
    failed = False
    try:
        q[5] = fitz.Point()
    except:
        failed = True
    assert failed

    failed = False
    try:
        q /= (1, 0, 1, 0, 1, 0)
    except:
        failed = True
    assert failed


def test_pageboxes():
    """Tests concerning ArtBox, TrimBox, BleedBox."""
    doc = fitz.open()
    page = doc.new_page()
    assert page.cropbox == page.artbox == page.bleedbox == page.trimbox
    rect_methods = (
        page.set_cropbox,
        page.set_artbox,
        page.set_bleedbox,
        page.set_trimbox,
    )
    keys = ("CropBox", "ArtBox", "BleedBox", "TrimBox")
    rect = fitz.Rect(100, 200, 400, 700)
    for f in rect_methods:
        f(rect)
    for key in keys:
        assert doc.xref_get_key(page.xref, key) == ("array", "[100 142 400 642]")
    assert page.cropbox == page.artbox == page.bleedbox == page.trimbox







PyMuPDF-1.21.1/tests/test_imagebbox.py

"""
Ensure equality of bboxes computed via
* page.get_image_bbox()
* page.get_image_info()
* page.get_bboxlog()

"""
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "image-file1.pdf")
image = os.path.join(scriptdir, "resources", "img-transparent.png")
doc = fitz.open(filename)


def test_image_bbox():
    page = doc[0]
    imglist = page.get_images(True)
    bbox_list = []
    for item in imglist:
        bbox_list.append(page.get_image_bbox(item, transform=False))
    infos = page.get_image_info(xrefs=True)
    for im in infos:
        bbox1 = im["bbox"]
        match = False
        for bbox2 in bbox_list:
            abs_bbox = (bbox2 - bbox1).norm()
            if abs_bbox < 1e-4:
                match = True
                break
    assert match


def test_bboxlog():
    doc = fitz.open()
    page = doc.new_page()
    xref = page.insert_image(page.rect, filename=image)
    img_info = page.get_image_info(xrefs=True)
    assert len(img_info) == 1
    info = img_info[0]
    assert info["xref"] == xref
    bbox_log = page.get_bboxlog()
    assert len(bbox_log) == 1
    box_type, bbox = bbox_log[0]
    assert box_type == "fill-image"
    assert bbox == info["bbox"]







PyMuPDF-1.21.1/tests/test_insertimage.py

"""
* Insert same image with different rotations in two places of a page.
* Extract bboxes and transformation matrices
* Assert image locations are inside given rectangles
"""
import json
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
imgfile = os.path.join(scriptdir, "resources", "nur-ruhig.jpg")


def test_insert():
    doc = fitz.open()
    page = doc.new_page()
    r1 = fitz.Rect(50, 50, 100, 100)
    r2 = fitz.Rect(50, 150, 200, 400)
    page.insert_image(r1, filename=imgfile)
    page.insert_image(r2, filename=imgfile, rotate=270)
    info_list = page.get_image_info()
    assert len(info_list) == 2
    bbox1 = fitz.Rect(info_list[0]["bbox"])
    bbox2 = fitz.Rect(info_list[1]["bbox"])
    assert bbox1 in r1
    assert bbox2 in r2







PyMuPDF-1.21.1/tests/test_insertpdf.py

"""
* Join multiple PDFs into a new one.
* Compare with stored earlier result:
    - must have identical object definitions
    - must have different trailers
* Try inserting files in a loop.
"""
import os
import re
import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
resources = os.path.join(scriptdir, "resources")

def approx_parse( text):
    '''
    Splits <text> into sequence of (text, number) pairs. Where sequence of
    [0-9.] is not convertible to a number (e.g. '4.5.6'), <number> will be
    None.
    '''
    ret = []
    for m in re.finditer('([^0-9]+)([0-9.]*)', text):
        text = m.group(1)
        try:
            number = float( m.group(2))
        except Exception:
            text += m.group(2)
            number = None
        ret.append( (text, number))
    return ret

def approx_compare( a, b, max_delta):
    '''
    Compares <a> and <b>, allowing numbers to differ by up to <delta>.
    '''
    aa = approx_parse( a)
    bb = approx_parse( b)
    if len(aa) != len(bb):
        return 1
    ret = 1
    for (at, an), (bt, bn) in zip( aa, bb):
        if at != bt:
            break
        if an is not None and bn is not None:
            if abs( an - bn) >= max_delta:
                print( f'diff={an-bn}: an={an} bn={bn}')
                break
        elif (an is None) != (bn is None):
            break
    else:
        ret = 0
    if ret:
        print( f'Differ:\n    a={a!r}\n    b={b!r}')
    return ret
        

def test_insert():
    all_text_original = []  # text on input pages
    all_text_combined = []  # text on resulting output pages
    # prepare input PDFs
    doc1 = fitz.open()
    for i in range(5):  # just arbitrary number of pages
        text = f"doc 1, page {i}"  # the 'globally' unique text
        page = doc1.new_page()
        page.insert_text((100, 72), text)
        all_text_original.append(text)

    doc2 = fitz.open()
    for i in range(4):
        text = f"doc 2, page {i}"
        page = doc2.new_page()
        page.insert_text((100, 72), text)
        all_text_original.append(text)

    doc3 = fitz.open()
    for i in range(3):
        text = f"doc 3, page {i}"
        page = doc3.new_page()
        page.insert_text((100, 72), text)
        all_text_original.append(text)

    doc4 = fitz.open()
    for i in range(6):
        text = f"doc 4, page {i}"
        page = doc4.new_page()
        page.insert_text((100, 72), text)
        all_text_original.append(text)

    new_doc = fitz.open()  # make combined PDF of input files
    new_doc.insert_pdf(doc1)
    new_doc.insert_pdf(doc2)
    new_doc.insert_pdf(doc3)
    new_doc.insert_pdf(doc4)
    # read text from all pages and store in list
    for page in new_doc:
        all_text_combined.append(page.get_text().replace("\n", ""))
    # the lists must be equal
    assert all_text_combined == all_text_original


def test_issue1417_insertpdf_in_loop():
    """Using a context manager instead of explicitly closing files"""
    f = os.path.join(resources, "1.pdf")
    big_doc = fitz.open()
    fd1 = os.open( f, os.O_RDONLY)
    os.close( fd1)
    for n in range(0, 1025):
        with fitz.open(f) as pdf:
            big_doc.insert_pdf(pdf)
        # Create a raw file descriptor. If the above fitz.open() context leaks
        # a file descriptor, fd will be seen to increment.
        fd2 = os.open( f, os.O_RDONLY)
        assert fd2 == fd1
        os.close( fd2)
    big_doc.close()







PyMuPDF-1.21.1/tests/test_linequad.py

"""
Check approx. equality of search quads versus quads recovered from
text extractions.
"""
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "quad-calc-0.pdf")


def test_quadcalc():
    text = " angle 327"  # search for this text
    doc = fitz.open(filename)
    page = doc[0]
    # This special page has one block with one line, and
    # its last span contains the searched text.
    block = page.get_text("dict", flags=0)["blocks"][0]
    line = block["lines"][0]
    # compute quad of last span in line
    lineq = fitz.recover_line_quad(line, spans=line["spans"][-1:])

    # let text search find the text returning quad coordinates
    rl = page.search_for(text, quads=True)
    searchq = rl[0]
    assert abs(searchq.ul - lineq.ul) <= 1e-4
    assert abs(searchq.ur - lineq.ur) <= 1e-4
    assert abs(searchq.ll - lineq.ll) <= 1e-4
    assert abs(searchq.lr - lineq.lr) <= 1e-4







PyMuPDF-1.21.1/tests/test_metadata.py

"""
1. Read metadata and compare with stored expected result.
2. Erase metadata and assert object has indeed been deleted.
"""
import json
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "001003ED.pdf")
metafile = os.path.join(scriptdir, "resources", "metadata.txt")
doc = fitz.open(filename)


def test_metadata():
    assert json.dumps(doc.metadata) == open(metafile).read()


def test_erase_meta():
    doc.set_metadata({})
    # Check PDF trailer and assert that there is no more /Info object
    # or is set to "null".
    statement1 = doc.xref_get_key(-1, "Info")[1] == "null"
    statement2 = "Info" not in doc.xref_get_keys(-1)
    assert statement2 or statement1







PyMuPDF-1.21.1/tests/test_nonpdf.py

"""
* Check EPUB document is no PDF
* Check page access using (chapter, page) notation
* Re-layout EPUB ensuring a previous location is memorized
"""
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "Bezier.epub")
doc = fitz.open(filename)


def test_isnopdf():
    assert not doc.is_pdf


def test_pageids():
    assert doc.chapter_count == 7
    assert doc.last_location == (6, 1)
    assert doc.prev_location((6, 0)) == (5, 11)
    assert doc.next_location((5, 11)) == (6, 0)
    # Check page numbers have no gaps:
    i = 0
    for chapter in range(doc.chapter_count):
        for cpno in range(doc.chapter_page_count(chapter)):
            assert doc.page_number_from_location((chapter, cpno)) == i
            i += 1

def test_layout():
    """Memorize a page location, re-layout with ISO-A4, assert pre-determined location."""
    loc = doc.make_bookmark((5, 11))
    doc.layout(fitz.Rect(fitz.paper_rect("a4")))
    assert doc.find_bookmark(loc) == (5, 6)







PyMuPDF-1.21.1/tests/test_object_manipulation.py

"""
Check some low-level PDF object manipulations:
1. Set page rotation and compare with string in object definition.
2. Set page rotation via string manipulation and compare with result of
   proper page property.
3. Read the PDF trailer and verify it has the keys "/Root", "/ID", etc.
"""
import fitz
import os

scriptdir = os.path.abspath(os.path.dirname(__file__))
resources = os.path.join(scriptdir, "resources")
filename = os.path.join(resources, "001003ED.pdf")


def test_rotation1():
    doc = fitz.open()
    page = doc.new_page()
    page.set_rotation(270)
    assert doc.xref_get_key(page.xref, "Rotate") == ("int", "270")


def test_rotation2():
    doc = fitz.open()
    page = doc.new_page()
    doc.xref_set_key(page.xref, "Rotate", "270")
    assert page.rotation == 270


def test_trailer():
    """Access PDF trailer information."""
    doc = fitz.open(filename)
    xreflen = doc.xref_length()
    _, xreflen_str = doc.xref_get_key(-1, "Size")
    assert xreflen == int(xreflen_str)
    trailer_keys = doc.xref_get_keys(-1)
    assert "ID" in trailer_keys
    assert "Root" in trailer_keys







PyMuPDF-1.21.1/tests/test_optional_content.py

"""
Test of Optional Content code.
"""
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "joined.pdf")


def test_oc1():
    """Arbitrary calls to OC code to get coverage."""
    doc = fitz.open()
    ocg1 = doc.add_ocg("ocg1")
    ocg2 = doc.add_ocg("ocg2")
    ocg3 = doc.add_ocg("ocg3")
    ocmd1 = doc.set_ocmd(xref=0, ocgs=(ocg1, ocg2))
    doc.set_layer(-1)
    doc.add_layer("layer1")
    test = doc.get_layer()
    test = doc.get_layers()
    test = doc.get_ocgs()
    test = doc.layer_ui_configs()
    doc.switch_layer(0)


def test_oc2():
    # source file with at least 4 pages
    src = fitz.open(filename)

    # new PDF with one page
    doc = fitz.open()
    page = doc.new_page()

    # define the 4 rectangle quadrants to receive the source pages
    r0 = page.rect / 2
    r1 = r0 + (r0.width, 0, r0.width, 0)
    r2 = r0 + (0, r0.height, 0, r0.height)
    r3 = r2 + (r2.width, 0, r2.width, 0)

    # make 4 OCGs - one for each source page image.
    # only first is ON initially
    ocg0 = doc.add_ocg("ocg0", on=True)
    ocg1 = doc.add_ocg("ocg1", on=False)
    ocg2 = doc.add_ocg("ocg2", on=False)
    ocg3 = doc.add_ocg("ocg3", on=False)

    ocmd0 = doc.set_ocmd(ve=["and", ocg0, ["not", ["or", ocg1, ocg2, ocg3]]])
    ocmd1 = doc.set_ocmd(ve=["and", ocg1, ["not", ["or", ocg0, ocg2, ocg3]]])
    ocmd2 = doc.set_ocmd(ve=["and", ocg2, ["not", ["or", ocg1, ocg0, ocg3]]])
    ocmd3 = doc.set_ocmd(ve=["and", ocg3, ["not", ["or", ocg1, ocg2, ocg0]]])
    ocmds = (ocmd0, ocmd1, ocmd2, ocmd3)
    # insert the 4 source page images, each connected to one OCG
    page.show_pdf_page(r0, src, 0, oc=ocmd0)
    page.show_pdf_page(r1, src, 1, oc=ocmd1)
    page.show_pdf_page(r2, src, 2, oc=ocmd2)
    page.show_pdf_page(r3, src, 3, oc=ocmd3)
    xobj_ocmds = [doc.get_oc(item[0]) for item in page.get_xobjects() if item[1] != 0]
    assert set(ocmds) <= set(xobj_ocmds)
    assert set((ocg0, ocg1, ocg2, ocg3)) == set(tuple(doc.get_ocgs().keys()))
    doc.get_ocmd(ocmd0)
    page.get_oc_items()







PyMuPDF-1.21.1/tests/test_pagedelete.py

"""
----------------------------------------------------
This tests correct functioning of multi-page delete
----------------------------------------------------
Create a PDF in memory with 100 pages with a unique text each.
Also create a TOC with a bookmark per page.
On every page after the first to-be-deleted page, also insert a link, which
points to this page.
The bookmark text equals the text on the page for easy verification.

Then delete some pages and verify:
- the new TOC has empty items exactly for every deleted page
- the remaining TOC items still point to the correct page
- the document has no more links at all
"""
import fitz

page_count = 100  # initial document length
r = range(5, 35, 5)  # contains page numbers we will delete
# insert this link on pages after first deleted one
link = {
    "from": fitz.Rect(100, 100, 120, 120),
    "kind": fitz.LINK_GOTO,
    "page": r[0],
    "to": fitz.Point(100, 100),
}


def test_deletion():
    # First prepare the document.
    doc = fitz.open()
    toc = []
    for i in range(page_count):
        page = doc.new_page()  # make a page
        page.insert_text((100, 100), "%i" % i)  # insert unique text
        if i > r[0]:  # insert a link
            page.insert_link(link)
        toc.append([1, "%i" % i, i + 1])  # TOC bookmark to this page

    doc.set_toc(toc)  # insert the TOC
    assert doc.has_links()  # check we did insert links

    # Test page deletion.
    # Delete pages in range and verify result
    del doc[r]
    assert not doc.has_links()  # verify all links have gone
    assert doc.page_count == page_count - len(r)  # correct number deleted?
    toc_new = doc.get_toc()  # this is the modified TOC
    # verify number of emptied items (have page number -1)
    assert len([item for item in toc_new if item[-1] == -1]) == len(r)
    # Deleted page numbers must correspond to TOC items with page number -1.
    for i in r:
        assert toc_new[i][-1] == -1
    # Remaining pages must be correctly pointed to by the non-empty TOC items
    for item in toc_new:
        pno = item[-1]
        if pno == -1:  # one of the emptied items
            continue
        pno -= 1  # PDF page number
        text = doc[pno].get_text().replace("\n", "")
        # toc text must equal text on page
        assert text == item[1]

    doc.delete_page(0)  # just for the coverage stats
    del doc[5:10]
    doc.select(range(doc.page_count))
    doc.copy_page(0)
    doc.move_page(0)
    doc.fullcopy_page(0)







PyMuPDF-1.21.1/tests/test_pagelabels.py

"""
Define some page labels in a PDF.
Check success in various aspects.
"""
import fitz


def make_doc():
    """Makes a PDF with 10 pages."""
    doc = fitz.open()
    for i in range(10):
        page = doc.new_page()
    return doc


def make_labels():
    """Return page label range rules.
    - Rule 1: labels like "A-n", page 0 is first and has "A-1".
    - Rule 2: labels as capital Roman numbers, page 4 is first and has "I".
    """
    return [
        {"startpage": 0, "prefix": "A-", "style": "D", "firstpagenum": 1},
        {"startpage": 4, "prefix": "", "style": "R", "firstpagenum": 1},
    ]


def test_setlabels():
    """Check setting and inquiring page labels.
    - Make a PDF with 10 pages
    - Label pages
    - Inquire labels of pages
    - Get list of page numbers for a given label.
    """
    doc = make_doc()
    doc.set_page_labels(make_labels())
    page_labels = [p.get_label() for p in doc]
    answer = ["A-1", "A-2", "A-3", "A-4", "I", "II", "III", "IV", "V", "VI"]
    assert page_labels == answer, f'page_labels={page_labels}'
    assert doc.get_page_numbers("V") == [8]
    assert doc.get_page_labels() == make_labels()







PyMuPDF-1.21.1/tests/test_pixmap.py

"""
Pixmap tests
* make pixmap of a page and assert bbox size
* make pixmap from a PDF xref and compare with extracted image
* pixmap from file and from binary image and compare
"""
import os
import tempfile

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
epub = os.path.join(scriptdir, "resources", "Bezier.epub")
pdf = os.path.join(scriptdir, "resources", "001003ED.pdf")
imgfile = os.path.join(scriptdir, "resources", "nur-ruhig.jpg")


def test_pagepixmap():
    # pixmap from an EPUB page
    doc = fitz.open(epub)
    page = doc[0]
    pix = page.get_pixmap()
    assert pix.irect == page.rect.irect
    pix = page.get_pixmap(alpha=True)
    assert pix.alpha
    assert pix.n == pix.colorspace.n + pix.alpha


def test_pdfpixmap():
    # pixmap from xref in a PDF
    doc = fitz.open(pdf)
    # take first image item of first page
    img = doc.get_page_images(0)[0]
    # make pixmap of it
    pix = fitz.Pixmap(doc, img[0])
    # assert pixmap properties
    assert pix.width == img[2]
    assert pix.height == img[3]
    # extract image and compare metadata
    extractimg = doc.extract_image(img[0])
    assert extractimg["width"] == pix.width
    assert extractimg["height"] == pix.height


def test_filepixmap():
    # pixmaps from file and from stream
    # should lead to same result
    pix1 = fitz.Pixmap(imgfile)
    stream = open(imgfile, "rb").read()
    pix2 = fitz.Pixmap(stream)
    assert repr(pix1) == repr(pix2)
    assert pix1.digest == pix2.digest


def test_pilsave():
    # pixmaps from file then save to pillow image
    # make pixmap from this and confirm equality
    pix1 = fitz.Pixmap(imgfile)
    try:
        stream = pix1.pil_tobytes("JPEG")
        pix2 = fitz.Pixmap(stream)
        assert repr(pix1) == repr(pix2)
    except:
        pass


def test_save(tmpdir):
    # pixmaps from file then save to image
    # make pixmap from this and confirm equality
    pix1 = fitz.Pixmap(imgfile)
    outfile = os.path.join(tmpdir, "foo.png")
    pix1.save(outfile, output="png")
    # read it back
    pix2 = fitz.Pixmap(outfile)
    assert repr(pix1) == repr(pix2)


def test_setalpha():
    # pixmap from JPEG file, then add an alpha channel
    # with 30% transparency
    pix1 = fitz.Pixmap(imgfile)
    opa = int(255 * 0.3)  # corresponding to 30% transparency
    alphas = [opa] * (pix1.width * pix1.height)
    alphas = bytearray(alphas)
    pix2 = fitz.Pixmap(pix1, 1)  # add alpha channel
    pix2.set_alpha(alphas)  # make image 30% transparent
    samples = pix2.samples  # copy of samples
    # confirm correct the alpha bytes
    t = bytearray([samples[i] for i in range(3, len(samples), 4)])
    assert t == alphas

def test_color_count():
    pm = fitz.Pixmap(imgfile)
    assert pm.color_count() == 40624

def test_memoryview():
    pm = fitz.Pixmap(imgfile)
    samples = pm.samples_mv
    assert isinstance( samples, memoryview)
    print( f'samples={samples} samples.itemsize={samples.itemsize} samples.nbytes={samples.nbytes} samples.ndim={samples.ndim} samples.shape={samples.shape} samples.strides={samples.strides}')
    assert samples.itemsize == 1
    assert samples.nbytes == 659817
    assert samples.ndim == 1
    assert samples.shape == (659817,)
    assert samples.strides == (1,)

def test_samples_ptr():
    pm = fitz.Pixmap(imgfile)
    samples = pm.samples_ptr
    print( f'samples={samples}')
    assert isinstance( samples, int)







PyMuPDF-1.21.1/tests/test_showpdfpage.py

"""
Tests:
    * Convert some image to a PDF
    * Insert it rotated in some rectangle of a PDF page
    * Assert PDF Form XObject has been created
    * Assert that image contained in inserted PDF is inside given retangle
"""
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
imgfile = os.path.join(scriptdir, "resources", "nur-ruhig.jpg")


def test_insert():
    doc = fitz.open()
    page = doc.new_page()
    rect = fitz.Rect(50, 50, 100, 100)  # insert in here
    img = fitz.open(imgfile)  # open image
    tobytes = img.convert_to_pdf()  # get its PDF version (bytes object)
    src = fitz.open("pdf", tobytes)  # open as PDF
    xref = page.show_pdf_page(rect, src, 0, rotate=-23)  # insert in rectangle
    # extract just inserted image info
    img = page.get_images(True)[0]
    assert img[-1] == xref  # xref of Form XObject!
    img = page.get_image_info()[0]  # read the page's images

    # Multiple computations may have lead to rounding deviations, so we need
    # some generosity here: enlarge rect by 1 point in each direction.
    assert img["bbox"] in rect + (-1, -1, 1, 1)







PyMuPDF-1.21.1/tests/test_textbox.py

"""
Fill a given text in a rectangle on some PDF page using
1. TextWriter object
2. Basic text output

Check text is indeed contained in given rectangle.
"""
import fitz

text = """Der Kleine Schwertwal (Pseudorca crassidens), auch bekannt als Unechter oder Schwarzer Schwertwal, ist eine Art der Delfine (Delphinidae) und der einzige rezente Vertreter der Gattung Pseudorca.

Er ähnelt dem Orca in Form und Proportionen, ist aber einfarbig schwarz und mit einer Maximallänge von etwa sechs Metern deutlich kleiner.

Kleine Schwertwale bilden Schulen von durchschnittlich zehn bis fünfzig Tieren, wobei sie sich auch mit anderen Delfinen vergesellschaften und sich meistens abseits der Küsten aufhalten.

Sie sind in allen Ozeanen gemäßigter, subtropischer und tropischer Breiten beheimatet, sind jedoch vor allem in wärmeren Jahreszeiten auch bis in die gemäßigte bis subpolare Zone südlich der Südspitze Südamerikas, vor Nordeuropa und bis vor Kanada anzutreffen."""


def test_textbox1():
    """Use TextWriter for text insertion."""
    doc = fitz.open()
    page = doc.new_page()
    rect = fitz.Rect(50, 50, 400, 400)
    blue = (0, 0, 1)
    tw = fitz.TextWriter(page.rect, color=blue)
    tw.fill_textbox(
        rect,
        text,
        align=fitz.TEXT_ALIGN_LEFT,
        fontsize=12,
    )
    tw.write_text(page, morph=(rect.tl, fitz.Matrix(1, 1)))
    # check text containment
    assert page.get_text() == page.get_text(clip=rect)
    page.write_text(writers=tw)


def test_textbox2():
    """Use basic text insertion."""
    doc = fitz.open()
    ocg = doc.add_ocg("ocg1")
    page = doc.new_page()
    rect = fitz.Rect(50, 50, 400, 400)
    blue = fitz.utils.getColor("lightblue")
    red = fitz.utils.getColorHSV("red")
    page.insert_textbox(
        rect,
        text,
        align=fitz.TEXT_ALIGN_LEFT,
        fontsize=12,
        color=blue,
        oc=ocg,
    )
    # check text containment
    assert page.get_text() == page.get_text(clip=rect)


def test_textbox3():
    """Use TextWriter for text insertion."""
    doc = fitz.open()
    page = doc.new_page()
    font = fitz.Font("cjk")
    rect = fitz.Rect(50, 50, 400, 400)
    blue = (0, 0, 1)
    tw = fitz.TextWriter(page.rect, color=blue)
    tw.fill_textbox(
        rect,
        text,
        align=fitz.TEXT_ALIGN_LEFT,
        font=font,
        fontsize=12,
        right_to_left=True,
    )
    tw.write_text(page, morph=(rect.tl, fitz.Matrix(1, 1)))
    # check text containment
    assert page.get_text() == page.get_text(clip=rect)
    doc.scrub()
    doc.subset_fonts()


def test_textbox4():
    """Use TextWriter for text insertion."""
    doc = fitz.open()
    ocg = doc.add_ocg("ocg1")
    page = doc.new_page()
    rect = fitz.Rect(50, 50, 400, 600)
    blue = (0, 0, 1)
    tw = fitz.TextWriter(page.rect, color=blue)
    tw.fill_textbox(
        rect,
        text,
        align=fitz.TEXT_ALIGN_LEFT,
        fontsize=12,
        font=fitz.Font("cour"),
        right_to_left=True,
    )
    tw.write_text(page, oc=ocg, morph=(rect.tl, fitz.Matrix(1, 1)))
    # check text containment
    assert page.get_text() == page.get_text(clip=rect)


def test_textbox5():
    """Using basic text insertion."""
    fitz.TOOLS.set_small_glyph_heights(True)
    doc = fitz.open()
    page = doc.new_page()
    r = fitz.Rect(100, 100, 150, 150)
    text = "words and words and words and more words..."
    rc = -1
    fontsize = 12
    page.draw_rect(r)
    while rc < 0:
        rc = page.insert_textbox(
            r,
            text,
            fontsize=fontsize,
            align=fitz.TEXT_ALIGN_JUSTIFY,
        )
        fontsize -= 0.5

    blocks = page.get_text("blocks")
    bbox = fitz.Rect(blocks[0][:4])
    assert bbox in r







PyMuPDF-1.21.1/tests/test_textextract.py

"""
Exract page text in various formats.
No checks performed - just contribute to code coverage.
"""
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "symbol-list.pdf")


def test_extract1():
    doc = fitz.open(filename)
    page = doc[0]
    text = page.get_text("text")
    blocks = page.get_text("blocks")
    words = page.get_text("words")
    d1 = page.get_text("dict")
    d2 = page.get_text("json")
    d3 = page.get_text("rawdict")
    d3 = page.get_text("rawjson")
    text = page.get_text("html")
    text = page.get_text("xhtml")
    text = page.get_text("xml")
    rects = fitz.get_highlight_selection(page, start=page.rect.tl, stop=page.rect.br)
    text = fitz.ConversionHeader("xml")
    text = fitz.ConversionTrailer("xml")







PyMuPDF-1.21.1/tests/test_textsearch.py

"""
"test_search1":
Search for some text on a PDF page, and compare content of returned hit
rectangle with the searched text.

"test_search2":
Text search with 'clip' parameter - clip rectangle contains two occurrences
of searched text. Confirm search locations are inside clip.
"""
import os

import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename1 = os.path.join(scriptdir, "resources", "2.pdf")
filename2 = os.path.join(scriptdir, "resources", "github_sample.pdf")


def test_search1():
    doc = fitz.open(filename1)
    page = doc[0]
    needle = "mupdf"
    rlist = page.search_for(needle)
    assert rlist != []
    for rect in rlist:
        assert needle in page.get_textbox(rect).lower()


def test_search2():
    doc = fitz.open(filename2)
    page = doc[0]
    needle = "the"
    clip = fitz.Rect(40.5, 228.31436157226562, 346.5226135253906, 239.5338592529297)
    rl = page.search_for(needle, clip=clip)
    assert len(rl) == 2
    for r in rl:
        assert r in clip







PyMuPDF-1.21.1/tests/test_toc.py

"""
* Verify equality of generated TOCs and expected results.
* Verify TOC deletion works
* Verify manipulation of single TOC item works
* Verify stability against circular TOC items
"""
import os
import fitz

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "001003ED.pdf")
filename2 = os.path.join(scriptdir, "resources", "2.pdf")
circular = os.path.join(scriptdir, "resources", "circular-toc.pdf")
full_toc = os.path.join(scriptdir, "resources", "full_toc.txt")
simple_toc = os.path.join(scriptdir, "resources", "simple_toc.txt")
doc = fitz.open(filename)


def test_simple_toc():
    simple_lines = open(simple_toc, "rb").read()
    toc = b"".join([str(t).encode() for t in doc.get_toc(True)])
    assert toc == simple_lines


def test_full_toc():
    full_lines = open(full_toc, "rb").read()
    toc = b"".join([str(t).encode() for t in doc.get_toc(False)])
    assert toc == full_lines


def test_erase_toc():
    doc.set_toc([])
    assert doc.get_toc() == []


def test_replace_toc():
    toc = doc.get_toc(False)
    doc.set_toc(toc)


def test_setcolors():
    doc = fitz.open(filename2)
    toc = doc.get_toc(False)
    for i in range(len(toc)):
        d = toc[i][3]
        d["color"] = (1, 0, 0)
        d["bold"] = True
        d["italic"] = True
        doc.set_toc_item(i, dest_dict=d)

    toc2 = doc.get_toc(False)
    assert len(toc2) == len(toc)

    for t in toc2:
        d = t[3]
        assert d["bold"]
        assert d["italic"]
        assert d["color"] == (1, 0, 0)


def test_circular():
    """The test file contains circular bookmarks."""
    doc = fitz.open(circular)
    toc = doc.get_toc(False)  # this must not loop







PyMuPDF-1.21.1/tests/test_widgets.py

# -*- coding: utf-8 -*-
"""
Test PDF field (widget) insertion.
"""
import fitz
import os

scriptdir = os.path.abspath(os.path.dirname(__file__))
filename = os.path.join(scriptdir, "resources", "widgettest.pdf")


doc = fitz.open()
page = doc.new_page()
gold = (1, 1, 0)  # define some colors
blue = (0, 0, 1)
gray = (0.9, 0.9, 0.9)
fontsize = 11.0  # define a fontsize
lineheight = fontsize + 4.0
rect = fitz.Rect(50, 72, 400, 200)


def test_text():
    doc = fitz.open()
    page = doc.new_page()
    widget = fitz.Widget()  # create a widget object
    widget.border_color = blue  # border color
    widget.border_width = 0.3  # border width
    widget.border_style = "d"
    widget.border_dashes = (2, 3)
    widget.field_name = "Textfield-1"  # field name
    widget.field_label = "arbitrary text - e.g. to help filling the field"
    widget.field_type = fitz.PDF_WIDGET_TYPE_TEXT  # field type
    widget.fill_color = gold  # field background
    widget.rect = rect  # set field rectangle
    widget.text_color = blue  # rext color
    widget.text_font = "TiRo"  # use font Times-Roman
    widget.text_fontsize = fontsize  # set fontsize
    widget.text_maxlen = 50  # restrict number of characters
    widget.field_value = "Times-Roman"
    page.add_widget(widget)  # create the field
    field = page.first_widget
    assert field.field_type_string == "Text"


def test_checkbox():
    doc = fitz.open()
    page = doc.new_page()
    widget = fitz.Widget()
    widget.border_style = "b"
    widget.field_name = "Button-1"
    widget.field_label = "a simple check box button"
    widget.field_type = fitz.PDF_WIDGET_TYPE_CHECKBOX
    widget.fill_color = gold
    widget.rect = rect
    widget.text_color = blue
    widget.text_font = "ZaDb"
    widget.field_value = True
    page.add_widget(widget)  # create the field
    field = page.first_widget
    assert field.field_type_string == "CheckBox"


def test_listbox():
    doc = fitz.open()
    page = doc.new_page()
    widget = fitz.Widget()
    widget.field_name = "ListBox-1"
    widget.field_label = "is not a drop down: scroll with cursor in field"
    widget.field_type = fitz.PDF_WIDGET_TYPE_LISTBOX
    widget.field_flags = fitz.PDF_CH_FIELD_IS_COMMIT_ON_SEL_CHANGE
    widget.fill_color = gold
    widget.choice_values = (
        "Frankfurt",
        "Hamburg",
        "Stuttgart",
        "Hannover",
        "Berlin",
        "München",
        "Köln",
        "Potsdam",
    )
    widget.rect = rect
    widget.text_color = blue
    widget.text_fontsize = fontsize
    widget.field_value = widget.choice_values[-1]
    print("About to add '%s'" % widget.field_name)
    page.add_widget(widget)  # create the field
    field = page.first_widget
    assert field.field_type_string == "ListBox"


def test_combobox():
    doc = fitz.open()
    page = doc.new_page()
    widget = fitz.Widget()
    widget.field_name = "ComboBox-1"
    widget.field_label = "an editable combo box ..."
    widget.field_type = fitz.PDF_WIDGET_TYPE_COMBOBOX
    widget.field_flags = (
        fitz.PDF_CH_FIELD_IS_COMMIT_ON_SEL_CHANGE
        | fitz.PDF_CH_FIELD_IS_EDIT
        | fitz.PDF_WIDGET_TYPE_COMBOBOX
    )
    widget.fill_color = gold
    widget.choice_values = (
        "Spanien",
        "Frankreich",
        "Holland",
        "Dänemark",
        "Schweden",
        "Norwegen",
        "England",
        "Polen",
        "Russland",
        "Italien",
        "Portugal",
        "Griechenland",
    )
    widget.rect = rect
    widget.text_color = blue
    widget.text_fontsize = fontsize
    widget.field_value = widget.choice_values[-1]
    page.add_widget(widget)  # create the field
    field = page.first_widget
    assert field.field_type_string == "ComboBox"


def test_text2():
    doc = fitz.open()
    doc.new_page()
    page = [p for p in doc.pages()][0]
    widget = fitz.Widget()
    widget.field_name = "textfield-2"
    widget.field_label = "multi-line text with tabs is also possible!"
    widget.field_flags = fitz.PDF_TX_FIELD_IS_MULTILINE
    widget.field_type = fitz.PDF_WIDGET_TYPE_TEXT
    widget.fill_color = gray
    widget.rect = rect
    widget.text_color = blue
    widget.text_font = "TiRo"
    widget.text_fontsize = fontsize
    widget.field_value = "This\n\tis\n\t\ta\n\t\t\tmulti-\n\t\tline\n\ttext."
    page.add_widget(widget)  # create the field
    widgets = [w for w in page.widgets()]
    field = widgets[0]
    assert field.field_type_string == "Text"


# def test_deletewidget():
#     pdf = fitz.open(filename)
#     page = pdf[0]
#     field = page.first_widget
#     page.delete_widget(field)






