

pdftools-0.37/pdftools/__init__.py

pdftools - A library of classes for parsing and rendering PDF documents.
Copyright (C) 2001-2008 by David Boddie

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

"""
__init__.py

Initialisation for the pdftools package.
"""

__all__ = ["pdfdefs", "pdffile", "pdfpath", "pdftext"]
__version__ = "0.37"
version = '%s (Tuesday 22nd April 2008)' % __version__

pdftools-0.37/pdftools/pdfdefs.py

pdftools - A library of classes for parsing and rendering PDF documents.
Copyright (C) 2001-2008 by David Boddie

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Created: 2004

"""
pdfdefs.py

Definitions of PDF-related classes and values that are needed by the other
pdftools modules.
"""

import copy, string, sys, types

class boolean:
 """Generic boolean class. Used to define "true" and "false".
 """
 def __init__(self, value):

 self.value = value

 def __repr__(self):

 return "<boolean: %s>" % self.value

 def __cmp__(self, other):

 if not isinstance(other, boolean):

 # Invalid comparison
 return -1

 if self.value == other.value:

 return 0

 elif self.value == "true":

 return 1

 elif self.value == "false":

 return -1

 # Invalid value(s)
 return -1

true = boolean('true')
false = boolean('false')

class empty:
 """The empty class of which null is an instance."""
 pass

null = empty()

class reference:
 """Class for defining references to objects. Instantiate with object and
 generation attributes, "obj" and "gen".

 Example: ref = pdftools.reference(15, 0)
 """
 def __init__(self, obj, gen):

 self.obj = obj
 self.gen = gen

class name:
 """Class for defining names. Typically the / symbol which defines names in
 a PDF document is removed when the name is stored in the "name" attribute.

 Example: n = pdftools.name("Font")
 """
 def __init__(self, name):

 self.name = name

 def __repr__(self):

 return '<name: %s>' % self.name

 def __cmp__(self, other):

 if not isinstance(other, name):

 # Invalid comparison
 return -1

 return cmp(self.name, other.name)

class comment:
 """Comment class with "comment" attribute.

 Example: comment = pdftools.comment("Some text")
 """
 def __init__(self, comment):

 self.comment = comment

 def __repr__(self):

 return "<comment: %s>" % self.comment

class object:
 """Object class with "object" attribute which usually contains a list of
 other elements of a PDF file, such as dictionaries, objects, references,
 arrays, etc.

 Example: obj = pdftools.object(["Some text", [1,2,3]])
 """
 def __init__(self, object):

 self.object = object

class Stream:
 """Stream class. The "start" attribute of an instance of this class points
 to the start of a stream in a file. The "end" points to the character after
 the end of the stream, so that slice notation can be used to extract the
 stream from the document.

 Example: s = pdftools.Stream(32, 64)
 """
 def __init__(self, start, end):

 self.start = start
 self.end = end

class matrix:

 def __init__(self, rows):

 self.rows = rows

 def __repr__(self):

 values = reduce(lambda x, y: x + y, self.rows)
 format = ("((%03f, %03f, %03f),\n"
 " (%03f, %03f, %03f),\n"
 " (%03f, %03f, %03f))")
 return format % tuple(values)

 def ___mul___(self, r1, r2):

 rows = [[r1[0][0]*r2[0][0] + r1[0][1]*r2[1][0] + r1[0][2]*r2[2][0],
 r1[0][0]*r2[0][1] + r1[0][1]*r2[1][1] + r1[0][2]*r2[2][1],
 r1[0][0]*r2[0][2] + r1[0][1]*r2[1][2] + r1[0][2]*r2[2][2]],
 [r1[1][0]*r2[0][0] + r1[1][1]*r2[1][0] + r1[1][2]*r2[2][0],
 r1[1][0]*r2[0][1] + r1[1][1]*r2[1][1] + r1[1][2]*r2[2][1],
 r1[1][0]*r2[0][2] + r1[1][1]*r2[1][2] + r1[1][2]*r2[2][2]],
 [r1[2][0]*r2[0][0] + r1[2][1]*r2[1][0] + r1[2][2]*r2[2][0],
 r1[2][0]*r2[0][1] + r1[2][1]*r2[1][1] + r1[2][2]*r2[2][1],
 r1[2][0]*r2[0][2] + r1[2][1]*r2[1][2] + r1[2][2]*r2[2][2]]]

 return rows

 def __mul__(self, other):

 r1 = self.rows
 r2 = other.rows

 return matrix(self.___mul___(r1, r2))

 def __rmul__(self, other):

 r1 = other.rows
 r2 = self.rows

 return matrix(self.___mul___(r1, r2))

 def copy(self):

 return matrix(copy.deepcopy(self.rows))

def identity(size):

 return matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

class vector:

 def __init__(self, x, y):

 self.x, self.y = x, y

 def __repr__(self):

 return "<vector: (%.3f, %.3f)>" % (self.x, self.y)

 def __add__(self, other):

 x = self.x + other.x
 y = self.y + other.y

 # Return a new object.
 return vector(x, y)

 __radd__ = __add__

 def __sub__(self, other):

 x = self.x - other.x
 y = self.y - other.y

 # Return a new object.
 return vector(x, y)

 def __rsub__(self, other):

 x = other.x - self.x
 y = other.y - self.y

 # Return a new object.
 return vector(x, y)

 def __cmp__(self, other):

 # This next expression will only return zero (equals) if both
 # expressions are false.
 return self.x == other.x or self.y == other.y

 def __abs__(self):

 return (self.x ** 2 + self.y ** 2) ** 0.5

 def copy(self):

 """vector = copy(self)

 Copy the vector so that new vectors containing the same values
 are passed around rather than references to the same object.
 """

 return vector(self.x, self.y)

The point class is a synonym for the vector class.
We subclass vector in order to make it clear that point is a class.
(It's easier to search for classes if they are declared in some way.)

class point(vector):

 pass

delimiter = '<>()[]{}/%'
not_regular = string.whitespace + delimiter
escaped = (('\\n', '\012'), ('\\r', '\015'), ('\\t', '\011'), ('\\b', '\177'),
 ('\\f', '\014'), ('\\(', '('), ('\\)', ')'), ('\\\\', '\\'))
hexadecimal = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6,
 '7': 7, '8': 8, '9': 9, 'a': 10, 'b': 11, 'c': 12,
 'd': 13, 'e': 14, 'f': 15}

whitespace = '\000\011\012\014\015 '

hexa = '0123456789abcdef'
integer = '0123456789+-'
real = '0123456789+-.'

base85m4 = long(pow(85,4))
base85m3 = long(pow(85,3))
base85m2 = long(pow(85,2))

class FileWrapper:

 def __init__(self, file):

 self.file = file

 def __getitem__(self, item):

 if type(item) == types.SliceType:

 self.file.seek(item.start)
 length = max(0, item.stop - item.start)
 data = self.file.read(length)
 if len(data) != length:
 raise IndexError, "string index out of range"
 else:

 self.file.seek(item)
 data = self.file.read(1)
 if not data:
 raise IndexError, "string index out of range"

 return data

 if sys.version_info < 2.0:

 def __getslice__(self, i, j):

 return self[max(0, i):max(0, j):]

 def __len__(self):

 offset = self.file.tell()
 self.file.seek(0, 2)
 length = self.file.tell()
 self.file.seek(offset, 0)
 return int(length)

 def find(self, sub, start = 0, end = None):

 if end is None:
 end = len(self)
 elif end < 0:
 end = len(self) + end

 length = len(sub)
 if start < 0:
 window_start = end + start
 else:
 window_start = start

 self.file.seek(window_start, 0)

 # Try to read twice the length of the substring.
 window_end = window_start + length * 2
 # Only read as much as is available.
 read_to = min(window_end, end)
 read_length = read_to - window_start
 data = self.file.read(read_length)

 while end - window_start >= length:

 at = data.find(sub)
 if at != -1:

 return window_start + at

 # Start searching after the substring length.
 window_start = window_start + length
 # Try to read another substring worth of data.
 window_end = window_end + length
 # Only read as much as is available.
 next_read_to = min(window_end, end)
 read_length = next_read_to - read_to
 read_to = next_read_to
 data = data[length:] + self.file.read(read_length)

 return -1

 def rfind(self, sub, start = 0, end = None):

 if end is None:
 window_end = end = len(self)
 elif end < 0:
 window_end = len(self) + end
 else:
 window_end = end

 length = len(sub)
 if start < 0:
 window_start = end + start
 else:
 window_start = start

 # Try to read twice the length of the substring.
 window_start = window_end - length * 2
 # Only read as much as is available.
 read_from = max(start, window_start)
 read_length = window_end - read_from

 self.file.seek(read_from, 0)
 data = self.file.read(read_length)

 while window_end - start >= length:

 at = data.rfind(sub)
 if at != -1:

 return read_from + at

 # Start searching before the substring length.
 window_end = window_end - length
 # Try to read another substring worth of data.
 window_start = window_start - length
 # Only read as much as is available.
 next_read_from = max(start, window_start)
 read_length = read_from - next_read_from
 self.file.seek(next_read_from, 0)
 read_from = next_read_from
 data = self.file.read(read_length) + data[:-length]

 return -1

class PDFError(Exception):

 pass

Abstract class from which the PDFDocument and PDFContents classes inherit
common methods.

class Abstract:

 def _skip_whitespace(self, offset):

 while offset < self.length:

 if self.file[offset] in whitespace:
 offset = offset + 1
 else:
 break

 return offset

 def _read_comment(self, offset):

 at = offset
 while self.file[at] not in '\012\015':

 at = at + 1

 text = self.file[offset:at]

 while self.file[at] in '\012\015':

 at = at + 1

 return at, comment(text)

 def _read_string(self, offset):

 # Strings start with (and end with a matched)
 # The level of parentheses is the number of) required to end
 # the string

 level = 1

 at = offset

 while (level > 0) and (at < self.length):

 # Look for \
 backslash = string.find(self.file, '\\', at)
 if backslash == -1:
 backslash = self.length

 # Look for (
 start = string.find(self.file, '(', at)
 if start == -1:
 start = self.length

 # Look for)
 end = string.find(self.file, ')', at)
 if end == -1:
 end = self.length

 # \ () or \) (
 if (backslash < start) and (backslash < end):

 # Skip escaped character
 at = backslash + 2

 # (\) or () \
 elif start < end:

 level = level + 1
 at = start + 1

 #) \ (or) (\
 elif end < start:

 level = level - 1
 at = end + 1

 else:
 raise PDFError, 'Problem with string at %s' % hex(offset)

 # All text from the character at "offset" until the character before
 # "at" is comment.
 return at, self._clean_string(self.file[offset:at-1])

 def _clean_string(self, a):

 for old, new in escaped:

 a = string.replace(a, old, new)

 # Octal numbers are the same in Python as they are in PDF strings

 return a

 def _read_hexadecimal(self, offset):

 # Hexadecimal strings start with a < and end with a >
 # Nesting is not allowed
 # The characters contained are 0-9 A-F a-f
 at = string.find(self.file, '>', offset)

 return at + 1, self._clean_hexadecimal(string.lower(self.file[offset:at]))

 def _clean_hexadecimal(self, a):

 # Read the string, converting the pairs of digits to
 # characters
 b = ''
 shift = 4
 value = 0

 try:

 for i in a:

 value = value | (hexadecimal[i] << shift)
 shift = 4 - shift
 if shift == 4:
 b = b + chr(value)
 value = 0

 except ValueError:

 raise PDFError, 'Problem with hexadecimal string %s' % a

 return b

 def _asciihexdecode(self, text):

 at = string.find(text, '>')

 return self._clean_hexadecimal(string.lower(text[:at]))

 def _ascii85decode(self, text):

 end = string.find(text, '~>')

 new = []
 i = 0
 ch = 0
 value = 0

 while i < end:

 if text[i] == 'z':

 if ch != 0:
 raise PDFError, 'Badly encoded ASCII85 format.'

 new.append('\000\000\000\000')

 ch = 0
 value = 0

 else:

 v = ord(text[i])
 if v >= 33 and v <= 117:

 if ch == 0:
 value = ((v-33) * base85m4)
 elif ch == 1:
 value = value + ((v-33) * base85m3)
 elif ch == 2:
 value = value + ((v-33) * base85m2)
 elif ch == 3:
 value = value + ((v-33) * 85)
 elif ch == 4:
 value = value + (v-33)

 c1 = int(value >> 24)
 c2 = int((value >> 16) & 255)
 c3 = int((value >> 8) & 255)
 c4 = int(value & 255)

 new.append(chr(c1) + chr(c2) + chr(c3) + chr(c4))

 ch = (ch + 1) % 5

 i = i + 1

 if ch != 0:

 c = chr(value >> 24) + chr((value >> 16) & 255) + \
 chr((value >> 8) & 255) + chr(value & 255)

 new.append(c[:ch-1])

 return string.join(new, "")

 def _read_name(self, offset):

 # Read characters in the range 33-126 but not delimiters
 b = ''
 at = offset

 while at < self.length:

 n = ord(self.file[at])

 if n >= 33 and n <= 126 and (self.file[at] not in delimiter):
 at = at + 1

 else:
 break

 return at, name(self._clean_name(self.file[offset:at]))

 def _clean_name(self, a):

 # Find # symbols followed by hexadecimal

 b = ''
 at = 0

 try:

 while at < self.length:
 h = string.find(a, '#', at)
 if h == -1:
 b = b + a[at:]
 break
 else:
 b = b + a[at:h] + self._clean_hexadecimal(a[h+1:h+3])
 at = h + 3

 except IndexError:

 raise PDFError, 'Problem with name %s' % a

 return b

 def _read_next(self, offset, this_array):

 #print "_read_next", hex(offset)
 c = self.file[offset]

 # Comment
 if c == '%':

 #print 'comment', hex(offset)
 at, element = self._read_comment(offset+1)

 # Boolean
 elif c == 't':

 if self.file[offset:offset+4] == 'true':

 #print 'true', hex(offset)
 element = true
 at = offset + 4

 else:
 raise PDFError, 'Expected true at %s' % hex(offset)

 elif c == 'f':

 if self.file[offset:offset+5] == 'false':

 #print 'false', hex(offset)
 element = false
 at = offset + 5

 else:
 raise PDFError, 'Expected false at %s' % hex(offset)

 # Integer or Real
 elif c in integer:

 value = c
 offset = offset + 1
 is_real = 0
 while offset < self.length:

 n = self.file[offset]
 if n in integer:
 value = value + n
 elif n in real:
 value = value + n
 is_real = 1
 else:
 break

 offset = offset + 1

 at = offset

 if is_real == 0:
 #print 'integer', hex(offset), int(value)
 element = int(value)
 else:
 #print 'real', hex(offset), float(value)
 element = float(value)

 elif c in real:

 value = c
 offset = offset + 1
 while offset < self.length:

 n = self.file[offset]
 if n in real:
 value = value + n
 else:
 break

 offset = offset + 1

 at = offset
 element = float(value)

 # Name
 elif c == '/':

 #print 'name', hex(offset)
 at, element = self._read_name(offset+1)

 # String
 elif c == '(':

 #print 'string', hex(offset)
 at, element = self._read_string(offset+1)

 # Hexadecimal string or dictionary
 elif c == '<':

 if self.file[offset+1] != '<':

 #print 'hexadecimal string', hex(offset)
 at, element = self._read_hexadecimal(offset+1)

 else:
 #print 'dictionary', hex(offset)
 at, element = self._read_dictionary(offset+2)

 # Array
 elif c == '[':

 #print "array", hex(offset)
 at, element = self._read_array(offset+1)

 # null
 elif c == 'n':

 if self.file[offset:offset+4] == 'null':

 #print 'null', hex(offset)
 at = offset + 4
 element = null

 else:
 raise PDFError, 'Expected null at %s' % hex(offset)

 # Object reference
 elif c == 'R':

 #print 'reference', hex(offset)
 # Take the last two items in the array and check that they
 # are integers
 obj, gen = this_array[-2], this_array[-1]
 this_array.pop()
 this_array.pop()

 element = reference(obj, gen)
 at = offset + 1

 # Stream or other token beginning with s
 elif c == 's':

 if self.file[offset:offset+6] == 'stream':
 #print 'stream', hex(offset)
 at, element = self._read_stream(offset+6)

 elif self.file[offset:offset+9] == 'startxref':
 return offset, None

 # Object
 elif c == 'o':

 if self.file[offset:offset+3] == 'obj':

 #print 'object', hex(offset)
 # Take the last two items in the array and check that they
 # are integers
 obj, gen = this_array[-2], this_array[-1]
 this_array.pop()
 this_array.pop()

 # Read the object
 at, element = self._read_object(offset+3)
 element.obj = obj
 element.gen = gen

 else:
 raise PDFError, 'Expected obj at %s' % hex(offset)

 else:

 raise PDFError, 'Unknown object found at %s' % hex(offset)

 return at, element

 def _read_array(self, offset):

 #print '_read_array', hex(offset)
 # Arrays begin with [and end with]
 # They can be nested like strings, but contain objects rather
 # than just a series of bytes

 this_array = []

 at = offset

 while at < self.length:

 at = self._skip_whitespace(at)

 # print hex(at)

 # Look at the next character

 # End of array
 if self.file[at] == ']':

 break

 else:

 at, element = self._read_next(at, this_array)

 # Add the element to the array
 if element is not None:
 this_array.append(element)
 else:
 break

 #print '_read_array return', hex(at)
 return at + 1, this_array

 def _read_dictionary(self, offset):

 #print '_read_dictionary', hex(offset)
 # Dictionaries start with << and end with >>
 # They can be nested

 at = offset

 this_array = []

 while at < self.length:

 at = self._skip_whitespace(at)

 # Look at the next character

 # End of dictionary
 if self.file[at:at+2] == '>>':

 break

 else:

 #print "dictionary next", hex(at)
 at, element = self._read_next(at, this_array)

 if element is not None:
 this_array.append(element)
 else:
 break

 # Collate the list into key value pairs
 dict = {}
 keyvalue = 0

 for element in this_array:

 # Key or value
 if keyvalue == 0:
 if isinstance(element, name) == 0:
 raise PDFError, \
 'Key found which was not a name "'+repr(element) + \
 '" in dictionary at %s' % hex(offset - 1)
 else:
 key = element
 keyvalue = 1
 else:
 # Use the textual form of the name to make the key
 dict[key.name] = element
 keyvalue = 0

 if keyvalue == 1:
 print 'Incomplete dictionary at %s ?' % hex(offset - 1)

 #print '_read_dictionary return', hex(at)

 return at + 2, dict

 def _read_object(self, offset):

 # Objects start with obj and end with endobj
 #print '_read_object', hex(offset)

 at = offset

 this_array = []

 while at < self.length:

 at = self._skip_whitespace(at)

 if self.file[at:at+6] == 'endobj':

 break

 else:

 #print "object next", hex(at)
 at, element = self._read_next(at, this_array)

 if element is not None:
 this_array.append(element)
 else:
 break

 #print '_read_object return'

 return at+6, object(this_array)

 def _read_ref(self, offset):

 at, obj = self.read_integer(offset, self.length)
 at = self._skip_whitespace(at)
 at, gen = self.read_integer(at, self.length)
 at = self._skip_whitespace(at)
 at, element = self._read_next(at, [obj, gen])

 return element

 def _read_stream(self, offset):

 #print '_read_stream', hex(offset)

 # Expect either a carriage return then a linefeed or just a linefeed.

 if self.file[offset:offset + 2] == '\r\n':

 offset = offset + 2

 elif self.file[offset] == '\n':

 offset = offset + 1

 else:

 raise PDFError, "Unexpected start to the stream at %x" % offset

 # Temporary solution
 at = string.find(self.file, 'endstream', offset)

 #print 'endstream', hex(at)
 return at+9, Stream(offset, at)

pdftools-0.37/pdftools/pdffile.py

pdftools - A library of classes for parsing and rendering PDF documents.
Copyright (C) 2001-2008 by David Boddie

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Historical information

Created: Fri 9th March 2001

"""
Example of use:

 from pdftools.pdffile import PDFDocument

 file = "MyFile.pdf"
 doc = PDFDocument(file)

 print "Document uses PDF format version", doc.document_version()

 pages = doc.count_pages()
 print "Document contains %i pages." % pages

 if pages > 123:

 page123 = doc.read_page(123)
 contents123 = page123.read_contents()

 print "The objects found in this page:"
 print
 print contents123.contents

"""
import sys, types, zlib

Import useful definitions.
from pdfdefs import *

Import related modules.
import pdftext, pdfpath

class PDFDocument(Abstract):
 """PDF document reading class.

 Open a document by reading a PDF file using a file name passed as a string
 on instantiation.

 Example:

 file = "MyFile.pdf"
 doc = PDFDocument(file)

 Useful methods:

 total_number = count_pages(self)
 page_object = read_page(self, number) # 1 <= number <= total_number

 """
 def __init__(self, path, in_memory = 0):

 try:
 if in_memory:
 self.file = open(path, 'rb').read()
 else:
 self.file = FileWrapper(open(path, 'rb'))
 except IOError:
 raise PDFError, "Couldn't open the specified file: %s" % path

 self.path = path
 self.length = len(self.file)

 # Prepare the document for reading.
 self._read_document()

 # Return version information

 def document_version(self):
 """Read the version of PDF used to encode the document.
 Returns a string containing the version number.

 Example: version = doc.document_version()
 """
 offset, element = self._read_comment(1)

 if isinstance(element, comment) == 0:
 print 'Not a PDF file'

 elif element.comment[:4] != 'PDF-':
 raise PDFError, 'Not a PDF file'

 else:
 self.version = element.comment[4:]

 return self.version

 def find_page(self, number, count = 0, tree = None):

 """number, dict = find_page(self, number, count = 0, tree = None)

 Takes a page number and a starting tree object and returns the
 page number and either a dictionary containing the page attributes
 (if successful) or None (if unsuccessful).
 """

 # Using the catalogue entry if necessary, descend until a
 # particular page is found.

 if tree == None:

 pages = self.catalog['Pages']

 tree = self._dereference(pages)

 # Page tree
 if tree['Type'].name == 'Pages':

 if count < number <= count + tree['Count']:

 # The page is contained within a child of this node.
 kids = tree['Kids']

 # We do not know how many pages are contained within each
 # child node, so we must search through them rather than
 # trying to directly index the "Kids" array.

 for ref in kids:

 kid = self._dereference(ref)
 count, kid = self.find_page(number, count, kid)

 if kid is not None:

 # The required page was found.
 return count, kid

 else:

 # The page is outside the range of pages contained beneath
 # this node.
 count = count + tree["Count"]

 elif tree['Type'].name == 'Page':

 # Page

 # Increment the page counter to provide this page with the correct
 # number and compare it with the page number we are looking for.
 count = count + 1

 if count == number:

 return count, tree

 return count, None

 def count_pages(self):

 # Read the "Pages" catalogue entry.
 pages = Pages(self, self._dereference(self.catalog["Pages"]))

 # Read the "Count" property (dictionary entry).
 return pages["Count"]

 # _read_catalog() must be called before this function is called.

 def read_page(self, number):
 """page_object = read_page(self, number)

 Return a Page object corresponding to the specified page.

 If the page is not found then a PDFError exception is raised.

 Example: page = doc.read_page(123)
 """
 # Look up the page details.
 number, page = self.find_page(number)

 if page is None:

 raise PDFError, "No such page"

 return Page(self, page)

 def write_document(self, path = None, linearized = 0):

 """write_document(self, path = None, linearized = 0)

 Write the document to a file, either using an optional path or to
 the original file. If linearized, the file will be optimised for
 access by readers that read the file sequentially.
 """

 if path is None:

 path = self.path

 try:

 fh = open(path, "wb")
 self._write_document(fh, linearized)

 except IOError:

 raise PDFError, "Failed to write the document to %s" % path

 def _read_trailer(self, offset):

 at = self._skip_whitespace(offset)
 at, trailer_dict = self._read_dictionary(at+2)

 at = string.find(self.file, 'startxref', at)
 at = self._skip_whitespace(at+9)

 value = ''

 while at < self.length:

 n = self.file[at]
 if n in integer:
 value = value + n
 else:
 break

 at = at + 1

 # Return the dictionary and the location of the xref table
 return trailer_dict, int(value)

 def _read_integer(self, offset, end):

 value = self.file[offset]
 at = offset + 1
 while at < end:

 n = self.file[at]
 if n in integer:
 value = value + n
 else:
 break

 at = at + 1

 return at, int(value)

 def _read_xref(self, offset, end = None):
 """used, free = _read_xref(self, offset, end = None)

 Read the cross reference table found at the offset given in the file
 and ending at the end specified.

 The used and free dictionaries returned take the form:

 { object_number : (generation, offset), ... }

 """
 if end is None: end = self.length

 used = {}
 free = {}

 next = []

 at = offset
 at = self._skip_whitespace(at)
 at, start = self._read_integer(at, end)
 at = self._skip_whitespace(at)
 at, number = self._read_integer(at, end)
 at = self._skip_whitespace(at)

 item = start

 # Read items until we either reach the end of the xref table or
 # we have read the given number of items.
 #while at < end and number > 0:
 while number > 0:

 c = self.file[at]

 if c == 'f':

 if len(next) != 2:
 raise PDFError, 'Problem in xref table at %s' % hex(at)

 at = at + 1

 free[item] = next
 next = []
 item = item + 1
 number = number - 1

 elif c == 'n':

 if len(next) != 2:
 raise PDFError, 'Problem in xref table at %s' % hex(at)

 at = at + 1

 used[item] = next
 next = []
 item = item + 1
 number = number - 1

 # Integer
 elif c in integer:

 if len(next) < 2:

 at, value = self._read_integer(at, end)

 # Append value to the list
 next.append(value)

 else:

 # An integer after a pair of integers: the last pair must be a subsection.
 item = next[0]
 number = next[1]

 at, value = self._read_integer(at, end)

 # Append value to the list
 next.append(value)

 else:

 # End of table - can't guarantee that the xref table
 # will immediately precede the trailer. There might be
 # an old trailer after it, but searching for "trailer"
 # from the start of the xref table isn't reliable.
 raise PDFError, 'Unexpected element in xref table at %s' % hex(at)

 at = self._skip_whitespace(at)

 return start, number, used, free

 def _read_linearized(self):

 # Starting at the beginning of the file, skip the initial
 # version declaration and binary data.
 version = self.document_version()

 try:
 if float(version) > 1.4:
 raise ValueError
 except ValueError:
 raise PDFError, "Unsupported PDF version: %s" % version

 i = 1 + len("PDF-") + len(version)

 i = self._skip_whitespace(i)

 # We are now at the parameters following the document version.

 while self.file[i] == '%':

 i, comment = self._read_comment(i + 1)

 if self.file[i] in whitespace:

 i = self._skip_whitespace(i)

 # We should now be at document data which may contain linearization
 # parameters. Therefore, look for object and generation numbers
 # followed by the "obj" operator.

 # Use a list for the parameter stack required for operators.
 this_array = []

 # Search up to the end of the file. Note that the file may not
 # have been completely loaded.

 found = None

 while i < self.length:

 i, element = self._read_next(i, this_array)

 i = self._skip_whitespace(i)

 if isinstance(element, object):

 # We have found an object. Assume that it is a dictionary
 # containing linearization parameters.
 found = element
 break

 else:

 # Keep the value on the stack.
 this_array.append(element)

 if found is None:

 return None

 # Check the object to discover whether it contains a dictionary
 # defining the linearization parameters.
 if found.object == [] or type(found.object[0]) != types.DictType:

 return None

 d = found.object[0]

 if not d.has_key('Linearized'):

 return None

 # Copy useful information stored in the dictionary.

 if d.has_key('L'): self.length = d['L'] # File length
 if d.has_key('N'): self.number_of_pages = d['N']

 # Since this is a linearized document then this dictionary should
 # be followed by the cross reference table.
 i = self._skip_whitespace(i)

 # Record the cross reference table position.
 xref_pos = i

 # Look for the trailer.
 trailer_pos = string.find(self.file, "trailer", xref_pos)

 trailer_dict, false_xref_pos = self._read_trailer(trailer_pos + 7)

 return trailer_pos, trailer_dict, xref_pos

 def _trailer_info(self, backwards = 1):
 """dict = _trailer_info(self, backwards = 1)

 Return the trailer dictionary of the document which contains the
 location of the cross-reference table. This sets up an internal copy
 of the dictionary for later use, although it isn't necessary to do
 this.

 By default, the trailer is searched for from the end of the file.
 If backwards equals zero then it is searched for from the beginning
 of the file.

 Example: dict = doc._trailer_info()
 """
 if backwards == 1:
 trailer_pos = string.rfind(self.file, 'trailer')
 else:
 trailer_pos = string.find(self.file, 'trailer')

 # print hex(trailer_pos)

 trailer_dict, xref_pos = self._read_trailer(trailer_pos + 7)

 return trailer_pos, trailer_dict, xref_pos

 # _trailer_info must be called before _xref_info()

 def _xref_info(self, xref_pos):
 """Return the contents of the cross reference table.

 Example: objects_in_use, free_space = doc._xref_info()
 """

 start, number, used, free = \
 self._read_xref(xref_pos + 4) #, self.trailer_pos)

 return used, free

 def _find_in_used(self, obj, gen):

 for key, value in self.used.items():

 if obj == key and gen == value[1]:

 # Read the object number and generation number from the object's
 # location in the file.

 at, this_obj = self._read_integer(value[0], self.length)
 gen_at = self._skip_whitespace(at)

 if this_obj != obj:

 raise PDFError, \
 "Object number %i at %s disagrees with that the " + \
 "number %i from the cross reference table." % \
 (this_obj, hex(value[0]), obj)

 at, this_gen = self._read_integer(gen_at, self.length)
 at = self._skip_whitespace(at)

 if this_gen != gen:

 raise PDFError, \
 "Generation number %i at %s disagrees with the " + \
 "number %i given in the cross reference table." % \
 (this_gen, hex(gen_at), gen)

 at, element = self._read_next(at, [obj, gen])

 return element

 return None

 # *Required* before any page lookup is done

 def _read_catalog(self):

 """cat = _read_catalog(self)

 Read the document's catalog(ue). This is necessary before any
 page lookup is attempted. This method will read the document
 trailer's dictionary and cross-reference table if required.

 Example: cat = doc._read_catalog()
 """
 # Read the trailer to find the /Root object

 root = self.trailer_dict['Root']

 catalog = self._dereference(root)

 return catalog

 # Find an inherited attribute: move up the document structure until
 # the attribute is found or we reach the top.

 def _inherit(self, tree, key):

 while tree.has_key(key)==0 and tree.has_key('Parent')==1:

 ref = tree['Parent']
 tree = self._dereference(ref)

 if tree.has_key(key) == 0:

 return

 else:

 return tree[key]

 # Dereference an entry in an array or dictionary

 def _dereference(self, element):

 # Reduce to the simplest description

 if isinstance(element, reference):

 element = self._find_in_used(element.obj, element.gen).object

 if isinstance(element, object):

 element = element.object

 if type(element) == types.ListType:

 if len(element) == 1:
 return element[0]
 else:
 return element
 else:

 return element

 return element

 def _collect_dict(self, dict):

 new_dict = {}

 for key in dict.keys():

 # Dereference if required
 element = self._dereference(dict[key])
 # Dictionary
 if type(element) == types.DictionaryType:

 new_dict[key] = self._collect_dict(element)

 else:
 new_dict[key] = element

 return new_dict

 def _read_document(self):

 """_read_document(self)

 Prepare the document for access by finding the document trailer
 and cross reference table.
 """

 self.trailer_dict = {}

 # Check whether the document is "linearized".
 linear_info = self._read_linearized()

 if linear_info is not None:

 trailer_pos, trailer_dict, xref_pos = linear_info
 self.is_linearized = 1

 else:

 # Look for the trailer at the end of the file.
 backwards_info = self._trailer_info(backwards = 1)

 trailer_pos, trailer_dict, xref_pos = backwards_info
 self.is_linearized = 0

 # Look for a valid trailer dictionary, containing a "Root" entry,
 # and a valid cross reference table.

 if trailer_dict.has_key("Root"):

 self.trailer_dict = trailer_dict
 self.trailer_pos = trailer_pos

 if xref_pos != 0:

 # Examine any cross reference tables present.
 self.used, self.free = self._xref_info(xref_pos)
 self.xref_pos = xref_pos

 if trailer_dict.has_key("Prev"):

 # Examine any previous cross reference dictionaries.

 used, free = self._xref_info(trailer_dict["Prev"])

 # Merge the used and free dictionaries.
 for key, value in used.items():

 if not self.used.has_key(key):
 self.used[key] = value

 for key, value in free.items():

 if not self.free.has_key(key):
 self.free[key] = value

 # Retrieve the document's catalogue.
 self.catalog = self._read_catalog()

 def _write_document(self, fh, linearized):

 # Write the PDF version to the file as a comment.
 fh.write("%%PDF-%s\r" % self.version)

 # Create the trailer from the objects in the file.
 trailer, xref_table, catalog = self._create_structure()

 if self.linearized:

 self._write_linearized(trailer)
 self._write_xref(xref_table)
 self._write_catalog(catalog)

 # Write the objects to the file.

 if not self.linearized:

 self._write_linearized(trailer)
 self._write_xref(xref_table)
 self._write_catalog(catalog)

 fh.write("%%EOF\r")

class Page(Abstract):

 """Page(Abstract)

 page = Page(document, page_dictionary)

 Create a page object to represent a given page in a document.
 The document parameter is the PDFDocument object from which the
 page_dictionary dictionary was obtained for a given page.

 These objects are usually created by the PDFDocument.read_page
 method.

 Useful methods:

 contents = read_contents(self)

 """

 def __init__(self, document, page_dictionary):

 # Keep a reference to the document as we will need to
 # use it to retrieve information required to read the page
 # contents.
 self.document = document

 # Record the page dictionary.
 self.page_dict = page_dictionary

 # Find required items and cache them for later use.
 self.required = {}

 # Read the page type.
 self.required["Type"] = \
 self.document._dereference(self.page_dict["Type"])

 # Fetch the MediaBox.
 self.required["MediaBox"] = \
 self.document._dereference(
 self.document._inherit(self.page_dict, 'MediaBox')
)

 # Fetch the Parent and convert it into a Pages object.
 self.required["Parent"] = \
 Pages(
 self.document,
 self.document._dereference(self.page_dict["Parent"])
)

 # Fetch the Resources.
 resources = \
 self.document._dereference(
 self.document._inherit(self.page_dict, 'Resources')
)

 # Collect all the resources in the Resources entry into one dictionary.
 self.required["Resources"] = self.document._collect_dict(resources)

 # Fetch the Contents (if present). This is not a required property
 # but it is useful to process this item here.

 contents_element = self.document._inherit(self.page_dict, 'Contents')

 if contents_element is not None:

 self.required["Contents"] = \
 self._read_contents_element(contents_element)

 def _read_contents_element(self, contents_element):

 if isinstance(contents_element, reference):

 # A reference to an object rather than a list. Enclose it in
 # a list for processing as for an array (list) of references.
 contents_element = [self.document._dereference(contents_element)]

 contents_list = map(
 lambda item: self.document._dereference(item), contents_element
)

 contents_output = []

 for item in contents_list:

 # Each item in the contents list contains a dictionary with
 # various entries describing the stream and the stream itself.

 # The length of the stream is given in the dictionary.
 length = self.document._dereference(item[0].get('Length', 0))

 # A list of the filters to be used to process the stream is also
 # given.
 filters = self.document._dereference(item[0].get('Filter', []))

 # The second entry contains the stream. We check that the stream
 # start and end positions determined when the file was read agree
 # with the length provided by the dictionary entry.
 stream = self.document._dereference(item[1])

 start = stream.start
 end = stream.end

 #print length, start, end, end - start
 #
 #if length != (end - start):
 #
 # raise PDFError, "Problem found in reading stream at %x (" % \
 # start + \
 # "I may have made a mistake when reading the file)."

 # Read the stream contents.

 contents = self.document.file[start:start + length]

 if isinstance(filters, name):

 filters = [filters]

 # Examine the Contents dictionary
 for filter in filters:

 # print filter.name
 if filter.name == '_asciihexdecode':

 contents = self._asciihexdecode(contents)

 elif filter.name == '_ascii85decode' or filter.name == 'ASCII85Decode':

 contents = self._ascii85decode(contents)

 elif filter.name == 'FlateDecode':

 contents = zlib.decompress(contents)

 else:
 raise PDFError, 'Unknown Filter method: %s' % filter.name

 contents_output.append(contents)

 return string.join(contents_output, "")

 def __getitem__(self, key):

 # Check whether this item has been cached.
 if self.required.has_key(key):

 return self.required[key]

 # Try to find the requested key from the page dictionary, using
 # the document as appropriate.

 # Retrieve a value from the page dictionary or an ancestor, if it
 # is an inherited property.

 value = self.document._inherit(self.page_dict, key)

 if value is None:

 raise KeyError, key

 # Dereference the value provided; this can be done whether the
 # value is an indirect reference or not.

 return self.document._dereference(value)

 def keys(self):

 k = self.required.keys()
 return k + filter(lambda x: x not in k, self.page_dict.keys())

 def values(self):

 k = self.required.values()
 return k + filter(lambda x: x not in k, self.page_dict.values())

 def items(self):

 k = self.required.items()
 return k + filter(lambda x: x not in k, self.page_dict.items())

 def __getattr__(self, attr):

 if attr == "__call__" or attr == "__repr__":

 raise AttributeError, attr

 try:

 return self.__getitem__(attr)

 except KeyError:

 raise AttributeError, attr

 def read_contents(self):

 """content = read_contents(self)

 Return a PDFContents object containing the necessary information
 required to display the page.
 """

 return PDFContents(self)

class Pages(Abstract):

 """Pages(Abstract)

 pages = Pages(document, pages_dictionary)

 Create a pages object to represent a collection of pages in a document.
 The document parameter is the PDFDocument object from which the
 pages_dictionary dictionary was obtained for a given set of pages.

 These objects can be used to encapsulate pages dictionaries found by
 looking at the parents of Page objects.
 """

 def __init__(self, document, pages_dictionary):

 # Keep a reference to the document as we will need to
 # use it to retrieve information required to read the page
 # contents.
 self.document = document

 # Record the page dictionary.
 self.pages_dict = pages_dictionary

 # Find required items and cache them for later use.
 self.required = {}

 # Read the pages type.
 self.required["Type"] = \
 self.document._dereference(self.pages_dict["Type"])

 # Read the Kids property.
 self.required["Kids"] = self.pages_dict["Kids"]

 # Read the Count property (number of pages below this object).
 self.required["Count"] = self.pages_dict["Count"]

 # Fetch the Parent and convert it into a Pages object.
 # Every Pages object except the root Pages object has a Parent
 # property.

 if self.pages_dict.has_key("Parent"):

 self.required["Parent"] = \
 Pages(
 self.document,
 self.document._dereference(self.pages_dict["Parent"])
)

 def __getitem__(self, key):

 # Check whether this item has been cached.
 if self.required.has_key(key):

 return self.required[key]

 # Try to find the requested key from the page dictionary, using
 # the document as appropriate.

 # Retrieve a value from the page dictionary or an ancestor, if it
 # is an inherited property.

 value = self.document._inherit(self.pages_dict, key)

 if value is None:

 raise KeyError, key

 # Dereference the value provided; this can be done whether the
 # value is an indirect reference or not.

 return self.document._dereference(value)

 def keys(self):

 k = self.required.keys()
 return k + filter(lambda x: x not in k, self.pages_dict.keys())

 def values(self):

 k = self.required.values()
 return k + filter(lambda x: x not in k, self.pages_dict.values())

 def items(self):

 k = self.required.items()
 return k + filter(lambda x: x not in k, self.pages_dict.items())

 def __getattr__(self, attr):

 if attr == "__call__" or attr == "__repr__":

 raise AttributeError, attr

 try:

 return self.__getitem__(attr)

 except KeyError:

 raise AttributeError, attr

class command:

 def __init__(self, command):

 self.command = command

Define a graphics state class to contain the dictionaries created by the
PDFContents class.

class GraphicsState:

 def __init__(self, graphics_state):

 # Make a copy of the dictionary to avoid problems with mutable
 # objects.

 self.graphics_state = graphics_state.copy()

 def __getitem__(self, key):

 return self.graphics_state[key]

 def get(self, key, default = None):

 return self.graphics_state.get(key, default)

 def keys(self):

 return self.graphics_state.keys()

 def values(self):

 return self.graphics_state.values()

 def items(self):

 return self.graphics_state.items()

class PushGS:

 def __init__(self, graphics_state):

 # Make a copy of the dictionary to avoid problems with mutable
 # objects.

 self.graphics_state = graphics_state.copy()

class PopGS:

 def __init__(self, graphics_state):

 # Make a copy of the dictionary to avoid problems with mutable
 # objects.

 self.graphics_state = graphics_state.copy()

Define the characters used to start commands in stream objects for the
benefit of the PDFContents class.

commands = string.letters+'*"'+"'"

class PDFContents(Abstract):

 """PDFContents(Abstract)

 Class used to interpret and render content streams.
 This is achieved by creating an instance for a particular MediaBox,
 Resources dictionary and content stream obtained from the
 Page._read_contents method.

 Example:

 doc = PDFDocument("MyFile.pdf")
 ...
 page = doc.read_page(123)
 co = PDFContents(page)

 Useful attributes:

 self.contents # contains the objects found in the page whose
 # contents this object represents.

 """
 def __init__(self, page):

 # Keep a reference to the page.
 self.page = page

 #self.mediabox = page.MediaBox
 #self.resources = page.Resources
 # Determine the media dimensions.
 self.mediabox = page.MediaBox

 # Define the graphics origin.
 self.origin = point(
 min(self.mediabox[0], self.mediabox[2]),
 min(self.mediabox[1], self.mediabox[3])
)

 # Set the current point to the origin.
 self.current_point = self.origin

 # Set the rendering matrix to the unit matrix.
 self.rendering_matrix = identity(3)

 # Set the current transformation matrix to the unit matrix.
 self.CTM = identity(3)

 # Define a graphics state and a stack.
 self.graphics_state = \
 {
 "flatness": 0,
 # line end caps: 0 butt, 1 round end, 2 squared end
 "linecap": 0,
 # line dash pattern: solid line
 "linedash": ([], 0),
 # line join type: 0 mitre, 1 round, 2 bevel
 "linejoin": 0,
 # line width: 0 thinnest line on device
 "linewidth": 1,
 # mitre limit: >= 1
 "miterlimit": 10,
 # stroke adjust: true/false
 "stroke adjust": boolean("true"),
 # overprint strokes: other separations are left unchanged (true),
 # other separations are overwritten (false)
 "stroke overprint": boolean("false"),
 # overprint fills: as overprint strokes but for fills
 "fill overprint": boolean("false"),
 # overprint mode: 0 (see p328 of the PDF 1.3 specification)
 "overprint mode": 0,
 # smoothness: value in the range [0, 1] (default value unknown)
 "smoothness": 0,

 # Colour properties

 # Fill colour space
 "fill color space": "DeviceGray",

 # Use a dictionary to define a fill colour for each colour space
 # used.
 "fill color": {
 "DeviceGray": 0,
 "DeviceRGB": [0, 0, 0],
 "DeviceCMYK": [0, 0, 0, 0]
 },

 # Stroke colour space
 "stroke color space": "DeviceGray",

 # Use a dictionary to define a stroke colour for each colour space
 # used.
 "stroke color": {
 "DeviceGray": 0,
 "DeviceRGB": [0, 0, 0],
 "DeviceCMYK": [0, 0, 0, 0]
 }
 }
 self.graphics_state_stack = []

 # Read the contents.
 self.contents = []

 self.file = page.Contents

 self.length = len(self.file)

 self.contents = self._read_contents()

 def _read_next(self, offset, this_array):

 c = self.file[offset]

 # Comment
 if c == '%':

 # print 'comment'
 return self._read_comment(offset+1)

 # Boolean
 if c == 't':

 if self.file[offset:offset+4] == 'true':

 # print 'true'
 return offset + 4, true

 if c == 'f':

 if self.file[offset:offset+5] == 'false':

 # print 'false'
 return false, offset + 5

 # Integer or Real
 if c in integer:

 value = c
 offset = offset + 1
 is_real = 0
 while offset < self.length:

 n = self.file[offset]
 if n in integer:
 value = value + n
 elif n in real:
 value = value + n
 is_real = 1
 else:
 break

 offset = offset + 1

 if is_real == 0:
 # print 'integer'
 return offset, int(value)
 else:
 # print 'real'
 return offset, float(value)

 if c in real:

 value = c
 offset = offset + 1
 while offset < self.length:

 n = self.file[offset]
 if n in real:
 value = value + n
 else:
 break

 offset = offset + 1

 return offset, float(value)

 # Name
 if c == '/':

 # print 'name'
 return self._read_name(offset+1)

 # String
 if c == '(':

 # print 'string'
 return self._read_string(offset+1)

 # Hexadecimal string or dictionary
 if c == '<':

 if self.file[offset+1] != '<':

 # print 'hexadecimal string'
 return self._read_hexadecimal(offset+1)

 else:
 return self._read_dictionary(offset+2)

 # Array
 if c == '[':

 return self._read_array(offset+1)

 # null
 if c == 'n':

 if self.file[offset:offset+4] == 'null':

 # print 'null'
 return offset + 4, null

Stream
if c == 's':

at, element = self._read_stream(offset+6)

 # None of the above

 # Must be a command
 # Read until next whitespace
 at = offset
 while self.file[at] in commands:

 at = at + 1

 element = command(self.file[offset:at])

 return at, element

 def _read_contents(self):

 """Read a content stream.

 For example, assuming that "doc" is an instance of PDFDocument:

 page = doc.read_page(123)
 contents = page.read_contents()
 # contents._read_contents() is called by the PDFContents.__init__ method.
 page_contents = contents.contents
 """
 if self.page.MediaBox == None:
 print 'No MediaBox defined.'
 return []

 if self.page.Resources == None:
 print 'No associated resources.'
 return []

 if self.file == None:
 print 'No content stream to render.'
 return []

 # The items found while reading the contents
 items = []

 # The contents generated from the initial raw contents.
 contents = []

 at = self._skip_whitespace(0)

 while at < self.length:

 next, item = self._read_next(at, items)

 # if isinstance(item, command): print at, self.length, item.command

 if isinstance(item, command):

 com = item.command

 if com == 'q':

 # Save graphics state on the graphics state stack.
 self.graphics_state_stack.append(self.graphics_state)
 contents.append(PushGS(self.graphics_state))

 elif com == 'Q':

 # Restore the graphics state from the graphics state
 # stack.
 self.graphics_state = self.graphics_state_stack.pop()
 contents.append(PopGS(self.graphics_state))

 elif com == 'cm':

 # Modify the coordinate transformation matrix
 # (for user to device space transformations) by
 # concatenating a matrix defined by the given six
 # numbers.

 render_matrix = matrix(
 [items[-6:-4]+[0], items[-4:-2]+[0], items[-2:]+[1]]
)

 items = items[:-6]

 self.CTM = self.CTM * render_matrix

 elif com == 'i':

 # Set the flatness parameter.
 self.graphics_state["flatness"] = items.pop()

 elif com == 'J':

 # Set the line end cap parameter.
 self.graphics_state["linecap"] = items.pop()

 elif com == 'd':

 # Set the line dash pattern.
 phase = items.pop()
 dash_array = items.pop()

 self.graphics_state["linedash"] = (dash_array, phase)

 elif com == 'j':

 # Set the line join parameter.
 self.graphics_state["linejoin"] = items.pop()

 elif com == 'w':

 # Set the line width.
 self.graphics_state["linewidth"] = items.pop()

 elif com == 'M':

 # Set the mitre limit.
 self.graphics_state["miterlimit"] = items.pop()

 elif com == 'gs':

 # Use the generic graphics state operator to set a
 # parameter in the general graphics state using an
 # extended graphics state dictionary.
 self.generic_graphics_state(items.pop())

 # Colour/Color operators

 elif com == 'g':

 # Set the colour space to DeviceGray and set the grey
 # tint for filling paths.
 self.graphics_state["fill color space"] = "DeviceGray"
 self.graphics_state["fill color"]["DeviceGray"] = \
 items.pop()

 elif com == 'G':

 # Set the colour space to DeviceGray and set the grey
 # tint for path strokes.
 self.graphics_state["stroke color space"] = "DeviceGray"
 self.graphics_state["stroke color"]["DeviceGray"] = \
 items.pop()

 elif com == 'rg':

 # Set the colour space to DeviceRGB and set the colour
 # for filling paths.
 self.graphics_state["fill color space"] = "DeviceRGB"
 self.graphics_state["fill color"]["DeviceRGB"] = items[-3:]

 items = items[:-3]

 elif com == 'RG':

 # Set the colour space to DeviceRGB and set the colour
 # for path strokes.
 self.graphics_state["stroke color space"] = "DeviceRGB"
 self.graphics_state["stroke color"]["DeviceRGB"] = \
 items[-3:]

 items = items[:-3]

 elif com == 'k':

 # Set the colour space to DeviceCMYK and set the colour
 # for filling paths.
 self.graphics_state["fill color space"] = "DeviceCMYK"
 self.graphics_state["fill color"]["DeviceCMYK"] = items[-4:]

 items = items[:-4]

 elif com == 'K':

 # Set the colour space to DeviceCMYK and set the colour
 # for path strokes.
 self.graphics_state["stroke color space"] = "DeviceCMYK"
 self.graphics_state["stroke color"]["DeviceCMYK"] = \
 items[-4:]

 items = items[:-4]

 elif com == 'cs':

 # Set the colour space to use for filling paths.
 space = items.pop()

 # The "space" variable should contain a name object.
 self.graphics_state["fill color space"] = space.name

 elif com == 'CS':

 # Set the colour space to use for path strokes.
 space = items.pop()

 # The "space" variable should contain a name object.
 self.graphics_state["stroke color space"] = space.name

 elif com == 'sc':

 # Set the colour for filling paths.

 # The items list will be modified appropriately by the
 # following method.

 items = self.set_colour(
 items, self.graphics_state["fill color space"],
 "fill color"
)

 elif com == 'SC':

 # Set the colour for path strokes.

 # The items list will be modified appropriately by the
 # following method.

 items = self.set_colour(
 items, self.graphics_state["stroke color space"],
 "stroke color"
)

 elif com == 'scn':

 # Set the colour and/or pattern for filling paths.

 # Shorthand
 fcs_name = self.graphics_state["fill color space"]

 if fcs_name == "Pattern":

 # Read the last item on the stack.
 pattern_name = items.pop()

 # Find the pattern in the page's Resources dictionary.
 pattern = self.page.Resources[pattern_name]

 if pattern["PatternType"] == 1:

 if pattern["PaintType"] == 1:

 # No colour components should be specified.
 pass

 elif pattern["PaintType"] == 2:

 # Use the colour components to specify the
 # colour.

 items = self.set_colour(
 items,
 self.graphics_state["fill color space"],
 "fill color"
)

 elif pattern["PatternType"] == 2:

 # No colour components should be specified.
 pass

 elif fcs_name == "Separation":

 # Set the tint using a single colour component.
 # [Not implemented.]
 items.pop()

 elif fcs_name == "ICCBased":

 # Set the fill colour using the colour components
 # given.
 # [Not implemented.]
 pass

 else:

 # Fall back on the support method for the 'sc'
 # command.

 items = self.set_colour(
 items, self.graphics_state["fill color space"],
 "fill color"
)

 elif com == 'SCN':

 # Set the colour and/or pattern for path strokes.

 # Shorthand
 scs_name = self.graphics_state["stroke color space"]

 if scs_name == "Pattern":

 # Read the last item on the stack.
 pattern_name = items.pop()

 # Find the pattern in the page's Resources dictionary.
 pattern = self.page.Resources["Pattern"][pattern_name]

 if pattern["PatternType"] == 1:

 if pattern["PaintType"] == 1:

 # No colour components should be specified.
 pass

 elif pattern["PaintType"] == 2:

 # Use the colour components to specify the
 # colour.

 items = self.set_colour(
 items,
 self.graphics_state["fill color space"],
 "fill color"
)

 elif pattern["PatternType"] == 2:

 # No colour components should be specified.
 pass

 elif scs_name == "Separation":

 # Set the tint using a single colour component.
 # [Not implemented.]
 items.pop()

 elif scs_name == "ICCBased":

 # Set the stroke colour using the colour components
 # given.
 # [Not implemented.]
 pass

 else:

 # Fall back on the support method for the 'SC'
 # command.

 items = self.set_colour(
 items, self.graphics_state["stroke color space"],
 "stroke color"
)

 elif com == 'ri':

 # Colour rendering intent
 # [Not implemented (see p333 of PDF 1.3 specification).]
 items.pop()

 # Path objects

 elif com == 'm':

 # Move the current point to a new position.
 # (Start of a new path.)

 # Before reading this path, store the graphics state
 # in the contents list for renderers to use.
 #contents.append(GraphicsState(self.graphics_state))

 # Read the path information (re-reading this command
 # and supplying the necessary operands).
 #operands = items[-2:]

 items, path, next = self.read_path(at, items)

 contents.append(path)

 #items = items[:-2]

 elif com == 're':

 # Draw a rectangle.

 # Before reading the rectangle, store the graphics state
 # in the contents list for renderers to use.
 #contents.append(GraphicsState(self.graphics_state))

 # Read the path information (re-reading this command
 # and supplying the necessary operands).
 #operands = items[-4:]

 items, path, next = self.read_path(at, items)

 contents.append(path)

 #items = items[:-4]

 # Objects

 elif com == 'BT':

 # Text information is given.

 # Before reading this text, store the graphics state
 # in the contents list for renderers to use.
 #contents.append(GraphicsState(self.graphics_state))

 #end = string.find(self.file, 'ET', at)

 # Read from the content following this command.
 text_contents, next = self.read_textobject(next, 'ET')
 contents.append(text_contents)
 #at = end + 2

 elif com == 'BI':

 # In-line image object is given.

 # Read from the content following this command.
 end = string.find(self.file, 'EI', next)
 # self.read_inline_imageobject(at, end)
 next = end + 2

 else:

 # print 'Command', com, 'not known.'
 pass

 else:

 # A command has not been found so this must be a parameter.
 items.append(item)

 # Skip any whitespace following the current offset into the content.
 at = self._skip_whitespace(next)

 # Return the contents found.

 return contents

 def generic_graphics_state(self, name):

 # Find the entry in the Resources dictionary corresponding to the
 # name supplied and set the appropriate parameter in the general
 # graphics state.

 # Find the "ExtGState" entry in the page's Resources dictionary.
 extgstate = self.page.Resources["ExtGState"]

 # Read a dictionary of parameters to change and their new values.

 # [If the name is not in the dictionary then a KeyError will be
 # raised. We may want to catch this.]

 changes = extgstate[name.name]

 add_state = {}

 for key, value in changes.items():

 if key == 'SA':

 # Stroke adjustment
 add_state["stroke adjust"] = value

 elif key == 'OP':

 # Overprint for strokes
 add_state["stroke overprint"] = value

 elif key == 'op':

 # Overprint for fills
 add_state["fill overprint"] = value

 elif key == 'OPM':

 # Overprint mode
 add_state["overprint mode"] = value

 # Various missing commands from p328-329 of the PDF 1.3
 # specification.

 elif key == 'SM':

 # Smoothness
 add_state["smoothness"] = value

 # Copy the contents of the add_state dictionary into the graphics
 # state, taking into account any restrictions on values.

 # Ensure that the fill overprint parameter is set if the stroke
 # overprint parameter is defined.
 if add_state.has_key("OP") and not add_state.has_key("op"):

 add_state["op"] = add_state["OP"]

 for key, value in add_state.items():

 self.graphics_state[key] = value

 def set_colour(self, items, colour_space, colour_type):

 """set_colour(self, items, colour_space, colour_type)

 Set the colour (fill or stroke) in the colour space given using
 the relevant number of parameters from the items list.

 The items list will be modified by this method.
 """

 # Shorthand

 if isinstance(colour_space, name):

 cs_name = colour_space.name

 else:

 cs_name = colour_space

 if cs_name == "DeviceGray":

 # Expect only one operand.
 self.graphics_state[colour_type][cs_name] = items.pop()

 elif cs_name == "CalGray":

 # Expect only one operand.
 self.graphics_state[colour_type][cs_name] = items.pop()

 elif cs_name == "Indexed":

 # Expect only one operand.
 self.graphics_state[colour_type][cs_name] = items.pop()

 elif cs_name == "DeviceRGB":

 # Expect three operands.
 self.graphics_state[colour_type][cs_name] = items[-3:]
 items = items[:-3]

 elif cs_name == "CalRGB":

 # Expect three operands.
 self.graphics_state[colour_type][cs_name] = items[-3:]
 items = items[:-3]

 elif cs_name == "Lab":

 # Expect three operands.
 self.graphics_state[colour_type][cs_name] = items[-3:]
 items = items[:-3]

 elif cs_name == "DeviceCMYK":

 # Expect four operands.
 self.graphics_state[colour_type][cs_name] = items[-4:]
 items = items[:-4]

 elif cs_name == "CalCMYK":

 # Expect four operands.
 self.graphics_state[colour_type][cs_name] = items[-4:]
 items = items[:-4]

 else:

 # Unknown colour space.
 self.graphics_state[colour_type][cs_name] = items
 items = []

 return items

 def read_path(self, start, items):

 # Record the contents of the path.
 subpaths = []

 # Skip initial whitespace and read the path elements.

 # Path segment operators

 at = self._skip_whitespace(start)

 while at < self.length:

 next, item = self._read_next(at, items)

 if isinstance(item, command):

 com = item.command

 if com == 'm':

 # Move the current point to a new position.
 # (Start of a new subpath.)

 self.current_point = point(*items[-2:])
 items = items[:-2]

 move = pdfpath.Move(self.current_point)

 # Read the subpath information, adding the move operation
 # to the rest of that subpath. The items list is passed
 # because parameters may be found when reading the
 # subpath that will have to be used back at this level.
 items, subpath, next = self.read_subpath(next, move, items)

 # Append the subpath to the list of subpaths.
 subpaths.append(subpath)

 elif com == 're':

 # Draw a rectangle.

 p = point(*items[-4:-2])
 width, height = items[-2:]

 items = items[:-4]

 # Add the rectangle to the list of subpaths.
 subpaths.append(
 pdfpath.Rectangle(p, width, height)
)

 else:

 # Not a list of path segments or a rectangle.

 # Leave the loop, maintaining the offset pointing
 # to this command.
 break

 else:

 # A command has not been found so this must be a parameter.
 items.append(item)

 # Skip any whitespace following the current offset into the content.
 at = self._skip_whitespace(next)

 #print "%i unused stack items" % len(items)

 # Path clipping operators

 clipping = []

 while at < self.length:

 next, item = self._read_next(at, items)

 if isinstance(item, command):

 com = item.command

 if com == 'W':

 # Clip with the current path, using the non-zero winding
 # rule to determine the regions inside the clipping path.
 clipping.append(
 pdfpath.Clip("non-zero")
)

 elif com == 'W*':

 # Clip with the current path, using the even-odd winding
 # rule to determine the regions inside the clipping path.
 clipping.append(pdfpath.Clip("even-odd"))

 else:

 # Not a clipping operator/command.

 # Leave the loop, maintaining the offset pointing
 # to this command.
 break

 else:

 # A command has not been found so this must be a parameter.
 items.append(item)

 # Skip any whitespace following the current offset into the content.
 at = self._skip_whitespace(next)

 # Path painting operators

 painting = []

 while at < self.length:

 next, item = self._read_next(at, items)

 if isinstance(item, command):

 com = item.command

 if com == 'n':

 # End the path.
 at = next
 break

 elif com == 'S':

 # Stroke the path.
 painting.append(pdfpath.Stroke())
 at = next
 break

 elif com == 's':

 # Close then stroke the path.
 painting.append(pdfpath.Close())
 painting.append(pdfpath.Stroke())
 at = next
 break

 elif com == 'f':

 # Fill the path using the non-zero winding rule.
 painting.append(pdfpath.Fill("non-zero"))
 at = next
 break

 elif com == 'F':

 # Fill the path using the non-zero winding rule.
 painting.append(pdfpath.Fill("non-zero"))
 at = next
 break

 elif com == 'f*':

 # Fill the path using the even-odd winding rule.
 painting.append(pdfpath.Fill("even-odd"))
 at = next
 break

 elif com == 'B':

 # Fill and stroke the path using the non-zero winding rule.
 # Equivalent to q f Q S
 painting.append(pdfpath.Fill("non-zero"))
 painting.append(pdfpath.Stroke())
 at = next
 break

 elif com == 'b':

 # Close, fill and stroke the path using the non-zero
 # winding rule. Equivalent to h B
 painting.append(pdfpath.Close())
 painting.append(pdfpath.Fill("non-zero"))
 painting.append(pdfpath.Stroke())
 at = next
 break

 elif com == 'B*':

 # Even-odd fill and stroke.
 # Equivalent to q f* Q S
 painting.append(pdfpath.Fill("even-odd"))
 painting.append(pdfpath.Stroke())
 at = next
 break

 elif com == 'b*':

 # Close path, perform an even-odd fill and stroke.
 # Equivalent to h B*
 painting.append(pdfpath.Close())
 painting.append(pdfpath.Fill("even-odd"))
 painting.append(pdfpath.Stroke())
 at = next
 break

 elif com == 'sh':

 # Gradient fill using a Shading dictionary.
 name = items.pop()
 painting.append(pdfpath.Gradient(name))
 at = next
 break

 else:

 # print 'Command', com, 'not known.'

 # Leave the loop, maintaining the offset pointing
 # to this command.
 break

 else:

 # A command has not been found so this must be a parameter.
 items.append(item)

 # Skip any whitespace following the current offset into the content.
 at = self._skip_whitespace(next)

 # Return the items found.

 return items, pdfpath.Path(subpaths, clipping, painting), at

 def read_subpath(self, start, initial, items):

 """subpath = read_subpath(self, start, initial)

 Return a subpath found in the contents starting at the offset given.
 The initial value is the operation which initiated this subpath.
 """

 # Path segment operators

 # Record the contents of the subpath including the initial
 # operation/command which started the subpath.
 contents = [initial]

 at = self._skip_whitespace(start)

 while at < self.length:

 next, item = self._read_next(at, items)

 if isinstance(item, command):

 com = item.command

 if com == 'l':

 # Construct a straight line from the current point to the
 # new current point specified.
 new_point = point(*items[-2:])

 contents.append(
 pdfpath.Line(self.current_point, new_point)
)

 # Set the new current point.
 self.current_point = new_point

 items = items[:-2]

 elif com == 'c':

 # Construct a cubic Bezier curve from the current point to
 # a new current point using two control points.
 c1 = point(*items[-6:-4])
 c2 = point(*items[-4:-2])
 new_point = point(*items[-2:])

 contents.append(
 pdfpath.Bezier(self.current_point, c1, c2, new_point)
)

 # Set the new current point.
 self.current_point = new_point

 items = items[:-6]

 elif com == 'v':

 # Construct a cubic Bezier curve from the current point to
 # a new current point using the current point as the first
 # control point and the given control point as the second
 # control point.

 c1 = self.current_point
 c2 = point(*items[-4:-2])
 new_point = point(*items[-2:])

 contents.append(
 pdfpath.Bezier(self.current_point, c1, c2, new_point)
)

 # Set the new current point.
 self.current_point = new_point

 items = items[:-4]

 elif com == 'y':

 # Construct a cubic Bezier curve from the current point to
 # a new current point using the given control point as the
 # first control point and the current point as the second
 # control point.

 c1 = point(*items[-4:-2])
 c2 = point(*items[-2:])
 new_point = c2

 contents.append(
 pdfpath.Bezier(self.current_point, c1, c2, new_point)
)

 # Set the new current point.
 self.current_point = new_point

 items = items[:-4]

 elif com == 'h':

 # Close the path.
 contents.append(
 pdfpath.Close()
)

 elif com == 'm':

 # A new subpath has been found.

 # Leave the loop, maintaining the offset pointing
 # to this command.
 break

 elif com == 're':

 # A rectangle has been found.

 # Leave the loop, maintaining the offset pointing
 # to this command.
 break

 else:

 # print 'Command', com, 'not known.'

 # Leave the loop, maintaining the offset pointing
 # to this command.
 break

 else:

 # A command has not been found so this must be a parameter.
 items.append(item)

 # Skip any whitespace following the current offset into the content.
 at = self._skip_whitespace(next)

 #print "%i unused stack items" % len(items)

 # Return the items found.

 return items, pdfpath.Subpath(contents), at

 def read_textobject(self, start, ending):

 """read_textobject(self, start, end)

 Implemented commands:

 Tf <name> <size> Tf Set font name and size
 Td <x> <y> Td Move to next line (displace following
 text)
 TD <x> <y> TD Move to next line (displace following
 text and set leading to -y)
 Tj <string> Tj Write text
 ' <string> ' Write text
 (equivalent to T* <string> Tj)
 " Write text with character and word space
 attributes.
 Equivalent to <word space> Tw
 <char space> Tc <string> '
 TJ
 Tc <length> Tc Text character spacing
 Tw <length> Tw Word spacing
 Tz <percentage> Tz Set horizontal scale to a percentage
 of its current value
 TL <leading> TL Set leading
 Tr <render> Tr Set rendering mode
 Ts <rise> Ts Set text rise in text space units
 Tm <a> <c> <d> <e>
 <f> Tm Define text matrix and text line matrix.
 Reset current point and line start
 position to the origin.
 T* T* Move to the start of the next line
 (equivalent to 0 Tl Td).
 """

 items = []

 self.text_character_spacing = 0 # T_c
 self.text_word_spacing = 0 # T_w
 self.text_horizontal_scale = 100 # T_h
 self.text_leading = 0 # T_l
 # self.text_font is initially undefined T_f
 # self.text_size is initially undefined T_fs
 self.text_rendering_mode = 0 # T_mode
 self.text_rise = 0 # T_rise

 # Define the text matrix - this transforms coordinates from text
 # space to user space.
 self.text_matrix = identity(3) # T_m
 self.line_matrix = identity(3) # T_LM
 self.text_rendering_matrix = identity(3) # T_RM
 self.text_line_start = self.origin

 # Record the contents of the text object.
 contents = []

 at = self._skip_whitespace(start)

 while at < self.length:

 at, item = self._read_next(at, items)

 if isinstance(item, command):

 com = item.command

 if com == 'Tf':

 # Specify font <name> <size> Tf
 text_font, self.text_size = \
 self.select_font(items[-2].name, items[-1])
 items.pop()
 items.pop()

 self.text_font = pdftext.Font(
 text_font, self.text_size
)

 # Add the font details to the contents found.
 contents.append(self.text_font)

 elif com == 'Td':

 # Displace text <x> <y> (in points)
 tx, ty = items[-2:]
 items.pop()
 items.pop()

 self.text_matrix = self.move_text_to(
 tx, ty, self.text_matrix, self.line_matrix
)

 self.line_matrix = self.text_matrix.copy()
 self.text_line_start = self.text_line_start + point(tx, ty)
 self.current_point = self.text_line_start

 elif com == 'TD':

 # Move to the next line (equivalent to setting the
 # leading to the first value then displacing the text
 # by the following values).
 self.text_leading = -items[-1]

 tx, ty = items[-2:]
 items.pop()
 items.pop()

 self.text_matrix = self.move_text_to(
 tx, ty, self.text_matrix, self.line_matrix
)
 self.line_matrix = self.text_matrix.copy()
 self.text_line_start = self.text_line_start + point(tx, ty)
 self.current_point = self.current_point + point(tx, ty)

 elif com == 'Tj':

 # Write text <string>
 text = items[-1]

 items.pop()

 # Calculate the text rendering matrix.
 self.text_rendering_matrix = \
 self.calculate_rendering_matrix(
 self.text_size, self.text_horizontal_scale,
 self.text_rise, self.text_matrix, self.CTM
)

 # Create a text object.
 text_object = pdftext.Text(
 text,
 self.text_font, self.text_size,
 self.text_character_spacing, self.text_word_spacing,
 self.text_rendering_matrix,
 self.current_point
)

 # Add the text to the contents list.
 contents.append(text_object)

 # Update the current point using the relevant text object
 # method.
 self.current_point = \
 self.current_point + text_object.after()

 elif com == "'":

 # Write text (equivalent to T* <string> Tj)
 tx = 0
 ty = self.text_leading

 self.text_matrix = self.move_text_to(
 tx, ty, self.text_matrix, self.line_matrix
)

 text = items[-1]

 items.pop()

 # Calculate the text rendering matrix.
 self.text_rendering_matrix = \
 self.calculate_rendering_matrix(
 self.text_size, self.text_horizontal_scale,
 self.text_rise, self.text_matrix, self.CTM
)

 # Create a text object.
 text_object = pdftext.Text(
 text,
 self.text_font, self.text_size,
 self.text_character_spacing, self.text_word_spacing,
 self.text_rendering_matrix,
 self.current_point
)

 # Add the text to the contents list.
 contents.append(text_object)

 # Update the current point using the relevant text object
 # method.
 self.current_point = \
 self.current_point + text_object.after()

 elif com == '"':

 # Write text with character and word space attributes.
 # (Equivalent to <word space> Tw <char space> Tc <string> ')
 text = items.pop()
 self.text_character_spacing = items.pop()
 self.text_word_spacing = items.pop()
 tx = 0
 ty = self.text_leading

 self.text_matrix = self.move_text_to(
 tx, ty, self.text_matrix, self.line_matrix
)

 # Calculate the text rendering matrix.
 self.text_rendering_matrix = \
 self.calculate_rendering_matrix(
 self.text_size, self.text_horizontal_scale,
 self.text_rise, self.text_matrix, self.CTM
)

 # Create a text object.
 text_object = pdftext.Text(
 text,
 self.text_font, self.text_size,
 self.text_character_spacing, self.text_word_spacing,
 self.text_rendering_matrix,
 self.current_point
)

 # Add the text to the contents list.
 contents.append(text_object)

 # Update the current point using the relevant text object
 # method.
 self.current_point = \
 self.current_point + text_object.after()

 elif com == 'TJ':

 # Show text string with individual character positioning.
 # <array> TJ

 # Iterate through the items in the array, treating them
 # as individual text strings and position information.
 for item in items[-1]:

 if type(item) == types.StringType:

 # Text

 # Calculate the text rendering matrix.
 self.text_rendering_matrix = \
 self.calculate_rendering_matrix(
 self.text_size, self.text_horizontal_scale,
 self.text_rise, self.text_matrix, self.CTM
)

 # Create a text object.
 text_object = pdftext.Text(
 item,
 self.text_font, self.text_size,
 self.text_character_spacing,
 self.text_word_spacing,
 self.text_rendering_matrix,
 self.current_point
)

 # Add the text to the contents list.
 contents.append(text_object)

 # Update the current point using the relevant text
 # object method.
 self.current_point = \
 self.current_point + text_object.after()

 else:

 # Position information

 # Subtract the value from the coordinate used to
 # specify the position of words on a line for the
 # current writing direction; x for horizontal
 # text, y for vertical text.

 # User space coordinates correspond to points
 # and these units are in thousandths of an em,
 # so we have to divide the current text size by
 # a thousand and multiply it by this number.
 amount = item

 # * Assume horizontal writing for the moment. *

 self.current_point.x = self.current_point.x - (
 self.text_size * amount / 1000.0
)

 #self.position_text(items)
 #print "TJ ---"
 #print repr(items[-1])
 #print "--- TJ"

 elif com == 'Tc':

 # Text character spacing
 self.text_character_spacing = items.pop()

 elif com == 'Tw':

 # Word spacing
 self.text_word_spacing = items.pop()

 elif com == 'Tz':

 # Horizontal scaling
 self.text_horizontal_scale = (items.pop() / 100.0)

 elif com == 'TL':

 # Leading
 self.text_leading = items.pop()

 elif com == 'Tr':

 # Rendering mode
 self.text_rendering_mode = items.pop()

 elif com == 'Ts':

 # Text rise
 self.text_rise = items.pop()

 elif com == 'Tm':

 # Set text and line matrices.
 self.text_matrix = matrix(
 [items[-6:-4]+[0], items[-4:-2]+[0], items[-2:]+[1]]
)

 items = items[:-6]

 self.line_matrix = self.text_matrix.copy()

 self.current_point = self.origin
 self.text_line_start = self.origin

 elif com == "T*":

 # Move to the next line using the leading parameter
 # as the vertical displacment.
 tx = 0
 ty = self.text_leading

 self.text_matrix = self.move_text_to(
 tx, ty, self.text_matrix, self.line_matrix
)
 self.line_matrix = self.text_matrix.copy()
 self.text_line_start = self.text_line_start + point(tx, ty)
 self.current_point = self.current_point + point(tx, ty)

 elif com == ending:

 # The ending of the text object has been found.
 break

 else:
 pass
 # print 'Command', com, 'not known.'

 else:

 # A command has not been found so this must be a parameter.
 items.append(item)

 at = self._skip_whitespace(at)

 #print "%i unused stack items" % len(items)

 # Return the items found.

 return contents, at

 def move_text_to(self, tx, ty, text_matrix, line_matrix):

 text_matrix = matrix(
 [[1, 0, 0], [0, 1, 0], [tx, ty, 1]]
) * line_matrix

 return text_matrix

 def select_font(self, name, size):

 # Look in the resources dictionary for the font dictionary
 if self.page.Resources.has_key('Font') == 0:

 return -1 # Failed

 if self.page.Resources['Font'].has_key(name) == 0:

 return -1

 text_font = self.page.Resources['Font'][name]
 text_size = size

 return text_font, text_size

 def calculate_rendering_matrix(self, T_fs, T_h, T_rise, T_m, CTM):

 # Construct a matrix to modify the text matrix.
 render_matrix = matrix([[T_fs * T_h, 0, 0],[0, T_fs, 0], [0, T_rise, 0]])

 # Multiply the newly constructed matrix by the text matrix and the CTM.
 return render_matrix * (T_m * CTM)

 def read_text(self, objects = None, position = None, threshold = None):

 """read_text(self, objects = None, position = None, threshold = None)

 Read the contents of the PDFContents object and return a tuple
 containing all of the text found and the position of the final
 text object found on the page.

 None of the keyword arguments should be specified.
 """

 if objects is None: objects = self.contents
 if position is None: position = point(0, 0)

 text = []

 for obj in objects:

 if type(obj) == types.ListType:

 new_text, position = self.read_text(obj, position, threshold)

 text.append(new_text)

 elif isinstance(obj, pdftext.Text):

 if obj.position.x < position.x:

 text.append("\n")
 position = obj.position

 if obj.text != " ":

 dp = abs(obj.position - position)

 # Assume horizontal writing.
 if threshold is not None and dp > (threshold * obj.size):

 # Infer that a space could be inserted before this
 # piece of text.
 text.append(" " * int(dp/obj.size))

 text.append(obj.text)

 position = obj.position

 return "".join(text), position

if __name__ == '__main__':

 if len(sys.argv) > 1:

 doc = PDFDocument(sys.argv[1])

 print 'Version', doc.document_version()

 #sys.exit()

pdftools-0.37/pdftools/pdfpath.py

pdftools - A library of classes for parsing and rendering PDF documents.
Copyright (C) 2001-2008 by David Boddie

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Created: 2003

"""
pdfpath.py

Classes for representing path information in PDF documents.

Path state command support.
"""

class Path:

 def __init__(self, subpaths, clipping, painting):

 self.subpaths = subpaths
 self.clipping = clipping
 self.painting = painting

class Subpath:

 def __init__(self, contents):

 self.contents = contents

class Move:

 def __init__(self, point):

 self.point = point

 def __repr__(self):

 return "<Move: %s>" % repr(self.point)

class Line:

 def __init__(self, point1, point2):

 self.point1 = point1
 self.point2 = point2

 def __repr__(self):

 return "<Line: from %s to %s>" % (repr(self.point1), repr(self.point2))

class Bezier:

 def __init__(self, point1, control1, control2, point2):

 self.point1 = point1
 self.control1 = control1
 self.control2 = control2
 self.point2 = point2

 def __repr__(self):

 return "<Bezier: from %s to %s; control points: %s %s>" % (
 repr(self.point1), repr(self.point2),
 repr(self.control1), repr(self.control2)
)

class Rectangle:

 def __init__(self, point, width, height):

 self.point = point
 self.width = width
 self.height = height

 def __repr__(self):

 return "<Rectangle: origin: %s; dimensions: %.3f x %.3f>" % (
 repr(self.point), self.width, self.height
)

class Close:

 pass

class Clip:

 def __init__(self, winding):

 self.winding = winding

 def __repr__(self):

 return "<Clip: %s rule>" % self.winding

Painting operations

class Stroke:

 pass

class Fill:

 def __init__(self, winding):

 self.winding = winding

 def __repr__(self):

 return "<Fill: %s rule>" % self.winding

class Gradient:

 def __init__(self, name):

 self.name = name

pdftools-0.37/pdftools/pdftext.py

pdftools - A library of classes for parsing and rendering PDF documents.
Copyright (C) 2001-2008 by David Boddie

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Created: 2003
"""
pdftext.py

Classes for representing textual information in PDF documents.

Text state command support.
"""

Import required items from the pdftools module.
from pdfdefs import point

try:
 from PyQt4.QtGui import QFontDatabase, QFontMetricsF
 with_metrics = True

except ImportError:
 with_metrics = False

class Font:

 def __init__(self, font, size):

 self.font = font
 self.size = size

 def _width_without_metrics(self, text):

 # Return the width of this piece of text when rendered using this
 # font.

 # * To be replaced: return a value for a monospaced font. *
 return len(text) * self.size

 def _width_with_metrics(self, text):

 # Return the width of this piece of text when rendered using this
 # font.

 fontName = self.font["BaseFont"].name
 at = fontName.find("+")
 if at != -1:
 fontName = fontName[at+1:]

 if "-" in fontName:
 family, style = fontName.split("-")[:2]
 elif " " in fontName:
 family, style = fontName.split(" ")[:2]
 elif "," in fontName:
 family, style = fontName.split(",")[:2]
 else:
 family = fontName
 style = ""

 font = QFontDatabase().font(family, style, self.size)
 font.setPointSizeF(self.size)
 fm = QFontMetricsF(font)
 return fm.width(text)

 def width(self, text, use_metrics = False):

 if use_metrics and with_metrics:
 return self._width_with_metrics(text)
 else:
 return self._width_without_metrics(text)

class Text:

 def __init__(self, text, font, size, character_spacing, word_spacing,
 rendering_matrix, position):

 self.text = text

 # Keep a reference to the font dictionary used.
 self.font = font

 self.size = size

 self.character_spacing = character_spacing
 self.word_spacing = word_spacing

 self.rendering_matrix = rendering_matrix.copy()
 self.position = position

 # This is temporary
 #sys.stdout.write(text)

 def after(self):

 # Calculate the location of the current point after the text has
 # been placed using the position given as the initial location of the
 # current point.

 # We must first determine the direction of the text.

 # * Assume horizontal text. *

 # We examine each character in turn, calculating its width or
 # height, depending on the writing direction, then apply the
 # character spacing correction to this length value.

 # If a space character is found then the word spacing correction is
 # additionally applied to the length found for the space.

 # Finally, the total displacement of the current point is added to
 # its initial value to determine its new value.
 return point(self.font.width(self.text) + self.character_spacing, 0)

pdftools-0.37/LICENSE

		 GNU GENERAL PUBLIC LICENSE
		 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

		 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		 END OF TERMS AND CONDITIONS

	 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

pdftools-0.37/MANIFEST

LICENSE
MANIFEST
README.txt
setup.py
pdftools/__init__.py
pdftools/pdfdefs.py
pdftools/pdffile.py
pdftools/pdfpath.py
pdftools/pdftext.py

pdftools-0.37/README.txt

========
pdftools
========

Introduction

pdftools is a library of classes for parsing and rendering PDF documents.

Installation

Installation is optional as long as the directory containing the pdftools
package is included in the list of paths stored in the PYTHONPATH environment
variable.

To install the pdftools module, enter the following at the command line from
within the directory unpacked from the archive:

 python setup.py install

You may need to be the root user to install the package.

Font Metrics

pdftools will automatically import the PyQt4 package, if available, so that
information about font metrics can be obtained if requested by the user. If
the PyQt4 package is not installed, this information will not be available.

If the PyQt4 package is available and you need to obtain font metrics, you
must first ensure that a QApplication instance has been created. This can be
achieved by adding the following lines of code to your application:

 from PyQt4.QtGui import QApplication
 app = QApplication([])

Please see the documentation for PyQt4 for more information about QApplication.

The mechanism used to automatically import PyQt4 and use Qt classes may change
in future versions of this package.

License

Copyright (C) 2001-2008 by David Boddie

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

pdftools-0.37/setup.py

#! /usr/bin/env python

from distutils.core import setup

import pdftools

setup(
 name = "pdftools",
 description = "PDF document reading classes",
 author = "David Boddie",
 author_email = "david@boddie.org.uk",
 url = "http://www.boddie.org.uk/david/Projects/Python/pdftools",
 version = pdftools.__version__,
 packages = ["pdftools"]
)

pdftools-0.37/PKG-INFO

Metadata-Version: 1.0
Name: pdftools
Version: 0.37
Summary: PDF document reading classes
Home-page: http://www.boddie.org.uk/david/Projects/Python/pdftools
Author: David Boddie
Author-email: david@boddie.org.uk
License: UNKNOWN
Description: UNKNOWN
Platform: UNKNOWN

