
COMPUTING EXTREMELY ACCURATE QUANTILES USING

t-DIGESTS

TED DUNNING

Abstract. An on-line algorithm for computing approximations of rank-based statistics
is presented that allows controllable accuracy. Moreover, this new algorithm can be used
to compute hybrid statistics such as trimmed means in additional to computing arbitrary
quantiles. An unusual property of the method is that it allows a quantile q to be computed
with an accuracy relative to q(1− q) rather than with an absolute accuracy as with most
methods. This new algorithm is robust with respect to highly skewed distributions or
highly ordered datasets and allows separately computed summaries to be combined with
no loss in accuracy.

An open-source implementation of this algorithm is available from the author.

1. Introduction

Given a sequence of numbers, it is often desirable to compute rank-based statistics such
as the median, 95-th percentile or trimmed means in an on-line fashion, keeping only a
small data structure in memory. Traditionally, such statistics were often computed by
sorting all of the data and then either finding the quantile of interest by interpolation or
by processing all samples within particular quantiles. This sorting approach is infeasible
for very large datasets which has led to interest in on-line approximate algorithms.

One early algorithm for computing on-line quantiles is described in [CLP00]. In that
work specific quantiles were computed by incrementing or decrementing an estimate by
a value proportional to the simultaneously estimated probability density at the desired
quantile. This method is plagued by a circularity in that estimating density is only possible
by estimating yet more quantiles. Moreover, this work did not allow the computation of
hybrid quantities such as trimmed means.

[GK01]Munro and Paterson provided an alternative algorithm to get an accurate esti-
mate of any particular quantile. This is done by keeping s samples from the N samples
seen so far where s << N by the time the entire data set has been seen. If the data are
presented in random order and if s = θ(N1/2), then Munro and Paterson’s algorithm has
a high probability being able to retain a set of samples that contains the median. This
algorithm can be adapted to find a number of pre-specified quantiles at the same time at
proportional cost in memory. The memory consumption of Munro-Paterson algorithm is
excessive if precise results are desired. Approximate results can be had with less memory,
however. A more subtle problem is that the implementation in Sawzall[PDGQ05] and the

1

2 TED DUNNING

Datafu library[Lin] uses a number of buckets computed from the GCD of the desired quan-
tiles. This means that if you want to compute the 99-th, 99.9-th and 99.99-th percentiles,
a thousand buckets are required.

An alternative approach is described in [SBAS04]. In this work, incoming values are
assumed to be integers of fixed size. Such integers can trivially be arranged in a perfectly
balanced binary tree where the leaves correspond to the integers and the interior nodes
correspond to bit-wise prefixes. This tree forms the basis of the data structure known as a
Q-digest. The idea behind a Q-digest is that in the uncompressed case, counts for various
values are assigned to leaves of the tree. To compress this tree, sub-trees are collapsed
and counts from the leaves are aggregated into a single node representing the sub-tree
such that the maximum count for any collapsed sub-tree is less than a threshold that is a
small fraction of the total number of integers seen so far. Any quantile can be computed
by traversing the tree in left prefix order, adding up counts until the desired fraction of
the total is reached. At that point, count for the last sub-tree traversed can be used to
interpolate to the desired quantile within a small and controllable error. The error is
bounded because the count for each collapsed sub-tree is bounded.

The two problems with the Q-digest are that it depends on the tree structure being
known ahead of time and that the error bounds do not necessarily apply if the algorithm
is used in an on-line fashion. Adapting the Q-digest to use an balanced tree over arbitrary
elements is difficult. This difficulty arises because rebalancing the tree involves sub-tree
rotations and these rotations may require reapportionment of previously collapsed counts
in complex ways. This reapportionment could have substantial effects on the accuracy of
the algorithm and in any case make the implementation much more complex because the
concerns of counting cannot be separated from the concerns of maintaining a balanced
tree. Another problem with Q-digests is that if they are subjected to compression during
building, it isn’t entirely clear how to handle compressed counts that move high above
the leaves, but which eventually have non-trivial counts at a lower level in the tree. The
proof of correctness for Q-digests ignores this complication by only considering the case
where counts are compressed after being collected on the leaves. It would be desirable to
have error bounds that apply to a completely on-line data structure. These limitations
do not apply in the original formulation of the Q-digest as a compression algorithm for
quantile information, but current trends towards the use of on-line algorithms make these
limitations awkward.

The work described here shows how the fundamental idea of a Q-digest can be easily
extended to values in R without the complexity of apportioning counts during tree rebal-
ancing. Indeed, this new data structure eliminates the idea of a tree for storing the original
samples, maintaining only the concept of collapsing groups of observations in a way that
preserves accuracy. This new algorithm, known as t-digest, has well-defined and easily
proven error bounds and allows parallel on-line operation. A particularly novel aspect of
the variant of t-digest described here is that accuracy for estimating the q quantile is rel-
ative to q(1 − q). This is in contrast to earlier algorithms which had errors independent
of q. The relative error bound of the t-digest is convenient when computing quantiles for

COMPUTING EXTREMELY ACCURATE QUANTILES USING t-DIGESTS 3

very small q or for q near 1. As with the Q-digest algorithm, the accuracy/size trade-off
can be controlled by setting a single compression parameter.

The accuracy bounds are tight regardless of data ordering for the non-parallel on-line
case. In the case of parallel execution, the error bound is somewhere between the constant
error bound and the relative error bound except in the case of highly ordered input data.
For randomly ordered data, parallel execution has expected error bounded by the same
bound as for sequential execution.

2. The Algorithm

The basic outline of the algorithm for constructing a t-digest is quite simple. An initially
empty ordered list of centroids, C = [c1 . . . cm] is kept. Each centroid consists of a mean
and a count. To add a new value xn with a weight wn, the set of centroids is found that
have minimum distance to xn. This set is reduced by retaining only centroids with a count
less than 4δq(1 − q)n where δ controls the accuracy of quantile estimates and q is the
estimated quantile for the mean of the centroid. If more than one centroid remains, one is
selected at random. If a centroid is found, then (xn, wn) is added to that centroid. It may
happen that the weight wn is larger than can be added to the selected centroid. If so, as
much weight as possible is allocated to the selected centroid and the selection is repeated
with the remaining weight. If no satisfactory centroid is found or if there is additional
weight to be added after all centroids with minimum distance are considered, then xn is
used to form a new centroid and the next point is considered. This procedure is shown
more formally as Algorithm 1.

In this algorithm, a centroid object contains a mean and and a count. Updating such an
object with a new data-point (x,w) is done using Welford’s method [Wik, Knu98, Wel62].

The number of points assigned to each centroid is limited to max(1, b4Nδq(1 − qc)
where q is the quantile for the approximate mean of the centroid and δ is a parameter
chosen to limit the number of points that can be assigned to a centroid. Typically, this
compression factor is described in terms of its inverse, 1/δ in order to stay compatible with
the conventions used in the Q-Digest. The algorithm approximates q for centroid ci by
summing the weights for all of the centroids ordered before ci:

q(ci) =
ci.count/2 +

∑
j<i cj .count∑

j cj .count

In order to compute this sum quickly, the centroids can be stored in a data structure such
as a balanced binary tree that keeps sums of each sub-tree. For centroids with identical
means, order of creation is used as a tie-breaker to allow an unambiguous ordering. Figure
1 shows actual centroid weights from multiple runs of this algorithm and for multiple
distributions plotted against the ideal bound.

2.1. Ordered Inputs. The use of a bound on centroid size that becomes small for ex-
treme values of q is useful because it allows relative error to be bounded very tightly, but
this bound may be problematic for some inputs. If the values of X are in ascending or
descending order, then C will contain as many centroids as values that have been observed.

4 TED DUNNING

Algorithm 1: Construction of a t-Digest

Input: Ordered set of weighted centroids C = {}, sequence of real-valued, weighted
points X = {(x1, w1), . . . (xN , wN)}, and accuracy tolerance δ

Output: final set C = [c1 . . . cm] of weighted centroids
for (xn, wn) ∈ X :1

z = min |ci.mean− x|;2

S = {ci : |ci.mean− x| = z ∧ ci.count + 1 ≤ 4nδq(ci)(1− q(ci))};3

while S 6= {} ∧ wn > 0 :4

Sample cj ∼ Uniform(S);5

∆w = min(4nδq(ci)(1− q(ci))− cj .count, wn);6

cj .count← cj .count + ∆w;7

cj .mean← cj .mean + ∆w(xn − cj .mean)/cj .count;8

wn ← wn −∆w;9

S ← S − cj10

if wn > 0 :11

C ← C + (xn, wn);12

if |C| > K/δ :13

C ← cluster(permute(C));14

C ← cluster(permute(C));15

return C16

This will happen because each new value of X will always form a new centroid because
q(1 − q) ≈ 0. To avoid this pathology, if the number of centroids becomes excessive, the
set of centroids is collapsed by recursively applying the t-digest algorithm to the centroids
themselves after randomizing the order of the centroids.

In all cases, after passing through all of the data points, the centroids are recursively
clustered one additional time. This allows adjacent centroids to be merged if they do not
violate the size bound. This final pass typically reduces the number of centroids by 20-40%
with no apparent change in accuracy.

2.2. Accuracy Considerations. Initial versions of this algorithm tried to use the centroid
index i as a surrogate for q, applying a correction to account for the fact that extreme
centroids have less weight. Unfortunately, it was difficult to account for the fact that
the distribution of centroid weights changes during the course of running the algorithm.
Initially all weights are 1. Later, some weights become substantially larger. This means
that the relationship between i and q changes from completely linear to highly non-linear
in a stochastic way. This made it difficult to avoid too large or too small cutoff for centroids
resulting in either too many centroids or poor accuracy.

The key property of this algorithm is that the final list of centroids C is very close to
what would have been obtained by simply sorting and then grouping adjacent values in X

COMPUTING EXTREMELY ACCURATE QUANTILES USING t-DIGESTS 5

0
20

0
40

0
60

0
80

0
10

00

Quantile

C
en

tr
oi

d
si

ze

Uniform Distribution

0 0.25 0.5 0.75 1

Quantile

C
en

tr
oi

d
si

ze

Γ(0.1, 0.1) Distribution

0 0.25 0.5 0.75 1

Quantile

C
en

tr
oi

d
si

ze

Sequential Distribution

0 0.25 0.5 0.75 1

Figure 1. The t-digest algorithm respects the size limit for centroids. The
solid grey line indicates the size limit. These diagrams also shows actual cen-
troid weights for 5 test runs on 100, 000 samples from a uniform, Γ(0.1, 0.1)
and sequential uniform distribution. In spite of the underlying distribution
being skewed by roughly 30 orders of magnitude of difference in probability
density for the Γ distribution, the centroid weight distribution is bounded
and symmetric as intended. For the sequential uniform case, values are
produced in sequential order with three passes through the [0, 1] interval
with no repeated values. In spite of the lack of repeats, successive passes
result in many centroids at the quantiles with the same sizes. In spite of
this, sequential presentation of data results in only a small asymmetry in
the resulting size distribution and no violation of the intended size limit.

into groups with the desired size bounds. Clearly, such groups could be used to compute
all of the rank statistics of interest here and if there are bounds on the sizes of the groups,
then we have comparable bounds on the accuracy of the rank statistics in question.

That this algorithm does produce such an approximation is more difficult to prove rig-
orously, but an empirical examination is enlightening. Figure 2 shows the deviation of
samples assigned to centroids for uniform and highly skewed distributions. These devia-
tions are normalized by the half the distance between the adjacent two centroids. This
relatively uniform distribution for deviations among the samples assigned to a centroid is
found for uniformly distributed samples as well as for extremely skewed data. For instance,
the Γ(0.1, 0.1) distribution has a 0.01 quantile of 6.07×10−20, a median of 0.006 and a mean
of 1. This means that the distribution is very skewed. In spite of this, samples assigned
to centroids near the first percentile are not noticeably skewed within the centroid. The
impact of this uniform distribution is that linear interpolation allows accuracy considerably
better than q(1− q)/δ.

2.3. Finding the cumulative distribution at a point. Algorithm 2 shows how to
compute the cumulative distribution P (x) =

∫ x
−∞ p(α) dα for a given value of x by summing

the contribution of uniform distributions centered at each the centroids. Each of the

6 TED DUNNING

Uniform q=0.3 ... 0.7

−1.0 −0.5 0.0 0.5 1.0

0
10

00
0

30
00

0
Gamma(0.1, 0.1) q=0.3 ... 0.7

−1.0 −0.5 0.0 0.5 1.0

0
10

00
0

30
00

0

Gamma, q=0.01

−1.0 −0.5 0.0 0.5 1.0

0
50

0
15

00

Figure 2. The deviation of samples assigned to a single centroid. The
horizontal axis is scaled to the distance to the adjacent centroid so a value
of 0.5 is half-way between the two centroids. There are two significant
observations to be had here. The first is that relatively few points are
assigned to a centroid that are beyond the midpoint to the next cluster.
This bears on the accuracy of this algorithm. The second observation is
that samples are distributed relatively uniformly between the boundaries of
the cell. This affects the interpolation method to be chosen when working
with quantiles. The three graphs show, respectively, centroids from q ∈
[0.3, 0.7] from a uniform distribution, centroids from the same range of a
highly skewed Γ(0.1, 0.1) and centroids from q ∈ [0.01, 0.015] in a Γ(0.1, 0.1)
distribution. This last range is in a region where skew on the order of 1022

is found.

centroids is assumed to extend symmetrically around the mean for half the distance to the
adjacent centroid.

For all centroids except one, this contribution will be either 0 or ci.count/N and the one
centroid which straddles the desired value of x will have a pro rata contribution somewhere
between 0 and ci.count/N . Moreover, since each centroid has count at most δN the
accuracy of q should be accurate on a scale of δ. Typically, the accuracy will be even better
due to the interpolation scheme used in the algorithm and because the largest centroids
are only for values of q near 0.5.

The empirical justification for using a uniform distribution for each centroid can be seen
by referring to again to Figure 2.

2.4. Inverting the cumulative distribution. Computing an approximation of the q
quantile of the data points seen so far can be done by ordering the centroids by ascending
mean. The running sum of the centroid counts will range from 0 to N =

∑
ci.count. One

particular centroid will have a count that straddles the desired quantile q and interpolation
can be used to estimate a value of x. This is shown in Algorithm 3. Note that at the
extreme ends of the distribution as observed, each centroid will represent a single sample
so maximum resolution in q will be retained.

COMPUTING EXTREMELY ACCURATE QUANTILES USING t-DIGESTS 7

2.5. Computing the trimmed mean. The trimmed mean of X for the quantile range
Q = [q0, q1] can be computed by computing a weighted average of the means of centroids
that have quantiles in Q. For centroids at the edge of Q, a pro rata weight is used that is
based on an interpolated estimate of the fraction of the centroid’s samples that are in Q.
This method is shown as Algorithm 4.

Algorithm 2: Estimate quantile C.quantile(x)

Input: Centroids derived from distribution p(x), C = [. . . [mi, si, ki] . . .] , value x
Output: Estimated value of q =

∫ x
−∞ p(α)dα

t = 0, N =
∑

i ki;1

for i ∈ 1 . . .m :2

if i < m :3

∆← (ci+1.mean− ci.mean)/2;4

else:5

∆← (ci.mean− ci−1.mean)/2;6

z = max(−1, (x−mi)/∆);7

if z < 1 :8

return (t+ ki
N

z+1
2)9

t← t+ ki;10

return 111

Algorithm 3: Estimate value at given quantile C.icdf(q)

Input: Centroids derived from distribution p(x), C = [c1 . . . cm] , value q
Output: Estimated value x such that q =

∫ x
−∞ p(α)dα

t = 0, q ← q
∑
ci.count;1

for i ∈ 1 . . .m :2

ki = ci.count;3

if q < ki :4

if i = 1 :5

∆← (ci+1.mean− ci.mean);6

elif i = m :7

∆← (ci.mean− ci−1.mean);8

else:9

∆← (ci+1.mean− ci−1.mean)/2;10

return mi +
(
q−t
ki
− 1

2

)
∆11

t← t+ ki12

return cm.mean13

8 TED DUNNING

3. Empirical Assessment

3.1. Accuracy of estimation for uniform and skewed distributions. Figure 3 shows
the error levels achieved with t-digest in estimating quantiles of 100,000 samples from a
uniform and from a skewed distribution. In these experiments δ = 0.01 was used since it
provides a good compromise between accuracy and space. There is no visible difference in
accuracy between the two underlying distributions in spite of the fact that the underlying

Algorithm 4: Estimate trimmed mean. Note how centroids at the boundary are
included on a pro rata basis.

Input: Centroids derived from distribution p(x), C = [. . . [mi, si, ki] . . .] , limit values
q0, q2

Output: Estimate of mean of values x ∈ [q0, q1]
s = 0, k = 0;1

t = 0, q1 ← q1
∑
ki, q1 ← q1

∑
ki;2

for i ∈ 1 . . .m :3

ki = ci.count;4

if q1 < t+ ki :5

if i > 1 :6

∆← (ci+1.mean− ci−1.mean)/2;7

elif i < m :8

∆← (ci+1.mean− ci.mean);9

else:10

∆← (ci.mean− ci−1.mean);11

η =
(
q−t
ki
− 1

2

)
∆;12

s← s+ η ki ci.mean;13

k ← k + η ki;14

if q2 < t+ ki :15

if i > 1 :16

∆← (ci+1.mean− ci−1.mean)/2;17

elif i < m :18

∆← (ci+1.mean− ci.mean);19

else:20

∆← (ci.mean− ci−1.mean);21

η =
(
1
2 −

q−t
ki

)
∆;22

s← s− η ki ci.mean;23

k ← k − η ki;24

t← t+ ki25

return s/k26

COMPUTING EXTREMELY ACCURATE QUANTILES USING t-DIGESTS 9

densities differ by more roughly 30 orders of magnitude. The accuracy shown here is
computed by comparing the computed quantiles to the actual empirical quantiles for the
sample used for testing and is shown in terms of q rather than the underlying sample value.
At extreme values of q, the actual samples are preserved as centroids with weight 1 so the
observed for these extreme values is zero relative to the original data. For the data shown
here, at q = 0.001, the maximum weight on a centroid is just above 4 and centroids in this
range have all possible weights from 1 to 4. Errors are limited to, not surprisingly, just
a few parts per million or less. For more extreme quantiles, the centroids will have fewer
samples and the results will typically be exact.

●●
●

●

●

●

●

●

●

●

●

0.001 0.01 0.1 0.5 0.9 0.99 0.999

−
20

00
−

10
00

0
10

00
20

00

Uniform

Quantile (q)

Q
ua

nt
ile

 e
rr

or
 (

pp
m

)

●●●
●

●
●

●

●●

●

●
●●●●●●

0.001 0.01 0.1 0.5 0.9 0.99 0.999

Γ(0.1, 0.1)

Quantile (q)

Figure 3. The absolute error of the estimate of the cumulative distribution
function q =

∫ x
−∞ p(α) dα for the uniform and Γ distribution for 5 runs,

each with 100,000 data points. As can be seen, the error is dramatically
decreased for very high or very low quantiles (to a few parts per million).
The precision setting used here, 1/δ = 100, would result in uniform error of
10,000 ppm without adaptive bin sizing and interpolation.

Obviously, with the relatively small numbers of samples such as are used in these ex-
periments, the accuracy of t-digests for estimating quantiles of the underlying distribution
cannot be better than the accuracy of these estimates computed using the sample data
points themselves. For the experiments here, the errors due to sampling completely domi-
nate the errors introduced by t-digests, especially at extreme values of q. For much larger
sample sets of billions of samples or more, this would be less true and the errors shown
here would represent the accuracy of approximating the underlying distribution.

It should be noted that using a Q-Digest implemented with long integers is only able
to store data with no more than 20 significant decimal figures. The implementation in

10 TED DUNNING

stream-lib only retains 48 bits of significants, allowing only about 16 significant figures.
This means that such a Q-digest would be inherently unable to even estimate the quantiles
of the Γ distribution tested here.

3.2. Persisting t-digests. For the accuracy setting and test data used in these experi-
ments, the t-digest contained 820−860 centroids. The results of t-digest can thus be stored
by storing this many centroid means and weights. If centroids are kept as double precision
floating point numbers and counts kept as 4-byte integers, the t-digest resulting from from
the accuracy tests described here would require about 10 kilobytes of storage for any of
the distributions tested.

This size can be substantially decreased, however. One simple option is to store differ-
ences between centroid means and to use a variable byte encoding such as zig-zag encoding
to store the cluster size. The differences between successive means are at least three orders
of magnitude smaller than the means themselves so using single precision floating point
to store these differences can allow the t-digest from the tests described here to be stored
in about 4.6 kilobytes while still regaining nearly 10 significant figures of accuracy in the
means. This is roughly equivalent to the precision possible with a Q-digest operating on
32 bit integers, but the dynamic range of t-digests will be considerably higher and the
accuracy is considerably better.

3.3. Space/Accuracy Trade-off. Not surprisingly, there is a strong trade-off between
the size of the t-digest as controlled by the compression parameter 1/δ and the accuracy
which which quantiles are estimated. Quantiles at 0.999 and above or 0.001 or below were
estimated to within a small fraction of 1% regardless of digest size. Accurate estimates of
the median require substantially larger digests. Figure 4 shows this basic trade-off.

The size of the resulting digest depends strongly on the compression parameter 1/δ as
shown in the left panel of Figure 5. Size of the digest also grows roughly with the log of the
number of samples observed, at least in the range of 10,000 to 10,000,000 samples shown
in the right panel of Figure 5.

3.4. Computing t-digests in parallel. With large scale computations, it is important to
be able to compute aggregates like the t-digest on portions of the input and then combine
those aggregates.

For example, in a map-reduce framework such as Hadoop, a combiner function can
compute the t-digest for the output of each mapper and a single reducer can be used to
compute the t-digest for the entire data set.

Another example can be found in certain databases such as Couchbase or Druid which
maintain tree structured indices and allow the programmer to specify that particular ag-
gregates of the data being stored can be kept at interior nodes of the index. The benefit of
this is that aggregation can be done almost instantaneously over any contiguous sub-range
of the index. The cost is quite modest with only a O(log(N)) total increase in effort over
keeping a running aggregate of all data. In many practical cases, the tree can contain only
two or three levels and still provide fast enough response. For instance, if it is desired to
be able to compute quantiles for any period up to years in 30 second increments, simply

COMPUTING EXTREMELY ACCURATE QUANTILES USING t-DIGESTS 11

0.5 1.0 2.0 5.0 10.0 20.0 50.0

q = 0.5

t−digest size (kB)

Q
ua

nt
ile

 e
rr

or

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

0.5 1.0 2.0 5.0 10.0 20.0 50.0

q = 0.01

t−digest size (kB)

Q
ua

nt
ile

 e
rr

or
0.5 1.0 2.0 5.0 10.0 20.0 50.0

q = 0.001

t−digest size (kB)

Q
ua

nt
ile

 e
rr

or

Figure 4. Accuracy is good for extreme quantiles regardless of digest size.
From left to right, these panels show accuracy of estimates for q = 0.5, 0.01
and 0.001 as a function the serialized size of the t-digest. Due to symmetry,
these are equivalent to accuracy for q = 0.5, 0.99, and 0.999 as well. For
mid quantiles such as the median (q = 0.5), moderate digest sizes of a
few kilobytes suffice to get better than 1% accuracy, but a digest must be
20kB or more to reliably achieve 0.1% accuracy. In contrast, accuracy for
the 0.1%-ile (or 99.9%-ile) reaches a few parts per million for digests larger
than about 5 kB. Note that errors for q = 0.5 and digests smaller than 1 kB
are off the scale shown here at nearly 10%. All panels were computed using
100 runs with 100,000 samples. Compression parameter (1/δ) was varied
from 2 to 1000 in order to vary the size of the resulting digest. Sizes shown
were encoded using 4 byte floating point delta encoding for the centroid
means and variable byte length integer encoding.

keeping higher level t-digests at the level of 30 seconds and days is likely to be satisfactory
because at most about 10,000 digests are likely to need merging even for particularly odd
intervals. If almost all queries over intervals longer than a few weeks are day aligned, the
number of digests that must be merged drops to a few thousand.

Merging t-digests can be done many ways. The algorithm whose results are shown here
consisted of simply making a list of all centroids from the t-digests being merged, shuffling
that list, and then adding these centroids, preserving their weights, to a new t-digest.

3.5. Comparison with Q-digest. The prototype implementation of the t-digest com-
pletely dominates the implementation of the Q-digest from the popular stream-lib package
[Thi] when size of the resulting digest is controlled. This is shown in Figure 7. In the
left panel, the relationship between the effect of the compression parameter for Q-digest is
compared to the similar parameter 1/δ for the t-digest. For the same value of compression
parameter, the sizes of the two digests is always within a factor of 2 for practical uses. The
middle and right panel show accuracies for uniform and Γ distributions.

12 TED DUNNING

2 5 10 20 50 100 500

1 δ

S
iz

e
(k

B
)

0.
1

1
10

10
0

● 10M samples
10k samples

0
5

10
15

20

1 δ = 100

Samples (x1000)

S
iz

e
(k

B
)

10 100 1000 10,000

Figure 5. Size of the digest scales sub-linearly with compression parame-
ter (α ≈ 0.7 . . . 0.9) for fixed number of points. Size scales approximately
logarithmically with number of points for fixed compression parameter. The
panel on the right is for 1/δ = 100. The dashed lines show best-fit log-linear
models. In addition, the right panel shows the memory size required for the
Munro-Paterson algorithm if 6 specific quantiles are desired.

As expected, the t-digest has very good accuracy for extreme quantiles while the Q-
digest has constant error across the range. Interestingly, the accuracy of the Q-digest is at
best roughly an order of magnitude worse than the accuracy of the t-digest even. At worse,
with extreme values of q, accuracy is several orders of magnitude worse. This situation
is even worse with a highly skewed distribution such as with the Γ(0.1, 0.1) shown in the
right panel. Here, the very high dynamic range introduces severe quantization errors into
the results. This quantization is inherent in the use of integers in the Q-digest.

For higher compression parameter values, the size of the Q-digest becomes up to two
times smaller than the t-digest, but no improvement in the error rates is observed.

3.6. Speed. The current implementation has been primarily optimized for ease of devel-
opment, not execution speed. As it is, running on a single core of a 2.3 GHz Intel Core i5,
it typically takes 2-3 microseconds to process each point after JIT optimization has come
into effect. It is to be expected that a substantial improvement in speed could be had by
profiling and cleaning up the prototype code.

4. Conclusion

The t-digest is a novel algorithm that dominates the previously state-of-the-art Q-digest
in terms of accuracy and size. The t-digest provides accurate on-line estimates of a variety
of of rank-based statistics including quantiles and trimmed mean. The algorithm is simple
and empirically demonstrated to exhibit accuracy as predicted on theoretical grounds. It

COMPUTING EXTREMELY ACCURATE QUANTILES USING t-DIGESTS 13

−
1

0
0

0
0

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Quantile (q)

E
rr

o
r

in
 q

u
a

n
ti
le

 (
p

p
m

)

−
1

0
0

0
0

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

0.001 0.1 0.2 0.3 0.5

Direct
Merged

1 δ = 50

5 parts

Quantile (q)

0.001 0.01 0.1 0.2 0.3 0.5

Direct
Merged

1 δ = 50

20 parts

Quantile (q)

0.001 0.01 0.1 0.2 0.3 0.5

Direct
Merged

1 δ = 50

100 parts

Figure 6. Accuracy of a t-digest accumulated directly is nearly the same
as when the digest is computed by combining digests from 20 or 100 equal
sized portions of the data. Repeated runs of this test occasionally show the
situation seen in the left panel where the accuracy for digests formed from 5
partial digests show slightly worse accuracy than the non-subdivided case.
This sub-aggregation property allows efficient use of the tdigest in map-
reduce and database applications. Of particular interest is the fact that
accuracy actually improves when the input data is broken in to many parts
as is shown in the right hand panel. All panels were computed by 40 rep-
etitions of aggregating 100,000 values. Accuracy for directly accumulated
digests is shown on the left of each pair with the white bar and the digest
of digest accuracy is shown on the right of each pair by the dark gray bar.

is also suitable for parallel applications. Moreover, the t-digest algorithm is inherently
on-line while the Q-digest is an on-line adaptation of an off-line algorithm.

The t-digest algorithm is available in the form of an open source, well-tested implemen-
tation from the author. It has already been adopted by the Apache Mahout and stream-lib
projects and is likely to be adopted by other projects as well.

References

[CLP00] Fei Chen, Diane Lambert, and Jos C. Pinheiro. Incremental quantile estimation for massive
tracking. In In Proceedings of KDD, pages 516–522, 2000.

[GK01] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile sum-
maries. In In SIGMOD, pages 58–66, 2001.

[Knu98] Donald E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms,
page 232. Addison-Wesley, Boston, 3 edition, 1998.

[Lin] LinkedIn. Datafu: Hadoop library for large-scale data processing. https://github.com/

linkedin/datafu/. [Online; accessed 20-December-2013].
[PDGQ05] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the data: Parallel

analysis with sawzall. Sci. Program., 13(4):277–298, October 2005.

14 TED DUNNING

t−digest (bytes)

Q
−

di
ge

st
 (

by
te

s)

100 300 1K 3K 10K 30K 100K

10
0

30
0

1K
3K

10
K

30
K

10
0K

2

5

10

20

50

100

200

500

1000

2000

1 δ

●

Quantile

Q
ua

nt
ile

 e
rr

or
 (

pp
m

)

●●

●

●

●

●

●

●

●

0.001 0.1 0.5 0.9 0.99

−
10

00
0

0
50

00
15

00
0

Q−digest
t−digest

Uniform
1 δ = 50

●

● ●

●

●

●

0
20

00
0

40
00

0
60

00
0

80
00

0

Quantile

Q
ua

nt
ile

 e
rr

or
 (

pp
m

)

●●
●

●●0
20

00
0

40
00

0
60

00
0

80
00

0

0.001 0.1 0.5 0.9 0.99

Q−digest
t−digest

Γ(0.1, 0.1)
1 δ = 50

Figure 7. The left panel shows the size of a serialized Q-digest versus the
size of a serialized t-digest for various values of 1/δ from 2 to 100,000. The
sizes for the two kinds of digest are within a factor of 2 for all compression
levels. The middle and right panels show the accuracy for a particular
setting of 1/δ for Q-digest and t-digest. For each quantile, the Q-digest
accuracy is shown as the left bar in a pair and the t-digest accuracy is shown
as the right bar in a pair. Note that the vertical scale in these diagrams
are one or two orders of magnitude larger than in the previous accuracy
graphs and that in all cases, the accuracy of the t-digest is dramatically
better than that of the Q-digest even though the serialized size of the each
is within 10% of the other. Note that the errors in the right hand panel
are systematic quantization errors introduced by the use of integers in the
Q-digest algorithm. Any distribution with very large dynamic range will
show the same problems.

[SBAS04] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. Medians
and beyond: New aggregation techniques for sensor networks. pages 239–249. ACM Press, 2004.

[Thi] Add This. Algorithms for calculating variance, online algorithm. https://github.com/

addthis/stream-lib. [Online; accessed 28-November-2013].
[Wel62] B. P. Welford. Note on a method for calculating corrected sums of squares and products. Tech-

nometrics, pages 419–420, 1962.
[Wik] Wikipedia. Algorithms for calculating variance, online algorithm. http://en.wikipedia.

org/wiki/Algorithms_for_calculating_variance#Online_algorithm. [Online; accessed 19-
October-2013].

[ZW07] Qi Zhang and Wei Wang. An efficient algorithm for approximate biased quantile computation
in data streams. In Proceedings of the Sixteenth ACM Conference on Conference on Information
and Knowledge Management, CIKM ’07, pages 1023–1026, New York, NY, USA, 2007. ACM.

Ted Dunning, MapR Technologies, Inc, San Jose, CA
E-mail address: ted.dunning@gmail.com

