
Theme-D User Guide

Tommi Höynälänmaa

January 27, 2020

1

Contents

1 General 1

2 Installation 2
2.1 Debian-based Systems . 2

2.1.1 Package guile-2.2-dev and Amd64 / Intel 64-bit x86
Processor Architecture . 2

2.1.2 Other Debian-based Systems with Guile 2.2 3
2.1.3 Other Debian-based Systems with Guile 2.0 4

2.2 Other UNIX Systems . 5
2.3 Local Mode . 7
2.4 Support for Racket . 7

3 Removing the Software 7
3.1 Debian-based Systems . 7
3.2 Other Systems . 8
3.3 Support for Racket . 8

4 Theme-D Environment 8

5 File Extensions 8

6 Unit Root Directories 9

7 Compiling a Theme-D Unit 9

8 Linking a Theme-D Program 11

9 Running a Theme-D Program 13

10 Theme-D Configuration File 14

11 Distributing Linked Theme-D Programs 15

12 Compiling, Linking, and Running Test and Examples Programs 16

13 Other Things 18

14 Comments 18

1 General

This guide covers only UNIX systems. The software has been tested in Debian
and Ubuntu. Many of the commands in this guide have to be run as root. A
root session is opened either with command su root or sudo depending on your
system. In Ubuntu the command is sudo.

1

2 Installation

2.1 Debian-based Systems

These instructions apply to Debian-based Linux distributions such as Debian
and Ubuntu. The default directory configuration of Theme-D is stored in
file /etc/theme-d-config. You may override this by defining environment
variable THEME D CONFIG FILE to be the path of your own configuration file.
The root directory of the Theme-D installation shall be called theme-d-root-
dir . By default this is /usr/share/theme-d in Debian-based installations and
/usr/local/share/theme-d in other installations.

Symbol rev in the package names means the Debian revision of the packages.
It is typically 1.

Install first one of the packages guile-2.0-dev or guile-2.2-dev. Note
that these packages can’t be installed simultaneously. Use command

apt-get install guile-2.0-dev

or

apt-get install guile-2.2-dev

as root. You can check if these packages have already been installed with
commands

dpkg -s guile-2.0-dev

dpkg -s guile-2.2-dev

2.1.1 Package guile-2.2-dev and Amd64 / Intel 64-bit x86 Processor
Architecture

1. If your home directory contains file ∼/.theme-d-config delete the file.

2. Give the following commands as root:

dpkg -i th-scheme-utilities 1.4.1-rev all.deb

dpkg -i libthemedsupport 1.4.1-rev amd64.deb

dpkg -i theme-d-rte 1.4.1-rev amd64.deb

dpkg -i theme-d-translator 1.4.1-rev amd64.deb

dpkg -i theme-d-stdlib 1.4.1-rev all.deb

in the directory where you have the Debian files.

3. If you want to install the Theme-D documentation give command

dpkg -i theme-d-doc 1.4.1-rev all.deb

2

as root.

If you want to rebuild the Debian packages follow the instructions in section
2.1.2.

2.1.2 Other Debian-based Systems with Guile 2.2

1. If your home directory contains file ∼/.theme-d-config delete the file.

2. Change to the directory where you want to unpack the Theme-D source
code

3. Copy files theme-d-1.4.1.tar.gz and theme-d 1.4.1-rev.debian.tar.xz
into that directory.

4. Give command

ln -s theme-d-1.4.1.tar.gz theme-d 1.4.1.orig.tar.gz

5. Unpack Theme-D source code with command

tar xzvf theme-d-1.4.1.tar.gz

6. Change to the subdirectory theme-d-1.4.1.

7. Give command

tar xvf ../theme-d 1.4.1-rev.debian.tar.xz

8. Give commands

unset GUILE LOAD PATH

unset GUILE LOAD COMPILED PATH

In case you don’t use a sh compatible shell these commands may be dif-
ferent or you may just ignore them.

9. Give command

dpkg-buildpackage -uc -us -ui

10. Give commands

cd ..

dpkg -i th-scheme-utilities 1.4.1-rev all.deb

3

dpkg -i libthemedsupport 1.4.1-rev arch.deb
dpkg -i theme-d-rte 1.4.1-rev arch.deb
dpkg -i theme-d-translator 1.4.1-rev arch.deb
dpkg -i theme-d-stdlib 1.4.1-rev all.deb

where arch is the name of your processor architecture. These commands
have to be run as root.

11. If you want to install the Theme-D documentation give command

dpkg -i theme-d-doc 1.4.1-rev all.deb

as root.

2.1.3 Other Debian-based Systems with Guile 2.0

1. If your home directory contains file ∼/.theme-d-config delete the file.

2. Change to the directory where you want to unpack the Theme-D source
code

3. Copy files theme-d-1.4.1.tar.gz and theme-d 1.4.1-rev.debian.tar.xz
into that directory.

4. Give command

ln -s theme-d-1.4.1.tar.gz theme-d 1.4.1.orig.tar.gz

5. Unpack Theme-D source code with command

tar xzvf theme-d-1.4.1.tar.gz

6. Change to the subdirectory theme-d-1.4.1.

7. Give command

tar xvf ../theme-d 1.4.1-rev.debian.tar.xz

8. Give command

dch -v 1.4.1-oldguile

and write some comment into the changelog.

4

9. Change the value of the variable GUILE VERSION to 2.0 in file debian/rules
(6th line).

10. Change the package names guile-2.2 and guile-2.2-dev to guile-2.0

and guile-2.0-dev in the Build-Depends field in file debian/control

(5th line).

11. Give commands

unset GUILE LOAD PATH

unset GUILE LOAD COMPILED PATH

In case you don’t use a sh compatible shell these commands may be dif-
ferent or you may just ignore them.

12. Give command

dpkg-buildpackage -uc -us -ui

13. Give commands

cd ..

dpkg -i th-scheme-utilities 1.4.1-oldguile all.deb

dpkg -i libthemedsupport 1.4.1-oldguile arch.deb
dpkg -i theme-d-rte 1.4.1-oldguile arch.deb
dpkg -i theme-d-translator 1.4.1-oldguile arch.deb
dpkg -i theme-d-stdlib 1.4.1-oldguile all.deb

where arch is the name of your processor architecture. These commands
have to be run as root.

14. If you want to install the Theme-D documentation give command

dpkg -i theme-d-doc 1.4.1-oldguile all.deb

as root.

2.2 Other UNIX Systems

1. If your home directory contains file ∼/.theme-d-config delete the file.

2. Install Guile 2.2 or 2.0 if you don’t have it already. Check the version of
the Guile development environment with commands

pkg-config --modversion guile-2.0

pkg-config --modversion guile-2.2

5

See http://www.gnu.org/software/guile/.

3. Create some directory and unpack Theme-D package there with command

tar xzvf theme-package-path/theme-d-1.4.1.tar.gz

The subdirectory theme-d-1.4.1 of the directory where you unpacked
Theme-D shall be called theme-d-source-dir .

4. Give commands

unset GUILE LOAD PATH

unset GUILE LOAD COMPILED PATH

In case you don’t use a sh compatible shell these commands may be dif-
ferent or you may just ignore them.

5. Change to the the subdirectory theme-d-source-dir .

6. Give command

./configure

You may give the following options to command ./configure:

• --with-guile=version : Specify the Guile version explicitly. The
version has to be either 2.2 or 2.0.

• --without-support-library : Don’t use the libthemedsupport

library.

• --disable-extra-math : Don’t include the (standard-library extra-math)

module in your installation.

• --disable-posix-math : Don’t include the (standard-library posix-math)

module in your installation.

If you use option --without-support-library option you also have to
use options --disable-extra-math and --disable-posix-math.

7. Change to the the subdirectory theme-d-source-dir and give command

make

in order to prepare the code for installation. Install Theme-D by giving
command

make install-complete

as root.

6

2.3 Local Mode

Using Theme-D in the source code tree without installing it is called local mode.
This is useful if you develop Theme-D itself. It is recommended that you should
not use Theme-D simultaneously with installed version and local mode.

1. Install guile 2.2 or 2.0 in case you do not have it already. See

http://www.gnu.org/software/guile/

2. Create some directory and unpack Theme-D package there with command

tar xzvf theme-package-path/theme-d-1.4.1.tar.gz

3. If you want to use the Theme-D support library (libthemedsupport)
install it. The use of the support library is recommended.

4. Go into the the subdirectory theme-d-1.4.1 of the directory created in
the previous step. Give commands

./configure

make

make setup-local-config

See section 2.2 for the configure options.

5. If you don’t use the support library change the value of the variable
gl-use-support-lib? to #f in file ∼/.theme-d-config (22nd line).

If you use Theme-D in local mode you have to ensure that environment vari-
able GUILE LOAD PATH contains theme-d-source-dir (see the previous section).

2.4 Support for Racket

If you want to use Racket as the target platform (i.e. the platform where you run
your Theme-D programs) you have to install Racket package theme-d-racket.
To do this obtain the file theme-d-racket.zip and give command

raco pkg install theme-d-racket.zip

3 Removing the Software

3.1 Debian-based Systems

Give commands

7

dpkg --purge theme-d-stdlib

dpkg --purge theme-d-translator

dpkg --purge theme-d-rte

dpkg --purge libthemedsupport

dpkg --purge th-scheme-utilities

as root. In order to remove the Theme-D documentation give command

dpkg --purge theme-d-doc

as root.

3.2 Other Systems

Give command

make uninstall-complete

as root in directory theme-d-source-dir .

3.3 Support for Racket

Give command

raco pkg remove theme-d-racket

4 Theme-D Environment

5 File Extensions

Theme-D source files have the following extensions:

• .thp for proper programs

• .ths for scripts

• .thi for interfaces

• .thb for bodies

Theme-D compiled pseudocode files have the following extensions:

• .tcp for proper programs

• .tcs for scripts

• .tci for interfaces

• .tcb for bodies

8

6 Unit Root Directories

When you define a unit with full name

(dir-1 ... dir-n unit-name)

the module must have filename unit-name with proper extension (see the
previous section) and it must be located in subdirectory

dir-1/.../dir-n/

of some directory unit-root-dir . The directory unit-root-dir is called a unit
root directory. If a unit name has only one component you may omit the paren-
theses from the unit name. When you compile of link a Theme-D unit you
must specify one or more unit root directories where the imported modules are
searched. These are called the module search directories. You should always
have directory theme-d-root-dir/theme-d-code among the module search di-
rectories so that the standard libraries are found by the compiler and by the
linker.

7 Compiling a Theme-D Unit

Give command

theme-d-compile options unit-name

where unit-name is the file name of the Theme-D unit. Options are

• --module-path= paths or -m paths : Module search paths separated with
:’s

• --output= output-filename or -o output-filename : The output filename

• --unit-type= unit-type or -u unit-type : The unit type (proper-program,
script, interface, or body)

• --message-level= message-level or -l message-level : Compiler message
level, integer number from 0 to 3.

• --expand-only : Do only macro expansion on the source.

• --no-expansion : Compile the source without macro expansion.

• --backtrace : Print backtrace on compilation error.

• --pretty-print : Pretty print the pseudocode output.

• --no-verbose-errors : Less information in the error messages.

• --show-modules : Show information about loading modules.

9

By default the unit type is computed from the source file extension. The
default module search path is theme-d-root-dir:.. If you use option -m you may
include the Theme-D default module search path in your custom path by adding
an extra “:” in the beginning of the new path, e.g. :my-path1:my-path2. The
default target file path is obtained by removing the path and the extension from
the source filename and appending the appropriate extension to the result. The
default message level is 1. Message level 0 means no output at all except in
case of error. Message level 1 displays also message on successful compilation
or linking. Message level 2 displays some debug information and level 3 a lot of
debug information. When --expand-only is set the default target filename is
myunit.expanded.thx for source file myunit.thx.

Suppose that you have your own Theme-D code at directory my-theme-d-dir
and you have a program called (mod-1 ... mod-n) at location

mod-1/.../mod-n.thp

In order to compile the program give commands

cd my-theme-d-dir
theme-d-compile mod-1/.../mod-n.thp

Suppose that you have a module (an interface and a body) with name (mod-1
... mod-n) in files mod-1/.../mod-n.thi and mod-1/.../mod-n.thb. In or-
der to compile the module give commands

cd my-theme-d-dir
theme-d-compile mod-1/.../mod-n.thi

theme-d-compile mod-1/.../mod-n.thb

If you want to have the compiled files in the same subdirectory where the
source files are, which is usually the case, give commands

cd my-theme-d-dir
theme-d-compile -o mod-1/.../mod-n.tci \
mod-1/.../mod-n.thi

theme-d-compile -o mod-1/.../mod-n.tcb \
mod-1/.../mod-n.thb

If you use Theme-D without installing it you have to use command

MYPATH/theme-d-VERSION/theme-d/translator/theme-d-compile.scm

instead of theme-d-compile. Here MYPATH is the path where you have un-
packed Theme-D.

10

8 Linking a Theme-D Program

Give command

theme-d-link options program-name

where program-name is the file name of the Theme-D program. Options are

• --module-path= paths or -m paths : Module search paths separated with
:’s

• --output= output-filename or -o output-filename : The output filename.

• --intermediate-file= filename or -n filename : The intermediate file-
name.

• --intermediate-language= language or -i language : The language used
for the intermediate file.

• -x module: Link (load) the module into the target program.

• -y module: Link (load) the module into the target program using a relative
path. This option is available only for Racket.

• --message-level= message-level or -l message-level : Linker message
level, integer number from 0 to 3.

• --no-final-compilation : Do not compile the linker result file with
guild compile.

• --no-strip : Do not strip away unused code.

• --no-factorization : Do not factorize the type expressions out of pro-
cedure implementations.

• --no-weak-assertions : Do not check ordinary assertions. Strong asser-
tions are always checked.

• --backtrace : Print backtrace on linking error.

• --pretty-print : Pretty print the linker output.

• --no-verbose-errors : Less information in the error messages.

• --keep-intermediate : Keep the intermediate Tree-IL or Scheme file

• --link-to-cache : Link the target file into the guile cache.

• --runtime-pretty-backtrace : Generate the code to support runtime
pretty printed backtraces.

• --no-unlinked-procedure-names : Do not generate code for reporting
unlinked procedure names.

• --module-debug-output : Print debug messages when a module body
linkage is started and ended.

11

The available intermediate languages are:

• tree-il : Guile Tree-IL. The Tree-IL version shall be the Guile version
for which Theme-D has been configured.

• tree-il-3.0 : Guile 3.0 Tree-IL. This is currently identical to Guile 2.2
Tree-IL.

• tree-il-2.2 : Guile 2.2 Tree-IL.

• tree-il-2.0 : Guile 2.0 Tree-IL.

• scheme : Guile Scheme.

• scheme-no-opt : Guile Scheme without optimizations.

• racket : Racket Scheme.

If you use Racket options --keep-intermediate and --no-final-compilation

are assumed implicitly. By default Theme-D linker produces a guile objcode
file. Actually, Theme-D makes a guile Tree-IL or Scheme file and uses guile to
make an objcode file from that. The default intermediate language is Tree-IL.
Note that many optimizations are performed only with Tree-IL. If you want
to optimize your code for speed you should link your program without pretty
backtraces when you no longer need them for debugging. If you use Tree-
IL as the intermediate language pretty printing may cause the linker to crash
with large programs. The syntax of module names in the -x and -y options
depends on the intermediate language. It is "(mod1 ... modn)" for Guile
and mod1/.../modn for Racket. If you use the -y option for linking a module
(available only for Racket) the module is imported with a require form so that
the module name is enclosed in double quotes. See the Racket documentation
how this works.

If you use option --module-path or -m you may include the Theme-D default
module search path in your custom path by an extra “:” in the path as in
compilation. Suppose that you have your own Theme-D code at directory my-
theme-d-dir and you have a program called (mod-1 ... mod-n) at location
mod-1/.../mod-n.thp. In order to link the program give commands

cd my-theme-d-dir
theme-d-link mod-1/.../mod-n.thp

The previous commands place the linked file into the root of subdirectory
my-theme-d-dir . If you want to place the linked file in the same directory where
the source files are use the following commands:

cd my-theme-d-dir
theme-d-link -o mod-1/.../mod-n.go \
mod-1/.../mod-n.thp

If you use Theme-D without installing it you have to use command

12

MYPATH/theme-d-VERSION/theme-d/translator/theme-d-link.scm

instead of theme-d-link. Here MYPATH is the path where you have unpacked
Theme-D.

9 Running a Theme-D Program

When you use Guile as the target platform Theme-D programs can be run with
command

run-theme-d-program metaarg ... programfile programarg ...

where metaarg are the arguments passed to the script run-theme-d-program,
programfile is the filename of the linked Theme-D program, and programarg are
the arguments passed to the program. Suppose you have your linked Theme-D
program in file myprog.go. You can run this program with command

run-theme-d-program myprog.go

When you use Guile as the target platform it is also possible to link you
Theme-D program into a .scm intermediate file and run it with command

guile -e main -s programfile.scm programarg ...

or

guile -s programfile.scm programarg ...

for scripts.
If you use Racket as the target platform you can run Theme-D programs

with command

racket -t myprog.rkt -m programarg ...

or

racket -t myprog.rkt programarg ...

for scripts.
If you need to import your own Scheme files into the Theme-D runtime envi-

ronment (because of the foreign function interface) you can do this by defining
the environment variable THEME D CUSTOM CODE. Separate the file names with
:’s. The program run-theme-d-program accepts the following arguments:

• --no-verbose-errors : No verbose information about errors (excep-
tions).

13

• --backtrace : Display backtrace on error.

• --pretty-backtrace : Display pretty printed backtrace on error.

Note that the --pretty-backtrace option works only if you have linked your
Theme-D program with option --runtime-pretty-backtrace.

If you use Theme-D without installing it you have to use command

MYPATH/theme-d-VERSION/theme-d/runtime/run-theme-d-program.scm

instead of run-theme-d-program. Here MYPATH is the path where you have
unpacked Theme-D.

The pretty printed runtime backtrace has the following format:

number kind name module

...

where kind is the kind of the called procedure, name is the name of the procedure
and module is the module where the procedure has been defined. The kind may
take the following values:

• toplevel: A toplevel procedure

• local: A local procedure

• instance: An instance of a parametrized procedure

• zero: A procedure used to generate the zero value of a class

10 Theme-D Configuration File

The Theme-D configuration file is searched according to the following rules:

• Use the value of environment variable THEME D CONFIG FILE is it is de-
fined.

• Use file .theme-d-config in the user’s home directory if present.

• Otherwise use file /etc/theme-d-config.

The installation procedure sets up the configuration file. Normally you don’t
have to edit it.

The configuration file has the following format:

(theme-d (var-name var-value)...)

All string type variable values must be enclosed in quotes. Boolean and
integer values must not be enclosed in quotes The variables defined in the con-
figuration file are:

14

• guile-version: The Guile version used by Theme-D. This is a string.

• translator-dir: The location of the compiler and linker implementa-
tions.

• runtime-dir: The location of the Theme-D runtime environment.

• lib-dir: The location of the Theme-D standard library.

• examples-dir: The location of the Theme-D examples.

• tests-dir: The location of the Theme-D tests.

• tools-dir: The location of the Theme-D tools.

• compiler-path Theme-D compiler path (a .scm file).

• linker-path Theme-D linker path (a .scm file).

• run-path Theme-D run script path path (a .scm file).

• use-support-lib?: #t if the support library is used. This is a boolean
value.

The values of the configuration variables can be fetched with command

get-theme-d-config-var config-var-name

where config-var-name is the name of the configuration variable.

11 Distributing Linked Theme-D Programs

If your target environment has Theme-D installed it is sufficient to distribute
only the linked .go file. Otherwise, the easiest way to ensure that all the nec-
essary Theme-D files are present is to install the theme-d-rte Debian package
in the target system. If you use Racket as the target platform it is sufficient to
install package theme-d-racket.zip in the target system, see section 2.4.

If you are using Guile and you don’t want to install theme-d-rte into the
target system you have to ensure that the following files are present in the Guile
library path:

• theme-d/runtime/params.go

• theme-d/runtime/runtime-theme-d-environment.go

• theme-d/runtime/theme-d-stdlib-support.go

You also need to distribute one of the following files:

• theme-d/runtime/theme-d-support-all.go

• theme-d/runtime/theme-d-support-no-extra.go

• theme-d/runtime/theme-d-support-no-posix.go

• theme-d/runtime/theme-d-alt-support.go

15

and create symbolic link theme-d/runtime/theme-d-support.go pointing to
it. In order to find the library path give command

pkg-config --variable=siteccachedir guile-version

Normally you should use file theme-d-support-all.go. If you don’t use the
Theme-D support library you must use theme-d-alt-support.go. If you dis-
tribute a .go file you also need to have run-theme-d-program.scm in the target
system. These files are licensed under GNU Lesser General Public License.

If you use the support library the library libthemedsupport has to be in-
stalled in the target system. The use of the support library is recommended.

12 Compiling, Linking, and Running Test and
Examples Programs

In order to install the Theme-D testing environment change to the directory
where you want the environment to be installed and give command

setup-theme-d-test-env

This directory shall be called theme-d-test-dir in the sequel. The test pro-
grams are located in subdirectory test-env/theme-d-code/tests and the ex-
ample programs in test-env/theme-d-code/examples. Subdirectory tools

contains scripts to run tests.
The example programs are built by giving command make -f user.mk in

subdirectory test-env/theme-d-code/examples. The example programs are
run with command run-theme-d-program program.go.

If testX is a program compile it with command

theme-d-compile -m :.. testX.thp

and link with command

theme-d-link -m :.. testX.tcp

in directory theme-d-test-dir/test-env/theme-d-code/tests.
If testX is a module compile it with commands

theme-d-compile -m :.. testX.thi

theme-d-compile -m :.. testX.thb

in directory theme-d-test-dir/test-env/theme-d-code/tests.
Note that some test programs import test modules in which case you must

compile the modules before the program that uses them. When a test program
imports several test modules compile first all the interfaces of the imported
modules and then all the bodies of the imported modules. Compile the interfaces

16

in the order they are numbered. Note also that some test programs require the
examples to be built.

In order to run a test testX give commands

run-theme-d-program testX.go

in directory theme-d-test-dir/test-env/theme-d-code/tests.
If you want to build all the tests at once build the examples first. Then

change to the directory theme-d-test-dir/test-env/testing. Compile the tests
with command

./compile-tests.scm

and link them with command

./link-test-programs.scm

Then run the linked programs with command

./run-test-programs.scm

The test results can be checked with commands

./check-test-compilation.scm

./check-test-program-linking.scm

./check-test-runs.scm

for compilation, linking and running, respectively. All these scripts are located
in directory theme-d-test-dir/testing.

You can generate the test output into the subdirectory output with com-
mand

./run-test-programs-w-output.scm

Use command ./compare-output.sh to compare the output files with the
correct ones. The correct outputs of the tests can be found in subdirectory
tests in files test*.out. The outputs of tests test450 and test756 may vary
because of output buffering. The computed hash values in test test587 and
the backtrace in test764 may be different in different runs.

If you want to use scheme (Guile) as the intermediate language use command

./link-test-programs-scheme.scm

for linking. If you want to use racket as the intermediate language use
scripts

./link-test-programs-racket.scm

17

./check-test-program-linking-racket.scm

./run-test-programs-racket.scm

./check-test-runs-racket.scm

./run-test-programs-w-output-racket.scm

for linking and running the test programs. Test test450 does not work for
Racket. The following tests give different output with Guile and Racket: 115,
235, 273, 277, 450, 556, 598, 606, 607, 673, 716, 717, 720, 729, 743, and 756.
Note that the Racket-related scripts omit the tests using features not available
for Racket, such as GOOPS or the extra math functions in the support library.

13 Other Things

An Emacs mode for Theme-D can be found at tools/theme-d.el. There are
some example programs in subdirectory theme-d-code/examples in the Theme-
D source package. You can compile, link, and run them following the instruc-
tions given in sections 7, 8, and 9. If you install the Theme-D Debian package
twice the configuration file theme-d-config may not be installed. This problem
is solved by uninstalling Theme-D and installing it again.

Theme-D translator uses the following notation for printing pair and tu-
ple types: (:pair r s) is printed as { r . s } and (:tuple t1 ... tn) is
printed as {t1 ... tn}. Note that this notation is not accepted in Theme-D
code.

14 Comments

The linker requires that the compiled modules are placed in a proper subdirec-
tory hierarchy under some directory among the module search directories. This
condition is fulfilled if you define the module search directories to include all
the unit root directories used by your source files and put the compiled files into
same directories with the source files.

18

