
Copyright 2010-2014 Jun Nakashima (Read COPYRIGHT for detailed information.)

Copyright 2010-2014 Kenjiro Taura (Read COPYRIGHT for detailed information.)

MassiveThreads User’s Guide
September 2014

Kenjiro Taura
University of Tokyo
7-3-1 Hongo Bunkyo-ku Tokyo, 113-0033 Japan

Copyright c⃝ 2010-2014 Jun Nakashima Copyright c⃝ 2010-2014 Kenjiro Taura

i

Table of Contents

1 Getting Started . 1

2 MassiveThreads Library . 2

3 Higher-Level Interfaces . 3
3.1 Higher Level Interfaces Overview . 3
3.2 TBB-Compatible Interface . 4

3.2.1 TBB-Compatible Interface Overview . 4
3.2.2 Installing TBB-Compatible Interface . 4
3.2.3 Writing Programs Using TBB-Compatible Interface 4
3.2.4 Choosing Schedulers Beneath the TBB-Compatible Interface

. 6
3.3 Task Parallel Switcher . 6

4 DAG Recorder . 7
4.1 DAG Recorder Overview . 7
4.2 Installing DAG Recorder . 7
4.3 Writing Programs That Use DAG Recorder . 7

4.3.1 Common Basics . 7
4.3.2 Using DAG Recorder with TBB-Compatible Interface 7
4.3.3 Using DAG Recorder with OpenMP . 9
4.3.4 Using DAG Recorder with Cilk and CilkPlus 11
4.3.5 Using DAG Recorder with tpswitch.h . 15

4.4 Running Your Programs with DAG Recorder 15
4.4.1 Basics of Running Your Programs with DAG Recorder 16
4.4.2 Controlling the Behavior of DAG Recorder 16

4.5 dag2any DAG to any data converter . 18
4.6 Viewing Recorded Data . 18

4.6.1 Viewing Parallelism Profile with gnuplot 18
4.6.2 Visualizing the DAG via graphviz . 20
4.6.3 Understanding Stat File . 21
4.6.4 Viewing DAG file with drview . 24

4.7 Querying Recorded Data . 26

Chapter 1: Getting Started 1

1 Getting Started

Chapter 2: MassiveThreads Library 2

2 MassiveThreads Library

TODO: write about the library API itself.

Chapter 3: Higher-Level Interfaces 3

3 Higher-Level Interfaces

3.1 Higher Level Interfaces Overview

MassiveThreads API described so far is still low level and bit burdensome as a parallel
programming interface. MassiveThreads also provides higher level APIs, easier and more
convenient APIs for programmers.

One is what we call TBB-compatible interface, that provides a subset of functions of In-
tel Threading Building Block. It does not only provide TBB-compatible interface, but also
allows you to switch between various lightweight thread libraries under the same TBB-
compatible interface. Currently supported libraries include MassiveThreads, Qthreads,
Nanos++, and what we call a dummy scheduler. The last one elides task parallel primi-
tives.

The other interface is what we call a task parallel switcher, with which you can write a
single program running on top of even wider set of task parallel systems including OpenMP,
Cilk, and TBB.

Besides providing a uniform API on various runtime systems, they serve another im-
portant purpose, which is to allow you to trace your task parallel programs with DAG
Recorder, a tracing tool described later in this manual. See Chapter 4 [DAG Recorder],
page 7. By programming in these APIs, rather than in the native API of the respective
runtime system, your are free from the burden of manually instrumenting your programs
for tracing. To this end, we also provide headers to facilitate instrumentation of OpenMP
and Cilk. They do not serve any purpose of making OpenMP and Cilk more convenient
nor more uniform; they simply make instrumenting OpenMP and Cilk easier.

Here is the summary of choices of APIs and runtime systems.

API Runtime
System

Header file flags

TBB-compatible None (dummy) mtbb/task_

group.h

-DTO_SERIAL

TBB-compatible Intel TBB mtbb/task_

group.h

-DTO_TBB -ltbb

TBB-compatible MassiveThreads mtbb/task_

group.h

-lmyth-native

TBB-compatible Qthreads mtbb/task_

group.h

-DTO_QTHREAD

-lqthread

TBB-compatible Nanos++ mtbb/task_

group.h

-DTO_NANOX -lnanox-c

OpenMP-like OpenMP tpswitch/omp_

dr.h

Cilk-like Cilk tpswitch/cilk_

dr.h

Cilkplus-like Cilkplus tpswitch/cilk_

dr.h

Chapter 3: Higher-Level Interfaces 4

Task Parallel Switcher None (dummy) tpswitch/tpswitch.h-DTO_SERIAL

Task Parallel Switcher Intel TBB tpswitch/tpswitch.h -DTO_TBB -ltbb

Task Parallel Switcher MassiveThreads tpswitch/tpswitch.h-DTO_MTHREAD_NATIVE

-lmyth-native

Task Parallel Switcher Qthreads tpswitch/tpswitch.h-DTO_QTHREAD

-lqthread

Task Parallel Switcher Nanos++ tpswitch/tpswitch.h-DTO_NANOX -lnanox-c

Task Parallel Switcher OpenMP tpswitch/tpswitch.h-DTO_OMP

Task Parallel Switcher Cilk tpswitch/tpswitch.h-DTO_CILK

Task Parallel Switcher Cilkplus tpswitch/tpswitch.h-DTO_CILKPLUS

3.2 TBB-Compatible Interface

3.2.1 TBB-Compatible Interface Overview

As of writing, it supports task_group class, parallel_for template function, and
parallel_reduce template function. See respective sections of the TBB reference manual
for these classes. We will see examples using task_group class below.

3.2.2 Installing TBB-Compatible Interface

TBB-compatible interface is distributed as a part of MassiveThreads, so you do not do
anything particular to install it besides the installation procedure of MassiveThreads.

After installation, the files constituting the API are installed as:

• PREFIX /include/mtbb/task_group.h

• PREFIX /include/mtbb/parallel_for.h

• PREFIX /include/mtbb/parallel_reduce.h

Note that they are under mtbb directory, instead of tbb directory as in the original TBB.

3.2.3 Writing Programs Using TBB-Compatible Interface

Using TBB-Compatible interface is a lot like using the regular TBB. You include
mtbb/{task_group,parallel_for,parallel_reduce}.h instead of tbb/{task_

group,parallel_for,parallel_reduce}.h, and use namespace mtbb instead of
namespace tbb.

Here is a simple example (bin_mtbb.cc).

#include <mtbb/task_group.h>

long bin(int n) {

if (n == 0) return 1;

else {

mtbb::task_group tg;

long x, y;

tg.run([=,&x] { x = bin(n - 1); });

y = bin(n - 1);

tg.wait();

return x + y;

Chapter 3: Higher-Level Interfaces 5

}

}

int main(int argc, char ** argv) {

int n = atoi(argv[1]);

long x = bin(n);

printf("bin(%d) = %ld\n", n, x);

return 0;

}

I hope you agree that changes are minimal. The original TBB version would look like this
(only differences are the file name of the include file and namespace prefix of the task_group
class).

#include <tbb/task_group.h>

long bin(int n) {

if (n == 0) return 1;

else {

tbb::task_group tg;

long x, y;

tg.run([=,&x] { x = bin(n - 1); });

y = bin(n - 1);

tg.wait();

return x + y;

}

}

int main(int argc, char ** argv) {

int n = atoi(argv[1]);

long x = bin(n);

printf("bin(%d) = %ld\n", n, x);

return 0;

}

Without DAG Recorder, you would compile bin_mtbb.cc as follows.

$ g++ --std=c++0x bin_mtbb.cc -lmyth-native

Remark 1: --std=c++0x is given to use C++ lambda expression at line 8, proposed in
C++0x and standardized in C++11. GCC supports it since 4.5, when one of the following
command line options --std=c++0x, --std=gnu0x, --std=c++11, or --std=gnu11 is sup-
plied. If your GCC does not support it, you could pass any callable object (any object
supporting operator()). We use lambda expressions for brevity in this manual.

Remark 2: Depending on your configuration, you might need to add -I, -L, and
-Wl,-R options to the command line. For example, if you install MassiveThreads under
/home/you/local (i.e., gave /home/you/local to --prefix of the configure command),
the command line will be:

Chapter 3: Higher-Level Interfaces 6

$ g++ --std=c++0x -I/home/you/local/include -L/home/you/local/lib -Wl,-R/home/you/local/lib bin_mtbb.cc -lmyth-native

3.2.4 Choosing Schedulers Beneath the TBB-Compatible Interface

With the above command, you get a program that uses TBB-compatible API with Mas-
siveThreads as the underlying scheduler. Roughly speaking, task group’s run method will
create a thread of MassiveThreads library via myth_create and wait method will wait for
all threads associated with the task group object to finish via myth_join.

The mtbb/task_group.h file allows you to use threading libraries other than Mas-
siveThreads, by defining a compile time flag TO_XXX. Currently, you can choose from the
original Intel TBB, MassiveThreads, Qthreads, Nanos++, or None. Flags you should give
to them are listed below.

Runtime system Flag
Intel TBB -DTO_TBB

MassiveThreads -DTO_MTHREAD_NATIVE (or nothing)
Qthreads -DTO_QTHREAD

Nanos++ -DTO_NANOX

None -DTO_SERIAL

The last one, None, elides all tasking primitives; run(c) executes c() serially and wait()

is a noop.

In order to use mtbb/task_group.h with the scheduler you chose, you of course need to
install the respective scheduler and link your program with it.

3.3 Task Parallel Switcher

TBB-compatible interface unifies various schedulers under the same, TBB-compatible in-
terface. Task parallel switcher goes one step further by defining an API that can be mapped
onto OpenMP and Cilk as well.

OpenMP, Cilk, and TBB’s task group interfaces are all conceptually very similar; they
all define ways to create tasks and wait for outstanding tasks to finish, after all.

Yet there are idiosyncrasies that make defining truly uniform APIs difficult.

TODO: detail the following

• mk task group

• create taskc

• create task0

• create task1

• create task2

• create taskA

• call task

• call taskc

• create task and wait

• wait tasks

Chapter 4: DAG Recorder 7

4 DAG Recorder

4.1 DAG Recorder Overview

DAG Recorder is a tracing tool to analyze execution of task parallel programs. It records all
relevant events in an execution of the program, such as task start, task creation, and task
synchronization and stores them in a manner that is able to reconstruct the computational
DAG of the execution.

4.2 Installing DAG Recorder

DAG Recorder is distributed as a part of MassiveThreads, so installing MassiveThreads
automatically installs DAG Recorder too. DAG Recorder does not internally depend on
MassiveThreads in any way, however; you can, for example, use DAG Recorder to analyze
TBB or OpenMP programs.

After installation, files directly visible to the user are the following.

• PREFIX /lib/libdr.so — library

• PREFIX /include/dag_recorder.h — include file

where PREFIX is the path you specified with --prefix at configure command line.

In most cases, you do not have to directly include dag_recorder.h. TBB-compatible
interface or aforementioned wrappers (omp_dr.h and cilk_dr.h) will automatically include
it.

4.3 Writing Programs That Use DAG Recorder

4.3.1 Common Basics

Currently, DAG Recorder supports the following task parallel APIs.

• TBB or the TBB-compatible interface See Section 3.2.3 [Writing Programs Using TBB-
Compatible Interface], page 4.

• OpenMP. #pragma task and #pragma taskwait

• Cilk and Cilkplus. spawn and sync

Making your programs ready for DAG Recorder involves replacing original task paral-
lel primitives with equivalent, instrumented versions. You also need to specify where to
start/stop instrumentation and dump the result. We provide header files to make the in-
strumentation nearly automatic or at least quite mechanical. What you exactly need to do
depends on the programming model you chose and are detailed in the following subsections.

4.3.2 Using DAG Recorder with TBB-Compatible Interface

If you are using TBB-Compatible Interface (see Section 3.2.3 [Writing Programs Using
TBB-Compatible Interface], page 4), the instrumentation is most straightforward and least
intrusive. Let’s say you have a program including mtbb/task_group.h such as this.

#include <mtbb/task_group.h>

Chapter 4: DAG Recorder 8

long bin(int n) {

if (n == 0) return 1;

else {

mtbb::task_group tg;

long x, y;

tg.run([=,&x] { x = bin(n - 1); });

y = bin(n - 1);

tg.wait();

return x + y;

}

}

int main(int argc, char ** argv) {

int n = atoi(argv[1]);

long x = bin(n);

printf("bin(%d) = %ld\n", n, x);

return 0;

}

Instrumentation is turned on simply by giving -DDAG_RECORDER=2 at the command line.
What else you need to do is to insert calls to dr_start, dr_stop, and dr_dump at appro-
priate places like this (bin_mtbb_dr.cc).

#include <mtbb/task_group.h>

long bin(int n) {

if (n == 0) return 1;

else {

mtbb::task_group tg;

long x, y;

tg.run([=,&x] { x = bin(n - 1); });

y = bin(n - 1);

tg.wait();

return x + y;

}

}

int main(int argc, char ** argv) {

int n = atoi(argv[1]);

dr_start(0);

long x = bin(n);

dr_stop();

dr_dump();

printf("bin(%d) = %ld\n", n, x);

return 0;

}

Chapter 4: DAG Recorder 9

As you will see already, you should insert:

• dr_start(0) at the point you want to start recording,

• dr_stop() at the point you want to stop recording, and

• dr_dump() at the point you want to dump the result.

dr_start takes a pointer, which may be zero, to dr_options data structure as the
argument. Section 4.4.2 [Controlling the Behavior of DAG Recorder], page 16 for options
you can specify.

Here are the command lines to compile this program, with and without DAG Recorder

• with DAG Recorder:

g++ --std=c++0x bin_mtbb_dr.cc -DDAG_RECORDER=2 -ldr -lmyth-native

• without DAG Recorder:

g++ --std=c++0x bin_mtbb_dr.cc -lmyth-native

The reason why you set DAG RECORDER to “2” is historical. There was a version
one, which have become obsolete by now.

You could switch to other schedulers in the way described already. See Section 3.2.4
[Choosing Schedulers Beneath the TBB-Compatible Interface], page 6. For example, you
will get the original TBB scheduler with the following command line.

g++ --std=c++0x bin_mtbb_dr.cc -DTO_TBB -DDAG_RECORDER=2 -ldr -ltbb

4.3.3 Using DAG Recorder with OpenMP

OpenMP uses directives (pragma omp task and pragma omp taskwait) to express task par-
allel programs. It almost always uses pragma omp parallel and pragma omp single (or
pragma omp master) to enter a task parallel section. Here is an equivalent program to our
example, written in the regular OpenMP.

#include <stdio.h>

#include <stdlib.h>

long bin(int n) {

if (n == 0) return 1;

else {

long x, y;

#pragma omp task shared(x)

x = bin(n - 1);

#pragma omp task shared(y)

y = bin(n - 1);

#pragma omp taskwait

return x + y;

}

}

int main(int argc, char ** argv) {

int n = atoi(argv[1]);

#pragma omp parallel

Chapter 4: DAG Recorder 10

#pragma omp single

{

long x = bin(n);

printf("bin(%d) = %ld\n", n, x);

}

return 0;

}

We need to instrument these pragmas, for which we defined equivalent macros (not
pragmas) in a header file tpswitch/omp_dr.h. This is not as straightforward as we hope,
but we do not know any good mechanism to introduce a new pragma or redefine existing
pragmas.

tpswitch/omp_dr.h defines the following macros.

• pragma_omp_task(clauses, statement)

• pragma_omp_taskwait

• pragma_omp_parallel_single(clauses, statement)

Without DAG Recorder, they are expanded into equivalent OpenMP pragmas in an
obvious manner:

• pragma omp task(clauses, statement) =

#pragma omp task clauses

statement

• pragma omp taskwait

#pragma omp taskwait

• pragma omp parallel single(clauses, statement)

#pragma omp parallel clauses

#pragma omp single

{

statement

}

So, here is DAG Recorder-ready version of the above program.

#include <stdio.h>

#include <stdlib.h>

#include <tpswitch/omp_dr.h>

long bin(int n) {

if (n == 0) return 1;

else {

long x, y;

pragma_omp_task(shared(x),

x = bin(n - 1));

pragma_omp_task(shared(y),

y = bin(n - 1));

pragma_omp_taskwait;

Chapter 4: DAG Recorder 11

return x + y;

}

}

int main(int argc, char ** argv) {

int n = atoi(argv[1]);

pragma_omp_parallel_single(, {

dr_start(0);

long x = bin(n);

dr_stop();

printf("bin(%d) = %ld\n", n, x);

dr_dump();

});

return 0;

}

This source code can be compiled with and without DAG Recorder.

• Without DAG Recorder:

g++ -fopenmp bin_omp_dr.cc

• With DAG Recorder:

g++ -fopenmp -DDAG_RECORDER=2 bin_omp_dr.cc -ldr

4.3.4 Using DAG Recorder with Cilk and CilkPlus

There are two versions of Cilk; the original MIT Cilk and CilkPlus. The former is im-
plemented as a source to source translator (cilkc) and it is a strictly C extension (C++
not supported). The latter is natively supported by Intel C++ Compiler and GCC version
\geq 4.9. It supports both C and C++ for writing serial parts. DAG Recorder supports
both Cilk and CilkPlus. Hereafter, when we say Cilk, it means the original MIT Cilk
version.

CilkPlus uses directives _Cilk_spawn and _Cilk_sync statements. Here is our example
in CilkPlus.

#include <stdio.h>

#include <stdlib.h>

long bin(int n) {

if (n == 0) return 1;

else {

long x, y;

x = _Cilk_spawn bin(n - 1);

y = _Cilk_spawn bin(n - 1);

_Cilk_sync;

return x + y;

}

}

Chapter 4: DAG Recorder 12

int main(int argc, char ** argv) {

int n = atoi(argv[1]);

long x;

x = _Cilk_spawn bin(n);

_Cilk_sync;

printf("bin(%d) = %ld\n", n, x);

return 0;

}

Alternatively you can include <cilk/cilk.h> and use more human friendly cilk_spawn

and cilk_sync keywords.

#include <stdio.h>

#include <stdlib.h>

#include <cilk/cilk.h>

long bin(int n) {

if (n == 0) return 1;

else {

long x, y;

x = cilk_spawn bin(n - 1);

y = cilk_spawn bin(n - 1);

cilk_sync;

return x + y;

}

}

int main(int argc, char ** argv) {

int n = atoi(argv[1]);

long x;

x = cilk_spawn bin(n);

cilk_sync;

printf("bin(%d) = %ld\n", n, x);

return 0;

}

Cilk uses directives spawn and sync statements to create and synchronize tasks. Here is
our example in Cilk.

#include <stdio.h>

#include <stdlib.h>

cilk long bin(int n) {

if (n == 0) return 1;

else {

long x, y;

x = spawn bin(n - 1);

y = spawn bin(n - 1);

sync;

return x + y;

Chapter 4: DAG Recorder 13

}

}

cilk int main(int argc, char ** argv) {

int n = atoi(argv[1]);

long x;

x = spawn bin(n);

sync;

printf("bin(%d) = %ld\n", n, x);

return 0;

}

There is a subtle but important difference between Cilk and CilkPlus. In Cilk, a function
that spawns a task needs to be explicitly marked as a cilk procedure by the cilk keyword
at function declaration; and, once a procedure is marked as a cilk procedure, it cannot be
called by a regular function call syntax; it must always be spawned. That is, in our example,
the following is prohibited.

int x = bin(n);

It must instead be written as

int x;

x = spawn bin(n);

sync;

As a result, the enclosing function must also be marked as a cilk procedure.

Whether you use Cilk or CilkPlus, modifications necessary to make these programs ready
are summarized as follows.

1. include tpswitch/cilk_dr.cilkh (Cilk) or tpswitch/cilkplus_dr.h (CilkPlus)

2. enclose all spawn, cilk_spawn, and _Cilk_spawn statements with spawn_(...)

macro. e.g.,

y = cilk_spawn f(x);

should be rewritten to:

spawn_(y = cilk_spawn f(x));

3. replace all sync and cilk_sync statements with sync_ and cilk_sync_, respectively.

4. any function that spawns a task needs to begin with cilk_begin. This is to indicate the
beginning of a task. If you forget this, a compilation error should result, complaining
“no such variable cilk begin ”;

5. replace return statements with either cilk_return(val) or cilk_void_return, de-
pending on whether the return statement returns a value. This is to indicate the end
of a task.

(TODO : wish to fix this) If you forget this, a compilation succeeds, but DAG Recorder
fails.

6. (TODO : get rid of this restriction) As of writing, if you insert cilk_begin into a
function, that function always needs to be spawned. That is, such a function cannot
be called by a normal function call syntax. This is prohibited in MIT Cilk anyways
and flagged as a compilation error. It is on you when you use CilkPlus, which allows

Chapter 4: DAG Recorder 14

task-spawning functions to be called serially without spawn keywords. If you forget
this, there are no compilation errors and DAG Recorder will be confused.

Here is the modified CilkPlus program.

#include <stdio.h>

#include <stdlib.h>

#include <tpswitch/cilkplus_dr.h>

long bin(int n) {

cilk_begin;

if (n == 0) cilk_return(1);

else {

long x, y;

spawn_(x = cilk_spawn bin(n - 1));

spawn_(y = cilk_spawn bin(n - 1));

cilk_sync_;

cilk_return(x + y);

}

}

int main(int argc, char ** argv) {

cilk_begin;

int n = atoi(argv[1]);

dr_start(0);

long x;

spawn_(x = cilk_spawn bin(n));

cilk_sync_;

dr_stop();

printf("bin(%d) = %ld\n", n, x);

dr_dump();

cilk_return(0);

}

And here is Cilk version.

#include <stdio.h>

#include <stdlib.h>

#include <cilk/cilk.h>

long bin(int n) {

if (n == 0) return 1;

else {

long x, y;

x = cilk_spawn bin(n - 1);

y = cilk_spawn bin(n - 1);

cilk_sync;

return x + y;

}

}

Chapter 4: DAG Recorder 15

int main(int argc, char ** argv) {

int n = atoi(argv[1]);

long x;

x = cilk_spawn bin(n);

cilk_sync;

printf("bin(%d) = %ld\n", n, x);

return 0;

}

This source code can be compiled with and without DAG Recorder.

• CilkPlus, without DAG Recorder:

g++ -fcilkplus bin_cilkplus_dr.c

• CilkPlus, with DAG Recorder:

g++ -fcilkplus -DDAG_RECORDER=2 bin_cilkplus_dr.c -ldr

• Cilk, without DAG Recorder:

cilkc bin_cilk_dr.cilk

• Cilk, with DAG Recorder:

cilkc -DDAG_RECORDER=2 bin_cilk_dr.cilk -ldr

Instrumeting Cilk or CilkPlus programs is admittedly more burdensome than instru-
menting OpenMP or TBB. The main reason for this is that Cilk’s spawn statement and
CilkPlus’s cilk_spawn statement create a task that executes the body of a procedure, rather
than an entire procedure call statement, so we need to mark the beginning of the called
procedure as the beginning of the task. That’s why you need to insert cilk_begin. The
difference between the two is subtle, but consider the following example.

spawn f(g(x));

In this Cilk code, evaluation of g(x) is not performed by the spawned task, so there
is no way to mark the beginning of the task by tweaking macros that receive the entire
procedure call statement.

In contrast, a similar TBB code:

tg.run([=] { f(g(x)); });

spawns a task that performs f(g(x)) entirely. To make matters even simpler, the task
spawning primitive is just another method rather than a builtin syntax, which we can
transparently instrument by having another class that implements run method.

4.3.5 Using DAG Recorder with tpswitch.h

Just give -DDAG_RECORDER=2 and respective linker options (e.g., -lmyth-native -ldr
-lpthread) to the command line.

TODO: more detailed and reader-friendly description.

4.4 Running Your Programs with DAG Recorder

Chapter 4: DAG Recorder 16

4.4.1 Basics of Running Your Programs with DAG Recorder

Once you obtained an executable compiled and linked with DAG Recorder, you can run it
just normally.

$./bin_mtbb_dr 20

bin(20) = 1048576

You will find the following three files generated under the current directory.

• 00dr.dag — The DAG file. This is the primary file generated by DAG Recorder, from
which other files are derived

• 00dr.gpl — The parallelism file. This is a file showing the actual and available paral-
lelism, in a gnuplot format.

• 00dr.stat — The summary stat file. This is a text file showing, among others, the
number of tasks, total work time (time spent in the application code), critical path,
the number of steals, etc. The contents of this file will be explained later.

Run this program with setting environment variable DR=0, and you can run the program
with DAG Recorder turned off.

$ DR=0 ./bin_mtbb_dr 20

bin(20) = 1048576

It still imposes a small overhead (essentially, looking up a global variable + branch) for
each tasking primitive. We believe this overhead is rarely an issue, but if you want to
completely eliminate this overhead, compile the program without DAG_RECORDER=2.

4.4.2 Controlling the Behavior of DAG Recorder

The behavior of DAG Recorder can be controlled either from within the program or by
environment variables; you can pass a pointer to dr_options structure to dr_start, which
has been 0 in the examples we have shown so far. If the argument to dr_start is null
(zero), options can be set via environment variables. We will illustrate how they work.

First about environment variables. Run the program with setting the environment vari-
able DR_VERBOSE to 1, and you will see the list of environment variables and their values
printed by dr_start. You will also see messages about files generated by dr_dump.

$ DR_VERBOSE=1 ./bin_mtbb_dr 10

DAG Recorder Options:

dag_file_prefix (DAG_RECORDER_DAG_FILE_PREFIX,DR_PREFIX) : 00dr

dag_file_yes (DAG_RECORDER_DAG_FILE,DR_DAG) : 1

stat_file_yes (DAG_RECORDER_STAT_FILE,DR_STAT) : 1

gpl_file_yes (DAG_RECORDER_GPL_FILE,DR_GPL) : 1

dot_file_yes (DAG_RECORDER_DOT_FILE,DR_DOT) : 0

text_file_yes (DAG_RECORDER_TEXT_FILE,DR_TEXT) : 0

gpl_sz (DAG_RECORDER_GPL_SIZE,DR_GPL_SZ) : 4000

text_file_sep (DAG_RECORDER_TEXT_FILE_SEP,DR_TEXT_SEP) : |

dbg_level (DAG_RECORDER_DBG_LEVEL,DR_DBG) : 0

verbose_level (DAG_RECORDER_VERBOSE_LEVEL,DR_VERBOSE) : 1

chk_level (DAG_RECORDER_CHK_LEVEL,DR_CHK) : 0

uncollapse_min (DAG_RECORDER_UNCOLLAPSE_MIN,DR_UNCOLLAPSE_MIN) : 0

collapse_max (DAG_RECORDER_COLLAPSE_MAX,DR_COLLAPSE_MAX) : 1152921504606846976

Chapter 4: DAG Recorder 17

node_count_target (DAG_RECORDER_NODE_COUNT,DR_NC) : 0

prune_threshold (DAG_RECORDER_PRUNE_THRESHOLD,DR_PRUNE) : 100000

alloc_unit_mb (DAG_RECORDER_ALLOC_UNIT_MB,DR_ALLOC_UNIT_MB) : 1

pre_alloc_per_worker (DAG_RECORDER_PRE_ALLOC_PER_WORKER,DR_PRE_ALLOC_PER_WORKER) : 0

pre_alloc (DAG_RECORDER_PRE_ALLOC,DR_PRE_ALLOC) : 0

dag_recorder: writing dag to 00dr.dag

dr_pi_dag_dump: 28648 bytes

dag recorder: writing stat to 00dr.stat

dag recorder: writing parallelism to 00dr.gpl

bin(10) = 1024

Uppercase names within parentheses are environment variables you might want to set.
They start with a prefix DAG_RECORDER_ and many of them have a shorter version that
begin with DR_. The list will change as our experiences accumulate. Below is the list of
frequently used variables (consider other variables are still experimental).

variable default description
DR_DAG_

PREFIX

00dr Prefix of all files below

DR_DAG 1 1 if generate a DAG file (to DR_DAG_PREFIX.dag)
DR_STAT 1 1 if generate a summary stat file (to DR_DAG_PREFIX.stat)
DR_GPL 1 1 if generate a parallelism profile file (to DR_DAG_PREFIX.gpl)
DR_DOT 0 1 if generate a DAG file in a graphviz format (to DR_DAG_

PREFIX.dot), which can be converted into viewable images
by the dot command. You need to have graphviz package
installed in yours system

DR_TEXT 0 1 if generate a human-readable text-formatted DAG file (to
DR_DAG_PREFIX.txt). Specify this when you want to inspect
raw data

DR_TEXT_SEP | The field delimiter used in the text-formatted DAG file
DR_VERBOSE 0 Set verbosity
DR_

COLLAPSE_

MAX

a huge
value

Determine how aggressively the DAG Recorder collapses sub-
graphs. Specifically, the value determines an upper bound of
time (in clock cycles) any single node resulted from collapsing
a subgraph can span. In other words, any single node in the
DAG represents either a true single node (i.e., performed no
tasking primitives) or a subgraph that took shorter than this
number of clocks. The default is a huge value, which means
the system can collapse subgraphs as much as it can. Set it
to a small value to guarantee a minimum resolution.

Let us move on to the second method, which is to control the behavior from your
program. As briefly noted above, this is done by passing a pointer to dr_options structure
to dr_start. See PREFIX /include/dag_recorder.h for the list of fields. Note that field
names were also displayed with DR_VERBOSE=1 option above. For example, the line:

dag_file_prefix (DAG_RECORDER_DAG_FILE_PREFIX,DR_PREFIX) : 00dr

tells you dag_file_prefix is the field name you want to set to change the prefix of
generated files.

Chapter 4: DAG Recorder 18

When you change some of these fields, you will want to leave other fields to their default
values. dr_options_default(opts) is the function that fills the structure pointed to by
opts with default and environmentally-set values. So, the typical sequence you want to use
will be:

dr_options opts[1];

dr_options_default(opts);

opts->dag_file = ...;

opts->whatever_you_want_to_change = ...;

...

dr_start(opts);

4.5 dag2any DAG to any data converter

about dag2any

4.6 Viewing Recorded Data

Tools to view DAG Recorder data are still ad-hoc; ideally there should be a single tool to
view the same data from many angles. As of writing, there instead is an interactive tool to
show parallelism profile and a set of files derived from the DAG data, viewable by standard
tools such as gnuplot. We will continue to work on developing tools to analyze DAG data
from many angles and unify their user interfaces.

4.6.1 Viewing Parallelism Profile with gnuplot

By default, programs traced by DAG Recorder generates a parallelism profile as a gnuplot
file. You can simply view it by gnuplot. A parallelism profile looks like this.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09 3e+09 3.5e+09 4e+09 4.5e+09 5e+09

running
end

create
create cont

wait cont
other cont

The horizontal axis represents time (in clock cycles) and the vertical axis the number of
tasks of various conditions, indicated by colors.

• “running” means the number of actually running tasks. The number of running tasks
should never exceed the number of workers used by the execution. In the graph above,

Chapter 4: DAG Recorder 19

it is constant around 64. As you will have guessed already, it was an execution with
64 cores.

• all other colors mean the number of “available” or “runnable” but not running tasks;
a task is available when all its predecessors in the DAG have finished. Available tasks
are classified by the type of event that made them runnable.

• “end” means the task became available as its awaiting task finished.

• “create” means the task became available as its parent created it.

• “create cont” means the task became available as it created a task and continues.

• “wait cont” means the task became available as it reached synchronization point
(i.e., issued tg.wait() in TBB, sync in Cilk, pragma task wait in OpenMP, etc.)
and child tasks have already finished by that point.

• “other cont” means the task became available as it performed any operation that
might enter the runtime system. In practice, you will never see this event.

For example, consider the following program:

#include <mtbb/task_gorup.h>

int main() {

mtbb::task_group tg;

a();

tg.run([=] b());

c();

tg.wait();

d();

}

and the DAG resulting from executing this program.

a()

b() c()

d()

p

p'

p''

q

create contcreate

end
wait cont

tg.run([=] bin());

tg.wait();

The label of an edge indicates how the node it points to is classified when its source node
has finished. For example, the node q is counted as create, from the time when p finished
(i.e., the task entered tg.run([=] { b(); })) to the time when q started.

Chapter 4: DAG Recorder 20

p” becomes available when both q and p’ finished, so how it is classified depends on
which of them finished last. If q finished later than p’, it is classified as end ; otherwise as
wait cont.

In most cases, your primary interest will be in “running.” If this stays constant around
the number of workers used, it means the same number of cores are maximally utilized (as
long as the operating system runs each worker on a distinct core). If it is not the case, that
is, there are intervals in which the number of running tasks is lower than the number of
workers used, you should check if there are enough available tasks.

If there are no or little available tasks in an interval, it means your program did not
have enough tasks in that interval, so you might have to consider increasing the parallelism
in that interval. In some cases you have simply left some section of your code left not
parallelized at all, which is easily visible in the parallelism profile. A tool drview will help
you spot source code locations when this happens. see Section 4.6.4 [Viewing DAG file with
drview], page 24.

If, on the other hand, available tasks are abundant, it means the runtime system, for
whatever reasons, was not able to fully exploit available parallelism. There are several
possible reasons for this.

• Your tasks are too fine grained, so you observe the overhead of task creation or task
stealing. For example, let’s say a runtime system takes 10000 cycles from the point
a task is created until the point it actually gets started, it is not counted as running
during that interval of 10000 cycles. If average task granularity is only, say, 5000 cycles,
then on average only 33% (5000/15000) of CPU time will be spent on actually running
tasks. With a 64 workers execution, you will observe about 20 running tasks. The
more overhead the runtime system imposes, the less number of running tasks you will
observe.

• The runtime system somehow imposes constraints on workers that can run certain
tasks, so some available tasks are left unexecuted when workers meeting the condition
are busy on other tasks. A typical example is OpenMP tied tasks and TBB (where all
tasks are tied); tied tasks cannot migrate once started by a certain worker.

4.6.2 Visualizing the DAG via graphviz

You can generate the DAG captured by DAG Recorder, by setting environment variable
DAG_RECORDER_DAG_FILE (or DR_DAG) to the filename you want to have it in. The file is
a text file of a graphviz dot format, which can then be transformed into various graphics
format by graphviz tool dot.

Since a program easily generates a DAG of millions or more nodes, this feature will be
useful only for short runs.

For example, you can see the DAG by any SVG viewer by the following procedure.

$ DR_DAG=00dr.dot ./a.out

$ dot -Tsvg -o 00dr.svg 00dr.dot

$ any-svg-viewer 00dr.svg

See graphviz package and dot manual for further information about the dot tool.

When you use this feature to visualize the true topology of the DAG your program
generated, you might want to turn off the subgraph contraction algorithm DAG Recorder

Chapter 4: DAG Recorder 21

implements to save space. To this end, you can set DR_COLLAPSE_MAX environment variable
to zero.

$ DR_COLLAPSE_MAX=0 DR_DAG=00dr.dot ./a.out

$ dot -Tsvg -o 00dr.svg 00dr.dot

$ any-svg-viewer 00dr.svg

4.6.3 Understanding Stat File

By default, programs traced by DAG Recorder generates a small text file that summarizes
various pieces of information of the execution. You can view it by any text editor. Here is
an example.

create_task = 1048575

wait_tasks = 1048575

end_task = 1048576

work (T1) = 1313026836

delay = 9031849743

no_work = 11285973

critical_path (T_inf) = 91285263

n_workers (P) = 4

elapsed = 2589040638

T1/P = 328256709.000

T1/P+T_inf = 419541972.000

T1/T_inf = 14.384

greedy speedup = 3.130

observed speedup = 0.507

observed/greedy = 0.162

task granularity = 9601.938

interval granularity = 3200.645

dag nodes = 5242877

materialized nodes = 351

compression ratio = 0.000067

end-parent edges:

266182 7 7 1

1 253506 16 2

0 8 280326 5

1 4 9 248486

create-child edges:

266204 0 0 0

0 253527 0 0

0 0 280342 0

0 0 0 248502

create-cont edges:

266187 7 6 4

2 253514 9 2

3 7 280329 3

4 3 0 248495

wait-cont edges:

Chapter 4: DAG Recorder 22

266183 0 1 0

0 253531 0 0

1 0 280361 0

0 0 0 248498

other-cont edges:

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

• The first three items show the number of events:

create_

task

The number of times tasks are created, not including the main task.

wait_

tasks

The number of times wait operations are issued. Each wait may wait for multiple
tasks, so this number may not match create task

end_

task

The number of times tasks are ended. This should be create_task + 1. +1 is
because the former does not include the main task, but end_task does.

• Then there are three numbers showing the breakdown of the total time spent by the
execution.

work

(T1)

The cumulative time (clock cycles) spent in executing the application code.
Total across all cores. This does not include time spent in the runtime system
(e.g., task creation overhead). If the application perfectly scales, this number
should be constant no matter how many cores you used for execution. This is
the area of the “running” region in the parallelism profile graph.

delay The cumulative time available tasks are not executed despite there are “spare”
cores not executing any task. This is the area of “available” region below the
horizontal line at the number of cores in the parallelism profile graph. This value
would be zero under a hypothetical “genuinely greedy” scheduler, a scheduler
which immediately dispatches any available task to if any available core, without
any delay or whatsoever.

no_work The cumulative time cores spent without available tasks. This is the area not
filled by running or available tasks below the horizontal line at the number of
cores in the parallelism profile graph.

The following is a conceptual model to understand what each of them is. Imagine we
stop all workers at each processor cycle and count the number of tasks running (= R),
as well as the number of tasks available but not running (= A).

Let W = the number of workers. In this setting,

• T1 is the total of R over all cycles

• delay is the total of min(A, W - R) over all cycles

• no_work is the total of min(0, W - R - A) over all cycles

Observe that at any point, the sum of the three terms is always W. Therefore, it always
holds that

T1 + delay + no_work = W x elapsed time

Chapter 4: DAG Recorder 23

In other words, T1, delay, and no_work give a breakdown of the whole execution time.
Perfectly scalable executions have T1 approximately the same as that of serial execution
and have both delay and no_work nearly zero. They in general give you a quantitative
information on why your application does not ideally scale.

Applications that do not have enough parallelism will have large no_work, those that
have enough parallelism that cannot be utilized by the runtime system will show a
large delay value, and those that have their work time increased (presumably due to
cache misses due to inter-core communication, false sharing, or capacity overflows on
shared caches) will show a T1 value significantly larger than that of serial execution.

• Nine metrics that follow give you a better idea about the speedup.

critical_

path

(T_inf)

Critical path of the DAG. This is the longest time spent in a path in the
DAG. The time does not include time spent in the runtime system.

n_workers

(P)

The number of workers that participated in the execution. This is the value
DAG Recorder observed during execution and, in rare occasions, may not
match the number of cores you asked the runtime system to use. If, for
example, the program was so short lived or created so few tasks that some
cores were not used at all, you may observe a number smaller than the
number you specified.

elapsed Elapsed time (clock cycles) of the application. As we stated above, elapsed
x P should match the sum of T1, delay, and no_work.

T1/P This is simply T1 divided by P. This gives an obvious lower bound on
achievable elapsed time.

T1/P+T_inf This is simply T1 divided by P. This gives an upper bound of elapsed time
by a hypothetical greedy scheduler. If the scheduler is “greedy enough”
(available tasks will be executed quickly enough as long as there is an
available core), the elapsed time you observed should be close to this value.

T1/T_inf This is simply T1 divided by T_inf, or the “average parallelism” of the
execution. In general, if you hope your application to scale, this value
should be much larger than the number of cores you hope to utilize.

greedy

speedup

The speedup that should be achieved by a hypothetical greedy scheduler.
It is, T1 divided by T1/P+T_inf.

observed

speedup

The actual speed up observed, which is T1 divided by elapsed time.

observed/greedyThe ratio of the above two terms. It indicates how greedy the scheduler
was.

• The following two terms give you an idea about granularity

task
granularity

This is the average number of cycles between to task creations. That is, T1
divided by the number of tasks.

Chapter 4: DAG Recorder 24

interval
granularity

This is the average number of cycles spent in a single DAG node, or cycles
between any two consecutive task parallel operations (e.g., a task creation
followed by a sync).

• Three terms that follow give you the number of DAG nodes and the effectiveness of
the DAG contraction algorithm.

dag nodes The number of DAG nodes if there would be no contraction.

materialized
nodes

The number of nodes after DAG contraction. If DR_COLLAPSE_MAX=0 (DAG
contraction turned off), this should equal to dag nodes. If this value is large
(default) and you use only a single core, this is always one!

compression
ratio

The ratio between the two. DAG contraction is more effective (thus the
value is small) when many large subgraphs are executed in a single core,
and thus are contracted.

• Finally, there are five matrices that describe the number of edges in the DAG connecting
two nodes executed by a pair of workers. Specifically, each matrix is P x P matrix
(where P is the number of workers) whose P[i,j] element (i : row number, j : column
number) is the number of edges of a respective type connecting from a node executed
by worker i to a node executed by worker j. Five matrices are:

end-parent
edges

This matrix counts edges from the last node of a task to the node that
follows a wait operation that synchronized with the task.

create-child
edges

This matrix counts edges from a task creation node to the first node of the
created task.

create-cont
edges

This matrix counts edges from a task creation node to its continuation in
the same task.

wait-cont
edges

This matrix counts edges from a synchronization node (a node that ends by
issuing OpenMP taskwait, TBB task_group::wait() method, Cilk sync

statement, etc.) to its continuation in the same task.

other-cont
edges

This matrix counts edges from a node that ends by entering the runtime
system for any reason other than task creation or synchronization to the
node that starts after the operation.

4.6.4 Viewing DAG file with drview

drview is a tool that shows parallelism profile of an execution and allows you to zoom into
an interval in it. This way it helps you pinpoint tasks executing when parallelism was low.

Prerequisites: drview is a python script that relies on the following libraries.

• matplotlib (Debian package name: python-matplotlib)

• gtk (Debian package name: python-gtk2 and perhaps python-gtk2-dev)

Please make sure you should be able to import respective python modules (matplotlib
and gtk).

Chapter 4: DAG Recorder 25

To use drview, you first need to convert the .dag file generated by DAG Recorder into
SQLite3 format using dag2any tool described above. Then you pass the resulting SQLite3
file to drview.

TODO: We are planning to improve this crude interface, so you can directly give a .dag

file to drview.

$ dag2any 00dr.dag

writing sqlite3 to 00dr.sqlite

basics: ..

nodes: ..

edges: ..

strings: ..

committing

$ drview 00dr.sqlite

This will bring up the user interface window.

BUG: The initial configuration of panes is far from satisfactory. Please adjust their
sizes manually by grabbing borders between panes. I am still trying to figure out how to
configure their sizes.

After manually adjusting pane sizes, you will obtain something like this.

On the leftmost pane, you see the parallelism profile, the same information you can see
by the gnuplot-formatted parallelism profile. see Section 4.6.1 [Viewing Parallelism Profile
with gnuplot], page 18.

On the center pane is the list of DAG nodes executed. Each row represents a group of
nodes that share the same start and end positions. They are ordered by the total number
of cycles spent in the group of tasks. If you double-click on a row, the right pane shows the
source code of the corresponding location. By clicking somewhere in the “start” or “end”
column, the source code pane will display the group’s start or end position, respectively.

The most useful feature of this tool is that you can zoom into an interval of your interest
in the parallelism pane. Hold the left button of the mouse pushed and specify a rectangular
region in the parallelism pane, and you will see the parallelism and the task panes redrawn

Chapter 4: DAG Recorder 26

to reflect the tasks executed in the selected interval. This way, you can easily know the
source locations of low parallelism.

4.7 Querying Recorded Data

