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Preliminaries

1. To install R/qtl, type (within R) install.packages("qtl") (This needs to be done just once.)

2. To load the R/qtl package, type

library(qtl)

This needs to be done every time you start R. (There is a way to have the package loaded automatically every time, but

we won’t discuss that here.)

3. To view the objects in your workspace:

ls()

4. The best way to get help on the functions and data sets in R (and in R/qtl) is via the html version of the help files. One

way to get access to this is to type

help.start()

This should open a browser with the main help menu. If you then click on Packages → qtl, you can see all of the available

functions and datasets in R/qtl. For example, look at the help file for the function read.cross.

An alternative method to view this help file is to type one of the following:

help(read.cross)

?read.cross

The html version of the help files are somewhat easier to read, and allow use of hotlinks between different functions.

5. All of the code in this tutorial is available as a file from which you may copy and paste into R, if you prefer that to typing.

Type the following within R to get access to the file:

url.show("https://rqtl.org/rqtltour2.R")

Data import

We will consider data from Sugiyama et al., Physiol Genomics 10:5–12, 2002. The data are from an intercross between

BALB/cJ and CBA/CaJ; only male offspring were considered. There are four phenotypes: blood pressure, heart rate, body

weight, and heart weight. We will focus on the blood pressure phenotype, will consider just the 163 individuals with genotype

data and, for simplicity, will focus on the autosomes. The data are contained in the comma-delimited file https://rqtl.org/sug.csv.

6. Load the data into R/qtl as follows.

sug <- read.cross("csv", "https://rqtl.org", "sug.csv",

genotypes=c("CC", "CB", "BB"), alleles=c("C", "B"))

The function read.cross is for importing data into R/qtl. "sug.csv" is the name of the file, which we import directly

from the R/qtl website. genotypes indicates the codes used for the genotypes; alleles indicates single-character codes to

be used in plots and such.

read.cross loads the data from the file and formats it into a special cross object, which is then assigned to sug via the

assignment operator (<-).
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Diagnostics

Generally, at this point, one would spend considerable time studying the genotype and phenotype data, looking for potential

errors. In many cases, about half of the analysis time is devoted to such diagnostics.

In previous tutorials, we’ve often gotten bogged down in this part, and so we’ll skip it here, assume that the data are okay, and

jump right into QTL mapping. See the longer (“brief”) tour of R/qtl at https://rqtl.org/tutorials, or Chapter 3 of Broman and

Sen (2009).

Summaries

The data object sug is complex; it contains the genotype data, phenotype data and genetic map. R has a certain amount

of “object oriented” facilities, so that calls to functions like summary and plot are interpreted appropriately for the object

considered.

The object sug has “class” "cross", and so calls to summary and plot are actually sent to the functions summary.cross

and plot.cross.

7. Get a quick summary of the data. (This also performs a variety of checks of the integrity of the data.)

summary(sug)

We see that this is an intercross with 163 individuals. There are 6 phenotypes, and genotype data at 93 markers across

the 19 autosomes. The genotype data is quite complete.

8. There are a number of simple functions for pulling out pieces of summary information. Hopefully these are self-

explanatory.

nind(sug)

nchr(sug)

totmar(sug)

nmar(sug)

nphe(sug)

9. Get a summary plot of the data.

plot(sug)

The plot in the upper-left shows the pattern of missing genotype data, with black pixels corresponding to missing geno-

types. The next plot shows the genetic map of the typed markers. The following plots are histograms or bar plots for the

six phenotypes. The last two “phenotypes” are sex (with 1 corresponding to males) and mouse ID.

10. Individual parts of the above plot may be obtained as follows.

plotMissing(sug)

plotMap(sug)

plotPheno(sug, pheno.col=1)

plotPheno(sug, pheno.col=2)

plotPheno(sug, pheno.col=3)

plotPheno(sug, pheno.col=4)

plotPheno(sug, pheno.col=5)

plotPheno(sug, pheno.col=6)

Single-QTL analysis

Let’s now proceed to QTL mapping via a single-QTL model.

11. We first calculate the QTL genotype probabilities, given the observed marker data, via the function calc.genoprob.

This is done at the markers and at a grid along the chromosomes. The argument step is the density of the grid (in cM),

and defines the density of later QTL analyses.

sug <- calc.genoprob(sug, step=1)

The output of calc.genoprob is the same cross object as input, with additional information (the QTL genotype

probabilities) inserted. We assign this back to the original object (writing over the previous data), though it could have

also been assigned to a new object.
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12. To perform a single-QTL genome scan, we use the function scanone. By default, it performs standard interval mapping

(that is, maximum likelihood via the EM algorithm). Also, by default, it considers the first phenotype in the input cross

object (in this case, blood pressure).

out.em <- scanone(sug)

13. The output has “class” "scanone". The summary function is passed to the function summary.scanone, and gives

the maximum LOD score on each chromosome.

summary(out.em)

14. Alternatively, we can give a threshold, e.g., to only see those chromosomes with LOD > 3.

summary(out.em, threshold=3)

15. We can plot the results as follows.

plot(out.em)

16. We can do the genome scan via Haley-Knott regression by calling scanone with the argument method="hk".

out.hk <- scanone(sug, method="hk")

17. We may plot the two sets of LOD curves together in a single call to plot.

plot(out.em, out.hk, col=c("blue", "red"))

18. Alternatively, we could do the following:

plot(out.em, col="blue")

plot(out.hk, col="red", add=TRUE)

19. It’s perhaps more informative to plot the differences:

plot(out.hk - out.em, ylim=c(-0.3, 0.3), ylab="LOD(HK)-LOD(EM)")

20. To perform a genome scan by the multiple imputation method, one must first call sim.geno to perform the multiple

imputations. This is similar to calc.genoprob, but with an additional argument, n.draws, indicating the number

of imputations. We then call scanone with method="imp".

sug <- sim.geno(sug, step=1, n.draws=64)

out.imp <- scanone(sug, method="imp")

21. We may plot all three curves together as follows.

plot(out.em, out.hk, out.imp, col=c("blue", "red", "green"))

22. We can plot the LOD curves for just chromosomes 7 and 15 as follows.

plot(out.em, out.hk, out.imp, col=c("blue", "red", "green"), chr=c(7,15))

23. We can also look at differences.

plot(out.imp - out.em, out.hk - out.em, col=c("green", "red"), ylim=c(-1,1))

Permutation tests

To perform a permutation test, to get a genome-wide significance threshold or genome-scan-adjusted p-values, we use scanone

just as before, but with an additional argument, n.perm, indicating the number of permutation replicates. It’s quickest to use

Haley-Knott regression.

24. In case the time to perform the permutation test is too long, you can skip it (here) and load the results (that I calculated

previously) for this plus other time-consuming stuff we’ll see shortly as follows.

load(url("https://rqtl.org/various.RData"))

25. The code to do the actual permutation test is the following:

operm <- scanone(sug, method="hk", n.perm=1000)
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26. A histogram of the results (the 1000 genome-wide maximum LOD scores) is obtained as follows:

plot(operm)

27. Significance thresholds may be obtained via the summary function:

summary(operm)

summary(operm, alpha=c(0.05, 0.2))

28. Most importantly, the permutation results may be used along with the scanone results to have significance thresholds

and p-values calculated automatically:

summary(out.hk, perms=operm, alpha=0.2, pvalues=TRUE)

Interval estimates of QTL location

For the blood pressure phenotype, we’ve seen good evidence for QTL on chromosomes 7 and 15. Interval estimates of the

location of QTL are commonly obtained via 1.5-LOD support intervals, which may be calculated via the function lodint.

Alternatively, an approximate Bayes credible interval may be obtained with bayesint.

29. To obtain the 1.5-LOD support interval and 95% Bayes interval for the QTL on chromosome 7, type:

lodint(out.hk, chr=7)

bayesint(out.hk, chr=7)

The first and last rows define the ends of the intervals; the middle row is the estimated QTL location.

30. It is sometimes useful to identify the closest flanking markers; use expandtomarkers=TRUE:

lodint(out.hk, chr=7, expandtomarkers=TRUE)

bayesint(out.hk, chr=7, expandtomarkers=TRUE)

31. We can calculate the 2-LOD support interval and the 99% Bayes interval as follows.

lodint(out.hk, chr=7, drop=2)

bayesint(out.hk, chr=7, prob=0.99)

32. The intervals for the chr 15 locus may be calculated as follows.

lodint(out.hk, chr=15)

bayesint(out.hk, chr=15)

QTL effects

We may obtain plots indicating the estimated effects of the QTL via plotPXG, which creates a dot plot, or effectplot,

which plots the average phenotype for each genotype group.

33. For plotPXG, we must first identify the marker closest to the QTL peak. Use find.marker.

max(out.hk)

mar <- find.marker(sug, chr=7, pos=47.7)

plotPXG(sug, marker=mar)

Note that red dots correspond to inferred genotypes (based on a single imputation).

34. The function effectplot uses the multiple imputation results from sim.geno.

effectplot(sug, mname1=mar)

35. We may use effectplot at a position on the “grid” between markers, using "7@47.7" to indicate the position at

47.7 cM on chr 7.

effectplot(sug, mname1="7@47.7")

36. Similar plots may be obtained for the locus on chr 15.

max(out.hk, chr=15)

mar2 <- find.marker(sug, chr=15, pos=12)

plotPXG(sug, marker=mar2)

effectplot(sug, mname1="15@12")
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37. We may plot the joint effects of the two loci via plotPXG as follows:

plotPXG(sug, marker=c(mar, mar2))

plotPXG(sug, marker=c(mar2, mar))

38. The function effectplot gives more readable figures in this case; it’s often useful to look at it in both ways.

effectplot(sug, mname1="7@47.7", mname2="15@12")

effectplot(sug, mname2="7@47.7", mname1="15@12")

The two loci do not appear to interact.

Other phenotypes

By default in scanone, we consider the first phenotype in the input cross object. Other phenotypes, include the parallel

consideration of multiple phenotypes, can be considered via the argument pheno.col.

39. To analyze the second phenotype, refer to it by its numeric index, as follows.

out.hr <- scanone(sug, pheno.col=2, method="hk")

40. Alternatively, refer to a phenotype by its name:

out.bw <- scanone(sug, pheno.col="bw", method="hk")

41. You can also give a numeric vector of phenotype values. This is useful for considering a transformed version of a

phenotype, such as log body weight.

out.logbw <- scanone(sug, pheno.col=log(sug$pheno$bw), method="hk")

42. Use of vector of phenotype indices results in an object with multiple LOD score columns, one for each phenotype.

out.all <- scanone(sug, pheno.col=1:4, method="hk")

43. For this final case, it’s important to note that the summary function, by default, focuses solely on the first LOD score

column.

summary(out.all, threshold=3)

Here, it looks at the first LOD score column and picks off the peaks that are above 3, and then gives the LOD scores at

that location for the other three columns.

To do the same thing but focusing on another column, use the argument lodcolumn.

summary(out.all, threshold=3, lodcolumn=4)

44. Alternatively, use format="allpeaks", to get the maximum LOD score for each column, with a chromosome being

shown if at least one of the LOD score column exceeds the threshold.

summary(out.all, threshold=3, format="allpeaks")

45. A third version of the output is obtained with format="allpheno", which gives one row per LOD peak and gives

the LOD scores for all columns at each peak.

summary(out.all, threshold=3, format="allpheno")

46. There are two other formats that might be preferred: format="tabByCol" and format="tabByChr". These give

tables with one significant LOD peak per phenotype, organized either by phenotype (with "tabByCol") or by chromo-

some (with "tabByChr"). The tables include 1.5-LOD support intervals, and so one may wish to use "tabByCol"

even if there is only one LOD score column.

summary(out.all, threshold=3, format="tabByCol")

summary(out.all, threshold=3, format="tabByChr")
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Two-dimensional, two-QTL scans

Two-dimensional, two-QTL scans offer the opportunity to detect interacting loci or to separate pairs of linked QTL. Analysis

is performed with scantwo, which is much like scanone.

47. For 2d scans, it’s advantageous to run things at a coarser step size, by first re-running calc.genoprob.

sug <- calc.genoprob(sug, step=2)

48. To perform a 2d scan for the blood pressure phenotype, use the following. If you loaded the file "various.RData"

in step 24 on page 3, you can skip this, as you already have the results.

out2 <- scantwo(sug, method="hk")

49. We may plot the results as follows.

plot(out2)

The upper-triangle contains interaction LOD scores, comparing the full two-locus model to the additive two-locus model.

The lower-triangle contains the “full” LOD scores, comparing the full two-locus model to the null model. Because of the

clear evidence for QTL on chromosomes 7 and 15, we see “tails” along those two chromosomes: the two locus model

with either chr 7 or chr 15 and anything else is clearly better than the null model.

50. It’s best to replace the lower-triangle with the LOD score comparing the full model to the best single-QTL model, using

either lower="cond-int" or lower="fv1" (the two are equivalent).

plot(out2, lower="fv1")

51. We can also look at the LOD scores comparing the additive two-QTL model to the best single-QTL model, using either

upper="cond-add" or upper="av1".

plot(out2, lower="fv1", upper="av1")

52. To assess significance, we need to do a permutation test. This can be extremely time consuming. The results were

already loaded in step 24 on page 3, but here is the code (though here I cite n.perm=5 rather than n.perm=1000, as

I’d recommend).

operm2 <- scantwo(sug, method="hk", n.perm=5)

53. With the permutation results in hand, we can get a summary with p-values.

summary(out2, perms=operm2, alpha=0.2, pvalues=TRUE)

The pair of loci on 7 and 15 are clear. They show no evidence for an interaction. There is some evidence for an additional

locus on chr 12, with p=0.17.

Multiple-QTL analyses

After performing the single- and two-QTL genome scans, it’s best to bring the identified loci together into a joint model, which

we then refine from which we may explore the possibility of further QTL. In this effort, we work with “QTL objects” created

by makeqtl. We fit multiple-QTL models with fitqtl. A number of additional functions will be introduced below.

53. Let’s re-run calc.genoprob so that we are working at a step size of 1 cM again.

sug <- calc.genoprob(sug, step=1)

54. First, we create a QTL object containing the loci on chr 7 and 15.

qtl <- makeqtl(sug, chr=c(7,15), pos=c(47.7, 12), what="prob")

The last argument, what="prob", indicates to pull out the QTL genotype probabilities for use in Haley-Knott regres-

sion.

55. We fit the two locus additive model as follows.

out.fq <- fitqtl(sug, qtl=qtl, method="hk")

summary(out.fq)

A key part of the output is the “drop one term at a time” table, which compares the fit of the two-QTL model to the

reduced model in which a single QTL is omitted.

6



56. We may obtain the estimated effects of the QTL via get.ests=TRUE. We use dropone=FALSE to suppress the

drop-one-term analysis.

summary(fitqtl(sug, qtl=qtl, method="hk", get.ests=TRUE, dropone=FALSE))

Since this is an intercross, we obtain estimates of the additive effect and dominance deviation for each locus.

57. To assess the possibility of an interaction between the two QTL, we may fit the model with the interaction, indicated via

a model “formula”. The QTL are referred to as Q1 and Q2 in the formula, and we may indicate the interaction in a couple

of different ways.

out.fqi <- fitqtl(sug, qtl=qtl, method="hk", formula=y˜Q1*Q2)

out.fqi <- fitqtl(sug, qtl=qtl, method="hk", formula=y˜Q1+Q2+Q1:Q2)

summary(out.fqi)

We don’t have time to cover the use of such formulas in any detail here. Note that there is no evidence for an interaction.

58. Another way to assess interactions is with the function addint, which adds one interaction at a time, in the context of

a multiple-QTL model. This is most useful when there are more than two QTL being considered.

addint(sug, qtl=qtl, method="hk")

59. The locations of the two QTL are as estimated via the single-QTL scan. We may refine our estimates of QTL location in

the context of the multiple-QTL model via refineqtl. This function uses a greedy algorithm to iteratively refines the

locations of the QTL, one at a time, at each step seeking to improve the overall fit.

rqtl <- refineqtl(sug, qtl=qtl, method="hk")

rqtl

The location of each QTL changed slightly, and the overall LOD score increased by 0.03.

60. We can re-run fitqtl to get the revised drop-one-term table.

summary(out.fqr <- fitqtl(sug, qtl=rqtl, method="hk"))

61. The plotLodProfile function plots LOD profiles obtained during the call to refineqtl. These give one-dimensional

views of the precision of QTL localization, in the context of the multiple-QTL model.

plotLodProfile(rqtl)

For each position on the curve for the chr 7 QTL, we compare the two-QTL model with the chr 7 locus in varying position

but with the chr 15 locus fixed at its estimated position, to the single-QTL model with just the chr 15 locus. The chr 15

curve is similar.

These are actually slightly lower than the curves obtained from the single-QTL analysis with scanone.

plot(out.hk, chr=c(7,15), col="red", add=TRUE)

62. The function addqtl is used to scan for an additional QTL to be added to the model.

out.aq <- addqtl(sug, qtl=rqtl, method="hk")

The biggest peaks are on chr 8 and 12, but nothing is particularly exciting.

plot(out.aq)

There is also a function addpair, for scanning for a pair of QTL to be added.

63. Finally, we consider the function stepwiseqtl, which is our fully automated stepwise algorithm to optimize the

penalized LOD scores of Manichaikul et al. (2009). We first need to calculate the appropriate penalties from the two-

dimensional permutation results.

print(pen <- calc.penalties(operm2))

We then run stepwiseqtl, using max.qtl=5. It will perform forward selection to a model with 5 QTL, followed by

backward elimination, and will report the model giving the largest penalized LOD score. The output is a QTL object.

out.sq <- stepwiseqtl(sug, max.qtl=5, penalties=pen, method="hk", verbose=2)

out.sq

With verbose=2, we get an indication of the location of the QTL at each step.

The result is exactly the model that we had after refineqtl.
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