
Theano, Pylearn2, libgpuarray Presentation

Frédéric Bastien, Bart van Merriënboer

Département d'Informatique et de Recherche Opérationnelle

Université de Montréal

Montréal, Canada

{bastienf, vanmerb}@iro.umontreal.ca

OML Workshop 2014

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

High level

Python <- {NumPy/SciPy/libgpuarray} <- Theano <- Pylearn2

I Python: OO coding language

I Numpy: n-dimensional array object and scienti�c computing
toolbox

I SciPy: sparse matrix objects and more scienti�c computing
functionality

I libgpuarray: GPU n-dimensional array object in C for CUDA
and OpenCL

I Theano: compiler/symbolic graph manipulation

I Pylearn2: machine learning framework

1 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Python

I General-purpose high-level OO interpreted language

I Emphasizes code readability

I Comprehensive standard library

I Dynamic type and memory management

I Slow execution

I Easily extensible with C

I Popular in web development and scienti�c communities

2 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

NumPy/SciPy

I Python �oats are full-�edged objects on the heap
I Not suitable for high-performance computing!

I NumPy provides an n-dimensional numeric array in Python
I Perfect for high-performance computing
I Slices of arrays are views (no copying)

I NumPy provides
I Elementwise computations
I Linear algebra, Fourier transforms
I Pseudorandom number generators (many distributions)

I SciPy provides lots more, including
I Sparse matrices
I More linear algebra
I Solvers and optimization algorithms
I Matlab-compatible I/O
I I/O and signal processing for images and audio

3 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

What's missing?

I Non-lazy evaluation (required by Python) hurts performance

I Bound to the CPU

I Lacks symbolic or automatic di�erentiation

I No automatic speed and stability optimization

4 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Theano

High-level domain-speci�c language tailored to numeric
computation.

I Syntax as close to NumPy as possible
I Compiles most common expressions to C for CPU and/or GPU
I Limited expressivity means more opportunities optimizations

I No subroutines -> global optimization
I Strongly typed -> compiles to C
I Array oriented -> easy parallelism
I Support for looping and branching in expressions

I Automatic speed and stability optimizations
I Can reuse other technologies for best performance.

I BLAS, SciPy, Cython, Numba, PyCUDA, CUDA

I Automatic di�erentiation and R op
I Sparse matrices

5 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Pylearn2

Machine Learning library aimed at researchers

I Built on top of Theano, for fast execution and use of GPU

I Easy to try variants of implemented algorithms, and to extend
them (using Theano)

I Very modular, each component of the library can be used in
isolation

I Experiments can be speci�ed through a YAML con�g �le, or
by a Python script

I Scripts for visualizing weights, plot monitored values

6 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

libgpuarray

Goal: A common GPU n-dimensional array that can be reused by
all projects, support for both CUDA and OpenCL.

Motivation:

I Currently there are at least 6 di�erent GPU arrays in Python
I CudaNdarray (Theano), GPUArray (pycuda), CUDAMatrix

(cudamat), GPUArray (pyopencl), Clyther, Copperhead, ...
I There are even more if we include other languages.

I They are incompatible
I None have the same properties and interface

I All of them implement a subset of numpy.ndarray properties

I This is the new GPU backend on Theano

7 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Goal of the stack

Fast to develop

Fast to run

8 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Introduction

Theano

Pylearn2

libgpuarray

Conclusion

9 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Description

I Mathematical symbolic expression compiler

I Expressions mimic NumPy's syntax and semantics
I Dynamic C/CUDA code generation

I C/C++, CUDA, OpenCL, PyCUDA, Cython, Numba, . . .

I E�cient symbolic di�erentiation
I Speed and stability optimizations

I Gives the right answer for �log(1 + x)� even if x is really tiny.

I Extensive unit-testing and self-veri�cation

I Works on Linux, OS X and Windows
I Transparent use of a GPU

I float32 only for now (libgpuarray provides much more)
I Limited support on Windows

I Sparse operations (CPU only)

10 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Simple example

import theano
de c l a r e s ymbo l i c v a r i a b l e
a = theano . t e n s o r . v e c t o r ("a")
bu i l d s ymbo l i c e x p r e s s i o n
b = a + a ∗∗ 10
comp i l e f u n c t i o n
f = theano . f u n c t i o n ([a] , b)
pr in t f ([0 , 1 , 2])
p r i n t s ` a r r a y ([0 , 2 , 1026]) `

11 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Simple example: graph optimization

12 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Project status?

I Mature: Theano has been developed and used since January
2008 (6.5 yrs old)

I Driven over 100 research papers

I Good user documentation

I Active mailing list with participants from outside our lab

I Core technology for a few Silicon-Valley start-ups

I Many contributors (some from outside our lab)

I Used to teach many university classes

I Has been used for research at Google and Yahoo.

Theano: deeplearning.net/software/theano/
Deep Learning Tutorials: deeplearning.net/tutorial/

13 / 24

deeplearning.net/software/theano/
deeplearning.net/tutorial/

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Introduction

Theano

Pylearn2

libgpuarray

Conclusion

14 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Pylearn2 details

The core library contains a collection of:
I Training algorithms (e.g. Stochastic and Batch GD,

model-speci�c rules)
I Costs, supervised/unsupervised and exact/estimated (e.g.

NLL, Score matching, NCE)
I Monitor, history of (functions of) parameters and

hyperparameters on di�erent data sets (training, validation,
test)

I Termination criteria, determine when to stop training

I Training extensions, perform actions throughout the training
process (e.g., early stopping)

I Models (e.g. NNets, ConvNets, RBMs, k-means, PCA, SVMs)

I Datasets (e.g. MNIST, CIFAR-10) and preprocessors (LCN,
ZCA)

15 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Pylearn2 details, continued

I Data speci�cations which give semantics to data
I IndexSpace, 1D integer array e.g. for labels
I VectorSpace, 1D �oat array e.g. for softmax output
I Conv2DSpace, 3D �oat32 arrays e.g. for color image input

I Allows for automatic conversion when needed e.g. labels to
one-hot vectors, images to �attened vectors

I YAML �le allows experiments to be conducted without writing
code

16 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Project status

I Has been used for scienti�c publications, Kaggle competitions,
used by many researchers at LISA

I Still under rapid development, however the API shouldn't
break without warning

I Documentation is incomplete, but quickly improving

I Active mailing list with participants from outside our lab

I Core technology for a least one Silicon-Valley start-up

I Features currently in development:
I Recurrent neural networks (RNNs), based on the GroundHog

framework developed at LISA
I Better hyperparameter search support, using e.g. Hyperopt

17 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Introduction

Theano

Pylearn2

libgpuarray

Conclusion

18 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

libgpuarray: Design Goals

I Have the base object in C to allow collaboration with more
projects.

I We want people from C, C++, ruby, R, . . . all use the same
base GPU ndarray.

I Be compatible with CUDA and OpenCL.

I Not too simple, (don't support just matrix).

I Support all dtype.

I Allow strided views.

I But still easy to develop new code that support only a few
memory layout.

I This ease the development of new code.

19 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Project status?

I Usable directly, but not all implementation available.

I Multiple GPUs works.

I Is the next GPU array container for Theano and is working.
I Not all Theano implementations available now.
I OpenCL misses more implementations.
I Multiple GPUs on the way.

I Web site:
http://deeplearning.net/software/libgpuarray/

20 / 24

http://deeplearning.net/software/libgpuarray/

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Introduction

Theano

Pylearn2

libgpuarray

Conclusion

21 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Conclusion

Theano/Pylearn2/libgpuarry provide an environment for machine
learning that is: Fast to develop

Fast to run

22 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Acknowledgments

I All people working or having worked at the LISA lab.

I All Theano/Pylearn 2 users/contributors

I Compute Canada, RQCHP, NSERC, and Canada Research
Chairs for providing funds or access to compute resources.

23 / 24

Introduction
Theano
Pylearn2

libgpuarray
Conclusion

Questions?

24 / 24

	Introduction
	Theano
	Pylearn2
	libgpuarray
	Conclusion

